Realizing rigid C*-tensor categories as bimodules over C*-algebras

Roberto Hernández Palomares (OSU), joint with Michael Hartglass (Santa Clara University)

QuaSy-Con 2019 UIUC

November 9, 2019

1 Introduction

2 Hilbert C*-Bimodules (by example)

3 Categorical Structure

4 Results

The **standard invariant** of a finite index type II_1 subfactor $N \subset M$, is the lattice of higher relative commutants. For *extremal, irreducible, discrete inclusions*, the standard invariant can be reinterpreted as the triple: **[CJoPe18]**

$$(\mathcal{C}, \mathbb{F}: \mathcal{C} \hookrightarrow \mathsf{Bim}^{sp}_{bf}(N), \mathbf{A}).$$

- C is a RC*TC,
- \mathbb{F} is a fully faithful bi-involutive representation, and
- **A** is a (*connected*) W*-*algebra object* in Vec(C).

From this characterization one can obtain *subfactor reconstruction* results, which we seek to extend to inclusions of C^* -algebras.

- From such a representation, one recovers the subfactor N by taking *bounded vectors*, and by means of *realizations/crossed products* one recovers the overfactor M.
- Guionnet, Jones, and Shlyakhtenko provided a digrammatic proof of Popa's reconstruction theorem. [GJS] The resulting factors are interpolated free group factors in finite depth, and for infinite depth, Hartglass showed that the factors correspond to L(𝔅_∞).
- One problem: There is no C*-algebra over which we can universally represent RC*TC's, and by K-theoretical obstructions, there cannot be one.

Existence of representations:

Theorem (M. Hartglass, RHP)

Given C, a countably generated RC*TC, there is a separable, unital, simple C*-algebra, B_0 , with unique trace and a fully faithful strong monoidal bi-involutive functor

$$\mathbb{F}: \mathcal{C}^{op} \hookrightarrow Bim^{sp}_{fgp}(B_0)$$

valued on the finitely generated projective C*-bimodules of B_0 . Moreover, the K_0 group of B_0 is the free abelian group on the classes of simple objects in C.

See also [Yu19] and [NaEv19].

Let x be a symmetrically self dual object in C, and we consider the full tensor subcategory it generates by C_x . Consider

$$Gr_{\infty} := \bigoplus_{l,r,b \ge 0} \mathcal{C}(x^{\otimes b} \to x^{\otimes l} \otimes x^{\otimes r})$$

Whose elements can be pictorially visualized as follows: (we are reading from bottom to top)

(1)

By considering diagrams with b = 0, we obtain a graded increasing sequence of f.d. C*-algebras, with the multiplication

Notice this is the same C*-algebra from the Hom spaces in C with composition and conjugation as the involution. We denote the **inductive limit C*-algebra** by A_{∞} .

Construction of the C*-algebra B_0

We now endow Gr_{∞} with the structure of a pre-**Hilbert** A_{∞} -**bimodule**:

Where the **right** A_{∞} -valued inner product is given by

$$\langle \xi \mid \eta \rangle_{\mathcal{A}_{\infty}} := \delta_{l=l'} \cdot \delta_{b=b'}$$

And we denote its completion by

$$_{\mathcal{A}_{\infty}}(\chi_{\infty})_{\mathcal{A}_{\infty}}$$

(4)

Full Fock space and creation operators

Identify χ_∞ with the full Fock space

$$\mathcal{F}(\chi_1) = \mathcal{A}_{\infty} \oplus \bigoplus_{n \ge 0} \chi_1^{\otimes_{\mathcal{A}_{\infty}} n} \cong \chi_{\infty},$$

allowing nice (diagrammatic) description of the elements of χ_{∞} as tensors with a single strand on the bottom.

For $\xi \in \mathcal{F}(\chi_1)$, consider creation operators, $L(\xi)$, defined as

$$L(\xi)(a) = \xi \triangleleft a \qquad \qquad \text{for all } a \in A_{\infty}$$
$$L(\xi)(\xi_1 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \cdots \otimes \xi_n \qquad \text{for all } \xi_1, \dots, \xi_n \in \chi_1.$$

 $L(\xi)$ is bounded and **right-adjointable**, and its adjoint is given by

 $L(\xi)^* a = 0 \qquad \qquad \text{for all } a \in A_{\infty}$ $L(\xi)^* (\xi_1 \otimes \cdots \otimes \xi_n) = \langle \xi \mid \xi_1 \rangle_{A_{\infty}} \cdot \xi_2 \otimes \cdots \otimes \xi_n \quad \text{for all } \xi_1, \dots, \xi_n \in A_{\infty}$

For a self-adjoint diagram, $\xi = \xi^*$, the operator $L(\xi) + L(\xi)^*$ acts on diagrams as multiplication by ξ under the **Walker Product**, \star , given by:

We now define the C*-algebra

$$B_\infty:=\overline{A_\infty\cup\{L(\xi)+L(\xi)^*|\;\xi=\xi^*\}}\subset \mathcal{B}^*((\chi_\infty)_{A_\infty})$$

as a C*-subalgebra of the right-adjointable operators on χ_{∞} .

(5)

The composition

endows B_{∞} with a **faithful semifinite tracial weight on** B_{∞} . The map \mathbb{E} is a faithful conditional expectation onto A_{∞} , and Φ is a faithful, positive, semifinite, tracial weight on A_{∞} .

• B_{∞} is simple, and so is every corner $(\bigoplus_{n=1}^{m} A B_{\infty} \land (\bigoplus_{n=1}^{m} B_{m}, B_{\infty} \land (\bigoplus_{n=1}^{m} B_{n}, B_{\infty} \land (\bigoplus_$

Thus, (B_n, tr_n) is a tracial, separable, unital simple C*-algebra, for every $n \ge 0$. We now pay special attention to B_0 and describe some bimodules.

A Hilbert B_0 -bimodule

We have the following commuting actions of B_0 on $_0B_1$:

Together with a right B_0 -valued inner product:

Using $_0B_1$ to generate the category to support our representation: There is a unitary B_0 -isomorphism from the *n*-fold **Connes' fusion**

$$(_0B_1)^{\boxtimes_{B_0}n} \longrightarrow {}_{B_0}(_0B_n)_{B_0},$$

This isomorphism exists by the simplicity of B_{∞} , and we will use it to derive the properties of our bimodules.

$\operatorname{Bim}_{fgp}^{sp}(B_0)$: Rigidity, shpericallity and (bi)finiteness

A few important properties for $_0B_n$:

• Existence of **finite left and right** B_0 -**bases**: There are collections $\{u_i\}_{i=1}^N$ and $\{v_j\}_{i=1}^M$, so that for each $\xi \in {}_0B_n$,

$$\sum_{j=1}^{M} {}_{B_0}\langle \xi | v_j \rangle \rhd v_j = \xi = \sum_{i=1}^{N} u_i \lhd \langle u_i | \xi \rangle_{B_0}.$$

• Normalized and minimal (these properties are analogous to *sphericality* and *bifiniteness* for bimodules over a II₁-factor.)

We are thus directed to represent C over the RC*TC of **finitely** generated projective Hilbert B_0 -bimodules which are normalized and minimal (a la [KaWa00]).

The representation

We have a full(!) and faithful strong monoidal bi-involutive functor

$$\mathbb{F}: \mathcal{C}_{x}^{op} \hookrightarrow \mathsf{Bim}_{bf}^{sp}(B_{0}),$$
$$x^{\otimes n} \mapsto {}_{0}B_{n},$$
$$\mathcal{C}^{op}(x^{\otimes n} \to x^{\otimes m}) \ni f \mapsto \mathbb{F}(f) \in \mathsf{Bim}_{fgp}^{sp}({}_{0}B_{n} \to {}_{0}B_{m})$$

whose action on diagrams is given by

The fact that this functor is full is obtained from analogous results regarding W*-categories. [BrHaPe]

Looking for a monoidal functor $-\boxtimes_{B_0} L^2(B_0)$ transforming C*-bimodules into honest Hilbert spaces so that the following diagram commutes:

This would recover known results for representations of RC*TC over W*-algebras [BrHaPe].

- Using reconstruction techniques on simple C*-algebras towards defining **discrete inclusions for C*-algebras**.(?)
- Galois correspondences: Given a discrete countable group Γ acting on B by outer automorphisms, what are all the intermediate C*-algebras

$$B \subset P \subset B \rtimes_r \Gamma?$$

Is every such *P* of the form $P \cong B \rtimes_r \Lambda$ for some $\Lambda \leq \Gamma$? **[CaSm17]** Is this correspondence encoded by categorical data? (i.e. *connected* C*-*algebra objects* in Vec(C). **[CJoPe18]**)

Thanks for listening!

References

- [BrHaPe] Brothier, Hartglass and Penneys, *Rigid C*-tensor categories of bimodules over interpolated free group factors*, arXiv:1208.5505
- **[CaSm17]** Cameron, Smith, A Galois correspondence for reduced crossed products of unital simple C*-algebras by discrete groups, 1706.01803
- **[GJS]** A. Guionnet, V.F.R. Jones and D. Shlyakhtenko, *Random matrices, free probability, planar algebras and subfactors*, arXiv: 0712.2904.
- [HaPe I] Hartglass and Penneys, C*-Algebras from Planar Algebras I: Canonical C*-algebras Associated to a Planar Algebra, arXiv: 1401.2485
- **[HaPe II]** Hartglass and Penneys, *C**-*Algebras from Planar Algebras II: The Guionnet-Jones-Shlyakhtenko C**-*algebras*, arXiv:1401.2486.
- **[CJoPe18]** Corey Jones, Penneys, *Realizations of algebra objects and discrete subfactors* arXiv: 1704.02035

- **[NaEv19]** NÆs Aaserud and Evans, *Realizing the braided Temperley-Lieb-Jones C*-tensor categories as Hilbert C*-bimodules*, arXiv: 1908.02674
- **[JSW]** V. Jones, D. Shlyakhtenko and K. Walker *An orthogonal* approach to the subfactor of a planar algebra arXiv: 0807.4146.
- [KaWa00] Kajiwara and Watatani, Jones Index Theory by Hilbert C*-bimodules and K-Theory, Transactions of the AMS, **352**, number 8, Pages 3429-3472, S 0002-9947(00)02392-8. http://www.numdam.org/item/CTGDC_1988__29_1_9_0/.
- **[Yu19]** Yuan, *Rigid C*-tensor categories and their realizations as Hilbert C*-bimodules*, Proceedings of the Edinburgh Mathematical Society (2019) **62**, 367-393m, DOI:10.1017/S0013091518000524.