Realizing rigid C*-tensor categories as bimodules over C*-algebras

Roberto Hernández Palomares (OSU), joint with Michael Hartglass (Santa Clara University)

QuaSy-Con 2019 UIUC

November 9, 2019

Overview

(1) Introduction
(2) Hilbert C*-Bimodules (by example)
(3) Categorical Structure
(4) Results
(5) References

Subfactors and their standard invariants

The standard invariant of a finite index type II_{1} subfactor $N \subset M$, is the lattice of higher relative commutants. For extremal, irreducible, discrete inclusions, the standard invariant can be reinterpreted as the triple:
[CJoPe18]

$$
\left(\mathcal{C}, \mathbb{F}: \mathcal{C} \hookrightarrow \operatorname{Bim}_{b f}^{s p}(N), \mathbf{A}\right)
$$

- \mathcal{C} is a RC*TC,
- \mathbb{F} is a fully faithful bi-involutive representation, and
- \mathbf{A} is a (connected) W^{*}-algebra object in $\operatorname{Vec}(\mathcal{C})$.

From this characterization one can obtain subfactor reconstruction results, which we seek to extend to inclusions of C^{*}-algebras.

Representations of RC*TC over II_{1}-factors

- From such a representation, one recovers the subfactor N by taking bounded vectors, and by means of realizations/crossed products one recovers the overfactor M.
- Guionnet, Jones, and Shlyakhtenko provided a digrammatic proof of Popa's reconstruction theorem. [GJS] The resulting factors are interpolated free group factors in finite depth, and for infinite depth, Hartglass showed that the factors correspond to $L\left(\mathbb{F}_{\infty}\right)$.
- One problem: There is no C*-algebra over which we can universally represent RC*TC's, and by K-theoretical obstructions, there cannot be one.

Representations over C*-algebras

Existence of representations:

Theorem (M. Hartglass, RHP)

Given \mathcal{C}, a countably generated RC*TC, there is a separable, unital, simple C^{*}-algebra, B_{0}, with unique trace and a fully faithful strong monoidal bi-involutive functor

$$
\mathbb{F}: \mathcal{C}^{o p} \hookrightarrow \operatorname{Bim}_{f g p}^{s p}\left(B_{0}\right)
$$

valued on the finitely generated projective C^{*}-bimodules of B_{0}. Moreover, the K_{0} group of B_{0} is the free abelian group on the classes of simple objects in \mathcal{C}.

See also [Yu19] and [NaEv19].

Construction of the C*-algebra B_{0}

Let x be a symmetrically self dual object in \mathcal{C}, and we consider the full tensor subcategory it generates by \mathcal{C}_{x}. Consider

$$
G r_{\infty}:=\bigoplus_{I, r, b \geq 0} \mathcal{C}\left(x^{\otimes b} \rightarrow x^{\otimes I} \otimes x^{\otimes r}\right)
$$

Whose elements can be pictorially visualized as follows: (we are reading from bottom to top)

Construction of the C*-algebra B_{0}

By considering diagrams with $b=0$, we obtain a graded increasing sequence of f.d. C^{*}-algebras, with the multiplication

Notice this is the same C^{*}-algebra from the Hom spaces in \mathcal{C} with composition and conjugation as the involution. We denote the inductive limit C*-algebra by A_{∞}.

Construction of the C^{*}-algebra B_{0}

We now endow $G r_{\infty}$ with the structure of a pre-Hilbert A_{∞}-bimodule:

Where the right A_{∞}-valued inner product is given by

$$
\begin{equation*}
\langle\xi \mid \eta\rangle_{A_{\infty}}:=\delta_{l=I^{\prime}} \cdot \delta_{b=b^{\prime}} \text {, } \tag{4}
\end{equation*}
$$

And we denote its completion by

$$
A_{\infty}\left(\chi_{\infty}\right)_{A_{\infty}}
$$

Full Fock space and creation operators

Identify χ_{∞} with the full Fock space

$$
\mathcal{F}\left(\chi_{1}\right)=A_{\infty} \oplus \bigoplus_{n \geq 0} \chi_{1}^{\otimes_{A_{\infty}} n} \cong \chi_{\infty}
$$

allowing nice (diagrammatic) description of the elements of χ_{∞} as tensors with a single strand on the bottom.
For $\xi \in \mathcal{F}\left(\chi_{1}\right)$, consider creation operators, $L(\xi)$, defined as

$$
\begin{aligned}
L(\xi)(a) & =\xi \triangleleft a & \text { for all } a \in A_{\infty} \\
L(\xi)\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right) & =\xi \otimes \xi_{1} \otimes \cdots \otimes \xi_{n} & \text { for all } \xi_{1}, \ldots, \xi_{n} \in \chi_{1}
\end{aligned}
$$

$L(\xi)$ is bounded and right-adjointable, and its adjoint is given by

$$
\begin{aligned}
L(\xi)^{*} a & =0 & \text { for all } a \in A_{\infty} \\
L(\xi)^{*}\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right) & =\left\langle\xi \mid \xi_{1}\right\rangle_{A_{\infty}} \cdot \xi_{2} \otimes \cdots \otimes \xi_{n} & \text { for all } \xi_{1}, \ldots, \xi_{n} \in A_{\infty}
\end{aligned}
$$

Creation operators on full Fock Space

For a self-adjoint diagram, $\xi=\xi^{*}$, the operator $L(\xi)+L(\xi)^{*}$ acts on diagrams as multiplication by ξ under the Walker Product, \star, given by:

$$
\begin{equation*}
\xi \star \eta:=\delta_{r=l^{\prime}} \cdot \sum_{k=0}^{1} \tag{5}
\end{equation*}
$$

We now define the C^{*}-algebra

$$
B_{\infty}:=\overline{A_{\infty} \cup\left\{L(\xi)+L(\xi)^{*} \mid \xi=\xi^{*}\right\}} \subset \mathcal{B}^{*}\left(\left(\chi_{\infty}\right)_{A_{\infty}}\right)
$$

as a C*-subalgebra of the right-adjointable operators on χ_{∞}.

Properties of B_{∞}

- The composition

$$
\operatorname{Tr}: B_{\infty} \xrightarrow{\mathbb{E}} A_{\infty} \xrightarrow{\Phi} \mathbb{C}
$$

endows B_{∞} with a faithful semifinite tracial weight on B_{∞}. The map \mathbb{E} is a faithful conditional expectation onto A_{∞}, and Φ is a faithful, positive, semifinite, tracial weight on A_{∞}.

- B_{∞} is simple, and so is every corner for which $n=m$.
Thus, $\left(B_{n}, t r_{n}\right)$ is a tracial, separable, unital simple C^{*}-algebra, for every $n \geq 0$. We now pay special attention to B_{0} and describe some bimodules.

A Hilbert B_{0}-bimodule

We have the following commuting actions of B_{0} on ${ }_{0} B_{1}$:

Together with a right B_{0}-valued inner product:

$\operatorname{Bim}\left(B_{0}\right)$: Monoidal structure: Connes' Fusion

Using ${ }_{0} B_{1}$ to generate the category to support our representation: There is a unitary B_{0}-isomorphism from the n-fold Connes' fusion

$$
\left({ }_{0} B_{1}\right)^{\boxtimes_{B_{0}} n} \longrightarrow{ }_{B_{0}}\left({ }_{0} B_{n}\right)_{B_{0}},
$$

This isomorphism exists by the simplicity of B_{∞}, and we will use it to derive the properties of our bimodules.

$\operatorname{Bim}_{f g p}^{s p}\left(\mathrm{~B}_{0}\right)$: Rigidity, shpericallity and (bi)finiteness

A few important properties for ${ }_{0} B_{n}$:

- Existence of finite left and right B_{0}-bases: There are collections $\left\{u_{i}\right\}_{i=1}^{N}$ and $\left\{v_{j}\right\}_{j=1}^{M}$, so that for each $\xi \in{ }_{0} B_{n}$,

$$
\sum_{j=1}^{M}{B_{0}}_{0}\left\langle\xi \mid v_{j}\right\rangle \triangleright v_{j}=\xi=\sum_{i=1}^{N} u_{i} \triangleleft\left\langle u_{i} \mid \xi\right\rangle_{B_{0}} .
$$

- Normalized and minimal (these properties are analogous to sphericality and bifiniteness for bimodules over a II_{1}-factor.)
We are thus directed to represent \mathcal{C} over the RC*TC of finitely generated projective Hilbert B_{0}-bimodules which are normalized and minimal (a la [KaWa00]).

The representation

We have a full(!) and faithful strong monoidal bi-involutive functor

$$
\begin{gathered}
\mathbb{F}: \mathcal{C}_{x}^{o p} \hookrightarrow \operatorname{Bim}_{b f}^{s p}\left(B_{0}\right), \\
x^{\otimes n} \mapsto{ }_{0} B_{n}, \\
\mathcal{C}^{o p}\left(x^{\otimes n} \rightarrow x^{\otimes m}\right) \ni f \mapsto \mathbb{F}(f) \in \operatorname{Bim}_{f g p}^{s p}\left({ }_{0} B_{n} \rightarrow{ }_{0} B_{m}\right)
\end{gathered}
$$

whose action on diagrams is given by

The fact that this functor is full is obtained from analogous results regarding W^{*}-categories. [BrHaPe]

Applications: Hilbertifying?

Looking for a monoidal functor $-\boxtimes_{B_{0}} L^{2}\left(B_{0}\right)$ transforming C^{*}-bimodules into honest Hilbert spaces so that the following diagram commutes:

This would recover known results for representations of RC*TC over W^{*}-algebras [BrHaPe].

Applications: (discrete) inclusion reconstruction?

- Using reconstruction techniques on simple C*-algebras towards defining discrete inclusions for \mathbf{C}^{*}-algebras.(?)
- Galois correspondences: Given a discrete countable group 「 acting on B by outer automorphisms, what are all the intermediate C^{*}-algebras

$$
B \subset P \subset B \rtimes_{r} \Gamma ?
$$

Is every such P of the form $P \cong B \rtimes_{r} \Lambda$ for some $\Lambda \leq \Gamma$? [CaSm17] Is this correspondence encoded by categorical data? (i.e. connected C*-algebra objects in $\operatorname{Vec}(\mathcal{C})$. [CJoPe18])

Thanks!

Thanks for listening!

References

- [BrHaPe] Brothier, Hartglass and Penneys, Rigid C*-tensor categories of bimodules over interpolated free group factors, arXiv:1208. 5505
- [CaSm17] Cameron, Smith, A Galois correspondence for reduced crossed products of unital simple C*-algebras by discrete groups, 1706.01803
- [GJS] A. Guionnet, V.F.R. Jones and D. Shlyakhtenko, Random matrices, free probability, planar algebras and subfactors, arXiv: 0712.2904.
- [HaPe I] Hartglass and Penneys, C*-Algebras from Planar Algebras I: Canonical C*-algebras Associated to a Planar Algebra, arXiv: 1401.2485
- [HaPe II] Hartglass and Penneys, C*-Algebras from Planar Algebras II: The Guionnet-Jones-Shlyakhtenko C*-algebras, arXiv:1401.2486.
- [CJoPe18] Corey Jones, Penneys, Realizations of algebra objects and discrete subfactors arXiv: 1704.02035

References

- [NaEv19] NÆs Aaserud and Evans, Realizing the braided Temperley-Lieb-Jones C*-tensor categories as Hilbert C*-bimodules, arXiv: 1908.02674
- [JSW] V. Jones, D. Shlyakhtenko and K. Walker An orthogonal approach to the subfactor of a planar algebra arXiv: 0807.4146.
- [KaWa00] Kajiwara and Watatani, Jones Index Theory by Hilbert C^{*}-bimodules and K-Theory, Transactions of the AMS, 352, number 8, Pages 3429-3472, S 0002-9947(00)02392-8. http://www.numdam.org/item/CTGDC_1988__29_1_9_0/.
- [Yu19] Yuan, Rigid C*-tensor categories and their realizations as Hilbert C^{*}-bimodules, Proceedings of the Edinburgh Mathematical Society (2019) 62, 367-393m, DOI:10.1017/S0013091518000524.

