Classifying Module Categories for Generalized TLJ *-2-Categories arXiv:1905.00471 Giovanni Ferrer and Roberto Hernández Palomares, e-mail:giovanni.ferrer@upr.edu, hernandezpalomares.1@osu.edu ### Weighted Bidirected Graphs A weighted bidirected graph is a triple $(\Gamma, \delta, \overline{\cdot})$ where - \blacksquare the directed graph Γ is countable and locally finite, - the map $\delta: E(\Gamma) \to (0,\infty)$ is a weighting of the edges, and - the function $\overline{\,\cdot\,}: E(\Gamma) \to E(\Gamma)$ is a direction-reversing involution. Figure: A weighted bidirected graph $\Gamma = \Gamma_0$ # **Description of the *-2-Category TLJ**(Γ) [Mw10] - Objects in $TLJ(\Gamma)$ are vertices of Γ . - **1-morphisms** are the paths in Γ , and composition is by concatenation. - **2-morphisms** from path a to path b are \mathbb{C} -linear combinations of Kauffman diagrams. We can perform the following operations on 2-morphisms: Vertical composition Horizontal Composition Involution reflects horizontally and reverses orientations ### Unitary Modules for TLJ(Γ): Motivation and Definitions **Fiber functors** relate the representation theory of quantum groups with TLJ categories. These are strong monoidal functors $\mathbb{F}: \mathsf{TLJ} \to \mathsf{Vec}$ (turning Vec into a TLJ-module), and were classified in **[Yam04]** using spectral theory. General $\mathsf{TLJ}(\delta)$ -modules were classified as fiber functors into the category of bi-graded Vector spaces in terms of graphs in **[E004]**. Module C^* -categories for SU(2) where classified in **[DcY13a]** as fiber functors into bi-graded Hilbert spaces, $\mathbb{F}: \operatorname{Rep}(SU_q(2)) \to \operatorname{BigHilb}$ in terms of weighted graphs. (An appropriate choice of δ makes $\operatorname{TLJ}(\delta)$ unitarily equivalent to $\operatorname{Rep}(SU_q(2))$.) We thus define a unitary $\operatorname{TLJ}(\Gamma)$ -module as a *-pseudofunctor $$\mathcal{F}: \mathsf{TLJ}(\Gamma) \Rightarrow \mathsf{UCat}.$$ **UCat** is a strict model for **BigHilb**, the *-2-category of countably bigraded row and column finite Hilbert spaces. ### **Γ-fundamental solutions** Strict *-pseudofunctors $$\mathcal{F}: \mathbf{TLJ}(\Gamma) \Rightarrow \mathbf{UCat}.$$ are determined by the image of each **cup element**, satisfying the **balancing equations**. To specify \mathcal{F} it is then sufficient to describe a Γ -fundamental solution: $$(\{\mathcal{F}(a)\}_{a\in V(\Gamma)}, \{\mathcal{F}(e)\}_{e\in E(\Gamma)}, \{\mathcal{F}(\mathsf{coev}_e)_{e\in E(\Gamma)}\}).$$ #### References [DcY13b], [DcY13a] De Commer and Yamashita, Tannaka-Krein duality for compact quantum homogeneous spaces. I, II. arXiv:1211.6552v3, 1212.3413v2 [EO04] Etingof and Ostrik, Module categories over representations of $SL_q(2)$ and graphs, arXiv:math/0302130v1 [FeHe19] Ferrer, Hernandez, Classifying Module Categories for Generalized TLJ*-2-Categories, arXiv:1905.00471 [MW10] Morrison and Walker, The graph planar algebra embedding, 2010,http://tqft.net/gpa. [Yam04] Yamagami, Fiber functors on Temperley-Lieb categories, 2004, arXiv:math/0405517v2. ### A Combinatorial Description for \(\Gamma\)-Fundamental Sol's A balanced Γ -fair graph [FeHe19] is a triple (Λ, w, π) , where $\pi: \Lambda \to \Gamma$ is a surjective bidirected graph homomorphism, and $w: E(\Lambda) \to (0, \infty)$ is a weight function such that $$\sum_{\substack{\{\epsilon \mid \mathrm{source}(\epsilon) = \alpha \\ \mathrm{and} \ \pi(\epsilon) = e\}}} w(\epsilon) = \delta_e.$$ Together with the existence of an involution $\overline{\ }$ on $E(\Lambda)$ with $$w(\epsilon)w(\overline{\epsilon}) = 1 \text{ and } \pi(\overline{\epsilon}) = \overline{\pi(\epsilon)}.$$ These graphs fully encode Γ -fundamental solutions, since one can produce a balanced Γ -fair graph from a Γ -fundamental solution and conversely. This equivalence is made explicit by certain conjugate-linear maps associated to balanced Γ -fair graph or either to a Γ -fundamental solution. # A Balanced Γ_0 -Fair Graph Λ_0 Figure: Description of the triple (Λ_0, w, π) # Classification of Unitary TLJ (Γ) -Modules # Theorem: [FeHe19] Every balanced Γ -fair graph arises from a Γ -fundamental solution. There is an equivalence of isomorphism classes of balanced Γ -fair graphs and unitary isomorphism classes of strong *-pseudofunctors $\mathcal{F}: \mathbf{TLJ}(\Gamma) \Rightarrow \mathbf{BigHilb}$. **Corollary:** We recover Proposition 2.3 in **[DCY13a]** for $\operatorname{Rep}(SU_q(2))$ for q < 0, by taking Γ to be a single vertex and self-dual loop, which recovers unshaded unoriented $\operatorname{TLJ}(\delta)$.