Tutorial on Universal Algebra, Mal'cev Conditions, and Finite Relational Structures: Lecture II

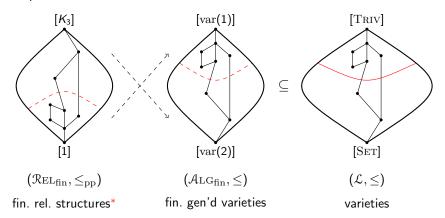
Ross Willard

University of Waterloo, Canada

BLAST 2010

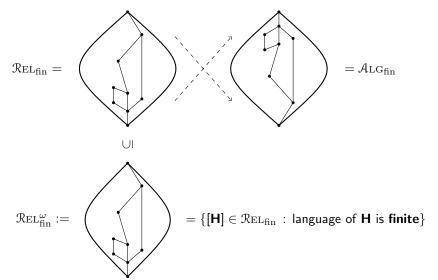
Boulder, June 2010

Recap



- Interpretation relation on varieties gives us \mathcal{L} .
- Sitting inside \mathcal{L} is the \wedge -closed sub-poset $\mathcal{A}_{\mathrm{LG}_{\mathrm{fin}}}$.
- \bullet Pp-definability relation on finite structures gives us $\mathfrak{R}\mathrm{EL}_\mathrm{fin}.$
- $\Re EL_{fin}$ and $\mathcal{A}LG_{fin}$ are anti-isomorphic via $[\mathbf{H}] \mapsto [var(PolAlg(\mathbf{H}))]$.
- Mal'cev classes in \mathcal{L} induce filters on $\mathcal{A}_{LG_{fin}}$ and ideals on $\Re EL_{fin}$.

One more set to define:



Convention: henceforth, all mentioned relational structures under consideration have finite languages.

Theorem (Hell, Nešetřil, 1990)

Suppose **G** is a finite undirected graph (without loops).

- If **G** is bipartite, then CSP(G) is in P.
- Otherwise, CSP(**G**) is NP-complete.

What the heck is "CSP(G)"?

Definition

Given a finite relational structure G with finite language L, the **constraint** satisfaction problem with fixed template G, written $\mathrm{CSP}(G)$, is the following decision problem:

Input: an arbitrary finite *L*-structure **I**.

Question: does there exist a homomorphism $I \rightarrow G$?

Also called the **G-homomorphism** (or **G-coloring**) problem.

Some context

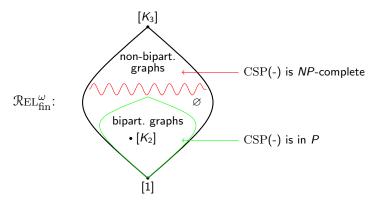
- [Classical]: $CSP(K_2) \equiv$ checking bipartiteness, which is in P. $CSP(K_n) \equiv$ graph n-colorability, which is NP-complete for $n \geq 3$ (Karp).
- Key fact [Essentially due to Bulatov & Jeavons, unpubl.]:

If G, H are finite structures in finite languages and $G \prec_{\mathrm{pp}} H$, then $\mathrm{CSP}(G)$ is no harder than $\mathrm{CSP}(H)$.

Consequences:

- If CSP(G) is in P [resp. NP-complete], then same is true $\forall H \in [G]$.
- $\{[\mathbf{G}] : \mathrm{CSP}(\mathbf{G}) \text{ is in } P\}$ is a down-set in $\mathfrak{R}\mathrm{EL}^\omega_\mathrm{fin}$.
- $\{[G] : \mathrm{CSP}(G) \text{ is } \mathit{NP}\text{-complete}\}\$ is an up-set in $\mathfrak{R}\mathrm{EL}^\omega_\mathrm{fin}.$
- In fact:
 - $\{[G]: \mathrm{CSP}(G) \text{ is in } P\}$ is an ideal in $(\mathfrak{R}_{\mathrm{EL}_{\mathrm{fin}}^{\omega}}, \vee)$. (Not hard)

Pictorially:



Hell-Nešetřil theorem: there is **dichotomy** for undirected graphs.

The CSP dichotomy conjecture (Feder, Vardi (1998)

There is general dichotomy. I.e., for every finite relational structure \mathbf{G} in a finite language, $CSP(\mathbf{G})$ is either in P or is NP-complete.

Initial steps towards a proof of the Dichotomy Conjecture

1. Reduction to cores.

Definition

Let **G**, **H** be finite relational structures in the same language.

- **G** is **core** if all of its endomorphisms are automorphisms.
- G is a core of H if G is core and is a retract of H.

Facts:

- Every finite relational structure H has a core, which is unique up to isomorphism; call it core(H).
- CSP(H) = CSP(core(H)).

Hence when testing dichotomy, we need only consider cores.

2. Reduction to the endo-rigid case.

Definition

Let $\mathbf{H} = (H, \{relations\})$ be a relational structure.

- **H** is **endo-rigid** if its only endomorphism is id_H .
- $\mathbf{H}^c := (H, \{relations\} \cup \{\{a\} : a \in H\})$. (" \mathbf{H} with constants")

Facts:

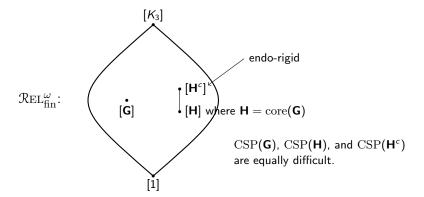
- Endo-rigid \Rightarrow core.
- **H**^c is endo-rigid.

Proposition (Bulatov, Jeavons, Krokhin, 2005)

If **H** is core, then $CSP(\mathbf{H})$ and $CSP(\mathbf{H}^c)$ have the same difficulty.

Hence when testing general dichotomy, we need only consider structures with constants (equivalently, endo-rigid structures).

The reductions in pictures:



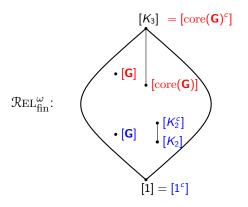
"When testing general dichotomy, we need only consider endo-rigid structures."

$$\mathcal{R}\mathrm{EL}_\mathrm{fin}^\omega = \underbrace{\begin{array}{c} [K_3] \\ \\ \\ \\ \\ \\ \\ \end{array}}_{[K_3]} = [K_3^c]$$
 Define $\mathcal{E}:=$
$$\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}}_{[H]} \in \mathcal{R}\mathrm{EL}_\mathrm{fin}^\omega \,:\, \mathbf{H} \text{ is endo-rigid} \}$$

 \therefore To establish general dichotomy, it suffices to establish dichotomy in \mathcal{E} .

Question: Where in \mathcal{E} should the "dividing line" be?

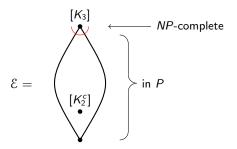
Consider the situation for graphs.



Hell-Nešetřil explained: for a finite graph G,

- **G** bipartite \Rightarrow core(**G**) = K_2 or 1.
- **G** non-bipartite \Rightarrow ... [core(**G**)^c] = [K_3].

Question: Where in \mathcal{E} should the "dividing line" be?



The Algebraic CSP Dichotomy Conjecture (BKJ 2000)

We have dichotomy in \mathcal{E} ; moreover, the "dividing line" separating P from NP-complete is between $\mathcal{E} \setminus \{[K_3]\}$ and $\{[K_3]\}$.

Back to algebra: the **Taylor class** T.

Definition

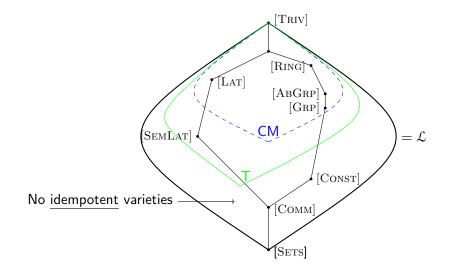
T= the class of varieties V such that $\exists n \geq 1$, \exists term $t(x_1,\ldots,x_n)$ s.t.

① \forall 1 ≤ i ≤ n, \exists an identity of the form

$$V \models t(\mathsf{vars}, x, \mathsf{vars}) \approx t(\mathsf{vars}, y, \mathsf{vars}); \ \uparrow \ i$$

Jargon: such a term t (witnessing $V \in T$) is called a **Taylor term** for V.

Fact: T forms a filter in \mathcal{L} (and hence is a Mal'cev class).



Theorem (Taylor, 1977)

For any **idempotent** variety V (i.e., all basic operations are idempotent), either [V] = [SETS] or $V \in T$.

Now suppose **H** is a finite endo-rigid structure.

Then every basic operation of $PolAlg(\mathbf{H})$ is idempotent.

• PROOF: $f \in Pol(\mathbf{H})$ \Rightarrow f(x, x, ..., x) is an endomorphism of \mathbf{H} \Rightarrow $f(x, x, ..., x) \approx x$ (\mathbf{H} is endo-rigid).

Hence $V := var(PolAlg(\mathbf{H}))$ is an idempotent variety.

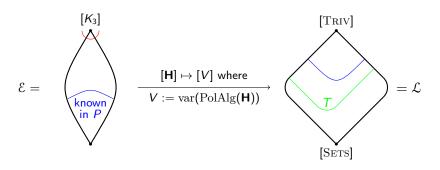
As $[\mathbf{H}] = [K_3]$ in \mathcal{E} iff [V] = [Sets] in \mathcal{L} , we get

Corollary

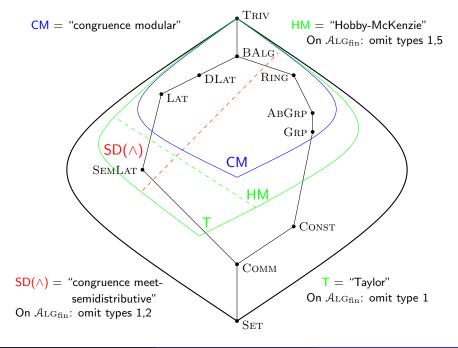
Suppose $[\mathbf{H}] \in \mathcal{E}$.

- If $[H] \neq [K_3]$, then $var(PolAlg(H)) \in T$ (i.e., H has a "Taylor polymorphism").
- Hence the Algebraic Dichotomy Conjecture is equivalent to
 H endo-rigid and has a Taylor polymorphism ⇒ CSP(H) ∈ P.

How close are we to verifying the Algebraic CSP Dichotomy Conjecture?



- Measure progress (i.e., the portion of $\mathcal{E} \setminus \{[K_3]\}$ known to be in P) via its image in \mathcal{L} .
- Thesis: progress is "robust" if its image in \mathcal{L} "is" a Mal'cev class.



Another theme: finding "good" Taylor terms.

Definition

An operation f of arity $k \ge 2$ is called a **WNU** operation if it satisfies

$$f(y,x,x,\ldots,x) \approx f(x,y,x,\ldots,x) \approx f(x,x,y,\ldots,x) \approx \cdots$$

and

$$f(x,x,\ldots,x) \approx x.$$

Observe: any WNU is a Taylor operation.

Theorem (Maróti, McKenzie, 2008, verifying a conjecture of Valeriote)

Suppose **A** is a finite algebra and $V = var(\mathbf{A})$. If V has a Taylor term, then V has a WNU term.

Definition

An operation f of arity $k \ge 2$ is called a **cyclic** operation if it satisfies

$$f(x_1, x_2, x_3, \ldots, x_k) \approx f(x_2, x_3, \ldots, x_k, x_1)$$

and

$$f(x,x,\ldots,x) \approx x.$$

Observe: any cyclic operation is a WNU, since we can specialize the first identity to get

$$f(y,x,x,\ldots,x) \approx f(x,y,x,\ldots,x) \approx f(x,x,y,\ldots,x) \approx \cdots$$

Theorem (Barto, Kozik, 201?)

Suppose **A** is a finite algebra and $V = var(\mathbf{A})$. If V has a Taylor term, then V has a cyclic term. (In fact, has a p-ary cyclic term for every prime p > |A|.)

Easy proof of the Hell-Nešetřil theorem, using cyclic terms. (Due to Barto, Kozik?)

Let $\mathbf{G} = (G, E)$ be a finite graph; assume that it is core and not bipartite.

We must show that $[\mathbf{G}^c] = [K_3]$.

Assume the contrary. Then \mathbf{G}^c (and hence also \mathbf{G}) has a Taylor polymorphism.

So by the Barto-Kozik theorem, **G** has a cyclic polymorphism of arity p for every prime p > |G|.

G not bipartite \Rightarrow **G** contains an odd cycle, and hence contains cycles of every odd length > |G|.

Pick a prime p > |G| and a cycle a_1, a_2, \ldots, a_p in **G** of length p. That is,

$$(a_1, a_2), (a_2, a_3), \ldots, (a_{p-1}, a_p), (a_p, a_1) \in E.$$

Pick a cyclic polymorphism f of **G** of arity p.

Observe that if

$$\mathbf{u} = (a_1, a_2, \dots, a_{p-1}, a_p)$$

 $\mathbf{v} = (a_2, a_3, \dots, a_p, a_1),$

then (\mathbf{u}, \mathbf{v}) is an edge of \mathbf{G}^p .

As f is a homomorphism $\mathbf{G}^p \to \mathbf{G}$, we get that $(f(\mathbf{u}), f(\mathbf{v}))$ is an edge of \mathbf{G} .

But $f(\mathbf{u}) = f(\mathbf{v})$ because f is cyclic. So $(f(\mathbf{u}), f(\mathbf{v}))$ is a loop.

Contradiction!!

In conclusion:

- Good progress is being made on the CSP Dichotomy Conjecture, with essential help from universal algebra.
- The conjecture is motivating new purely algebraic conjectures, some of which have been recently proved.

Thank you!