A tutorial on Algebra and CSP, Part 2

[With some corrections]

Ross Willard

Waterloo, Canada

CSP: Complexity and Approximability

Dagstuhl

Nov 6, 2012

Recall from Andrei's tutorial: what controls the complexity of $CSP(\Gamma)$

But first a word about identities/Strong Mal'tsev Conditions (SMCs).

Suppose $\varepsilon_1,\ldots,\varepsilon_k$ are identities in formal function symbols $f_1,\,f_2,\,\ldots$

Let S be a set of operations on a domain D. The condition (on S)

$$\exists f_1, f_2, \ldots \in S$$
 (of the correct arities) such that $(D, f_1, f_2, \ldots) \models \varepsilon_1 \& \cdots \& \varepsilon_k$

is a **Strong Mal'tsev condition**. (The SMC given by $\{\varepsilon_1, \ldots, \varepsilon_k\}$.)

Not to be confused with

- Mal'tsev condition
- Weak Mal'tsev condition
- Mal'tsev's condition
- Identities

Suggestive examples

$\{0,1\}$ Γ_{2SAT} $(\{0,1\},\langle\mathit{majority}\rangle)$ majority laws	D	Γ	$Alg(\Gamma)$	an interesting SMC
\mathbb{Z}_p I $\operatorname{LinEq}/\mathbb{Z}_p$ ($\mathbb{Z}_p, \langle x-y+z \rangle$) Ivial tsev laws	$\{0, 1\}$	$\Gamma_{\rm HornSAT}$	$(\{0,1\},\langle \mathit{min}\rangle)$	semilattice laws (ACI)

Semilattice laws:
$$f(x, f(y, z)) = f(f(x, y), z)$$
, $f(x, y) = f(y, x)$, $f(x, x) = x$.

Majority laws:
$$f(x, x, y) = f(x, y, x) = f(y, x, x) = x$$
.

Mal'tsev laws
$$f(x, x, y) = f(y, x, x) = y$$
.

Reduction to the idempotent case:

- Can assume WLOG that $\{\{a\}: a \in D\} \subseteq \Gamma$.
- Then all $f \in Pol(\Gamma)$ are idempotent, i.e., satisfy f(x, x, ..., x) = x.

In this case, I'll write $\Gamma = \Gamma^c$.

Structural Dichotomy Conjecture (Bulatov, Jeavons, Krokhin 2005)

Assume $\Gamma = \Gamma^c$.

- **1 Theorem**. If $(\{0,1\}, \Gamma_{3SAT})$ is pp-interpretable in (D, Γ) , then $CSP(\Gamma)$ is NP-complete.
- **② Conjecture**. Otherwise, $CSP(\Gamma)$ is in P.

Goals of this lecture:

- Describe two further reductions.
- ② Describe two general P-time CSP algorithms.
 - Local consistency
 - "Few subpowers"
- Explain where algebra plays a role
- 4 A few words about other conjectured dichotomies

Two further reductions

First reduction: to *binary* constraint languages (all relations are 1-ary or 2-ary).

Idea: Let Γ be a finite constraint language on D.

Choose $2n \ge \max$ arity of relations in Γ .

 \exists a binary constraint language $\Gamma_{\rm bin}$ on D^n so that $\mathbf{Alg}(\Gamma_{\rm bin})=(\mathbf{Alg}(\Gamma))^n$.

Thus each of Γ , Γ_{bin} is pp-interpretable in the other.

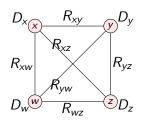
Note: for convenience, we assume our binary constraint language is *closed* (all 1-ary and 2-ary relations in $\langle \Gamma \rangle$ are already in Γ .)

Second reduction: to networks. Assume Γ is binary.

Definition

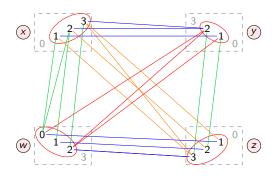
An instance $(V, \{\text{constraints}\})$ of $CSP(\Gamma)$ is a *network* if:

- Each $x \in V$ is the scope of exactly one constraint $(\{x\}, D_x)$.
- **2** Each pair $\{x,y\} \subseteq V$ with $x \neq y$ is the scope of exactly one constraint $(\{x,y\},R_{xy})$. (Define $R_{yx}=R_{xy}^{-1}$ and $R_{xx}=\{(a,a):a\in D_x\}$.)



Fact: if Γ is binary and closed, then $CSP(\Gamma) \equiv_L CSP(\Gamma) \upharpoonright_{networks}$.

Networks can be visualized. For example, suppose $D = \{0, 1, 2, 3\}$ and Γ is the set of all 1-ary and 2-ary relations on D. Here is a network for Γ :

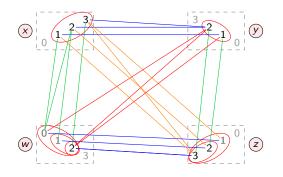


A solution is a clique.

Algorithm #1: Local consistency

Enforcing arc-consistency

Idea: Look for $x, y \in V$ and $a \in D_x$ having no edge (in R_{xy}) to D_y .



If found: replace D_x with $pr_x(R_{xy})$.

This shrinks the network without changing its set of solutions.

Clearly: if some D_x becomes empty, the original network has no solution.

Definition

A binary network $\mathcal{N}=(V,(D_x)_{x\in V},(R_{xy})_{x,y\in V})$ for Γ is (1,2)-consistent^a if $\operatorname{pr}_x(R_{xy})=D_x$ for all $x,y\in V$.

I.e., enforcing arc-consistency makes no changes.

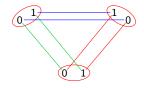
Fact (Montanari, 1974), or Exercise

- \exists a P-time algorithm which, given a binary network \mathcal{N} , either
 - 1 Deduces an empty constraint by enforcing arc-consistency, or
 - 2 produces an equivalent (1,2)-consistent subnetwork of \mathcal{N} .

This is the *enforcing arc-consistency* algorithm.

^aAlso called (1,2)-minimal, 1-minimal, etc.

Note: (1,2)-consistent networks may have solutions, or may not. E.g.,



Definition

A binary, closed constraint language Γ has width (1,2) if every (1,2)-consistent network over Γ has a solution.

For such Γ , enforcing arc-consistency is a P-time algorithm solving $\mathrm{CSP}(\Gamma)$.

Question: Which Γ have width (1,2)?

Definition. $f: D^n \to D$ is a *set operation* if it satisfies $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ whenever $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$.

Example: if \wedge is a semilattice operation on D (associative, commutative, and idempotent), then $\forall n$,

$$f(x_1,\ldots,x_n):=((x_1\wedge x_2)\wedge x_3)\cdots\wedge x_n$$

is a set operation.

Theorem (Dalmau & Pearson, 1999)

Suppose Γ is a binary, closed constraint language on a domain D of size d. Let $n=d^2$. TFAE:

- Γ has width (1,2).
- \circ Γ has an n-ary polymorphism f which is a set operation.

E.g. $\Gamma_{\rm HornSAT}$ has width (1,2) (as *min* is a polymorphism).

Proof (2) \Rightarrow (1). Assume Γ has an n-ary polymorphism satisfying $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ whenever $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$.

Let $\mathcal{N} = (V, (D_x)_x, (R_{xy})_{x,y})$ be a (1,2)-consistent network for Γ .

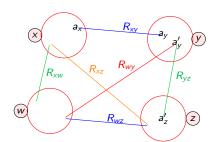
For each pair $x, y \in V$, list the edges in R_{xy} (padding the list to length n). Apply f to the list (coordinatewise).

$$\begin{pmatrix}
(& b_1 & , & c_1 &) \\
(& b_2 & , & c_2 &) \\
\vdots & & \vdots & \vdots \\
(& b_n & , & c_n &)
\end{pmatrix} = R_{xy}$$

$$(a_x, a_y) := (f(\mathbf{b}), f(\mathbf{c})) \in R_{xy}$$

(Last " $\in R_{xy}$ " because R_{xy} is invariant under f.)

This chooses a **special edge** in R_{xy} for each pair $x, y \in V$.



Edges chosen by f

Focus on $(a_x, a_y) \in R_{xy}$ and $(a'_y, a'_z) \in R_{yz}$. Claim: $a_y = a'_y$.

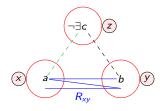
$$R_{xy} = \left\{ \begin{array}{cccc} (&b_1 &, & c_1 &) & & (&c'_1 &, & d'_1 &) \\ & \vdots & \vdots & & & \vdots & \vdots & \\ & (&b_n &, & c_n &) & & & (&c'_n &, & d'_n &) \end{array} \right\} = R_{yz}$$

$$(a_x, a_y) := (&f(\mathbf{b}), &f(\mathbf{c})) & & & & (&f(\mathbf{c}'), &f(\mathbf{d}')) &=: & (a'_y, a'_z)$$

We're in a (1,2)-consistent network, so both $\{c_1,\ldots,c_n\}$ and $\{c'_1,\ldots,c'_n\}$ are enumerations of D_v . Hence $f(\mathbf{c})=f(\mathbf{c}')$, so we have a clique.

(2,3)-consistency

Idea: Look for $x, y, z \in V$ and $(a, b) \in R_{xy}$ which doesn't extend to a 3-clique on x, y, z.



If found: replace R_{xy} with $proj_{xy}(\{3\text{-cliques on }x,y,z\})$.

(And enforce (1,2)-consistency.)

As before: if a constraint becomes empty, the original network has no solution.

Definition

A binary network $\mathcal{N}=(V,(D_x),(R_{xy}))$ is (2,3)-consistent if it is (1,2)-consistent and

• Every edge can be extended to a triangle (at any $z \in V$).

Equivalently, $\mathcal N$ is (2,3)-consistent if enforcing (2,3)-consistency yields no changes.

More generally: (j, k)-consistency = "all $\leq j$ -cliques extend to k-cliques." ¹

¹Oops, I must be more careful. Let $\Gamma^{(j)}$ denote the expansion of Γ to all $\leq j$ -ary relations in $\langle \Gamma \rangle$. Define a j-network to be like a network except that every at-most j-element subset $J \subseteq V$ of variables is the scope of exactly one constraint with constraint relation R_J ; and for all such J and $\varnothing \neq I \subset J$ we have $\operatorname{pr}_I(R_J) \subseteq R_I$. Every network $\mathcal N$ over Γ easily gives rise to a j-network $\mathcal N^{(j)}$ over $\Gamma^{(j)}$: for R_J simply take the set of all cliques on J determined by $\mathcal N$. However, we will later need to consider j-networks not arising from networks in this way. Generally, a j-network is defined to be (j,k)-consistent if $\forall J \subseteq K \subseteq V$ with $|J| \leq j$ and $|K| \leq k$, every tuple in R_J can be extended to a tuple in D^K whose projection to every at-most j-element $L \subseteq K$ belongs to R_L . This agrees with the footnoted "definition" for j-networks of the form $\mathcal N^{(j)}$.

Fact

Fix j < k. \exists a P-time algorithm which, given a binary network \mathcal{N} , either

- **1** Deduces an empty constraint by enforcing (j, k)-consistency, or
- 2 Produces an equivalent (j, k)-consistent subnetwork of $\mathcal{N}^{(j)}$.

Definition

A binary, closed constraint language Γ has width (j, k) if every (j, k)-consistent j-network over $\Gamma^{(j)}$ has a solution.

For such Γ , enforcing (j, k)-consistency solves $CSP(\Gamma)$.

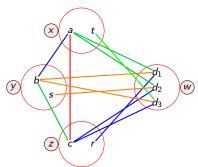
^aAgain I must be more careful. Given a network \mathcal{N} , we must form the j-network $\mathcal{N}^{(j)}$ as explained in the previous footnote and then enforce (j,k)-consistency starting from $\mathcal{N}^{(j)}$. During this enforcement the j-network will likely evolve and no longer be of the form $\mathcal{M}^{(j)}$ for any network \mathcal{M} .

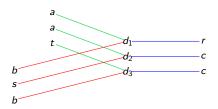
Theorem (Jeavons & Cohen, 1997)

If Γ is binary, closed, and has a majority polymorphism, i.e., a 3-ary f satisfying f(x,x,y)=f(x,y,x)=f(y,x,x)=x, then Γ has width (2,3).

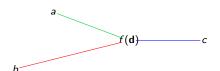
E.g. Γ_{2SAT} has width (2,3).

Proof idea. Let \mathcal{N} be a (2,3)-consistent network. Show inductively that it is (k-1,k)-consistent $\forall k$. E.g., let k=4, assume (a,b,c) is a triangle on x,y,z and w is a another variable.





↓ apply the majority polymorphism



A similar argument shows that if binary Γ has a k-ary near-unanimity (NU) polymorphism, then Γ has width (2, k).

Definition

 Γ has bounded width if it has width (j, k) for some $1 \le j < k$.

Constraint languages having bounded width are precisely those Γ for which local consistency checking gives a P-time algorithm for $\mathrm{CSP}(\Gamma)$.

The class of bounded with constraint languages is robust: characterized by

- $CSP(\Gamma)$ having bounded treewidth duality.
- Definability of $\neg CSP(\Gamma)$ in Datalog.
- Winning strategy for a natural pebble game.

Question: which Γ have bounded width?

The "obvious" obstruction to bounded width is linear equations.

- $\Gamma_{\text{LinEq}/\mathbb{Z}_m}$ does not have bounded width, for any m.
- Neither does $\Gamma_{\text{Coset}/M}$ (M any finite R-module).

Larose & Zadori proved that if $(\mathbb{Z}_m, \Gamma_{\operatorname{LinEq}/\mathbb{Z}_m})$ (or more generally, $(M, \Gamma_{\operatorname{Coset}/M})$) is pp-interpretable in (D, Γ) , then Γ also does not have bounded width.

Bounded Width Conjecture (Larose, Zadori, 2007). There are no other obstacles. That is, assume $\Gamma = \Gamma^c$. The following are equivalent:

- Γ has bounded width.
- **②** No "coset structure" $(M, \Gamma_{\text{Coset}/M})$ is pp-interpretable in (D, Γ) .

Define

$$\mathfrak{K} = \{\Gamma : \Gamma = \Gamma^c, \text{ no } (M, \Gamma_{\text{Coset}/M}) \text{ is pp-interpretable in } (D, \Gamma)\}.$$

 $\{Alg(\Gamma) : \Gamma \in \mathcal{K}\}$ is a well-studied class of finite algebras.

Theorem (Hobby, McKenzie, Szendrei). For $A = Alg(\Gamma^c)$, TFAE:

- $\Gamma^c \in \mathcal{K}$
- var(**A**) "omits types 1,2"
- $var(\mathbf{A})$ is "congruence $SD(\wedge)$ "
- A satisfies an explicit (though messy) Mal'tsev condition
- "tame congruence theory"

• \forall sufficiently large n, \mathbf{A} has an n-ary "weak NU" operation f_n (Maróti, McKenzie, 2008).

$$f_n(y,x,\ldots,x)=f_n(x,y,\ldots,x)=\cdots=f_n(x,\ldots,x,y).$$

► Can assume $f_m(\underbrace{x, \dots, x}_{m-1}, y) = f_n(\underbrace{x, \dots, x}_{n-1}, y)$ for all m, n. (BK, 2009).

Remark: really need deep algebra here.

Theorem (Barto, Kozik, 2009)

The Bounded Width Conjecture is true. In fact, if $\Gamma = \Gamma^c$ is binary and Γ fails to interpret any coset structure, then Γ has width (2,3).

Remarks on the proof.

- 1. Fix a (2,3)-consistent network $\mathcal N$ over Γ . As in the proofs for set operation and majority polymorphisms, the idea is to "shrink" $\mathcal N$ to a clique, using available polymorphisms.
- 2. The proof is devishly complicated and marvelously clever.
- 3. Like the proof in the majority case, polymorphisms are applied repeatedly.
- 4. But the applications are MUCH more complicated.
- 5. Coordinated WNUs (of very high arity) are just enough to work.

Algorithm #2: Few subpowers

Let $\Gamma = \Gamma^c$ be a constraint language (binary if you like).

Let
$$\mathcal{N} = (V, (C_t)_{t=1}^m)$$
 be an instance of $\mathrm{CSP}(\Gamma)$, (A network if you like.)

Let n = |V|, and linearly order $V = \{x_1, \dots, x_n\}$.

Thus assignments $\alpha: V \to \text{may}$ be identified with elements of D^n . In this framework, define the following subsets of D^n :

$$S_0 = D^n$$
 $S_1 = \{\text{solutions to } (V, \{C_1\})\}$
 $S_2 = \{\text{solutions to } (V, \{C_1, C_2\})\}$
 \vdots
 $S_m = \{\text{solutions to } (V, \{C_1, \dots, C_m\}) = \mathcal{N}\}$

Then $D^n = S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_m$ and want to know whether $S_m = \emptyset$.

$$D^n = S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_m = \text{Solutions}(\mathcal{N})$$

The few subpowers algorithm (BD + IMMVW):

- is not based on reasoning with constraints.
- instead, it successively computes "nice generating sets" for each S_t , considered as a subalgebra of $\mathbf{Alg}(\Gamma)^n$.
- At the start, a nice generating set is easily provided for S_0 .
- In the end, $\mathcal N$ has a solution \Leftrightarrow the last generating set is $\neq \varnothing$.

This is very loosely analogous to Gaussian elimination.

More accurately, it is based on algorithms for computing in permutation groups.

Special case: when Γ has a Mal'tsev polymorphism

Bulatov & Dalmau, A simple algorithm for Mal'tsev constraints, 2006. ²

Recall: the Mal'tsev laws are f(x, x, y) = f(y, x, x) = y. (Think x - y + z.)

Definition

Suppose $S \subseteq D^n$.

Fork(S) =
$$\{(i, b, c) \in [n] \times D \times D : \exists \mathbf{u}, \mathbf{v} \in S \text{ with } u_j = v_j \text{ for all } 1 \leq j < i, \text{ and } (u_i, v_i) = (b, c)\}.$$

A subset $T \subseteq S$ is called a **compact representation of** S if $\operatorname{Fork}(T) = \operatorname{Fork}(S)$ and T is minimal with respect to this property.

Exercise: T a compact rep. for $S \subseteq D^n \Rightarrow |T| \le n|D|^2$.

Ross Willard (Waterloo)

²See also Dyer & Richerby, An effective dichotomy for counting CSP.

Some algebraic housekeeping

Let $\mathbf{A} = (D, \{\text{operations}\})$ be an algebra. (For example, $\mathbf{A} = \mathbf{Alg}(\Gamma)$.) Let $S, T \subseteq D$.

- S is a subalgebra of **A** if S is closed under all the operations of **A**.
 - ▶ (In the example: \Leftrightarrow S is a pp-definable 1-ary relation from Γ .)
- The subalgebra generated by T is the iterated closure of T under the operations of A. Denote it by \(\langle T \rangle \rangle_A\).
 - (In the example: $\langle\langle T \rangle\rangle_{\mathbf{A}}$ is the smallest pp-definable (from Γ) 1-ary relation containing T.)
- We say **A** has a Mal'tsev operation if $\langle \{\text{operations}\} \rangle$ contains one.
 - (Example: $= \Gamma$ has a Mal'tsev polymorphism.)

Key Fact (Bulatov, Dalmau)

Suppose **A** is an algebra having a Mal'tsev operation, $n \geq 1$, and S is a subalgebra of **A**ⁿ. If T is a compact representation of S, then $\langle\langle T \rangle\rangle_{\mathbf{A}^n} = S$.

Proof idea

We have

Clearly
$$\langle\!\langle T \rangle\!\rangle_{\mathbf{A}^n} \subseteq S$$
. Suppose $\operatorname{pr}_{1,\dots,i-1}(\langle\!\langle T \rangle\!\rangle_{\mathbf{A}^n}) = \operatorname{pr}_{1,\dots,i-1}(S)$. We will show $\operatorname{pr}_{1,\dots,i}(\langle\!\langle T \rangle\!\rangle_{\mathbf{A}^n}) = \operatorname{pr}_{1,\dots,i}(S)$. Pick $\mathbf{a} = (a_1,\dots,a_{i-1},a_i,\dots) \in S$. So $\exists \mathbf{a}' = (a_1,\dots,a_{i-1},b,\dots) \in \langle\!\langle T \rangle\!\rangle_{\mathbf{A}^n}$. (Thus also $\mathbf{a}' \in S$.) Thus $(i,a_i,b) \in \operatorname{Fork}(S) = \operatorname{Fork}(T)$. Pick $\mathbf{u},\mathbf{v} \in T$ witnessing this.

$$\mathbf{u} = (u_1, \dots, u_{i-1}, a_i, \dots) \in T$$

$$\mathbf{v} = (u_1, \dots, u_{i-1}, b, \dots) \in T$$

$$\mathbf{a}' = (a_1, \dots, a_{i-1}, b, \dots) \in \langle\langle T \rangle\rangle_{\mathbf{A}^n}.$$

Proof idea (continued).

We have

$$\mathbf{u} = (u_1, \dots, u_{i-1}, a_i, \dots) \in T$$

$$\mathbf{v} = (u_1, \dots, u_{i-1}, b, \dots) \in T$$

$$\mathbf{a}' = (a_1, \dots, a_{i-1}, b, \dots) \in \langle\langle T \rangle\rangle_{\mathbf{A}^n}.$$

Applying the Maltsev operation, we get

$$f(\mathbf{u}, \mathbf{v}, \mathbf{a}') = (a_1, \ldots, a_{i-1}, a_i, \ldots) \in \langle\langle T \rangle\rangle_{\mathbf{A}^n}$$

as desired.

The BD Algorithm:

Recall the CSP(Γ) instance $\mathcal{N} = (V, (C_t)_{t=1}^m)$ with $V = \{x_1, \dots, x_n\}$.

We have

$$D^n \supseteq S_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots \supseteq S_m = \{\text{solutions to } \mathcal{N}\} \cap S_0.$$
 (†)

Observe that the S_t are subalgebras of $\mathbf{Alg}(\Gamma)^n$.

For "nice generating sets" (of the S_t) we will use compact representations.

[Relaxation: S_0 can be any subalgebra of $\mathbf{Alg}(\Gamma)^n$; require a compact representation for S_0 as additional input.]

"FixValues" Lemma

Compact rep's for all S_t can be found (in P-time) in the special case of the relaxation ($D^n \supseteq S_0$) where

- m < n, and
- For all $t \ge 1$, the constraint defining S_t relative to S_{t-1} has the form " $x_t = a_t$." (OK since $\Gamma = \Gamma^c$.)

(Proof idea: each S_t is "rectangular.")

Recall

$$D^n = S_0 \supseteq S_1 \supseteq S_2 \supseteq \dots \ge S_m = \{ \text{solutions to } \mathcal{N} \}$$
 (†)

(no longer need the relaxation).

At stage t, we wish to compute a compact rep. for S_t , given a compact rep. T for S_{t-1} and the constraint C that defined S_t relative to S_{t-1} .

Say
$$S_t = S_{t-1} \cap \{ \text{``}(x_j, x_k) \in R'' \}.$$

Key task: For each $(i, a, b) \in [n] \times D \times D$, we need to decide whether $(i, a, b) \in \text{Fork}(S_t)$ and, if "yes," we must find a witnessing pair $\mathbf{u}, \mathbf{v} \in S_t$.

Because of the rectangularity of S_t , it suffices to first search for **any** $\mathbf{u} \in S_t$ satisfying $(u_j, u_k) \in R$ and $u_i = a$.

If one is found, then search for $\mathbf{v} \in S_t$ so that \mathbf{u}, \mathbf{v} witness (i, a, b). This can be done by applying the "FixValues" Lemma to the special case of the relaxation of (\dagger) starting at S_{t-1} , letting m=i, and applying the constraints " $x_1=u_1$," " $x_2=u_2$," ..., " $x_{i-1}=u_{i-1}$."

Generalizing the Bulatov-Dalmau algorithm

A key ingredient in the BD algorithm is the following obviously necessary feature of Γ . Let $\mathbf{A} = \mathbf{Alg}(\Gamma)$.

Required Property

Every subalgebra of \mathbf{A}^n that arises (i.e., as the set of solutions of a CSP over Γ) has a generating set whose size is bounded by a polynomial in n.

Consider the following more stringent property:

Few subpowers

An algebra $\bf A$ has **few subpowers** if **every** subalgebra of $\bf A^n$ has a generating set whose size is bounded by a polynomial in n.

IMMVW (2010) + BIMMVW (2010) + Dalmau (2005) adapted the BD algorithm to work for all Γ for which $\mathbf{Alg}(\Gamma)$ has few subpowers.

Question: Does $\exists \Gamma$ satisfying the Required Property yet not having few subpowers?

Two related conjectures

There are such things called "bounded pathwidth duality" \Leftrightarrow "definable in linear Datalog," both implying $\mathrm{CSP}(\Gamma) \in \mathrm{NL}$.

Obvious obstructions:

- $(M, \Gamma_{\text{Coset}/M})$ (M a finite simple R-module).
- Horn-SAT.

Speculation #1 (Larose, Tesson): these are the only obstructions.

Algebra characterizes those $\Gamma = \Gamma^c$ which do not pp-interpret any $(M, \Gamma_{\mathrm{Coset}/M})$ or $(\{0,1\}, \Gamma_{\mathrm{HornSAT}})$.

- "Omit types 1,2,5."
- "Congruence SD(∨)."
- A Mal'tsev condition.

Marcin Kozik has something to say on this.

There is such a thing called "definable in symmetric Datalog," implying $\mathrm{CSP}(\Gamma) \in \mathrm{L}.$

Obvious obstructions:

- $(M, \Gamma_{\text{Coset}/M})$ (M a finite simple R-module).
- Horn-SAT.
- Directed st-connectivity (= $CSP(\leq, \{0\}, \{1\})$).

Speculation #2 (Larose, Tesson): these are the only obstructions.

Algebra characterizes those $\Gamma = \Gamma^c$ which do not pp-interpret any $(M, \Gamma_{\operatorname{Coset}/M})$ or $(\{0,1\}, \Gamma_{\operatorname{HornSAT}})$ or $PATH = (\{0,1\}, \leq, \{0\}, \{1\})$.

- "Omit types 1,2,4,5."
- A Mal'tsev condition.

No one has anything new to say.

And of course the Holy Grail

Structural Dichotomy Conjecture

Assume $\Gamma = \Gamma^c$. If $(\{0,1\}, \Gamma_{3SAT})$ is not pp-interpretable in (D, Γ) , then $CSP(\Gamma)$ is in P.

Algebra characterizes these $\Gamma = \Gamma^c$ too, providing Mal'tsev conditions. (Existence of "cyclic operations," due to Barto & Kozik, is particularly deep.)

Wide open question: Characterize (combinatorially) the finite graphs (V, E) which have polymorphisms characterizing:

- Structural Dichotomy Conjecture
- Linear Datalog Conjecture
- Symmetric Datalog Conjecture

Thank you!