Graphs, Polymorphisms, and Multi-Sorted Structures

Ross Willard

University of Waterloo

NSAC 2013 University of Novi Sad June 6, 2013

Background

Structure: $\mathbf{A} = (A; (R_i))$.

- Always finite and in a finite relational language.
- $A^c = A_A = (A, (\{a\})_{a \in A});$ "A with constants."

Relations definable in A.

- I.e., definable by a 1st-order logical formula in the language of A.
- We are interested only in **primitive-positive (pp)** formulas:

 A relation is ppc-definable in A if it is definable by a pp-formula with parameters (i.e., in A^c). Let **A**, **B** be finite structures. Assume for simplicity that

$$\mathbf{B} = (B; R, S), \qquad R \subseteq B^2, \quad S \subseteq B^3.$$

Definition

B is **ppc-interpretable** in **A** if, for some $k \ge 1$, there exist ppc-definable relations U, E, R^*, S^* of **A** of arities k, 2k, 2k, 3k such that

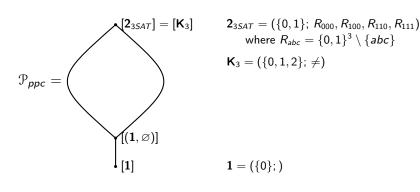
- E is an equivalence relation on U.
- $R^* \subseteq U^2$, $S^* \subseteq U^3$.
- R^*, S^* are invariant under E.
- $(U/E; R^*/E, S^*/E) \cong \mathbf{B}$.

Notation: $B \leq_{ppc} A$, $B \equiv_{ppc} A$.

In particular, $\mathbf{A}^c \equiv_{ppc} \mathbf{A}$.

In the usual fashion, \leq_{ppc} and \equiv_{ppc} determines a poset:

- $[A] = \{B : B \equiv_{ppc} A\}.$
- $[B] \leq [A]$ iff $B \leq_{ppc} A$.
- $\mathcal{P}_{ppc} = (\{\text{all finite structures}\}/\equiv_{ppc}; \leq).$



Constraint Satisfaction Problems

Fix a finite structure A.

$CSP(\mathbf{A}^c)$

Input: An =-free, quantifier-free pp-formula $\varphi(\mathbf{x})$ in the language of \mathbf{A}^c (i.e., allowing parameters).

Question: Is $\exists \mathbf{x} \varphi(\mathbf{x})$ true in \mathbf{A}^c ?

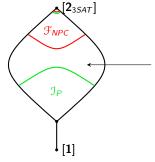
Connection to \leq_{ppc} :

Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson 2009)

If $\mathbf{B} \leq_{ppc} \mathbf{A}$, then $CSP(\mathbf{B}^c) \leq_L CSP(\mathbf{A}^c)$.

Corollary

- $\mathfrak{I}_P = \{ [\mathbf{A}] : \mathrm{CSP}(\mathbf{A}^c) \text{ is in } P \} \text{ is an order ideal of } \mathfrak{P}_{ppc}.$
- $\mathfrak{F}_{NPC} = \{ [A] : \mathrm{CSP}(A^c) \text{ is NP-complete} \}$ is an order filter.



The **CSP Dichotomy Conjecture** asserts that this region is empty (if $P \neq NP$).

The Algebraic CSP Dichotomy Conjecture asserts that $\mathfrak{I}_P=\mathfrak{P}_{ppc}\setminus\{[\mathbf{2}_{3SAT}]\}$ (if P \neq NP).

Connection to algebra

Fix a finite structure **A**.

Definition

A **polymorphism** of **A** is any operation $h: A^n \to A$ which preserves the relations of **A** (equivalently, is a homomorphism $h: \mathbf{A}^n \to \mathbf{A}$).

 $h:A^n\to A$ is **idempotent** if it satisfies $h(x,x,\ldots,x)=x \ \forall x\in A$.

The polymorphism algebra of A is

$$PolAlg(\mathbf{A}) := (A; \{all polymorphisms of \mathbf{A}\}).$$

The idempotent polymorphism algebra of A is

$$IdPolAlg(\mathbf{A}) := (A; \{all idempotent polymorphisms of \mathbf{A}\})$$
$$= PolAlg(\mathbf{A}^c).$$

Fix a set Σ of formal identities in operations symbols F, G, H, \ldots

Assume that $\Sigma \vdash F(x, x, ..., x) \equiv x$, $G(x, x, ..., x) \equiv x$, (I.e., Σ is **idempotent**.)

Definition

An algebra $\mathbb{A}=(A;\mathcal{F})$ satisfies Σ as a Maltsev condition if there exist (term) operations f,g,h,\ldots of \mathbb{A} such that $(A;f,g,h,\ldots) \models \Sigma$.

Definition

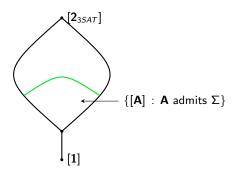
A structure **A admits** Σ if $IdPolAlg(\mathbf{A})$ satisfies Σ as a Maltsev condition.

Fix an idempotent set Σ of identities.

Theorem (Bulatov, Jeavons, Krokhin)

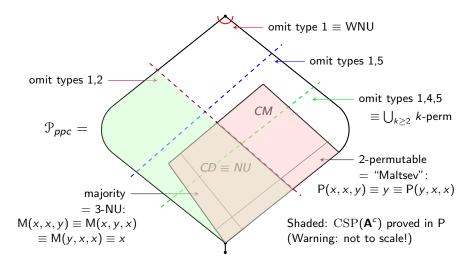
Suppose $\mathbf{B} \leq_{ppc} \mathbf{A}$. If \mathbf{A} admits Σ , then so does \mathbf{B} .

Hence $\{[A] : A \text{ admits } \Sigma\}$ is an order ideal of \mathcal{P}_{ppc} .



In fact, $\mathbf{A} \equiv_{ppc} \mathbf{B}$ iff \mathbf{A}, \mathbf{B} admit the same (finite) idempotent sets of identities. \leq_{ppc} has a similar characterization.

In this way, \mathcal{P}_{ppc} is "stratified" by idempotent Maltsev conditions arising in universal algebra.



Where are you favorite structures (relative to these Maltsev conditions)?

Aims of this talk

My goals of this lecture are to:

- Say some things about bipartite graphs and where they fit in the picture.
- ② Argue that multi-sorted structures are not evil.
- Give a connection between (1) and (2).

Multi-sorted structures

Multi-sorted structure: $\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i)).$

- $0, 1, \ldots, n$ are the **sorts**; A_k is the **universe of sort** k.
- Each R_i is a **sorted relation**: e.g., $R_1 \subseteq A_2 \times A_0 \times A_0$.

(Sorted) Relations definable in A.

 Adapt 1st-order logic in the usual way (every variable has a specified sort; an equality relation for each sort).

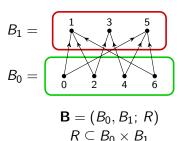
Ppc-interpretations of one 2-sorted structure in another, i.e., $\mathbf{B} \leq_{ppc} \mathbf{A}$.

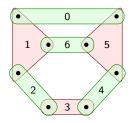
- each universe B_i of **B** is realized as a U_i/E_i where U_i, E_i are (sorted) ppc-definable relations of **A**.
- each sorted R relation of \mathbf{B} is realized as R^* / "the appropriate E_i 's."

Example

Let **A** be the (1-sorted) structure $(A; E_0, E_1)$ pictured at right, where E_0, E_1 are the indicated equivalence relations on A.

Let $\mathbf{B} = (B_0, B_1; R)$ be the 2-sorted structure pictured below.





$$\mathbf{A} = (A; E_0, E_1)$$

$$E_0 = \bigcirc \text{blocks}$$

$$E_1 = \bigcirc \text{blocks}$$

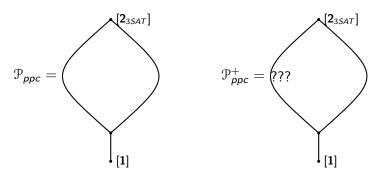
Claim: $\mathbf{B} \leq_{ppc} \mathbf{A}$.

Proof: define $U_0 = U_1 = A$ and $(x, y) \in R^* \iff \exists z[xE_0z \& zE_1y].$

Then **B** \cong (A/E_0 , A/E_1 ; $R^*/E_0 \times E_1$).

Just as in the 1-sorted case, \leq_{ppc} gives a poset:

$$\mathcal{P}^+_{\textit{ppc}} = \big(\{ \text{all finite } \underline{\text{multi-sorted}} \text{ structures} \} / \equiv_{\textit{ppc}}; \leq \big).$$



Fact: $\mathcal{P}_{ppc}^+ = \mathcal{P}_{ppc}$.

I.e., for every multi-sorted **B** there exists a 1-sorted $\mathbf{A} \equiv_{ppc} \mathbf{B}$.

Moral: Multi-sorted structures have no value.

Let's be immoral.

 $CSP(\mathbf{A}^c)$ can be defined for a multi-sorted \mathbf{A} .

• Inputs are now multi-sorted quantifier-free pp-formulas.

The BJK-LT connection to \leq_{ppc} is remains true for multi-sorted **A**, **B**:

If
$$\mathbf{B} \leq_{ppc} \mathbf{A}$$
, then $CSP(\mathbf{B}^c) \leq_L CSP(\mathbf{A}^c)$

Polymorphisms of multi-sorted A are more complicated.

Definition (Bulatov, Jeavons 2003)

Let $\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i))$. An *m*-ary polymorphism of \mathbf{A} is a tuple (f^0, \dots, f^n) of *m*-ary operations $f^k : A_k^m \to A_k$ which "jointly preserve" the relations of \mathbf{A} . E.g., if $R_1 \subseteq A_1 \times A_0$, then

$$\forall (a_1, b_1), \dots, (a_m, b_m) \in R_1, \text{ need } (f^1(\mathbf{a}), f^0(\mathbf{b})) \in R_1.$$

Polymorphism "algebra"

Fix
$$\mathbf{A} = (A_0, A_1, \dots, A_n; (R_i)).$$

Let $\operatorname{Pol}(\mathbf{A}) = \{\text{all polymorphisms } \vec{f} = (f^0, f^1, \dots, f^n) \text{ of } \mathbf{A}\}.$

Define

$$\begin{array}{rcl}
\mathbb{A}_0 &=& (A_0; \ (f^0 : \vec{f} \in \operatorname{Pol}(\mathbf{A})) \\
\mathbb{A}_1 &=& (A_1; \ (f^1 : \vec{f} \in \operatorname{Pol}(\mathbf{A})) \\
& \vdots \\
\mathbb{A}_n &=& (A_n; \ (f^n : \vec{f} \in \operatorname{Pol}(\mathbf{A})).
\end{array}$$

 $\mathbb{A}_0, \mathbb{A}_1, \dots, \mathbb{A}_n$ are (ordinary) algebras with a common language.

Definition (Bulatov, Jeavons 2003)

The **polymorphism "algebra"** of **A** is the tuple $(\mathbb{A}_0, \mathbb{A}_1, \dots, \mathbb{A}_n)$ of algebras defined above.

Similarly for IdPolAlg(**A**).

Fix an idempotent set Σ of formal identities.

Definition

Let **A** be a multi-sorted structure and $IdPolAlg(\mathbf{A}) = (\mathbb{A}_0, \dots, \mathbb{A}_n)$ its corresponding idempotent polymorphism "algebra."

A admits Σ if $\{\mathbb{A}_0, \dots, \mathbb{A}_n\}$ satisfies Σ as a Maltsev condition.

The characterizations of \equiv_{ppc} and \leq_{ppc} remain true for multi-sorted **A**, **B**.

- $A \equiv_{ppc} B$ iff A, B admit the same idempotent sets of identities.
- $\mathbf{B} \leq_{ppc} \mathbf{A}$ iff every such Σ admitted by \mathbf{A} is admitted by \mathbf{B} .

Immoral Moral: Nothing bad will happen if we embrace multi-sorted structures.

Bipartite graphs in \mathcal{P}_{ppc}

Question: How "dense" in \mathcal{P}_{ppc} are graphs, digraphs, posets, etc?

Theorem (Kazda (2011))

Let **D** be a finite digraph. If **D** admits the **Maltsev** identities

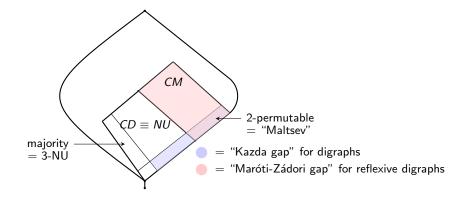
$$P(x,x,y) \equiv y \equiv P(y,x,x)$$

for 2-permutability, then **D** admits the **majority** (or **3-NU**) identities

$$M(x, x, y) \equiv M(x, y, x) \equiv M(y, x, x) \equiv x.$$

Theorem (Maróti, Zádori (2012))

Let P be a reflexive digraph (e.g., a poset). If P admits identities for congruence modularity, then P admits the k-ary near unanimity (NU) identities for some k > 3.



Theorem (Bulín, Delić, Jackson, Niven (?))

For every finite structure **A** there is a directed graph $\mathcal{D}(\mathbf{A})$ such that

- \bullet $\mathbf{A} \leq_{ppc} \mathfrak{D}(\mathbf{A}).$
- **3** The "Kazda gap" is essentially all that separates $\mathfrak{D}(\mathbf{A})$ from \mathbf{A} .

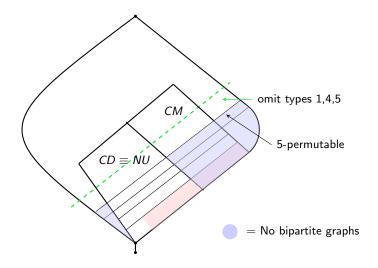
What about (symmetric, irreflexive) graphs?

Some things we know.

- (Bulatov) If **G** is a non-bipartite graph, then $[\mathbf{G}] \equiv_{ppc} [\mathbf{2}_{3SAT}]$.
- (Using Rival) If ${\bf G}$ is bipartite with girth \geq 6, then $[{\bf G}] \equiv_{\it ppc} [{\bf 2}_{\it 3SAT}].$
- \bullet Trees and complete bipartite graphs admit the majority identities and hence are low in $\mathcal{P}_{ppc}.$
- (Kazda) Bipartite graphs suffer the "Kazda gap."
- (Feder, Hell, Larose, Siggers, Tardif [2013?]) Characterize bipartite graphs admitting the k-NU identities, $k \ge 3$.

A new gap (W)

If **G** is bipartite and admits the **Hagemann-Mitschke** identities for 5-permutability, then **G** admits an NU polymorphism of some arity.



Useful tool: reduction to 2-sorted structures.

Definition:

Lemma (W)

Let Σ be an idempotent set of identities such that

- **①** Every identity in Σ mentions at most two variables;
- 2 The 2-element connected graph admits Σ .

Let G be a connected bipartite graph and let \vec{G} and G^{\sharp} be the corresponding strongly bipartite and 2-sorted digraphs respectively.

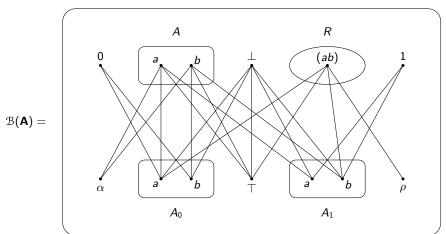
If any of \mathbf{G} , $\vec{\mathbf{G}}$ or \mathbf{G}^{\sharp} admit Σ , then all admit Σ .

Proof: $\mathbf{G}^{\sharp} \leq_{ppc} \vec{\mathbf{G}} \leq_{ppc} \mathbf{G}$. A recipe shows \mathbf{G}^{\sharp} admits $\Sigma \Rightarrow \mathbf{G}$ admits Σ .

Theorem (Feder, Vardi (1990's))

For every finite structure **A** there is a bipartite graph $\mathcal{B}(\mathbf{A})$ such that $CSP(\mathcal{B}(\mathbf{A})^c) \equiv_P CSP(\mathbf{A})$.

The construction, assuming $\mathbf{A} = (A; R)$ is a digraph.

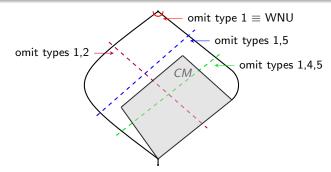


Question: How close are **A** and $\mathfrak{B}(\mathbf{A})$ in \mathfrak{P}_{ppc} ?

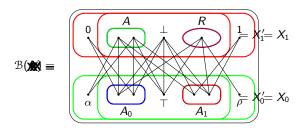
Theorem (Payne, W)

Given a finite structure **A**, let $\mathfrak{B}(\mathbf{A})$ be the associated bipartite graph.

- $\bullet \quad \mathbf{A} \leq_{ppc} \mathcal{B}(\mathbf{A}).$
- ② For each of the six order ideals \mathbb{J} of \mathbb{P}_{ppc} associated with omitting types, if one of \mathbf{A} , $\mathbb{B}(\mathbf{A})$ belongs to \mathbb{J} , then so does the other.
- **3** $\mathcal{B}(\mathbf{A})$ never admits the Gumm identities for CM.



Sketch of the proof of (1).



Let
$$\mathbf{X} = (X_0, X_1; \vec{E}) = \mathcal{B}(\mathbf{A})^{\sharp}$$
.

Let
$$X' = (X \setminus \{\alpha, \rho, 0, 1\}, A_0, A_1, A, R).$$

Let X'' be the induced 4-sorted structure with universes A_0, A_1, A, R .

Then
$$\mathbf{A} \equiv_{ppc} \mathbf{X}'' \leq_{ppc} \mathbf{X}' \leq_{ppc} \mathbf{X} = \mathcal{B}(\mathbf{A})^{\sharp} \leq_{ppc} \mathcal{B}(\mathbf{A}).$$

Show X'' admits $\Sigma(n) \Rightarrow X$ admits $\Sigma(n+4)$, for relevant Σ .

Problems

- Are **A** and $\mathcal{B}(\mathbf{A})$ "essentially the same" modulo the 5-perm \Rightarrow NU and Kazda gaps?
- ② Find a better map $\mathbf{A} \longmapsto \mathcal{B}'(\mathbf{A})$ à la BDJN.
- **3** Prove or disprove: $CM \Rightarrow NU$ for bipartite graphs.
- **①** For each "omitting-types" order ideal $\mathcal I$ of $\mathcal P_{ppc}$, characterize the bipartite graphs in $\mathcal I$.

Hvala!