Constraint Satisfaction Problems A Survey

Ross Willard

University of Waterloo, CAN

Algebra & Algorithms University of Colorado May 19, 2016

(with corrections)

CSP = specifications of subpowers of a finite algebra

Fix a finite algebra A.

Definition

A constraint network over **A** is a pair (n, φ) where

- \triangleright n > 1
- φ is a quantifier-free formula of the form $\bigwedge_{i \in I} R_i(\mathbf{x}_i)$, where for each $i \in I$,
 - $ightharpoonup \mathbf{x}_i$ is a *d*-tuple of variables from $\{x_1,\ldots,x_n\}$ (for some *d*)
 - $ightharpoonup R_i$ is a **subuniverse** of \mathbf{A}^d .

The relation **defined by** (n, φ) is

$$\operatorname{Rel}_{\mathbf{A}}(n,\varphi) = \{ \mathbf{a} \in A^n : \varphi(\mathbf{a}) \}.$$

Example

Let
$$\mathbf{A} = (\{0,1\}; x+y+z)$$

 $R_0 = \{(0,0,0),(0,1,1),(1,0,1),(1,1,0)\}$
 $R_1 = \{(0,0,1),(0,1,0),(1,0,0),(1,1,1)\}.$

 $R_0, R_1 \leq \mathbf{A}^3$. Thus the following is a constraint network over \mathbf{A} :

(6,
$$\underbrace{R_0(x_1, x_2, x_3) \land R_1(x_1, x_4, x_5) \land R_0(x_2, x_4, x_6) \land R_1(x_3, x_5, x_6)}_{\varphi}$$
).

We can view φ as asserting (over \mathbb{Z}_2)

$$x_1 + x_2 + x_3 = 0$$

$$x_1 + x_4 + x_5 = 1$$

$$x_2 + x_4 + x_6 = 0$$

$$+ x_3 + x_5 + x_6 = 1$$

 $Rel_{\mathbf{A}}(\mathbf{6}, \varphi)$ is the solution-set to this linear system.

Variant notations

A constraint network over **A** is a pair (n, φ) , $\varphi = \bigwedge_i R_i(\mathbf{x}_i) \dots$

	may be written as
n	$\{x_1,\ldots,x_n\}$ (= V , the set of variables)
arphi	$\{x_1,\ldots,x_n\}$ $(=V, \text{ the set of variables})$ $\{(\mathbf{x}_i,R_i):i\in I\}$ $(=\mathfrak{C})$
	 (x_i, R_i) is called a constraint x_i is its scope R_i is its constraint relation
(n, φ)	(V, \mathcal{C}) or (V, A, \mathcal{C}) $\mathrm{Sol}(V, \mathcal{C})$
$\mathrm{Rel}_{\mathbf{A}}(n,\varphi)$	$\mathrm{Sol}(V,\mathfrak{C})$

Decision Problems

Definition

 (n, φ) is k-ary if each scope has length $\leq k$.

Definition

 $CSP(\mathbf{A}, k)$

Input: A k-ary constraint network (n, φ) over **A**.

Question: Is $Rel_{\mathbf{A}}(n,\varphi) \neq \varnothing$?

Dichotomy Conjecture (Feder & Vardi)

For all **A** and k, $CSP(\mathbf{A}, k)$ is in P or is NP-hard.

Algebraic Dichotomy Conjecture (Bulatov, Krokhin & Jeavons)

If **A** has a Taylor operation, then $CSP(\mathbf{A}, k)$ is in P for every k.

A is tractable

Taylor operations

Definition

An operation $t: A^n \to A$ is a **Taylor operation** if

- 1. t is idempotent $(t(x, x, ..., x) \approx x)$;
- 2. For each $i=1,\ldots,n,\ t$ satisfies an identity of the form $t(\mathbf{x})\approx t(\mathbf{y})$ with $x_i\neq y_i$.

Theorem (Taylor; Barto & Kozik; Hobby & McKenzie)

For a finite algebra **A**, the following are equivalent:

- 1. A has a Taylor (term) operation.
- 2. **A** satisfies some idempotent Maltsev condition not satisfied by SETS.
- 3. **A** has an idempotent **cyclic** term $t(x_1, ..., x_n)$, i.e.,

$$t(x_1,x_2,\ldots,x_n)\approx t(x_2,\ldots,x_n,x_1).$$

4. $V(\mathbf{A})$ omits type 1.

Progress

Algebraic Dichotomy Conjecture

If **A** has a Taylor operation, then $\underbrace{\mathsf{CSP}(\mathbf{A},k)}$ is in P for every k.

Theorem

A is known to be tractable if:

- 1. $V(\mathbf{A})$ is CM. (Dalmau '05 + IMMVW '07, using Barto '16?)
- 2. $V(\mathbf{A})$ is $SD(\wedge)$. (Barto & Kozik '09; Bulatov '09)
- 3. **A** is Taylor + **conservative**, i.e. $Su(\mathbf{A}) = \mathcal{P}(A)$. (Bulatov '03)
- 4. **A** is Taylor and |A| = 2 or 3. (Schaefer '78, Bulatov '02)

Definition

Let ${\bf A}$ be a finite algebra, ${\mathcal A}$ a set of finite algebras.

- 1. $CSP(\mathbf{A}) = \bigcup_k CSP(\mathbf{A}, k)$. "Global"
- 2. $CSP(A, k) = \bigcup_{\mathbf{A} \in A} CSP(\mathbf{A}, k)$. "Uniform"

Can't ask these problems to be in P. (Set of inputs is problematic.)

Definition

Say $CSP(\mathbf{A})$ [$CSP(\mathcal{A}, k)$] is "in" P if there is a poly-time algorithm which correctly decides all inputs to $CSP(\mathbf{A})$ [$CSP(\mathcal{A}, k)$].

Global Tractability Problem

If **A** is tractable, does it follow that $\underbrace{CSP(\mathbf{A})}_{\mathbf{A}}$ is "in" P?

Uniform Tractability Question

(For a given Taylor class \mathcal{A}): Is $\underbrace{\mathsf{CSP}(\mathcal{A}, k)}$ "in" P for all k?

Theorem

A is known to be globally tractable if:

- 1. A has a cube term. (Dalmau '05 + IMMVW '07)
- 2. $V(\mathbf{A})$ is $SD(\wedge)$. (Bulatov '09; Barto '14)
- 3. **A** is Taylor + conservative. (Bulatov '03)
- 4. **A** is Taylor and |A| = 2 or 3. (Schaefer '78, Bulatov '02)

Theorem (Bulatov '09; Barto '14)

The class SD_{\wedge} of all finite algebras generating an $SD(\wedge)$ variety is uniformly globally tractable.

Open problems

- 1. If $V(\mathbf{A})$ is congruence modular, is \mathbf{A} globally tractable?
- 2. Is the class $\mathfrak M$ of finite Maltsev algebras uniformly tractable?
- 3. If **A** has a difference term, is **A** tractable?
- 4. Suppose **A** is idempotent and has a congruence θ such that
 - ▶ $\mathbf{A}/\theta \in \mathbb{SD}_{\wedge}$, and
 - ▶ Each θ -block is in \mathfrak{M} .
 - ("SD(\land) over Maltsev.") Is **A** tractable?

Standard reductions

$\mathsf{CSP}(\mathbf{A}, k)$ reduces to:

- 1. $\mathsf{CSP}(\mathbf{A}||_U, k)$, where U is a minimal range of a unary idempotent term, and $\mathbf{A}||_U$ is the induced term-minimal algebra defined on U.
- 2. $\mathsf{CSP}((\mathbf{A}\|_U)^{\mathrm{id}}, k)$ where $(\mathbf{B})^{\mathrm{id}}$ is the idempotent reduct of \mathbf{B} .

(This is the "reduction to the idempotent case.")

- 3. CSP($A^{\lceil k/2 \rceil}, 2$)
- 4. multi-CSP($H(\mathbf{A})_{si}$, kd), where \mathbf{A} is a subdirect product of d subdirectly irreducible homomorphic images.
- 5. $CSP(\mathbf{A}^+, k)$ where $\mathbf{A}^+ = (A; Pol(Su(\mathbf{A}^k)))$.

Conditioning the input – local consistency

Let (n, φ) be a 2-ary constraint network over **A**.

At essentially no cost, one can assume that (n, φ) is "determined" by a "(2,3)-minimal" constraint network.

Definition

A 2-ary constraint network (n, φ) is a **(2,3)-system**¹ provided for all $i, j \in \{1, 2, ..., n\}$:

- 1. φ has exactly one constraint $R_{i,j}(x_i,x_j)$ with scope (x_i,x_j) .
- 2. $R_{i,i} = (R_{i,i})^{-1}$.
- 3. For all k, $R_{i,j} \subseteq R_{i,k} \circ R_{k,j}$.

The "associated potatoes" are $A_i := \text{proj}_1(R_{i,i}), i = 1, ..., n$.

Fact

There is a poly-time algorithm which, given a 2-ary constraint network over \mathbf{A} , outputs an equivalent (2,3)-system over \mathbf{A} .

¹There is no standard terminology.

Conditioning the input – absorption

Definition

Suppose **A** is a finite idempotent algebra and $\mathbf{B} \leq \mathbf{A}$.

1. **B** is an **absorbing subalgebra** if there exists a term operation $t(x_1, ..., x_m)$ of **A** such that

$$t(B,\ldots,B,A,B,\ldots,B)\subseteq B$$

for all possible positions of A.

2. **A** is **absorption-free** if it has no proper absorbing subalgebra.

Given a (2,3)-system (n,φ) over an idempotent **A**, Barto & Kozik show how to "shrink" the associated potatoes to absorption-free algebras, though losing (2,3)-systemhood and equivalency.

In some situations this has proven to be useful.

Miklós magic

Lemma (Maróti '09)

Suppose **A** is idempotent and has a term operation t(x, y) such that:

- 1. $\mathbf{A} \models t(x, t(x, y)) \approx t(x, y)$.
- 2. t(a, x) is non-surjective, for all $a \in A$.
- 3. There exists a proper subalgebra $\mathbf{C} < \mathbf{A}$ such that if t(x, a) is surjective then $a \in C$.

Then $\mathsf{CSP}(\mathbf{A}, k)$ can be reduced to multi- $\mathsf{CSP}(\mathfrak{B} \setminus \{\mathbf{A}\}, \ell)$, where

- ▶ \mathcal{B} is the closure of $\{A\}$ under H, S, and "idempotent unary polynomial retracts."
- $\ell = \max(k, |A|).$

This may seem random, but it is useful (and the proof is beautiful).

Moving forward

Suppose (n, φ) is a k-ary constraint network over \mathbf{A} , and $R = \operatorname{Rel}_{\mathbf{A}}(n, \varphi) \leq \mathbf{A}^n$.

Definition

A **compact** k-**frame** for R is a subset $F \subseteq R$ such that

- 1. $\operatorname{proj}_J(F) = \operatorname{proj}_J(R)$ for all $J \subseteq \{1, \ldots, n\}$ with $|J| \le k$.
- $2. |F| \leq |A|^k \cdot \binom{n}{k}.$

Every relation definable by a k-ary constraint network over **A** has a compact k-frame, and is determined by any one of its k-frames.

Speculation: Is it possible to mimic the few subpowers algorithm without having few subpowers?

To carry this out, we would need a notion of "compact k-representation" extending compact k-frames with more data.

The following problem seems central:

Functional Dependency Problem

Suppose

- ▶ **A** is finite, idempotent, Taylor.
- ▶ F is a compact k-frame for a relation $R \leq \mathbf{A}^n$ defined by some k-ary constraint network over \mathbf{A} .
- ▶ $X \subseteq \{1, ..., n\}$ and $\ell \in \{1, ..., n\} \setminus X$.

What additional data would enable us to efficiently decide whether $\operatorname{proj}_{X \cup \{\ell\}}(R)$ is the graph of a function $f : \operatorname{proj}_X(R) \to \operatorname{proj}_{\ell}(R)$?

References

Barto '14: The collapse of the bounded width hierarchy, *J. Logic Comput.* (online)

Barto '16?: Finitely related algebras in congruence modular varieties have few subpowers, *JEMS* (to appear).

Barto & Kozik '09: Constraint satisfaction problems of bounded width, *FOCS 2009*; see also *J. ACM* 2014.

Barto & Kozik '12: Absorbing subalgebras, cyclic terms, and the constraint satisfaction problem, *Log. methods Comput. Sci.*

Bulatov '02: A dichotomy theorem for constraints on a 3-element set, *FOCS 2002*; see also *J. ACM* 2006.

Bulatov '03: Tractable conservative constraint satisfaction problems, *LICS 2003*; see also *ACM Trans. Comput. Logic* 2011.

Bulatov '09: Bounded relational width (unpublished; available on Bulatov's website).

Bulatov, Krokhin & Jeavons '05: Classifying the complexity of constraints using finite algebras, *SIAM J. Comput*.

Dalmau '05: Generalized majority-minority operations are tractable, *Logical Methods Comput. Sci.*

Feder & Vardi '98: The computational structure of monotone monadic SNP and constraint satisfaction, *SIAM J. Comput.*

Hobby & McKenzie '88: The Structure of Finite Algebras.

Idziak, Marković, McKenzie, Valeriote & Willard (IMMVW) '07: Tractability and learnability arising from algebras with few subpowers, *LICS 2007*; see also *SIAM J. Comput.* 2010.

Maróti '09: Tree on top of Maltsev (unpublished; available from Maróti's website).

Schaefer '78: The complexity of satisfiability problems, STOC '78.

Taylor '77: Varieties obeying homotopy laws, Canad. J. Math.