Near unanimity constraints have bounded pathwidth duality

Libor Barto Marcin Kozik Ross Willard*

Charles U. Jagiellonian U. U. Waterloo

LICS 2012 Dubrovnik, Croatia June 27, 2012

This talk is about variations of 3-SAT...

For example, • 2-SAT:

$$x \lor y = 1$$
, $\overline{x} \lor y = 1$, $\overline{x} \lor \overline{y} = 1$

• Horn (3-)SAT: $\overline{x} \lor \overline{y} \lor z = 1$, $\overline{x} \lor \overline{y} \lor \overline{z} = 1$, x = 1

• 3-XORSAT: $x \oplus y \oplus z = 0$, $x \oplus y \oplus z = 1$

Unlike 3-SAT, these variations are all tractable (in P).

However, they have different complexities:

- 2-SAT is NL-complete.
- Horn SAT is P-complete.
- 3-XORSAT is ⊕L-complete.

These variations are called **constraint satisfaction problems** (CSPs).

Definition

Let \mathcal{R} be a finite set of nonempty boolean relations (i.e., on $\{0,1\}$).

 $\mathbf{CSP}(\mathcal{R})$ is the variant of 3-SAT in which clauses are replaced by \mathcal{R} -constraints:

ullet i.e., assertions that tuples of variables belong to specific relations in ${\mathcal R}.$

A celebrated result:

Boolean Dichotomy Theorem (Schaefer, 1978)

For any finite set \Re of boolean relations, $CSP(\Re)$ is NP-complete or in P.

The cases in P were further delineated by Allender et al, who showed that there are precisely 5 possible complexities.

They also characterized the sets $\mathcal R$ of each complexity. For example:

Corollary of (Allender, Bauland, Immerman, Schnoor, Vollmer, 2009)

(Assume $\oplus L \nsubseteq NL$.) Let $\mathcal R$ be a finite set of nonempty boolean relations, and suppose $\mathcal R$ is "nontrivial." The following are equivalent:

- **○** $CSP(\mathcal{R}) \in NL$.
- $2 \ \mathcal{R} \ does \ not \ "interpret" \ Horn \ SAT \ or \ 3-XORSAT.$

preserves each relation in R

- $\ensuremath{\mathfrak{g}}\ \exists$ function $f:\{0,1\}^n \to \{0,1\}$ (for some $n\geq 1$) which

("polymorphism")

satisfies

$$f(a,\ldots,a,b,a,\ldots,a) = a \quad \forall a,b \in \{0,1\}$$

$$\uparrow \quad \forall 1 \leq i \leq n$$

"near unanimity"

This paper is a contribution to ongoing efforts to extend the Schaefer Dichotomy and its refined version to larger (non-boolean) domains. . .

... specifically, the following conjectured extension of the Allender *et al* corollary:

Conjecture (Larose, Tesson, 2009)

(Assume $Mod_pL \nsubseteq NL$ for all primes p.)

Let \mathcal{R} be a finite set of nonempty relations on a finite domain, and suppose \mathcal{R} is "not reducible" (i.e., *core*). The following are equivalent:

- **○** CSP(\Re) ∈ NL.
- ② \Re does not "interpret" Horn SAT or 3-LinEq(F) for any finite field F.

Conjecture (restated)

 $(\mathsf{Mod}_p\mathsf{L}\nsubseteq\mathsf{NL})$ Core $\mathfrak R$ over general domains, the following are equivalent:

- **○** CSP(\Re) ∈ NL.
- **②** \mathcal{R} does not "interpret" Horn SAT or 3-LinEq(F) for any finite field F.

Remarks

- $(1) \Rightarrow (2)$ is "obvious."
 - ▶ It follows from the complexity assumption, the notion of "interpret," and the known complexities of Horn SAT and 3-LinEq(F).
- Universal algebraists know a "polymorphism characterization" of (2) over general domains. It is related to, but strictly weaker than, $\mathcal R$ having a near unanimity polymorphism (NUP).

Our main result.

We show that \mathcal{R} having a NUP $\Rightarrow CSP(\mathcal{R}) \in NL$.

• This is consistent with, but does not prove, the conjecture.

Remarks on the proof

- Intricate and complicated
 - "[It] is a bit of a mess." (anon. referee)
- Heavily indebted to Dalmau, Krokhin (2008), who proved the result in the case of 3-ary NUPs.
- Like DK, we prove $CSP(\mathcal{R}) \in NL$ by establishing a technical property called bounded pathwidth duality.
- Even stealing everything we can, our proof introduces significant new complications.
- In particular, we needed to show that a certain algebraic property, which is obvious for 3-ary NUPs, has a surprising (to algebraists) weak analogue in NUPs of higher arities.

Thank you