# Classifying Module Categories for Generalized TLJ \*-2-Categories

arXiv:1905.00471

Giovanni Ferrer and Roberto Hernández Palomares,

e-mail:giovanni.ferrer@upr.edu, hernandezpalomares.1@osu.edu

### Weighted Bidirected Graphs

A weighted bidirected graph is a triple  $(\Gamma, \delta, \overline{\cdot})$  where

- $\blacksquare$  the directed graph  $\Gamma$  is countable and locally finite,
- the map  $\delta: E(\Gamma) \to (0,\infty)$  is a weighting of the edges, and
- the function  $\overline{\,\cdot\,}: E(\Gamma) \to E(\Gamma)$  is a direction-reversing involution.



Figure: A weighted bidirected graph  $\Gamma = \Gamma_0$ 

# **Description of the \*-2-Category TLJ**( $\Gamma$ ) [Mw10]

- Objects in  $TLJ(\Gamma)$  are vertices of  $\Gamma$ .
- **1-morphisms** are the paths in  $\Gamma$ , and composition is by concatenation.
- **2-morphisms** from path a to path b are  $\mathbb{C}$ -linear combinations of Kauffman diagrams.

We can perform the following operations on 2-morphisms:

Vertical composition







Horizontal Composition







Involution reflects horizontally and reverses orientations







### Unitary Modules for TLJ( $\Gamma$ ): Motivation and Definitions

**Fiber functors** relate the representation theory of quantum groups with TLJ categories. These are strong monoidal functors  $\mathbb{F}: \mathsf{TLJ} \to \mathsf{Vec}$  (turning Vec into a TLJ-module), and were classified in **[Yam04]** using spectral theory. General  $\mathsf{TLJ}(\delta)$ -modules were classified as fiber functors into the category of bi-graded Vector spaces in terms of graphs in **[E004]**.

Module  $C^*$ -categories for SU(2) where classified in **[DcY13a]** as fiber functors into bi-graded Hilbert spaces,  $\mathbb{F}: \operatorname{Rep}(SU_q(2)) \to \operatorname{BigHilb}$  in terms of weighted graphs. (An appropriate choice of  $\delta$  makes  $\operatorname{TLJ}(\delta)$  unitarily equivalent to  $\operatorname{Rep}(SU_q(2))$ .) We thus define a unitary  $\operatorname{TLJ}(\Gamma)$ -module as a \*-pseudofunctor

$$\mathcal{F}: \mathsf{TLJ}(\Gamma) \Rightarrow \mathsf{UCat}.$$

**UCat** is a strict model for **BigHilb**, the \*-2-category of countably bigraded row and column finite Hilbert spaces.

### **Γ-fundamental solutions**

Strict \*-pseudofunctors

$$\mathcal{F}: \mathbf{TLJ}(\Gamma) \Rightarrow \mathbf{UCat}.$$

are determined by the image of each **cup element**, satisfying the **balancing equations**. To specify  $\mathcal{F}$  it is then sufficient to describe a  $\Gamma$ -fundamental solution:

$$(\{\mathcal{F}(a)\}_{a\in V(\Gamma)}, \{\mathcal{F}(e)\}_{e\in E(\Gamma)}, \{\mathcal{F}(\mathsf{coev}_e)_{e\in E(\Gamma)}\}).$$

#### References

[DcY13b], [DcY13a] De Commer and Yamashita, Tannaka-Krein duality for compact quantum homogeneous spaces. I, II. arXiv:1211.6552v3, 1212.3413v2 [EO04] Etingof and Ostrik, Module categories over representations of  $SL_q(2)$  and graphs, arXiv:math/0302130v1 [FeHe19] Ferrer, Hernandez, Classifying Module Categories for Generalized TLJ\*-2-Categories, arXiv:1905.00471 [MW10] Morrison and Walker, The graph planar algebra embedding, 2010,http://tqft.net/gpa. [Yam04] Yamagami, Fiber functors on Temperley-Lieb

categories, 2004, arXiv:math/0405517v2.

### A Combinatorial Description for \(\Gamma\)-Fundamental Sol's

A balanced  $\Gamma$ -fair graph [FeHe19] is a triple  $(\Lambda, w, \pi)$ , where  $\pi: \Lambda \to \Gamma$  is a surjective bidirected graph homomorphism, and  $w: E(\Lambda) \to (0, \infty)$  is a weight function such that

$$\sum_{\substack{\{\epsilon \mid \mathrm{source}(\epsilon) = \alpha \\ \mathrm{and} \ \pi(\epsilon) = e\}}} w(\epsilon) = \delta_e.$$

Together with the existence of an involution  $\overline{\ }$  on  $E(\Lambda)$  with

$$w(\epsilon)w(\overline{\epsilon}) = 1 \text{ and } \pi(\overline{\epsilon}) = \overline{\pi(\epsilon)}.$$

These graphs fully encode  $\Gamma$ -fundamental solutions, since one can produce a balanced  $\Gamma$ -fair graph from a  $\Gamma$ -fundamental solution and conversely. This equivalence is made explicit by certain conjugate-linear maps associated to balanced  $\Gamma$ -fair graph or either to a  $\Gamma$ -fundamental solution.

# A Balanced $\Gamma_0$ -Fair Graph $\Lambda_0$



Figure: Description of the triple  $(\Lambda_0, w, \pi)$ 

# Classification of Unitary TLJ $(\Gamma)$ -Modules

# Theorem: [FeHe19]

Every balanced  $\Gamma$ -fair graph arises from a  $\Gamma$ -fundamental solution.

There is an equivalence of isomorphism classes of balanced  $\Gamma$ -fair graphs and unitary isomorphism classes of strong \*-pseudofunctors  $\mathcal{F}: \mathbf{TLJ}(\Gamma) \Rightarrow \mathbf{BigHilb}$ .

**Corollary:** We recover Proposition 2.3 in **[DCY13a]** for  $\operatorname{Rep}(SU_q(2))$  for q < 0, by taking  $\Gamma$  to be a single vertex and self-dual loop, which recovers unshaded unoriented  $\operatorname{TLJ}(\delta)$ .