Constraints in Universal Algebra

Ross Willard

University of Waterloo, CAN

SSAOS 2014 September 8, 2014 Lecture 2

Outline

Lecture 1: Intersection problems and congruence $SD(\land)$ varieties

Lecture 2: Constraint problems in ternary groups (and generalizations)

Lecture 3: Constraint problems in Taylor varieties

Review

Let **A** be a finite algebra.

Definition. The **constraint satisfaction problem for A** (or $\mathsf{CSP}(\mathbf{A})$) is a decision problem.

An **instance of CSP(A)** consists of an integer n > 1 (the **degree**) and a list $(s_1, C_1), \ldots, (s_p, C_p)$ of "specifications" of subalgebras of \mathbf{A}^n (of a certain kind).

- The (s_i, C_i) are called "constraints."
- Each s_i is a non-empty subset of $\{1, 2, ..., n\}$. (The "scope.")
- C_i is a non-empty subuniverse of \mathbf{A}^{s_i} . (The "constraint relation.")
- The subalgebra of \mathbf{A}^n "specified" by (s_i, C_i) is

$$\llbracket s_i, C_i \rrbracket := \{ \mathbf{a} \in A^n : \operatorname{proj}_{s_i}(\mathbf{a}) \in C_i \}.$$

• The **solution-set** of the instance is $[s_1, C_1] \cap \cdots \cap [s_p, C_p]$.

The question: Given an instance, does it have a solution?

Review (continued)

Definition. An instance $(s_1, C_1), \ldots, (s_p, C_p)$ of CSP(**A**) of degree n is **(2,3)-minimal** if:

- For any two constraints $(s_i, C_i), (s_j, C_j)$, if $t \subseteq s_i \cap s_j$ and $1 \le |t| \le 2$, then $\operatorname{proj}_t(C_i) = \operatorname{proj}_t(C_j)$.
- For every 3-element subset $t \subseteq \{1, ..., n\}$ there exists a constraint (s_i, C_i) such that $t \subseteq s_i$.

(New: **(3,3)-minimal** defined similarly — change ≤ 2 to ≤ 3 in first item. Called **3-minimal** in the literature. Note: 3-minimal \Rightarrow (2,3)-minimal.)

Theorem (Barto 2014 ms, improving Barto, Kozik 2009 (& Bulatov))

Suppose **A** is finite and HSP(A) is congruence $SD(\land)$. Then every (2,3)-minimal instance of CSP(A) has a solution.

k-CSP

Definition. Fix $k \ge 2$.

- An instance $(s_1, C_1), \ldots, (s_p, C_p)$ of CSP(**A**) is a *k*-ary instance if $|s_i| \le k$ for every *i*.
- k-CSP(A) denotes the restriction of CSP(A) to k-ary instances.

Central Problem of CSP (Feder, Vardi) – Dichotomy

Given \mathbf{A} and k, either

- Find a polynomial-time algorithm solving k-CSP(\mathbf{A}), or
- ② Show that k-CSP(\mathbf{A}) is NP-complete.

As 2ℓ -CSP(\mathbf{A}) can be reduced to 2-CSP(\mathbf{A}^{ℓ}), it suffices to solve the Central Problem for 2-CSP(\mathbf{A}).

Pre-processing

 $3-CSP(\mathbf{A})$ is slightly more convenient than $2-CSP(\mathbf{A})$.

Given any instance of $3\text{-CSP}(\mathbf{A})$, there is any easy (poly-time) algorithm which either:

- Discovers a "contradiction" (i.e., a short proof that the instance has no solution); or
- Returns a 3-minimal instance of 3-CSP(A) which has the same solution-set (possibly empty) as the original instance.

Let's call this "enforcing 3-minimality."

In light of this algorithm, to solve the Central Problem, we need only to consider 3-minimal instances of $3\text{-CSP}(\mathbf{A})$.

Example

Let
$$\mathbf{A} = (\{0,1,2\}, x-y+z \pmod{3}).$$

Consider the instance (s_1, C_1) , (s_2, C_2) , (s_3, C_3) , (s_4, C_4) of degree 4 where

$$s_1=\{1,2,3\},\ s_2=\{1,2,4\},\ s_3=\{1,3,4\},\ s_4=\{2,3,4\}$$

and

$$C_1 = \{(a_1, a_2, a_3) : a_1 + a_2 + a_3 = 0 \pmod{3}\}$$

$$C_2 = \{(a_1, a_2, a_4) : a_1 + a_2 + a_4 = 0 \pmod{3}\}$$

$$C_3 = \{(a_1, a_3, a_4) : a_1 + a_3 + a_4 = 1 \pmod{3}\}$$

$$C_4 = \{(a_2, a_3, a_4) : a_2 + a_3 + a_4 = 1 \pmod{3}\}.$$

This is a 3-minimal instance of $3-CSP(\mathbf{A})$.

Quiz: Does it have a solution?

Example (continued)

No solution!

$$\begin{array}{rcl} a_1 + a_2 + a_3 & = & 0 \pmod{3} \\ a_1 + a_2 & + a_4 & = & 0 \pmod{3} \\ a_1 & + a_3 + a_4 & = & 1 \pmod{3} \\ + & a_2 + a_3 + a_4 & = & 1 \pmod{3} \\ \hline & 0 & = & 2 \end{array}$$

If you didn't notice this, you could always use Gaussian elimination.

G.E. works for **any** instance of 3-CSP(($\mathbb{Z}_3, x-y+z$)).

Can replace \mathbb{Z}_3 with any $(\mathbb{Z}_p, x-y+z)^d$, p prime, $d \geq 1$.

Theorem (Nine Chapters, 2nd century BCE, China)

Let $\mathbf{A} = (G, x-y+z)$ where G is a finite abelian group of prime exponent. Gaussian elimination solves 3-CSP(\mathbf{A}) in poly-time.

Generalizing Gaussian Elimination

Definition

A **ternary group** is an algebra $\mathbf{A} = (G, m(x, y, z))$, where (G, \cdot) is a group and $m(x, y, z) = xy^{-1}z$.

Note: in any ternary group A,

- m(x, y, z) is a Maltsev operation. (I.e., m(x, y, y) = x = m(y, y, x).)
- The non-empty subuniverses of \mathbf{A}^n are the <u>cosets of subgroups</u> of G^n .

Goal: to solve 3-CSP(\mathbf{A}) for each finite ternary group \mathbf{A} .

Some computational group theory

Definition. Let G be a group.

• A tower of subgroups for G is a descending sequence

$$1=H_m\leq H_{m-1}\leq \cdots \leq H_1\leq H_0=G$$

of subgroups starting at G and ending at the trivial subgroup 1.

• A complete left transversal system (CLTS) for this tower is a sequence (L_1, \ldots, L_m) where each L_i is a complete set of representatives of the left cosets of H_i in H_{i-1} .

If (L_1, \ldots, L_m) is a CLTS for this tower, then

$$G = H_0 = L_1H_1 = L_1(L_2H_2) = \cdots$$

= $L_1(L_2(\cdots(L_mH_m))) = L_1L_2\cdots L_m$.

Moreover, every $g \in G$ can be **uniquely expressed** by a product $g_1g_2\cdots g_m$ with each $g_i \in L_i$.

Suppose:

- Ω is a finite group (typically of size $2^{O(n)}$), whose
 - elements are represented by strings of length O(n);
 - product and inverse operations are "efficiently computable."
- ullet $K_1,\ldots,K_m \leq \Omega$ are subgroups satisfying

 - ▶ $[\Omega : K_i] \leq d$ for all i.
 - ▶ Membership in each *K_i* is "efficiently testable."
- $G \leq \Omega$ where G is given to us by a generating set X.

[E.g.,
$$\Omega = S_n$$
, $m = n$, $K_i = \operatorname{Stab}(i)$, $X \subseteq \Omega$ arbitrary.]

Theorem (Furst, Hopcroft, Luks 1980; Babai 1979 ms; cf. Hoffmann)

Under the above hypotheses, define the tower

$$1 = H_m \leq \cdots \leq H_1 \leq H_0 = G$$
 by

$$H_i = G \cap (K_1 \cap K_2 \cap \cdots \cap K_i).$$

A CLTS for this tower can be computed in poly(nmd|X|) many steps.

Setup

Fix $\mathbf{A} = (G, xy^{-1}z)$, a finite ternary group.

Let $(s_1, C_1), \ldots, (s_p, C_p)$ be an instance of 3-CSP(**A**) of degree n.

Each C_i is a coset of a subgroup of G^{s_i} ; say $C_i = \mathbf{a}_i J_i$ where $J_i \leq G^{s_i}$.

For each i let

$$K_i = \{ \mathbf{g} \in G^n : \operatorname{proj}_{s_i}(\mathbf{g}) \in J_i \} \leq G^n$$

 $\mathbf{b}_i = \text{any element of } G^n \text{ satisfying } \operatorname{proj}_{s_i}(\mathbf{b}_i) = \mathbf{a}_i.$

Then

$$[s_i, C_i] = \mathbf{b}_i K_i.$$

Hence
$$\llbracket s_1, C_1 \rrbracket \cap \cdots \cap \llbracket s_p, C_p \rrbracket = \mathbf{b}_1 K_1 \cap \cdots \cap \mathbf{b}_p K_p$$
 and we want

to decide if the intersection is non-empty.

We want to decide whether
$$\mathbf{b}_1 K_1 \cap \cdots \cap \mathbf{b}_p K_p \neq \emptyset$$
, where:

For
$$1 \le i \le p$$
,

$$\mathcal{K}_i = \{ \mathbf{g} \in \mathcal{G}^n \, : \, \operatorname{proj}_{s_i}(\mathbf{g}) \in J_i \} \leq \mathcal{G}^n.$$

Define
$$K_{p+1},\ldots,K_{p+n}$$
 by $K_{p+i}:=\{\mathbf{g}\in G^n:\mathbf{g}(i)=1\}\leq G^n.$

Note that:

- Elements of G^n are represented by strings of length n.
- Products and inverses are "efficiently computable."
- $[G^n : K_i] \le |G|^3$ for all *i*.
- $\bigcap_i K_i = 1$. (In fact, $K_{p+1} \cap \ldots \cap K_{p+n} = 1$.)
- Membership in each K_i is "efficiently testable."
- We can find a generating set of G^n of size O(n).

This is the context for the Furst-Hopcroft-Luks result (with $\Omega = G^n$).

Conclusion: we can compute a CLTS (L_1, \ldots, L_{p+n}) for the tower

in
$$1 = H_{p+n} \le \cdots \le H_p \le \cdots \le H_1 \le H_0 = G^n$$
$$poly(n \cdot (p+n) \cdot |G|^3 \cdot O(n)) = poly(n) \text{ many steps}$$

where $H_i = K_1 \cap \cdots \cap K_i$.

Question: Is $\mathbf{b}_1 K_1 \cap \cdots \cap \mathbf{b}_p K_p \neq \emptyset$?

Key observation: If "yes," then

- $\mathbf{b}_1 K_1 \cap \cdots \cap \mathbf{b}_p K_p$ is a left coset of $K_1 \cap \cdots \cap K_p = H_p$.
- There exist (unique) $\mathbf{g}_1 \in L_1$, $\mathbf{g}_2 \in L_2$, ..., $\mathbf{g}_p \in L_p$ such that

$$\mathbf{b}_1 K_1 \cap \cdots \cap \mathbf{b}_p K_p = \mathbf{g}_1 \mathbf{g}_2 \cdots \mathbf{g}_p H_p.$$

Algorithm

To determine whether there exist $\mathbf{g}_1 \in L_1$, $\mathbf{g}_2 \in L_2$, ..., $\mathbf{g}_p \in L_p$ such that

$$\mathbf{b}_1 K_1 \cap \cdots \cap \mathbf{b}_p K_p = \mathbf{g}_1 \mathbf{g}_2 \cdots \mathbf{g}_p H_p. \tag{*}$$

(*) is equivalent to

$$\begin{array}{lll} \mathbf{b}_{i} \mathcal{K}_{i} &=& \mathbf{g}_{1} \mathbf{g}_{2} \cdots \mathbf{g}_{p} \mathcal{K}_{i} & \text{for all } i = 1, \dots, p \\ &=& \mathbf{g}_{1} \mathbf{g}_{2} \cdots \mathbf{g}_{i} \mathcal{K}_{i} & (**) \end{array}$$

(as j > i implies $g_j \in H_{j-1} \subseteq K_i$.)

(**) gives recursive conditions that determine $\mathbf{g}_1, \dots, \mathbf{g}_p$ (if they exist):

We can quickly determine whether such $\mathbf{g}_1, \dots, \mathbf{g}_p$ exist.

Thus:

Theorem (Feder, Vardi 1998)

For each finite ternary group $\mathbf{A} = (G, xy^{-1}z)$, the above algorithm:

- Decides whether a given instance of 3-CSP(A) has a solution.
- Runs in polynomial time.

Compact generating sets

From a high-level perspective, the Feder-Vardi algorithm discovers:

$$\begin{array}{rcl}
G^{n} &=& H_{0} &=& L_{1}L_{2}L_{3}\cdots L_{p+n} \\
[s_{1}, C_{1}] &=& \mathbf{g}_{1}H_{1} &=& \mathbf{g}_{1}L_{2}L_{3}\cdots L_{p+n} \\
[s_{1}, C_{1}] \cap [s_{2}, C_{2}] &=& \mathbf{g}_{1}\mathbf{g}_{2}H_{2} &=& \mathbf{g}_{1}\mathbf{g}_{2}L_{3}\cdots L_{p+n} \\
\vdots &\vdots &\vdots &\vdots &\vdots \\
[s_{1}, C_{1}] \cap \cdots \cap [s_{p}, C_{p}] &=& \mathbf{g}_{1}\mathbf{g}_{2}\cdots \mathbf{g}_{p}H_{p} &=& \mathbf{g}_{1}\mathbf{g}_{2}\cdots \mathbf{g}_{p}L_{p+1}\cdots L_{p+n}
\end{array}$$

(or detects an empty intersection and halts).

Fact: for each $i \leq p$,

$$\mathbf{g}_1\mathbf{g}_2\cdots\mathbf{g}_i(L_{i+1}\cup\cdots\cup L_{p+n})$$

is a generating set of $[s_1, C_1] \cap \cdots \cap [s_i, C_i]$ (i.e., as a subalgebra of \mathbf{A}^n) of size $\leq |p+n| \cdot |G|^3 = O(n^3)$.

The Few Subpowers Algorithm

Abstracting the Feder-Vardi algorithm, a

"poly-time algorithm for 3-CSP($\!\boldsymbol{A}\!\!$) via compact generating sets"

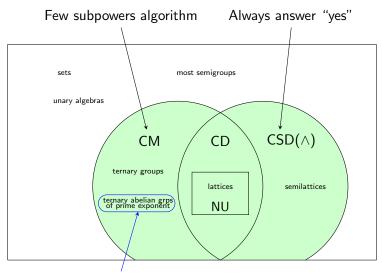
has been worked out for any finite A such that HSP(A) is congruence modular.

Combined work of

- Bulatov, Dalmau 2006, improving Bulatov 2006.
- Idziak et al 2010.
- Barto, 2012 ms.

At this level of generality, the algorithm is called the **Few Subpowers Algorithm**.

The 3 algorithms solving 3-minimal instances of $3-CSP(\mathbf{A})$



Gaussian Elimination

Bibliography

- L. Babai, Monte Carlo algorithms in graph isomorphism testing, manuscript, 1979.
- L. Barto, A proof of the Valeriote conjecture, manuscript, 2012.
- A. A. Bulatov, The property of being polynomial for Mal'tsev constraint satisfaction problems, Algebra i Logika 45 (2006), 655-686 (Russian).
- A. Bulatov and V. Dalmau, A simple algorithm for Mal'tsev constraints, SIAM J. Comput. **36** (2006), 16–27.
- T. Feder and M. Vardi, The computational structure of monadic SNP and constraint satisfaction: a study through Datalog and group theory, SIAM J. Comput. **28** (1998), 57–104.
- M. Furst, J. E. Hopcroft, and E. Luks, Polynomial-time algorithms for permutation groups, FOCS 1980, IEEE, 36-41.
- C. M. Hoffmann, Group Theoretic Algorithms and Graph Isomorphism, LNCS **136**, Springer, 1982.
- P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard, Tractability and learnability arising from algebras with few subpowers, SIAM J. Comput. 39 (2010), 3023–3037.