Meditation on Isaev's algebra

George McNulty Ross Willard*

U. South Carolina

U. Waterloo

AMS Sectional Meeting Honolulu, Hawai'i March 3, 2012 All algebras have finite signature.

Definition

Inherently non-finitely based (INFB)

 A finite algebra A is INFB if for every n there exists an infinite, finitely generated model of the n-variable identities of A.

From McNulty and Shallon, "Inherently nonfinitely based algebras" (1982):

Congruence Modular Problem (1982)

Does there exist a finite A belonging to a CM variety which is INFB?

Isaev's Answer (1989)

Yes (even with an abelian group reduct): "Isaev's algebra"

Definition (McN, Szekely, W 2008)

Inherently non-finitely based at the finite level (INFB@FL)

A finite algebra A is INFB@FL if for every n, for some p > n there exist arbitrarily large <u>finite</u> p-generated models of the n-variable identities of A.

Notes:

- INFB@FL ⇒ INFB.
- **②** A INFB@FL \Rightarrow the pseudovariety generated by **A** is non-finitely based.

Finite Level Problem

Is every finite INFB algebra also INFB@FL?

Evidence for positive solution to FL problem:

- True for semigroups (follows from Sapir 1987)
- True for any algebra shown to be INFB by the "shift automorphism method" (McN, Szekeley, W 2008)

Obvious "next" question:

Isaev Problem

Is Isaev's algebra INFB@FL?

Isaev Meta-Problem

Does anyone understand Isaev's freakin' algebra?

(Deep breath ...)

Let $T = T_2(\mathbb{Z}_2)$ denote the ring of upper-triangular matrices over \mathbb{Z}_2 .

I.e.,

$$\mathbf{T} = \left\{ \left[egin{array}{cc} * & * \ 0 & * \end{array}
ight] : * \in \mathbb{Z}_2
ight\}.$$

The Jacobson radical $J = J(\mathbf{T})$ is

$$J = \left\{ \left[\begin{array}{cc} 0 & * \\ 0 & 0 \end{array} \right] : * \in \mathbb{Z}_2 \right\}.$$

We have $J^2 = \{0\}$ and $\mathbf{T}/J \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Finite basis for **T**

Let W_2 denote the variety of all rings of characteristic 2.

Theorem (Polin, 1980)

 $\mathit{HSP}(\mathsf{T})$ is the class of rings $R \in \mathcal{W}_2$ characterized by

- R/J is a Boolean ring (i.e., is in $HSP(\mathbb{Z}_2)$), and
- $J^2 = \{0\}$,

where J = J(R) is the Jacobson radical of R.

Corollary

 $\mathit{HSP}(\mathbf{T})$ is axiomatized relative to \mathcal{W}_2 by

$$(xy - yx)u(zw - wz) \approx 0$$

$$(xy - yx)u(z^2 - z) \approx 0$$

$$(x^2 - x)u(zw - wz) \approx 0$$

$$(x^2 - x)u(z^2 - z) \approx 0.$$

Normal forms for $HSP(\mathbf{T})$

Let $X = \{x_1, x_2, x_3, \dots, \}$ be a set of variables.

Given a monomial $\mathbf{w} = x_{i_1} x_{i_2} \cdots x_{i_k}$ over X, an occurrence $x_i x_j$ of two consecutive variables in \mathbf{w} is **bad** if $i \geq j$.

 ${f w}$ is ${f bad}$ if it has two ${f disjoint}$ bad occurrences of consecutive variables. Otherwise, ${f w}$ is good.

Examples:

- $x_3x_5x_2x_3x_5$ is good. $x_3x_5x_2x_3x_5$
- $x_1x_2x_1x_2x_3x_4x_4x_5$ is bad. $x_1 x_2x_1 x_2x_3 x_4x_4 x_5$
- $x_1x_4x_3x_2x_3$ is good. $x_1x_4x_3x_2x_3$
- $x_1x_4x_3x_2x_2x_3$ is bad. $x_1 x_4 x_3 x_2 x_2 x_3$

Suppose **w** is bad.

For example, $\mathbf{w} = Ax_4x_3Bx_1x_1C$.

Using $(xy - yx)u(z^2 - z) \approx 0$, we deduce

$$x_4x_3Bx_1x_1 \approx x_3x_4Bx_1x_1 + x_4x_3Bx_1 + x_3x_4Bx_1$$

hence

$$Ax_4x_3Bx_1x_1C \approx Ax_3x_4Bx_1x_1C + Ax_4x_3Bx_1C + Ax_3x_4Bx_1C.$$

Any bad monomial can replaced by a sum of three "less bad" monomials (and ultimately by a sum of good monomials).

Proposition (McN, W)

The good monomials over X form a vector space basis for the free algebra on X in $HSP(\mathbf{T})$.

(Another deep breath . . .)

Consider the <u>2-sorted</u> variety \mathcal{W}_2^* defined as follows:

A member of \mathcal{W}_2^* is of the form

$$\mathcal{A} = (\mathbf{A}, \mathbf{U}, \cdot)$$

where

- First sort: $\mathbf{A} = (A, +, 0)$ is a vector space over \mathbb{Z}_2 .
- Second sort: $\mathbf{U} = (U, +, \mathbf{0})$ is a vector space over \mathbb{Z}_2 .
- The operation \cdot is bilinear $A \times U \rightarrow U$.

The operation \cdot encodes an additive homomorphism $\mathbf{A} \to End(\mathbf{U})$ (via $a \mapsto L_a$ where $L_a(u) = a \cdot u$).

Recall that T is the ring of 2×2 upper triangular matrices over \mathbb{Z}_2 .

T is also a vector space over \mathbb{Z}_2 and acts naturally on $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Definition

 \mathfrak{T} is the 2-sorted algebra $(\mathbf{T}, \mathbb{Z}_2 \oplus \mathbb{Z}_2, \cdot) \in \mathcal{W}_2^*$.

There is a close connection between the equational theories of ${\bf T}$ and ${\mathfrak T}$. In particular,

Normal forms for $HSP(\mathfrak{T})$

The (k, ℓ) -generated free algebra in $HSP(\mathfrak{T})$ with generators $\{x_1, \ldots, x_k\}$ and $\{\underline{u_1}, \ldots, \underline{u_\ell}\}$ has the following normal forms:

- $\{x_1, \dots, x_k\} =: X$ is a basis for the first sort.
- The elements " \mathbf{w} " $\cdot u_t$ where $u_t \in \{u_1, \dots, u_\ell\}$ and \mathbf{w} is a good monomial over X form a basis for the second sort.

Here "
$$x_{i_1}x_{i_2}\cdots x_{i_n}$$
" $\cdot u \stackrel{df}{=} x_{i_1}\cdot (x_{i_2}\cdot (\cdots (x_{i_n}\cdot u)\cdots))$.

Corollary

The following identities form an infinite equational basis for $HSP(\mathfrak{T})$ relative to W_2^* :

Proof.

These identities suffice for the "reduction to good monomials."

Refinement (McN, W)

Suppose $n \geq 3$, $A = (\mathbf{A}, \mathbf{U}, \cdot) \in \mathcal{W}_2^*$, and span(X) = A.

If the above equations with $k \le n-2$ hold true in \mathcal{A} at instances with $x, y, z, w, v_1, v_2, \ldots, v_k \in X$, then \mathcal{A} satisfies all the (n, n)-variable identities of \mathcal{T} .

This gives a strategy for showing that $\ensuremath{\mathfrak{T}}$ is INFB.

Strategy

For every $n \ge 3$, show there exists

- a vector space **U** over \mathbb{Z}_2 with nonzero $\mathbf{u} \in U$;
- a finite set $\Lambda = \{L_x : x \in X\} \subseteq End(\mathbf{U});$

such that

• The members of Λ satisfy

2 The orbit of u under Λ is infinite.

Then $(\operatorname{span}(\Lambda), \operatorname{Orbit}_{\Lambda}(\underline{u}), \cdot)$ is an infinite, finitely generated model of the (n, n)-variable identities of \mathfrak{T} .

We can do that!

Corollary (McN, W)

T is INFB.

An easy modification of our construction gives

Corollary

T is INFB@FL.

What about Isaev's algebra? ... Deep breath ...

Let **I** be the "1-sortification" of $\mathfrak{T}=(\mathsf{T},\,\mathbb{Z}_2\oplus\mathbb{Z}_2,\,\cdot\,)$. I.e.,

- Universe is $I = T \times (\mathbb{Z}_2 \oplus \mathbb{Z}_2)$.
- Operations can be taken to be
 - ▶ addition: $(x_1, u_1) + (x_2, u_2) := (x_1 + x_2, u_1 + u_2)$.
 - multiplication: $(x_1, u_1)(x_2, u_2) := (0, x_1 \cdot u_2).$
 - decomposition: $d((x_1, u_1), (x_2, u_2)) := (x_1, u_2).$

Because 1-sortification preserves everything¹, I (like Υ) is INFB@FL.

Definition

Isaev's algebra is I with d thrown away.

The construction showing that $\mathfrak T$ is INFB@FL, translated to $\mathbf I$, never uses d. Hence it applies equally to Isaev's algebra. I.e., Isaev's algebra is INFB@FL.

¹that makes sense to preserve

Problems

- Find a "softer" proof that Isaev's algebra is INFB (or INFB@FL).
- ② Determine which finite algebras in \mathcal{W}_2^* are finitely based; INFB; INFB@FL.
- **3** Similarly for W_K^* where K is any finite field.

Mahalo!