Universal Algebra and Computational Complexity Lecture 1

Ross Willard

University of Waterloo, Canada

Třešť, September 2008

Outline

Lecture 1: Decision problems and Complexity Classes

Lecture 2: Nondeterminism, Reductions and Complete problems

Lecture 3: Results and problems from Universal Algebra

Three themes: problems, algorithms, efficiency

A Decision Problem is . . .

- A YES/NO question
- parametrized by one or more inputs.
 - Inputs must:
 - range over an infinite class.
 - be "finitistically described"

What we seek:

 An algorithm which correctly answers the question for all possible inputs.

What we ask:

- How efficient is this algorithm?
- Is there a better (more efficient) algorithm?

Directed Graph Reachability problem (PATH)

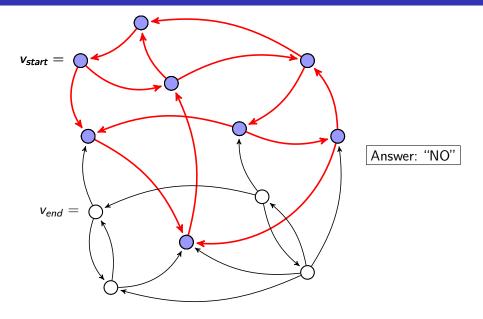
INPUT:

- A finite directed graph G = (V, E)
- Two distinguished vertices $v_{start}, v_{end} \in V$.

QUESTION:

• Does there exist in G a directed path from v_{start} to v_{end} ?

An Algorithm for PATH



Efficiency of this algorithm

How long does this algorithm take?

- I.e., how many steps . . .
- ... as a function of the size of the input graph.

I'll give three answers to this.

First answer – Heuristics

Only action is changing a vertex's color.

Only changes possible are

- white \Rightarrow red
- red \Rightarrow green
- green \Rightarrow blue.

So if n = |V|, then the algorithm requires at most 3n vertex-color changes.

Second answer – pseudo-code

Simplifying assumptions:

- $V = \{0, 1, \dots, n-1\}$
- E is encoded by the adjacency matrix $M_E = [e_{i,j}]$ where

$$e_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{else.} \end{cases}$$

Auxiliary variables:

- i, j will range over $\{0, 1, ..., n-1\}$.
- For i < n let c_i be a variable recording the color of vertex i.
- Let GreenVar be a variable storing whether there are green-colored vertices.

Second answer – pseudo-code

Algorithm:

- Input n, M_E, start and end.
- For i = 0 to n 1 set $c_i := white$.
- Set $c_{start} = green$.
- Set GreenVar := yes.
- MAIN LOOP: While *GreenVar* = yes do:
 - For i = 0 to n 1; for j = 0 to n 1
 - if $e_{i,j} = 1$ and $c_i = green$ and $c_j = white$ then set $c_i := red$.
 - For i = 0 to n 1
 - If $c_i = green$ then set $c_i := blue$
 - Set GreenVar := no
 - For i = 0 to n 1
 - If c_i = red then (set c_i := green and set GreenVar := yes)
- If $c_{end} = blue$ then output YES; else output NO.

n loops n^2 cases

 $O(n^3)$ steps if n = |V|

Third answer – machine implementation

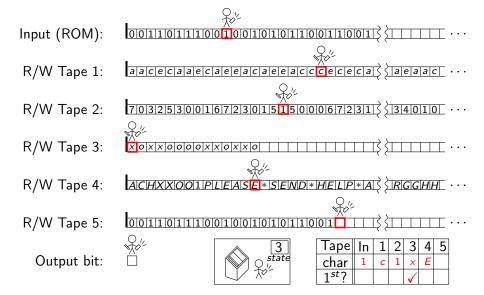
Again assume $V = \{0, 1, ..., n - 1\}$.

Assume also that $v_{start} = 0$ and $v_{end} = 1$.

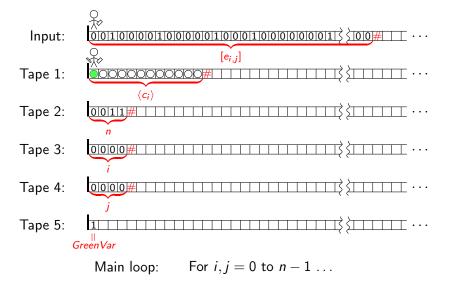
Assume the adjacency matrix is presented as a binary string of length n^2 .

Implement the algorithm on a Turing machine.

Turing machine



Implementing the algorithm for PATH



Pseudo-code revisited

Point: overhead needed to keep track of i, j, c_i, c_j .

Thus:

- While *GreenVar* = yes do:
 - For i = 0 to n 1; for j = 0 to n 1
 - if e_{i,j} = 1 and c_i = green and c_j = white then set c_j := red.

n loops $n^2 \text{ cases}$ $O(n \log n) \text{ steps}$

SUMMARY: on an input graph G = (V, E) with |V| = n, our algorithm decides the answer to *PATH* using:

Heuristics	3n color changes
Pseudo-code	$O(n^3)$ operations
Turing machine	$O(n^4 \log n)$ steps (Time)
	O(n) memory cells (Space)

Turing machine complexity

Let $f : \mathbb{N} \to \mathbb{N}$ be given.

Definition

A decision problem D (with a specified encoding of its inputs) is:

- in TIME(f(N)) if there exists a Turing machine solving D in at most O(f(N)) steps on inputs of length N.
- ② in SPACE(f(N)) if there exists a Turing machine solving D requiring at most O(f(N)) memory cells (not including the input tape) on inputs of length N.

Complexity of PATH

Recall that our Turing machine solves PATH on graphs with n vertices in

- Time: $O(n^4 \log n)$ steps
- Space: O(n) memory cells.

Since "length N of input" = n^2 (when n = |V|), this at least proves

Theorem

$$PATH \in TIME(N^{2+\epsilon})$$

 $PATH \in SPACE(\sqrt{N})$

(Question: can we do better?...)

Another problem: Boolean Formula Value (FVAL)

INPUT:

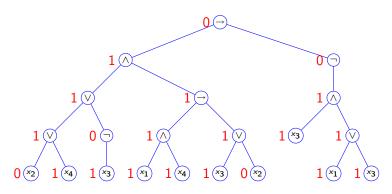
- A boolean formula φ in propositional variables x_1, \ldots, x_n .
- A sequence $\mathbf{c} = (c_1, \dots, c_n) \in \{0, 1\}^n$.

QUESTION:

• Is $\varphi(\mathbf{c}) = 1$?

An algorithm for FVAL

$$\varphi = ((((x_2 \lor x_4) \lor (\neg(x_3))) \land ((x_1 \land x_4) \to (x_3 \lor x_2))) \to (\neg(x_3 \land (x_1 \lor x_3)))), \quad \mathbf{c} = (1,0,1,1).$$



Seems to use TIME(N) and SPACE(N). But space can be re-used. In this example, 3 memory bits suffice.

Complexity of FVAL

In general, a bottom-up computation, always computing a larger subtree first, can be organized to need only $O(\log |\varphi|)$ intermediate values.

A careful implementation on a Turing machine yields:

Theorem (Nancy Lynch, 1977)

$$FVAL \in TIME(N^{2+\epsilon})$$

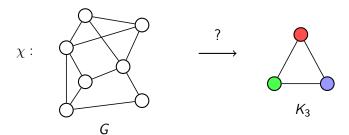
 $FVAL \in SPACE(\log N).$

A third problem: Graph 3-Colorability (3*COL*)

INPUT: a finite graph G = (V, E).

QUESTION: Is it possible to color the vertices **red**, **green** or **blue**, so that no two adjacent vertices have the same color?

Equivalently: does there exist a homomorphism



An algorithm for 3COL

Brute force search algorithm:

- For each function $\gamma: V \to K_3$:
 - Test if χ works.

$$3^{|V|}=2^{O(\sqrt{N})}$$
 loops

 $O(N^2)$ time, $O(\sqrt{N})$ space

Theorem

This at least proves:

$$3COL \in TIME(2^{O(\sqrt{N})})$$

 $3COL \in SPACE(\sqrt{N})$

(Question: can we do better?...)

A fourth problem: Clone membership (CLO)

INPUT:

- A finite algebra A.
- An operation $g: A^k \to A$.

QUESTION: Is g a term operation of A?

All known algorithms essentially generate the full k-generated free algebra in V(A),

$$F_k \leq A^{(A^k)}$$

and test whether $g \in F_k$.

In the worst case this could require as much as $O(|A^{(A^k)}|) = 2^{(|A|^k)^{1+\epsilon}}$ time and space.

I.e., exponential in the size of the input. (More on this in Lecture 3.)

Some important complexity classes

Definition

- $PSPACE = \bigcup_{k=1}^{\infty} SPACE(N^k) = SPACE(N^{O(1)}).$

Problems known to be in P are said to be feasible or tractable.

Definition

Tomorrow

$$L\subseteq P\subseteq PSPACE\subseteq EXPTIME$$
 ψ
 ψ
 ψ
 $VATH$
 $VATH$

In tomorrow's lecture I will:

- Introduce "nondeterministic" versions of these 4 classes.
- Introduce problems which are "hardest" for each class.