$\label{eq:asymptotic stress} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \bigcirc B_\infty \supset B_n \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Realizations of Rigid C*-Tensor Categories as bimodules over GJS C*-algebras

Roberto Hernández Palomares (OSU), joint with Michael Hartglass (Santa Clara University)

(To appear on the arXiv very soon!)

May 10, 2020

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \bigcirc B_\alpha & \supset B_\alpha \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Overview

- 1 Introduction
 - The standard invariant of a subfactor
 - Representations over II_1 -factors/C*-algebras
- 2 Background
 - Rigid C*-Tensor Categories (RC*TC)
 - Hilbert C*-bimodules
- 3 Diagrammatic algebras: ${\sf Gr}_\infty \subset B_\infty \supset B_n$
- 4 realization over C*-bimodules
- 5 Hilbertifying C*-bimodules
 - Hilbertification
 - A conceptual viewpoint
- 6 Results, applications and a few questions
 - A summary
 - Some future questions
 - Bibliography

Introduction

 $\begin{array}{l} \text{Background}\\ \text{Diagrammatic algebras: } \mathsf{Gr}_\infty \subset B_\infty \supset B_n\\ \text{A realization over } \mathsf{C}^*\text{-bimodules}\\ \text{Hilbertifying } \mathsf{C}^*\text{-bimodules}\\ \text{Results, applications and a few questions} \end{array}$

The standard invariant of a subfactor Representations over ${\rm II}_1\mbox{-}{\rm factors}/\mbox{C*-}{\rm algebras}$

Subfactors and their standard invariants

The **standard invariant** of a finite index type II₁ subfactor $N \subset M$, is the lattice of higher relative commutants. We can view it as the RC*TC generated by the Hilbert bimodule ${}_{N}L^{2}(M)_{N}$ and whose morphisms are bounded *N*-*N* bilinear maps. For *extremal*, *irreducible*, *discrete inclusions*, the standard invariant can be reinterpreted as the triple:

$$(\mathsf{C}, \mathbb{F}: \mathsf{C} \hookrightarrow \mathsf{Bim}^{\mathsf{sp}}_{\mathsf{bf}}(N), A),$$

where

• C is a RC*TC,

• \mathbb{F} is an embedding into *spherical bi-finite* N-bimodules, and

• is a *unitary Frobenius algebra* generating C. [JP18] Note: This formalism allows *M* to be type III.

Introduction

 $\begin{array}{l} \text{Background}\\ \text{Diagrammatic algebras: } \text{Gr}_{\infty}\subset B_{\infty}\supset B_n\\ \text{A realization over C^*-bimodules}\\ \text{Hilbertifying C^*-bimodules}\\ \text{Results, applications and a few questions} \end{array}$

The standard invariant of a subfactor Representations over ${\rm II}_1\mbox{-}{\rm factors}/\mbox{C*-algebras}$

Representations over II_1 -factors

♣ This setting allows for subfactor reconstruction: one recovers N by taking *bounded vectors* in $\mathbb{F}(A)$, and by means of *realizations/crossed products* $N \rtimes_{\mathbb{F}} A$, one recovers M.

**** [GJS10]** provided a diagrammatic proof of Popa's Reconstruction Theorem, obtaining interpolated free group factors in finite depth. For infinite depth Hartglass showed the factors correspond to $L(\mathbb{F}_{\infty})$.

******* One problem: by K-theoretical considerations, there is no separable C*-algebra over which we can universally represent every RC*TC.

Introduction

 $\begin{array}{l} \text{Background} \\ \text{Diagrammatic algebras: } \text{Gr}_{\infty} \subset B_{\infty} \supset B_n \\ \text{A realization over } \mathbb{C}^*\text{-bimodules} \\ \text{Hilbertifying } \mathbb{C}^*\text{-bimodules} \\ \text{Results, applications and a few questions} \end{array}$

The standard invariant of a subfactor Representations over ${\rm II}_1\mbox{-}{\rm factors}/{\rm C*-}{\rm algebras}$

Representations over C*-algebras

Existence of representations:

Theorem (HaHe19)

For every countably generated RC*TC C, there is a separable unital simple exact C*-algebra B_0 with unique trace, and a full and faithful bi-involutive strong monoidal functor

$$\mathbb{F}: \mathsf{C} \hookrightarrow \mathit{Bim}^{\mathsf{tr}}_{\mathsf{fgp}}(B_0)$$

valued on the finitely generated projective C^* -bimodules of B_0 . Moreover, the K_0 group of B_0 is the free abelian group on the classes of simple objects in C.

See also [Yua19] and [NE19].

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \bigcirc B_\alpha \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

Tensor categories

- A tensor category is a tuple (C, \otimes , 1, α , λ , ρ) consisting of:
 - a semisimple category C enriched over complex vector spaces;
 i.e., for objects a, b ∈ C, the morphisms C(a → b) form a complex vector space,
 - a tensor product bilinear functor ⊗ : C ⊗ C → C, together with the tensor unit 1, which we assume to be simple; i.e., C(1) = End(1) ≅ C,
 - an associator α, and left and right unitors λ and ρ, satisfying triangle and pentagon axioms which we will omit.

For all our categories, we assume the isomorphism classes of objects form a set.

Useful references are [EGNO], [Rie14] and [Mac71].

 $\label{eq: constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \bigcirc B_{\alpha} \\ \mbox{A ralization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

Dagger categories

We say that C is a **dagger category** iff for each $a, b \in C$ there is an anti-linear map

$$\dagger:\mathsf{C}(a\to b)\longrightarrow\mathsf{C}(b\to a)$$

with the following properties:

- The map \dagger is an involution; i.e. for each $a, b \in C$ and every $f \in C(a \rightarrow b)$ we have $(f^{\dagger})^{\dagger} = f$.
- For composable morphisms f and g in C, we have $(f \circ g)^{\dagger} = g^{\dagger} \circ f^{\dagger}$.
- Moreover, we have the identity $(f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$.

In the graphical calculus of C, this corresponds to reflection with respect to a horizontal axis.

 $\label{eq:starting} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \hfice Gr$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

C*-categories

A dagger category is a **C*-category** if and only if for each $a, b \in C$:

- For every morphism f ∈ C(a → b) there exists an endomorphism g ∈ C(a) such that f[†] ∘ f = g[†] ∘ g.
- \bullet The map $||\cdot||:\mathsf{C}(a\to b)\longrightarrow [0,\infty]$ defined by

$$||g||^2 := \sup \big\{ |\lambda| \geq 0 \mid (g^{\dagger} \circ g - \lambda \cdot \mathsf{id}_a) \not\in \mathsf{GL}(\mathsf{C}(a)) \big\}$$

defines a C*-norm.

Note: being C* is a property of a dagger category and not extra structure.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \bigcirc B_\infty \bigcirc B_n \\ \mbox{A realization over } C^*\mbox{-bimodules} \\ \mbox{Hilbertifying } C^*\mbox{-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

Rigid categories I

We say C is a **rigid category** if each object $c \in C$ has a *dual object*, $c^{\vee} \in C$ together with *evaluation and coevaluation maps*

$$\mathsf{ev}_{c}: c^{ee}\otimes c \longrightarrow 1$$
 and $\mathsf{coev}_{c}: 1 \longrightarrow c \otimes c^{ee}.$

And in the graphical calculus:

$$\operatorname{ev}_{c} = \begin{array}{c} & 1 \\ c^{\vee} & c^{\vee} \end{array}$$
 and $\operatorname{coev}_{c} = \begin{array}{c} c & \downarrow c^{\vee} \\ 1 \\ 1 \end{array}$

These maps satisfy the Zig-Zag equations [LR97]:

$$|c^{\vee}| = c^{\vee} c^{\vee} c^{\vee}$$
 and $c^{\vee} c^{\vee} c^{\vee}$

We moreover require that there exists a predual object to c, denoted by c_v , such that $(c_v)^{\vee} \cong c$.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \bigcirc B_\infty \supset B_n \\ \mbox{A realization over } C^*\mbox{-bimodules} \\ \mbox{Hilbertifying } C^*\mbox{-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

Rigid categories II: dual functors

The dual of a map $f \in C(a \rightarrow b)$ is computed graphically as:

$$f^{\vee} = \left[\int_{b^{\vee}} f \right]^{a^{\vee}},$$

where now $f^{\vee} \in C(b^{\vee} \to a^{\vee})$. These choices of dual objects can be arranged into a strong-monoidal **dual functor**

$$(\bullet)^{\vee} : (\mathsf{C}, \circ, \otimes) \longrightarrow (\mathsf{C}, \circ_{\mathsf{op}}, \otimes_{\mathsf{op}}) \\ c \mapsto c^{\vee} \text{ and } f \mapsto f^{\vee}.$$

 \diamondsuit In a rigid category every morphism space is finite dimensional.

 $\label{eq: constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \subset \mathcal{B}_\infty \supset \mathcal{B}_n \\ \mbox{A realization over C^*-bimodules} \\ \mbox{Hilbertifying C^*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

RC*TC: unitary dual and bi-involutive structures

In any RC*TC there is a **canonical unitary dual functor** satisfying the Zig-Zag equations and *the balancing condition*: on arbitrary endomorphisms its *left and right traces* match; i.e

$$\operatorname{ev}_{a}\circ(\operatorname{id}_{\overline{a}}\otimes f)\circ\operatorname{ev}_{a}^{\dagger} = \overline{a} f = f = f = \operatorname{coev}_{a}^{\dagger}\circ(f\otimes\operatorname{id}_{\overline{a}})\circ\operatorname{coev}_{a} \in \mathbb{C}.$$

For each morphism f we obtain $f^{\dagger \vee} = f^{\vee \dagger}$. This choice of dual functor is unique up to a unique natural isomorphism. There is a canonical **bi-involutive structure** on a rigid dagger category, given by

$$\overline{\cdot} : (\mathsf{C}, \circ, \otimes) \longrightarrow (\mathsf{C}, \circ, \otimes_{\mathsf{op}}) \\ c \mapsto \overline{c} := c^{\vee} \text{ and } f \mapsto \overline{f} = (f^{\dagger})^{\vee},$$

which graphically can be viewed as reflection w.r.t. a vertical axis. [HP17b], [Pen18], [Yam14] $\label{eq: constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \bigcirc B_{n} \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

$\operatorname{Bim}_{bf}^{\operatorname{sp}}(N)$: bi-finite spherical bimodules over a II_1 -factor

The tensor product is the *Connes fusion*, denoted $-\boxtimes_N -$. For $H \in \text{Bim}_{bf}^{sp}(N)$ there is an *N*-valued inner product $\langle \eta \mid \xi \rangle_N := L_{\eta}^* L_{\xi}$. Its **unitary dual** is \overline{H} , the *conjugate Hilbert space* with *N*-actions:

$$n \triangleright \overline{\xi} \triangleleft m := \overline{m^* \triangleright \xi \triangleleft n^*},$$

and for $\overline{\xi}, \overline{\eta} \in \overline{H}$ their inner product is $\langle \overline{\xi} \mid \overline{\eta} \rangle_N := \langle \eta \mid \xi \rangle_N$. *H* has a *finite (right) N-basis* $\{\beta\}$, which induces the evaluation and coevaluation maps (given on *bounded vectors* by):

$$ev_{H}: \overline{H} \boxtimes_{N} H \to L^{2}(N) \qquad coev_{H}: L^{2}(N) \longrightarrow H \boxtimes_{N} \overline{H}$$
$$\overline{\eta} \boxtimes \xi \mapsto \langle \eta \mid \xi \rangle_{N} \qquad n\Omega \mapsto \sum (n \rhd \beta) \boxtimes \overline{\beta},$$

which is independent on the choice of basis. [Bis97],[Pen18]

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \subset \mathcal{B}_{\infty} \supset \mathcal{B}_{n} \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

Hilbert C*-bimodules

A *C*-*D* **Hilbert C*-bimodule** \mathcal{Y} is a vector space with commuting left *C* and right *D*-actions, $- \triangleright -$ and $- \triangleleft -$, endowed with:

- a C-valued, positive-definite form _C⟨−, · ⟩ which is C-linear on the left and conjugate linear on the right,
- a *D*-valued, positive-definite form $\langle \cdot | \rangle_D$ which is *D*-linear on the right and conjugate linear on the left, and
- Compatibility requirement: $_{C}\langle y_{1}, y_{2} \rangle = (_{C}\langle y_{2}, y_{1} \rangle)^{*},$ $\langle y_{1} | y_{2} \rangle_{D} = (\langle y_{2} | y_{1} \rangle_{D})^{*}, \ _{C}\langle y_{1} \lhd d, y_{2} \rangle = \ _{C}\langle y_{1}, y_{2} \lhd d^{*} \rangle,$ and $\langle c \rhd y_{1} | y_{2} \rangle_{D} = \langle y_{1} | c^{*} \rhd y_{2} \rangle_{D},$ for $c \in C$ and $d \in D$.

These forms induce complete and equivalent norms. We only consider right or *bi-adjointable* C-D morphisms when studying C*-bimodules.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \subset \mathcal{B}_\infty \supset \mathcal{B}_n \\ \mbox{A radization over } C^*\mbox{-bimodules} \\ \mbox{Hilbertifying } C^*\mbox{-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Rigid C*-Tensor Categories (RC*TC) Hilbert C*-bimodules

$Bim_{fgp}(B)$: fgp bimodules over a unital simple C*-algebra:

 $Bim_{fgp}(B)$ is a RC*TC whose objects are **finitely generated projective** Hilbert *B*-bimodules \mathcal{Y} . This is:

there are finite *left and right B-basis* $\{v_j\}$ and $\{u_i\} \subset \mathcal{Y}$; i.e.,

$$\sum_{j} {}_{B}\langle y, v_{j} \rangle \rhd v_{j} = y = \sum_{i} {}_{u_{i}} \lhd \langle u_{i} | {}_{y} \rangle_{B}.$$

The **tensor product** $-\boxtimes_B$ - is fusion relative to B, and existence of finite basis allows to construct a **dual functor** as was done for $\operatorname{Bim}_{\mathrm{bf}}^{\mathrm{sp}}(B)$. It is possible to impose two algebraic conditions:

minimality: for any bi-adjointable $T \in \text{End}(_B \mathcal{Y}_B)$, $\sum_{i \ B} \langle Tu_i, u_i \rangle = \sum_j \langle v_j | \ Tv_j \rangle_B$, and to be **normalized**: $\sum_{i \ B} \langle u_i, u_i \rangle = \sum_j \langle v_j | v_j \rangle_B$. The square of these common values is *the index*, denoted $\text{Ind}(\mathcal{Y})$. Introduction Background Diagrammatic algebras: Gr_∞ ⊂ B_∞ ⊃ B_n A realization over C*-bimodules Hilbertifying C*-bimodules Results, applications and a few questions

The graded tracial *-algebra ${\sf Gr}_\infty$

Fix a symmetrically self-dual object $x \in C$ with dimension $\delta_x > 1$. (So there is no need to orient strings labeled by x.) We construct a graded tracial *-algebra Gr_{∞} from the morphisms in C :

$$\mathsf{Gr}_\infty := igoplus_{b,l,r\geq 0} \mathsf{C}(x^{\otimes b} o x^{\otimes l} \otimes x^{\otimes r}),$$

whose elements and operations can be visualized as follows:

$$\overset{l}{\underset{b}{\leftarrow}} \overset{r}{\underset{b}{\leftarrow}} \overset{l'}{\underset{b'}{\leftarrow}} \overset{r'}{\underset{b'}{\leftarrow}} := \delta_{r=l'} \cdot \underbrace{(\xi)}_{(b+b')} \overset{l'}{\underset{(b+b')}{\leftarrow}} \text{ and } \operatorname{Tr}_{\wedge}(\xi) = \underbrace{(\xi)}_{(\xi)} \overset{l'}{\underset{(b+b')}{\leftarrow}}$$

The bi-involutive structure induces the involution: $(\xi^{\vee})^{\dagger} = \xi^* = (\xi^{\dagger})^{\vee}$.

The ambient C*-algebra B_{∞} and its corners B_n .

♠ Define **the ambient C*-algebra** B_{∞} as the completion of Gr_{∞} in the GNS representation $L^2(Gr_{\infty}, Tr_{\wedge})$. ^[JSW10] \heartsuit The trace on Gr_{∞} extends to a faithful, semifinite tracial weight on B_{∞} , denoted by Tr. ^[HP17a]

For each
$$n \ge 0$$
 let $p_n := \left[\bigcup_{n \ge \infty}^n \right] \in \operatorname{Gr}_{\infty}$. Notice that p_0

corresponds to an empty diagram.

A Define **the corners of** B_{∞} as ${}_{n}B_{m} := p_{n} \wedge B_{\infty} \wedge p_{m}$, and notice that $B_{n} := {}_{n}B_{n}$ are unital C*-algebras. The corner B_{0} containing all diagrams with no strings on the top will be of special interest to us.

 $\Diamond B_{\infty}$ is a simple C*-algebra and thus, so is each B_n .

 $\label{eq:constraint} \begin{array}{l} & \mbox{Introduction} \\ & \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \subset B_{\infty} \supset B_n \\ & \mbox{A realization over C^*-bimodules} \\ & \mbox{Hilbertifying C^*-bimodules} \\ & \mbox{Results, applications and a few questions} \end{array}$

Properties of B_{∞} and its corners

For each $n \ge 0$ we have the following:

▶ The tracial weight Tr descends to a positive, faithful linear tracial functional $\text{Tr}_n(\bullet) = \text{Tr}(p_n \bullet p_n)$ on the unital C*-algebra B_n . This is in fact the **unique trace** on B_n .

▶ The von Neumann algebra defined by

$$M_n := B_n'' \subseteq \mathcal{B}(L^2(B_n), \mathrm{Tr}_n)$$

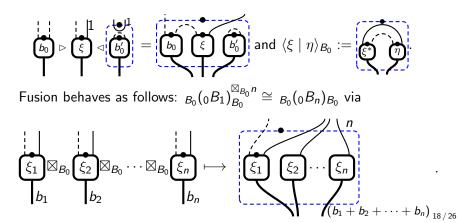
is an interpolated free group factor $L(\mathbb{F}_t)$, for $t \in (1,\infty]$.

► For Irr(C) any fixed set of isomorphism classes of simple objects in C, we have $K_0(B_0) = \mathbb{Z}[Irr(C)]$.

► The inclusion $B_0 \subset B_n$ has finite Watatani Index δ_x^{2n} . ([HP14], [GJS10], [Har13], [BHP12].) $\begin{array}{l} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \subset \mathcal{B}_{\infty} \supset \mathcal{B}_{n} \\ \mbox{A realization over } C^{*}\mbox{bimodules} \\ \mbox{Hilbertifying } C^{*}\mbox{-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

The Hilbert B_0 -bimodule $_0B_1$

The left and right B_0 -actions together with the right B_0 -valued inner product:



 $\label{eq:constraint} \begin{array}{c} & \mbox{Introduction} \\ & \mbox{Background} \\ \mbox{Diagrammatic algebras: } {\rm Gr}_{\infty} \subset {\cal B}_{\infty} \supset {\cal B}_n \\ & \mbox{A realization over C^*-bimodules} \\ & \mbox{Hilbertifying C^*-bimodules} \\ & \mbox{Results, applications and a few questions} \end{array}$

Representing the category C as Hilbert C*-bimodules

Consider the correspondence

$$\mathbb{F}: \mathcal{C} \hookrightarrow \operatorname{Bim}_{\operatorname{fgp}}(B_0)$$

$$x^{\otimes n} \mapsto {}_0B_n$$

$$\mathcal{C}(x^{\otimes n} \to x^{\otimes m}) \ni f \longmapsto \mathbb{F}(f) : \underbrace{[\xi]}_{b}^{n} \longmapsto \underbrace{[\xi]}_{b}^{m-1} \in \operatorname{Bim}({}_0B_n \to {}_0B_m).$$

This functor is easily seen to be faithful bi-involutive and strong monoidal. Proving it is also full requires deeper insights.

 $\label{eq:action} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \subset B_{\infty} \supset B_{n} \\ \mbox{A radization over } C^*-bimodules \\ \mbox{Hilbertifying } C^*-bimodules \\ \mbox{Results, applications and a few questions} \end{array}$

Hilbertification A conceptual viewpoint

Constructing Hilbert spaces and extending actions

Consider the following functor which turns Hilbert C*-bimodules into Hilbert spaces:

$$\begin{split} {}_{M_0}(- \mathop{\boxtimes}\limits_{B_0} \mathsf{L}^2(B_0))_{M_0} &: \operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}(B_0) \longrightarrow \operatorname{Bim}_{\mathrm{bf}}^{\mathrm{sp}}(M_0) \\ \mathcal{Y} &\longmapsto {}_{M_0}(\mathcal{Y} \mathop{\boxtimes}\limits_{B_0} \mathsf{L}^2(B_0))_{M_0} \\ \operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}(B_0)(\mathcal{Y} \to \mathcal{Z}) \ni f \longmapsto f \mathop{\boxtimes} \operatorname{id}_{\mathsf{L}^2(B_0)}. \end{split}$$

Here, $\operatorname{Bim}_{fgp}^{tr}(B_0) \subset \operatorname{Bim}_{fgp}(B_0)$ is the RC*TC consisting of those bimodules \mathcal{Y} which are **compatible with the trace** [KW00] :

$$\operatorname{tr}_{B_0}\left(\langle \eta \mid \xi \rangle_{B_0}\right) = \operatorname{tr}_{B_0}\left({}_{B_0}\langle \xi, \eta \rangle \right), \text{on } \mathcal{Y} \times \mathcal{Y}.$$

 $\label{eq:linear} \begin{array}{l} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \subset B_\infty \supset B_n \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

Hilbertification A conceptual viewpoint

A comment on Hilbertification

Defining this functor requires one to extend the B_0 -actions to normal M_0 -actions. The distinctive elements that make this extension work are **the existence of a a positive trace** and a **faithful, trace-preserving conditional expectation**, given by:

$$\begin{aligned} \mathsf{Tr} : \mathcal{B}^*(\mathcal{Y}) &\longrightarrow \mathbb{C} \qquad \text{and} \qquad \mathcal{E} : \mathcal{B}^*(\mathcal{Y}) &\longrightarrow B_0, \\ \xi \rangle \langle \eta | &\mapsto \frac{1}{\mathsf{Ind}(\mathcal{Y})} \cdot \mathsf{Tr}_{B_0}[\ \langle \eta | \ \xi \rangle_{B_0}] \qquad \quad |\xi \rangle \langle \eta | \ \mapsto \frac{1}{\sqrt{\mathsf{Ind}(\mathcal{Y})}} \cdot {}_{B_0} \langle \xi, \eta \rangle. \end{aligned}$$

Implying that the correspondence $\mathcal{Y} \mapsto {}_{M_0}(\mathcal{Y} \boxtimes_{B_0} L^2(B_0))_{M_0}$ defines a faithful bi-involutive strong monoidal functor.

 $\label{eq:constraint} Introduction \\ Background \\ Diagrammatic algebras: Gr_{\infty} \subset B_{\infty} \supset B_n \\ A realization over C*-bimodules \\ Hilbertifying C*-bimodules \\ Results, applications and a few questions \\ \end{array}$

Hilbertification A conceptual viewpoint

A commutative 2-cell

There is a strong monoidal unitary natural isomorphism filling the following 2-cell: (*the following diagram commutes*)

Since the functor $\mathbb G$ constructed in [BHP12] is full and faithful, it then follows that $\mathbb F$ is full.

 $\label{eq:action} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_\infty \bigcirc B_\alpha \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

A summary Some future questions Bibliography

A summary

Theorem (HaHe19)

Given a countably generated RC*TC C, there exists a unital simple separable exact C*-algebra B_0 with unique trace and a fully-faithful bi-involutive strong monoidal functor

$$\mathbb{F}: \mathsf{C} \hookrightarrow \mathsf{Bim}_{\mathsf{fgp}}^{\mathsf{tr}}(B_0).$$

Despite K-theoretical obstructions, there exists a separable C*-algebra B whose category of bimodules contains an image of every fusion category.

Corollary

There exists a unital simple exact separable C*-algebra B with unique trace over which we can full and faithfully realize every unitary fusion category.

 $\label{eq:constraint} \begin{array}{c} \mbox{Introduction} \\ \mbox{Background} \\ \mbox{Diagrammatic algebras: } Gr_{\infty} \subset \mathcal{B}_{\infty} \supset \mathcal{B}_{n} \\ \mbox{A realization over C*-bimodules} \\ \mbox{Hilbertifying C*-bimodules} \\ \mbox{Results, applications and a few questions} \end{array}$

A summary Some future questions Bibliography

Some future questions

♠ Using reconstruction techniques on simple C*-algebras towards defining **discrete inclusions for C*-algebras**.(?)

A Galois correspondences: Given a discrete countable group Γ acting on *B* by outer automorphisms, what are all the intermediate C*-algebras

$$B \subset P \subset B \rtimes_r \Gamma?$$

Is every such *P* of the form $P \cong B \rtimes_r \Lambda$ for some $\Lambda \leq \Gamma$? ^[CS17] $\clubsuit \clubsuit \clubsuit$ Is this correspondence encoded by categorical data? (i.e. connected C*-algebra objects in Vec(C). $\clubsuit \clubsuit \clubsuit \clubsuit$...

Thank you!

Introduction Background Diagrammatic algebras: $Gr_{\infty} \subset B_{\infty} \supset B_n$ A realization over C*-bimodules Hilbertifying C*-bimodules **Results**, applications and a few questions

A summary Some future questions Bibliography

References

- [BHP12] Brothier, Hartglass and Penneys, *Rigid C*-tensor categories of bimodules over interpolated free group factors*, arXiv:1208.5505
- [Bis97] Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Fields Institute Communications 13 (1997), 13 - 63.
- **[CS17]** Cameron, Smith, A Galois correspondence for reduced crossed products of unital simple C*-algebras by discrete groups, 1706.01803
- [EGNO] Etingof, Gelaki, Nikshych, Ostrik, *Tensor categories*, Mathematical Surveys and Monographs, vol. 205, AMS, Providence, RI, 2015. MR 3242743
- **[GJS10]** A. Guionnet, V.F.R. Jones and D. Shlyakhtenko, *Random matrices*, free probability, planar algebras and subfactors, arXiv: 0712.2904.
- [Har13] Hartglass, Free product von Neumann algebras associated to graphs, and Guionnet, Jones, shlyakhtenko subfactors in infinite depth, J. Funct. Analysis 265 (2013), no. 12, 3305-3324 MR3110503
- [HP17a] Hartglass and Penneys, C*-Algebras from Planar Algebras I: Canonical C*-algebras Associated to a Planar Algebra, arXiv: 1401.2485
- [HP14] Hartglass and Penneys, C*-Algebras from Planar Algebras II: The Guionnet-Jones-Shlyakhtenko C*-algebras, arXiv:1401.2486.
- HP17b Henriques and Penneys, Bicommutant categories from fusion categories, Seleca Math. (N.S.) 23 (2017), no. 3, 1669-1708. MR 3663592

Introduction Background Diagrammatic algebras: $Gr_{\infty} \subset B_{\infty} \supset B_{n}$ A realization over C*-bimodules Hilbertifying C*-bimodules Results, applications and a few questions

A summary Some future questions Bibliography

References

- [JP18] Corey Jones, Penneys, *Realizations of algebra objects and discrete subfactors* arXiv: 1704.02035
- [Mac71] MacLane, Categories for the working mathematician Springer-Verlag, New York-Berlin, 1971, Graduate Texts in Mathematics, Vol. 5. MR0354798
- [NE19] NÆs Aaserud and Evans, Realizing the braided Temperley-Lieb-Jones C*-tensor categories as Hilbert C*-bimodules, arXiv: 1908.02674
- [JSW10] V. Jones, D. Shlyakhtenko and K. Walker An orthogonal approach to the subfactor of a planar algebra arXiv: 0807.4146.
- [KW00] Kajiwara and Watatani, Jones Index Theory by Hilbert C*-bimodules and K-Theory, Transactions of the AMS, 352, number 8, Pages 3429-3472, S 0002-9947(00)02392-8.

http://www.numdam.org/item/CTGDC_1988_29_1_9_0/.

- Pen18 Penneys, Unitary dual functors for unitary multitensor categories, arXiv e-prints, arXiv: 1808.00323
- [Rie14] E. Riehl, Category Theory in Context, available at www.math.jhu.edu/ eriehl/context.pdf
- **[Yua19]** Yuan, *Rigid C*-tensor categories and their realizations as Hilbert C*-bimodules*, Proceedings of the Edinburgh Mathematical Society (2019) **62**, 367-393m, D0I:10.1017/S0013091518000524.