A note on indecomposable lattices

Ross Willard

It is easy to show that the class of directly indecomposable lattices with 0 and 1 is definable by a single first-order sentence. In this note we prove that the class of indecomposable lattices with 0 cannot be so defined. Indeed, neither the indecomposables nor the decomposables in the variety of distributive lattices with 0 are definable by any class of \mathcal{L}_{∞} sentences.

DEFINITION. Let L be the set of all countable, compact subsets of \mathbb{R} , and let L be the corresponding distributive lattice (with 0) under union and intersection.

CLAIM 1. L is indecomposable.

Proof. Otherwise, there would exist ideals I, J of L such that

- (i) $I \neq \{\emptyset\}, J \neq \{\emptyset\}.$
- (ii) $b \cap c = \emptyset$ for all $b \in I$, $c \in J$.
- (iii) For every $a \in L$ there exist $b \in I$, $c \in J$ such that $a = b \cup c$.

Let $U=\bigcup I$ and $V=\bigcup J$. Then it follows from (i)-(iii) that U,V partition $\bigcup L=\mathbb{R}$, and that $a\in L$ implies $a\cap U,\ a\cap V\in L$. Since \mathbb{R} is connected, at least one of U,V is not closed. Suppose U is not closed and pick $x\in \bar{U}\setminus U$; also pick $y_n\in U$ $(n\geq 0)$ such that $|x-y_{n+1}|<\frac{1}{2}|x-y_n|$, and let $a=\{y_n:n\geq 0\}\cup\{x\}$. One can check that $a\in L$ but $a\cap U\notin L$, contradicting a previous remark.

Recall that \mathcal{L}_{∞} formulas are defined like first-order formulas, except that conjunctions and disjunctions of arbitrary sets of formulas are allowed, provided that the resulting formula has only finitely many free variables.

CLAIM 2. L and L × L satisfy the same \mathcal{L}_{∞} sentences.

Proof. It suffices to show that player ∃ has a winning strategy for the infinite

Presented by Bjarni Jónsson.

Received and in final form November 10, 1988.

back-and-forth (or "Ehrenfeucht") game played on L and L×L. (This is a version of C. Karp's Theorem 2 in [2], in the style of [1], Chapter XI.) Put another way, it is enough to display a binary relation \approx between finite sequences of elements from L and finite sequences from $L \times L$, satisfying:

- (i) If $\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_m \rangle$, then m = n and the rule $a_i \mapsto b_i$ determines a well-defined partial isomorphism from **L** to **L** × **L**.
- (ii) (Basis) $\langle \rangle \approx \langle \rangle$.
- (iii) (Back) If $\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_n \rangle$, then for all $b_{n+1} \in L \times L$ there is an $a_{n+1} \in L$ such that $\langle a_1, \ldots, a_{n+1} \rangle \approx \langle b_1, \ldots, b_{n+1} \rangle$.
- (iv) (Forth) If $\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_n \rangle$, then for all $a_{n+1} \in L$ there is a $b_{n+1} \in L \times L$ such that $\langle a_1, \ldots, a_{n+1} \rangle \approx \langle b_1, \ldots, b_{n+1} \rangle$.

We choose the following relation: $\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_n \rangle$ iff there exist real numbers r_0, \ldots, r_7 satisfying $r_{2i} < r_{2i+1}$ (i < 4) and $r_1 < r_2$, and there exist order-preserving homeomorphisms $\phi: [r_0, r_1] \to [r_4, r_5], \ \psi: [r_2, r_3] \to [r_6, r_7]$ such that for $1 \le j \le n$, $a_j \subseteq [r_0, r_1] \cup [r_2, r_3]$ and $b_j = \langle \phi(a_j \cap [r_0, r_1]), \ \psi(a_j \cap [r_2, r_3]) \rangle$.

Properties (i) and (ii) are easily verified. For (iii), if r_0, \ldots, r_7 , ϕ and ψ witness $\langle a_1, \ldots, a_n \rangle \approx \langle b_1, \ldots, b_n \rangle$ and $b_{n+1} = \langle b_{n+1}^1, b_{n+1}^2 \rangle \in L \times L$ is given, pick r'_0, \ldots, r'_7 such that $r'_{2i} < r_{2i}$ and $r'_{2i+1} > r_{2i+1}$ (i < 4), $r'_1 < r'_2$, and $b_{n+1}^1 \subseteq [r'_4, r'_5]$, $b_{n+1}^2 \subseteq [r'_6, r'_7]$. Extend ϕ and ψ to homeomorphisms $\phi' : [r'_0, r'_1] \rightarrow [r'_4, r'_5]$, $\psi' : [r'_2, r'_3] \rightarrow [r'_6, r'_7]$ and let $a_{n+1} = (\phi')^{-1}(b_{n+1}^1) \cup (\psi')^{-1}(b_{n+1}^2)$. Then $a_{n+1} \in L$ and r'_0, \ldots, r'_7 , ϕ' and ψ' witness $\langle a_1, \ldots, a_{n+1} \rangle \approx \langle b_1, \ldots, b_{n+1} \rangle$. The argument for (iv) is similar once it is observed that any $a_{n+1} \in L$ is not dense in $[r_2, r_3]$, i.e. there exist r'_2, r'_3 satisfying $r_2 < r'_2 < r'_3 < r_3$ and $a_{n+1} \cap [r'_2, r'_3] = \emptyset$.

REFERENCES

- [1] H.-D. EBBINGHAUS, J. FLUM and W. THOMAS, "Mathematical Logic" (Springer-Verlag, New York), 1984.
- [2] C. KARP, Finite-quantifier equivalence, in "The Theory of Models," eds. J. W. Addison et al. (North-Holland, Amsterdam), 1965, 407-412.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario