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Subfactors and their standard invariants

The standard invariant of a finite index type II1 subfactor N ⊂ M, is the
lattice of higher relative commutants. For extremal, irreducible, discrete
inclusions, the standard invariant can be reinterpreted as the triple:
[CJoPe18]

(C, F : C ↪→ Bimsp
bf (N), A).

C is a RC*TC,

F is a fully faithful bi-involutive representation, and

A is a (connected) W*-algebra object in Vec(C).

From this characterization one can obtain subfactor reconstruction results,
which we seek to extend to inclusions of C*-algebras.
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Representations of RC*TC over II1-factors

From such a representation, one recovers the subfactor N by taking
bounded vectors, and by means of realizations/crossed products one
recovers the overfactor M.

Guionnet, Jones, and Shlyakhtenko provided a digrammatic proof of
Popa’s reconstruction theorem. [GJS] The resulting factors are
interpolated free group factors in finite depth, and for infinite depth,
Hartglass showed that the factors correspond to L(F∞).

One problem: There is no C*-algebra over which we can universally
represent RC*TC’s, and by K-theoretical obstructions, there cannot
be one.
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Representations over C*-algebras

Existence of representations:

Theorem (M. Hartglass, RHP)

Given C, a countably generated RC*TC, there is a separable, unital, simple
C*-algebra, B0, with unique trace and a fully faithful strong monoidal
bi-involutive functor

F : Cop ↪→ Bimsp
fgp(B0)

valued on the finitely generated projective C*-bimodules of B0. Moreover,
the K0 group of B0 is the free abelian group on the classes of simple
objects in C.

See also [Yu19] and [NaEv19].
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Construction of the C*-algebra B0

Let x be a symmetrically self dual object in C, and we consider the full
tensor subcategory it generates by Cx . Consider

Gr∞ :=
⊕

l ,r ,b≥0

C(x⊗b → x⊗l ⊗ x⊗r )

Whose elements can be pictorially visualized as follows: (we are reading
from bottom to top)

ξ
•

l r

b

(1)
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Construction of the C*-algebra B0

By considering diagrams with b = 0, we obtain a graded increasing
sequence of f.d. C*-algebras, with the multiplication

•
ξ

l r

∧
•
η

l ′ r ′

:= δr=l ′ ·
•

•
η

r ′

•
ξ

l

(2)

Notice this is the same C*-algebra from the Hom spaces in C with
composition and conjugation as the involution. We denote the inductive
limit C*-algebra by A∞.
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Construction of the C*-algebra B0

We now endow Gr∞ with the structure of a pre-Hilbert A∞-bimodule:

•
a

l r

B
•
ξ

l ′′ r ′′

b

C
•
a′

r ′l ′

:= δr=l ′′ · δr ′′=l ′

•
•
a

l

•
ξ

b

•
a′

r ′

(3)

Where the right A∞-valued inner product is given by

〈ξ | η〉A∞ := δl=l ′ · δb=b′ ·

•
•
ξ∗

r

b

η
•

r ′

(4)

And we denote its completion by

A∞(χ∞)A∞ .
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Full Fock space and creation operators

Identify χ∞ with the full Fock space

F(χ1) = A∞ ⊕
⊕
n≥0

χ
⊗A∞n
1

∼= χ∞,

allowing nice (diagrammatic) description of the elements of χ∞ as tensors
with a single strand on the bottom.
For ξ ∈ F(χ1), consider creation operators, L(ξ), defined as

L(ξ)(a) = ξ C a for all a ∈ A∞

L(ξ)(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn for all ξ1, . . . , ξn ∈ χ1.

L(ξ) is bounded and right-adjointable, and its adjoint is given by

L(ξ)∗a = 0 for all a ∈ A∞

L(ξ)∗(ξ1 ⊗ · · · ⊗ ξn) = 〈ξ | ξ1〉A∞ · ξ2 ⊗ · · · ⊗ ξn for all ξ1, . . . , ξn ∈ A∞
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Creation operators on full Fock Space

For a self-adjoint diagram, ξ = ξ∗, the operator L(ξ) + L(ξ)∗ acts on
diagrams as multiplication by ξ under the Walker Product, ?, given by:

ξ ? η := δr=l ′ ·
1∑

k=0

•

k

•
ξ

l

•
η

r ′

(1− k) (b′ − k)

(5)

We now define the C*-algebra

B∞ := A∞ ∪ {L(ξ) + L(ξ)∗| ξ = ξ∗} ⊂ B∗((χ∞)A∞)

as a C*-subalgebra of the right-adjointable operators on χ∞.
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Properties of B∞

The composition

Tr : B∞
E−→ A∞

Φ−→ C

•
ξ 7→

•
ξ∅ 7→

•
ξ∅

endows B∞ with a faithful semifinite tracial weight on B∞.The
map E is a faithful conditional expectation onto A∞, and Φ is a
faithful, positive, semifinite, tracial weight on A∞.

B∞ is simple, and so is every corner • n
∧B∞∧ • m

:= nBm,

for which n = m.

Thus, (Bn, trn) is a tracial, separable, unital simple C*-algebra, for
every n ≥ 0. We now pay special attention to B0 and describe some
bimodules.
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A Hilbert B0-bimodule

We have the following commuting actions of B0 on 0B1 :

b0

•
B

•
1

ξ C

• 1

b′0

•
= b0

• •
ξ

•

b′0

•

Together with a right B0-valued inner product:

〈ξ | η〉B0 :=

•

•
ξ∗

•
η
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Bim(B0): Monoidal structure: Connes’ Fusion

Using 0B1 to generate the category to support our representation:
There is a unitary B0-isomorphism from the n-fold Connes’ fusion

(0B1)�B0
n −→ B0(0Bn)B0 ,

•
ξ1 �B0

•
ξ2 �B0 · · ·�B0

•
ξn 7−→

•

•
ξ1 ξ2 . . . ξn

n

This isomorphism exists by the simplicity of B∞, and we will use it to
derive the properties of our bimodules.
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Bimsp
fgp(B0): Rigidity, shpericallity and (bi)finiteness

A few important properties for 0Bn:

Existence of finite left and right B0-bases: There are collections
{ui}Ni=1 and {vj}Mj=1, so that for each ξ ∈ 0Bn,

M∑
j=1

B0〈ξ |vj〉B vj = ξ =
N∑
i=1

ui C 〈ui | ξ〉B0 .

Normalized and minimal (these properties are analogous to
sphericality and bifiniteness for bimodules over a II1-factor.)

We are thus directed to represent C over the RC*TC of finitely
generated projective Hilbert B0-bimodules which are normalized and
minimal (a la [KaWa00]).
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The representation

We have a full(!) and faithful strong monoidal bi-involutive functor

F : Copx ↪→ Bimsp
bf (B0),

x⊗n 7→ 0Bn,

Cop(x⊗n → x⊗m) 3 f 7→ F(f ) ∈ Bimsp
fgp(0Bn → 0Bm)

whose action on diagrams is given by

•
ξ

n

b

7−→

•

ξ ∧

•

f =

• m

f

n

ξ
•

b

The fact that this functor is full is obtained from analogous results
regarding W*-categories. [BrHaPe]
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Applications: Hilbertifying?

Looking for a monoidal functor −�B0 L2(B0) transforming C*-bimodules
into honest Hilbert spaces so that the following diagram commutes:

Cop Bimsp
fgp(B0)

Bimsp
bf (M0)

F

BrHaPe −�B0
L2(B0)

This would recover known results for representations of RC*TC over
W*-algebras [BrHaPe].
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Applications: (discrete) inclusion reconstruction?

Using reconstruction techniques on simple C*-algebras towards
defining discrete inclusions for C*-algebras.(?)

Galois correspondences: Given a discrete countable group Γ acting
on B by outer automorphisms, what are all the intermediate
C*-algebras

B ⊂ P ⊂ B or Γ?

Is every such P of the form P ∼= B or Λ for some Λ ≤ Γ? [CaSm17]
Is this correspondence encoded by categorical data? (i.e. connected
C*-algebra objects in Vec(C). [CJoPe18])
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Thanks!

Thanks for listening!
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