Tutorial on Universal Algebra, Mal'cev Conditions, and Finite Relational Structures: Lecture I

Ross Willard

University of Waterloo, Canada

BLAST 2010

Boulder, June 2010

Outline - Lecture 1

0. Apology

PART I: Basic universal algebra

- 1. Algebras, terms, identities, varieties
- 2. Interpretations of varieties
- 3. The lattice \mathcal{L} , filters, Mal'cev conditions

PART II: Duality between finite algebras and finite relational structures

- 4. Relational structures and the pp-interpretability ordering
- 5. Polymorphisms and the connection to algebra

Outline (continued) - Lecture 2

PART III: The Constraint Satisfaction Problem

- 6. The CSP dichotomy conjecture of Feder and Vardi
- 7. Connections to $(\mathcal{R}_{\mathrm{fin}}, \leq_{\mathrm{pp}})$ and Mal'cev conditions
- 8. New Mal'cev conditions (Maróti, McKenzie; Barto, Kozik)
- 9. New proof of an old theorem of Hell-Nešetřil via algebra (Barto, Kozik)
- 10. Current status, open problems.

0. Apology

I'm sorry

Part I. Basic universal algebra

algebra: a structure $\mathbf{A} = (A; \{fundamental \ operations\})^1$

term: expression t(x) built from fundamental operations and variables.

• term t in n variables defines an n-ary **term operation** $t^{\mathbf{A}}$ on A.

Definition |

TermOps(\mathbf{A}) = { $t^{\mathbf{A}}$: t a term in $n \ge 1$ variables}.

Definition

A, **B** are **term-equivalent** if they have the same universe and same term operations.

Ross Willard (Waterloo) Universal Algebra tutorial BLAST 2010 5 / 25

¹Added post-lecture: For these notes, algebras are *not* permitted nullary operations

identity: first-order sentence of the form $\forall x(s = t)$ with s, t terms.

• Notation: $s \approx t$.

Definition

A variety (or equational class) is any class of algebras (in a fixed language) axiomatizable by identities.

Examples:

- {semigroups}; {groups} (in language $\{\cdot, ^{-1}\}$).
- $var(\mathbf{A}) := variety$ axiomatized by all identities true in \mathbf{A} .

Definition

Say varieties V, W are **term-equivalent**, and write $V \equiv W$, if:

- ullet Every ${f A} \in V$ is term-equivalent to some ${f B} \in W$ and vice versa ...
- ... "uniformly and mutually inversely."

Example: {boolean algebras} \equiv {idempotent ($x^2 \approx x$) rings}.

Definition

Given an algebra $\mathbf{A} = (A; F)$ and a subset $S \subseteq \operatorname{TermOps}(\mathbf{A})$, the algebra (A; S) is a **term reduct** of \mathbf{A} .

Definition

Given varieties V, W, write $V \to W$ and say that V is **interpretable** in W if every member of W has a term reduct belonging to V.

Examples:

GROUPS o RINGS, but RINGS o GROUPS GROUPS o ABELGRPS More generally, V o W whenever $W \subseteq V$

 $\operatorname{SETS} \ o \ V$ for any variety V

Semigrps \rightarrow Sets

Intuition: $V \to W$ if it is "at least as hard" to construct a nontrivial member of W as it is for V. ("Nontrivial" = universe has \geq 2 elements.)

The relation \rightarrow on varieties is a pre-order (reflexive and transitive).

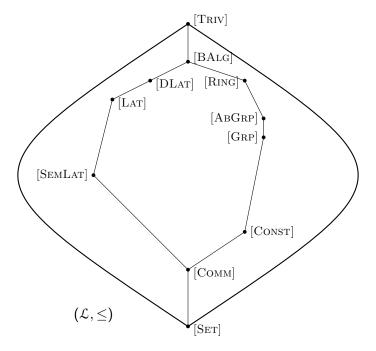
So we get a partial order in the usual way:

$$V \sim W \quad \text{iff} \quad V \to W \to V$$

$$[V] \quad = \quad \{W : V \sim W\}$$

$$\mathcal{L} \quad = \quad \{[V] : V \text{ a variety}\}$$

$$[V] \leq [W] \quad \text{iff} \quad V \to W.$$



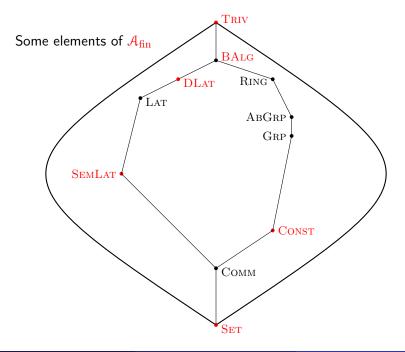
Remarks:

- (\mathcal{L}, \leq) defined by W.D. Neumann (1974); studied by Garcia, Taylor (1984).
- \bullet \mathcal{L} is a proper class.
- (\mathcal{L}, \leq) is a complete lattice.
- $\mathcal{L}_{\kappa} := \{[V] : \text{the language of } V \text{ has card } \leq \kappa\}$ is a set and a sublattice of \mathcal{L} .

Also note: every algebra **A** "appears" in \mathcal{L} , i.e. as $[var(\mathbf{A})]$.

Of particular interest: $A_{fin} := \{ [var(\mathbf{A})] : \mathbf{A} \text{ a finite algebra} \}.$

• $\mathcal{A}_{\mathrm{fin}}$ is a \wedge -closed sub-poset of \mathcal{L}_{ω} .



Thesis: "good" classes of varieties invariably form **filters** in \mathcal{L} of a special kind: they are generated by a set of **finitely presented varieties**².

Definition

Such a filter in \mathcal{L} (or the class of varieties represented in the filter) is called a **Mal'cev class** (or **condition**).

Bad example of a Mal'cev class: the class \mathcal{C} of varieties V which, for some n, have a 2n-ary term $t(x_1, \ldots, x_{2n})$ satisfying

$$V \models t(x_1, x_2, \ldots, x_{2n}) \approx t(x_{2n}, \ldots, x_2, x_1).$$

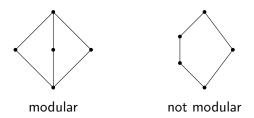
If we let U_n have a single 2n-ary operation f and a single axiom $f(x_1, \ldots, x_{2n}) \approx f(x_{2n}, \ldots, x_1)$, then $\mathbb C$ corresponds to the filter in $\mathcal L$ generated by $\{[U_n]: n \geq 1\}$.

²finite language and axiomatized by finitely many identities

Better example: congruence modularity

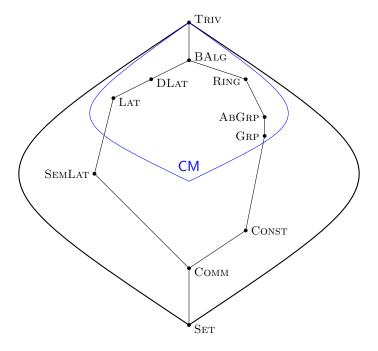
Every algebra $\bf A$ has an associated lattice ${\rm Con}({\bf A})$, called its **congruence** lattice, analogous to the lattice of normal subgroups of a group, or the lattice of ideals of a ring.

The **modular** [lattice] **law** is the distributive law restricted to non-antichain triples x, y, z.



Definition

A variety is **congruence modular** (CM) if all of its congruence lattices are modular.



Easy Proposition

The class of congruence modular varieties forms a filter in \mathcal{L} .

Proof.

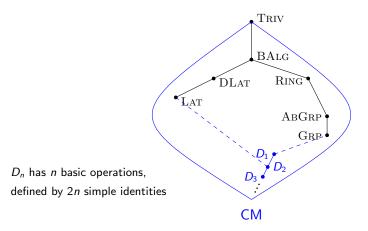
Assume $[V] \leq [W]$ and suppose V is CM.

- Fix $\mathbf{B} \in W$.
- Choose a term reduct $\mathbf{A} = (B, S)$ of \mathbf{B} with $\mathbf{A} \in V$.
- Con(B) is a sublattice of Con(A).
- Modular lattices are closed under forming sublattices.
- Hence $Con(\mathbf{B})$ is modular, proving W is CM.

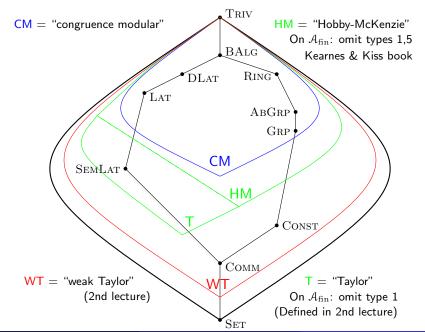
A similar proof shows that if V, W are CM, then the canonical variety representing $[V] \wedge [W]$ is CM; the key property of modular lattices used is that they are closed under forming products.

Theorem (A. Day, 1969)

The CM filter in \mathcal{L} is generated by a countable sequence D_1, D_2, \ldots of finitely presented varieties; i.e., it is a Mal'cev class.



More Mal'cev classes



Part II: finite relational structures

relational structure: a structure $\mathbf{H} = (H; \{relations\})$.

Primitive positive (pp) formula: a first-order formula of the form $\exists y[\alpha_1(x,y) \land \cdots \land \alpha_k(x,y)]$ where each α_i is atomic.

• pp-formula $\varphi(\mathbf{x})$ in n free variables defines an n-ary relation $\varphi^{\mathbf{H}}$ on H.

Definition

 $Rel_{pp}(\mathbf{H}) = \{ \varphi^{\mathbf{H}} : \varphi \text{ a pp-formula in } n \geq 1 \text{ free variables} \}.$

Definition

G, **H** are **pp-equivalent** if they have the same universe and the same pp-definable relations.

Definition

Given two relational structures G, H in the languages L, L' respectively, we say that G is **pp-interpretable** in H if:

for some k > 1 there exist

- **1** a pp-L'-formula $\Delta(\mathbf{x})$ in k free variables;
- ② a pp-L'-formula $E(\mathbf{x}, \mathbf{y})$ in 2k free variables;
- **3** for each *n*-ary relation symbol $R \in L$, a pp-L'-formula $\varphi_R(\mathbf{x}_1, \dots, \mathbf{x}_n)$ in nk free variables;

such that

- $E^{\mathbf{H}}$ is an equivalence relation on $\Delta^{\mathbf{H}}$;
- **5** For each *n*-ary $R \in L$, φ_R^H is an *n*-ary E^H -invariant relation on Δ^H ;
- \bullet $(\Delta^{\mathbf{H}}/E^{\mathbf{H}}, (\varphi_R^{\mathbf{H}}/E^{\mathbf{H}})_{R \in L})$ is isomorphic to **G**.

Notation: $\mathbf{G} \prec_{\mathrm{pp}} \mathbf{H}$.

Examples

- If **G** is a reduct of $(H, \operatorname{Rel}_{pp}(\mathbf{H}))$, then $\mathbf{G} \prec_{pp} \mathbf{H}$.
- If **G** is a substructure of **H** and the universe of *G* is a pp-definable relation of **H**, then $\mathbf{G} \prec \mathbf{H}$.
- For any $n \ge 3$, if \mathbf{K}_n is the complete graph on n vertices, then $\mathbf{G} \prec_{\mathrm{DD}} \mathbf{K}_n$ for every **finite** relational structure \mathbf{G} .
- If **G** is a 1-element structure³, then $\mathbf{G} \prec_{\mathrm{pp}} \mathbf{H}$ for every \mathbf{H} .

³Added post-lecture: and the language of **G** is empty

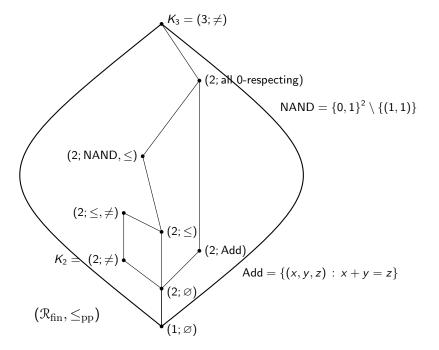
For the rest of this tutorial, we consider only **finite** relational structures (added post-lecture) all of whose fundamental relations are non-empty.

The relation $\prec_{\rm pp}$ on finite relational structures⁴ is a pre-order (reflexive and transitive).

So we get a partial order in the usual way:

$$\begin{split} \textbf{G} \sim_{\mathrm{pp}} \textbf{H} & \text{ iff } & \textbf{G} \prec_{\mathrm{pp}} \textbf{H} \prec_{\mathrm{pp}} \textbf{G} \\ & [\textbf{H}] & = & \{\textbf{G}: \textbf{G} \sim_{\mathrm{pp}} \textbf{H}\} \\ & \mathcal{R}_{\mathrm{fin}} & = & \{[\textbf{H}]: \textbf{H} \text{ a finite relational structure}\} \\ [\textbf{G}] \leq_{\mathrm{pp}} [\textbf{H}] & \text{iff } & \textbf{G} \prec_{\mathrm{pp}} \textbf{H}. \end{split}$$

⁴Added post-lecture: all of whose fundamental operations are non-empty



Connection to algebra

Definition

Let **H** be a finite relational structure and $n \ge 1$. An n-ary polymorphism of **H** is a homomorphism $\mathbf{H}^n \to \mathbf{H}$.

(In particular, a unary polymorphism is an endomorphism of H.)

Definition

Let **H** be a finite relational structure.

- $Pol(\mathbf{H}) = \{all polymorphisms of \mathbf{H}\}.$
- The polymorphism algebra of H is

$$PolAlg(\mathbf{H}) := (H; Pol(\mathbf{H})).$$

Definition

Let **H** be a finite relational structure and V a variety of algebras. We say that **H** admits V if some term reduct of $PolAlg(\mathbf{H})$ is in V.

Proposition (new?)

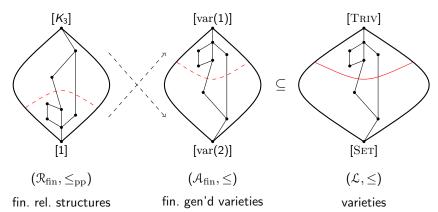
Suppose \mathbf{G}, \mathbf{H} are finite relational structures. TFAE:

- var(PolAlg(**H**)) \rightarrow var(PolAlg(**G**)).
- **3 G** admits var(PolAlg(**H**)).
- G admits every finitely presented variety admitted by H.

Corollary

The map $[\mathbf{H}] \mapsto [\operatorname{var}(\operatorname{PolAlg}(\mathbf{H}))]$ is a well-defined order anti-isomorphism from $(\mathcal{R}_{\operatorname{fin}}, \leq_{\operatorname{pp}})$ into (\mathcal{L}, \leq) , with image $\mathcal{A}_{\operatorname{fin}}$.

Summary



- Interpretation relation on varieties gives us \mathcal{L} .
- Sitting inside \mathcal{L} is the countable \land -closed sub-poset $\mathcal{A}_{\mathrm{fin}}$.
- ullet Pp-definability relation on finite structures gives us ${\mathcal R}_{\mathrm{fin}}$.
- ullet $\mathcal{R}_{\mathrm{fin}}$ and $\mathcal{A}_{\mathrm{fin}}$ are anti-isomorphic
- Mal'cev classes in $\mathcal L$ induce filters on $\mathcal A_{\rm fin}$, and hence ideals on $\mathcal R_{\rm fin}$.