Realizations of Rigid C*-Tensor Categories as bimodules over GJS C*-algebras

Roberto Hernández Palomares (OSU),

 joint with Michael Hartglass (Santa Clara University)(To appear on the arXiv very soon!)

$$
\text { May 10, } 2020
$$

Overview

(1) Introduction

- The standard invariant of a subfactor
- Representations over II_{1}-factors/C*-algebras
(2) Background
- Rigid C*-Tensor Categories (RC*TC)
- Hilbert C*-bimodules
(3) Diagrammatic algebras: $\mathrm{Gr}_{\infty} \subset B_{\infty} \supset B_{n}$
(4) A realization over C^{*}-bimodules
(5) Hilbertifying C^{*}-bimodules
- Hilbertification
- A conceptual viewpoint
(6) Results, applications and a few questions
- A summary
- Some future questions
- Bibliography

Subfactors and their standard invariants

The standard invariant of a finite index type II_{1} subfactor $N \subset M$, is the lattice of higher relative commutants. We can view it as the RC*TC generated by the Hilbert bimodule ${ }_{N} \mathrm{~L}^{2}(M)_{N}$ and whose morphisms are bounded $\mathrm{N}-\mathrm{N}$ bilinear maps. For extremal, irreducible, discrete inclusions, the standard invariant can be reinterpreted as the triple:

$$
\left(\mathrm{C}, \mathbb{F}: \mathrm{C} \hookrightarrow \operatorname{Bim}_{\mathrm{bf}}^{\mathrm{sp}}(N), A\right),
$$

where

- C is a RC*TC,
- \mathbb{F} is an embedding into spherical bi-finite N-bimodules, and
- is a unitary Frobenius algebra generating C. [JP18]

Note: This formalism allows M to be type III.

Representations over II_{1}-factors

\& This setting allows for subfactor reconstruction: one recovers N by taking bounded vectors in $\mathbb{F}(A)$, and by means of realizations/crossed products $N \rtimes_{\mathbb{F}} A$, one recovers M.
\$\% [GJS10] provided a diagrammatic proof of Popa's Reconstruction Theorem, obtaining interpolated free group factors in finite depth. For infinite depth Hartglass showed the factors correspond to $L\left(\mathbb{F}_{\infty}\right)$.

Qopo\% One problem: by K-theoretical considerations, there is no separable C*-algebra over which we can universally represent every RC*TC.

Representations over C*-algebras

Existence of representations:

Theorem (HaHe19)

For every countably generated RC*TC C, there is a separable unital simple exact C^{*}-algebra B_{0} with unique trace, and a full and faithful bi-involutive strong monoidal functor

$$
\mathbb{F}: \mathrm{C} \hookrightarrow \operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}\left(B_{0}\right)
$$

valued on the finitely generated projective C^{*}-bimodules of B_{0}. Moreover, the K_{0} group of B_{0} is the free abelian group on the classes of simple objects in C .

See also [Yua19] and [NE19].

Tensor categories

A tensor category is a tuple $(\mathrm{C}, \otimes, 1, \alpha, \lambda, \rho)$ consisting of:

- a semisimple category C enriched over complex vector spaces; i.e., for objects $a, b \in C$, the morphisms $C(a \rightarrow b)$ form a complex vector space,
- a tensor product bilinear functor $-\otimes-: \mathrm{C} \otimes \mathrm{C} \longrightarrow \mathrm{C}$, together with the tensor unit 1 , which we assume to be simple; i.e., $C(1)=\operatorname{End}(1) \cong \mathbb{C}$,
- an associator α, and left and right unitors λ and ρ, satisfying triangle and pentagon axioms which we will omit.
For all our categories, we assume the isomorphism classes of objects form a set. Useful references are [EGNO], [Rie14] and [Mac71].

Dagger categories

We say that C is a dagger category iff for each $a, b \in C$ there is an anti-linear map

$$
\dagger: \mathrm{C}(a \rightarrow b) \longrightarrow \mathrm{C}(b \rightarrow a)
$$

with the following properties:

- The map \dagger is an involution; i.e. for each $a, b \in C$ and every $f \in \mathrm{C}(a \rightarrow b)$ we have $\left(f^{\dagger}\right)^{\dagger}=f$.
- For composable morphisms f and g in C, we have $(f \circ g)^{\dagger}=g^{\dagger} \circ f^{\dagger}$.
- Moreover, we have the identity $(f \otimes g)^{\dagger}=f^{\dagger} \otimes g^{\dagger}$.

In the graphical calculus of C, this corresponds to reflection with respect to a horizontal axis.

C*-categories

A dagger category is a C*-category if and only if for each $a, b \in \mathrm{C}$:

- For every morphism $f \in C(a \rightarrow b)$ there exists an endomorphism $g \in C(a)$ such that $f^{\dagger} \circ f=g^{\dagger} \circ g$.
- The map $\|\cdot\|: C(a \rightarrow b) \longrightarrow[0, \infty]$ defined by

$$
\|g\|^{2}:=\sup \left\{|\lambda| \geq 0 \mid\left(g^{\dagger} \circ g-\lambda \cdot \operatorname{id}_{a}\right) \notin \mathrm{GL}(\mathrm{C}(a))\right\}
$$

defines a C*-norm.
Note: being C* is a property of a dagger category and not extra structure.

Rigid categories I

We say C is a rigid category if each object $c \in C$ has a dual object, $c^{\vee} \in \mathrm{C}$ together with evaluation and coevaluation maps

$$
\mathrm{ev}_{c}: c^{\vee} \otimes c \longrightarrow 1 \text { and } \operatorname{coev}_{c}: 1 \longrightarrow c \otimes c^{\vee}
$$

And in the graphical calculus:

$$
\mathrm{ev}_{c}={ }_{c^{\vee}}^{\overbrace{c}^{1}} \quad \text { and } \quad \operatorname{coev}_{c}={ }^{c} \bigcup_{11}^{c^{\vee}} .
$$

These maps satisfy the Zig-Zag equations [LR97]:

$$
c_{c^{\vee}}={ }_{c^{\vee}} \curvearrowright \int^{c^{\vee}} \text { and } \quad c_{c} c^{\vee} \Omega=
$$

We moreover require that there exists a predual object to c, denoted by c_{v}, such that $\left(c_{v}\right)^{\vee} \cong c$.

Rigid categories II: dual functors

The dual of a map $f \in \mathrm{C}(a \rightarrow b)$ is computed graphically as:

$$
f^{\vee}=\underbrace{}_{b^{\vee}}
$$

where now $f^{\vee} \in C\left(b^{\vee} \rightarrow a^{\vee}\right)$. These choices of dual objects can be arranged into a strong-monoidal dual functor

$$
\begin{gathered}
(\bullet)^{\vee}:(C, \circ, \otimes) \longrightarrow\left(C, \circ_{\mathrm{op}}, \otimes_{\mathrm{op}}\right) \\
c \mapsto c^{\vee} \text { and } f \mapsto f^{\vee} .
\end{gathered}
$$

\diamond In a rigid category every morphism space is finite dimensional.

RC*TC: unitary dual and bi-involutive structures

In any RC*TC there is a canonical unitary dual functor satisfying the Zig-Zag equations and the balancing condition: on arbitrary endomorphisms its left and right traces match; i.e
$\mathrm{ev}_{a} \circ\left(\mathrm{id}_{\bar{a}} \otimes f\right) \mathrm{eev}_{a}{ }^{\dagger}=\overline{\mathrm{a}}(f=f)^{\bar{a}}=\operatorname{coev}_{a}^{\dagger} \circ\left(f \otimes \mathrm{id}_{\bar{a}}\right) \circ \operatorname{coev}_{a} \in \mathbb{C}$.
For each morphism f we obtain $f^{\dagger}=f^{\vee \dagger}$. This choice of dual functor is unique up to a unique natural isomorphism.
There is a canonical bi-involutive structure on a rigid dagger category, given by

$$
\begin{aligned}
& -:(\mathrm{C}, \circ, \otimes) \longrightarrow\left(\mathrm{C}, \circ, \otimes_{\mathrm{op}}\right) \\
& c \mapsto \bar{c}:=c^{\vee} \text { and } f \mapsto \bar{f}=\left(f^{\dagger}\right)^{\vee},
\end{aligned}
$$

which graphically can be viewed as reflection w.r.t. a vertical axis.

$\operatorname{Bim}_{\mathrm{bf}}^{\text {sp }}(N)$: bi-finite spherical bimodules over a II_{1}-factor

The tensor product is the Connes fusion, denoted $-\boxtimes_{N}-$. For $H \in \operatorname{Bim}_{\mathrm{bf}}^{\mathrm{sp}}(N)$ there is an N-valued inner product $\langle\eta \mid \xi\rangle_{N}:=L_{\eta}^{*} L_{\xi}$. Its unitary dual is \bar{H}, the conjugate Hilbert space with N-actions:

$$
n \triangleright \bar{\xi} \triangleleft m:=\overline{m^{*} \triangleright \xi \triangleleft n^{*}}
$$

and for $\bar{\xi}, \bar{\eta} \in \bar{H}$ their inner product is $\langle\bar{\xi} \mid \bar{\eta}\rangle_{N}:=\langle\eta \mid \xi\rangle_{N} . H$ has a finite (right) N-basis $\{\beta\}$, which induces the evaluation and coevaluation maps (given on bounded vectors by):

$$
\begin{array}{rr}
\mathrm{ev}_{H}: \bar{H} \boxtimes \underset{N}{\boxtimes} H \rightarrow \mathrm{~L}^{2}(N) & \operatorname{coev}_{H}: \mathrm{L}^{2}(N) \longrightarrow H \underset{N}{\boxtimes} \bar{H} \\
\bar{\eta} \boxtimes \xi \mapsto\langle\eta \mid \xi\rangle_{N} & n \Omega \mapsto \sum(n \triangleright \beta) \boxtimes \bar{\beta},
\end{array}
$$

which is independent on the choice of basis. [Bis97],[Pen18]

Hilbert C*-bimodules

A C - D Hilbert C^{*}-bimodule \mathcal{Y} is a vector space with commuting left C and right D-actions, $-\triangleright-$ and $-\triangleleft-$, endowed with:

- a C-valued, positive-definite form $c\langle-, \cdot\rangle$ which is C-linear on the left and conjugate linear on the right,
- a D-valued, positive-definite form $\langle\cdot \mid-\rangle_{D}$ which is D-linear on the right and conjugate linear on the left, and
- Compatibility requirement: $c\left\langle y_{1}, y_{2}\right\rangle=\left(c\left\langle y_{2}, y_{1}\right\rangle\right)^{*}$, $\left\langle y_{1} \mid y_{2}\right\rangle_{D}=\left(\left\langle y_{2} \mid y_{1}\right\rangle_{D}\right)^{*}, c\left\langle y_{1} \triangleleft d, y_{2}\right\rangle=c\left\langle y_{1}, y_{2} \triangleleft d^{*}\right\rangle$, and $\left\langle c \triangleright y_{1} \mid y_{2}\right\rangle_{D}=\left\langle y_{1} \mid c^{*} \triangleright y_{2}\right\rangle_{D}$, for $c \in C$ and $d \in D$.
These forms induce complete and equivalent norms. We only consider right or bi-adjointable C-D morphisms when studying C*-bimodules.

$\operatorname{Bim}_{\mathrm{fgp}}(B)$: fgp bimodules over a unital simple C^{*}-algebra:

$\operatorname{Bim}_{\mathrm{fgp}}(B)$ is a RC*TC whose objects are finitely generated projective Hilbert B-bimodules \mathcal{Y}. This is:
there are finite left and right B-basis $\left\{v_{j}\right\}$ and $\left\{u_{i}\right\} \subset \mathcal{Y}$; i.e.,

$$
\sum_{j} B\left\langle y, v_{j}\right\rangle \triangleright v_{j}=y=\sum_{i} u_{i} \triangleleft\left\langle u_{i} \mid y\right\rangle_{B} .
$$

The tensor product $-\boxtimes_{B}$ - is fusion relative to B, and existence of finite basis allows to construct a dual functor as was done for $\operatorname{Bim}_{\mathrm{bf}}^{\mathrm{sp}}(B)$. It is possible to impose two algebraic conditions:
minimality: for any bi-adjointable $T \in \operatorname{End}\left(B_{B} \mathcal{Y}_{B}\right)$,

$$
\sum_{i} B\left\langle T u_{i}, u_{i}\right\rangle=\sum_{j}\left\langle v_{j} \mid T v_{j}\right\rangle_{B}, \text { and }
$$

to be normalized: $\sum_{i} B\left\langle u_{i}, u_{i}\right\rangle=\sum_{j}\left\langle v_{j} \mid v_{j}\right\rangle_{B}$. The square of these common values is the index, denoted $\operatorname{Ind}(\mathcal{Y})$.

The graded tracial *-algebra Gr_{∞}

Fix a symmetrically self-dual object $x \in \mathrm{C}$ with dimension $\delta_{x}>1$. (So there is no need to orient strings labeled by x.) We construct a graded tracial *-algebra Gr_{∞} from the morphisms in C :

$$
\mathrm{Gr}_{\infty}:=\bigoplus_{b, l, r \geq 0} \mathrm{C}\left(x^{\otimes b} \rightarrow x^{\otimes l} \otimes x^{\otimes r}\right)
$$

whose elements and operations can be visualized as follows:

The bi-involutive structure induces the involution: $\left(\xi^{\vee}\right)^{\dagger}=\xi^{*}=\left(\xi^{\dagger}\right)^{\vee}$.

The ambient C^{*}-algebra B_{∞} and its corners B_{n}.

© Define the ambient C*-algebra B_{∞} as the completion of Gr_{∞} in the GNS representation $L^{2}\left(\mathrm{Gr}_{\infty}, \operatorname{Tr}_{\wedge}\right)$. [JSW10]
\bigcirc The trace on Gr_{∞} extends to a faithful, semifinite tracial weight on B_{∞}, denoted by Tr. [HP17a]
For each $n \geq 0$ let $p_{n}:=$ corresponds to an empty diagram.
\& Define the corners of B_{∞} as ${ }_{n} B_{m}:=p_{n} \wedge B_{\infty} \wedge p_{m}$, and notice that $B_{n}:={ }_{n} B_{n}$ are unital C^{*}-algebras. The corner B_{0} containing all diagrams with no strings on the top will be of special interest to us.
$\diamond B_{\infty}$ is a simple C*-algebra and thus, so is each B_{n}.

Properties of B_{∞} and its corners

For each $n \geq 0$ we have the following:

- The tracial weight Tr descends to a positive, faithful linear tracial functional $\operatorname{Tr}_{n}(\bullet)=\operatorname{Tr}\left(p_{n} \bullet p_{n}\right)$ on the unital C^{*}-algebra B_{n}. This is in fact the unique trace on B_{n}.
- The von Neumann algebra defined by

$$
M_{n}:=B_{n}^{\prime \prime} \subseteq \mathcal{B}\left(\mathrm{L}^{2}\left(B_{n}\right), \operatorname{Tr}_{n}\right)
$$

is an interpolated free group factor $L\left(\mathbb{F}_{t}\right)$, for $t \in(1, \infty]$.

- For $\operatorname{Irr}(\mathrm{C})$ any fixed set of isomorphism classes of simple objects in C, we have $K_{0}\left(B_{0}\right)=\mathbb{Z}[\operatorname{lrr}(\mathrm{C})]$.
- The inclusion $B_{0} \subset B_{n}$ has finite Watatani Index $\delta_{x}^{2 n}$. ([HP14], [GJS10], [Har13], [BHP12].)

The Hilbert B_{0}-bimodule ${ }_{0} B_{1}$

The left and right B_{0}-actions together with the right B_{0}-valued inner product:

Fusion behaves as follows: ${ }_{B_{0}}\left({ }_{0} B_{1}\right)_{B_{0}}^{\boxtimes_{B_{0}} n} \cong{ }_{B_{0}}\left({ }_{0} B_{n}\right)_{B_{0}}$ via

Representing the category C as Hilbert C*-bimodules

Consider the correspondence

$$
\begin{gathered}
\mathbb{F}: C \hookrightarrow \operatorname{Bim}_{\mathrm{fgp}}\left(B_{0}\right) \\
x^{\otimes n} \mapsto{ }_{0} B_{n}
\end{gathered}
$$

$C\left(x^{\otimes n} \rightarrow x^{\otimes m}\right) \ni f \longmapsto \mathbb{F}(f): \underbrace{}_{b} \longmapsto \operatorname{Bim}\left({ }_{0} B_{n} \rightarrow{ }_{0} B_{m}\right)$.
This functor is easily seen to be faithful bi-involutive and strong monoidal. Proving it is also full requires deeper insights.

Constructing Hilbert spaces and extending actions

Consider the following functor which turns Hilbert C*-bimodules into Hilbert spaces:

$$
\begin{aligned}
M_{0}\left(-\underset{B_{0}}{\boxtimes} \mathrm{~L}^{2}\left(B_{0}\right)\right)_{M_{0}}: \operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}\left(B_{0}\right) & \longrightarrow \operatorname{Bim}_{\mathrm{bf}}^{\mathrm{sp}}\left(M_{0}\right) \\
\mathcal{Y} & \longmapsto M_{0}\left(\mathcal{Y} \underset{B_{0}}{\boxtimes} \mathrm{~L}^{2}\left(B_{0}\right)\right)_{M_{0}}
\end{aligned}
$$

$$
\operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}\left(B_{0}\right)(\mathcal{Y} \rightarrow \mathcal{Z}) \ni f \longmapsto f \boxtimes \operatorname{id}_{\mathrm{L}^{2}\left(B_{0}\right)}
$$

Here, $\operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}\left(B_{0}\right) \subset \operatorname{Bim}_{\mathrm{fgp}}\left(B_{0}\right)$ is the RC*TC consisting of those bimodules \mathcal{Y} which are compatible with the trace ${ }^{[K W 00]}$:

$$
\operatorname{tr}_{B_{0}}\left(\langle\eta \mid \xi\rangle_{B_{0}}\right)=\operatorname{tr}_{B_{0}}\left(B_{B_{0}}\langle\xi, \eta\rangle\right), \text { on } \mathcal{Y} \times \mathcal{Y}
$$

A comment on Hilbertification

Defining this functor requires one to extend the B_{0}-actions to normal M_{0}-actions. The distinctive elements that make this extension work are the existence of a positive trace and a faithful, trace-preserving conditional expectation, given by:

$$
\begin{array}{cc}
\operatorname{Tr}: \mathcal{B}^{*}(\mathcal{Y}) \longrightarrow \mathbb{C} \quad \text { and } & \mathcal{E}: \mathcal{B}^{*}(\mathcal{Y}) \longrightarrow B_{0}, \\
\xi\rangle\langle\eta| \mapsto \frac{1}{\operatorname{lnd}(\mathcal{Y})} \cdot \operatorname{Tr}_{B_{0}}\left[\langle\eta \mid \xi\rangle_{B_{0}}\right] & |\xi\rangle\langle\eta| \mapsto \frac{1}{\sqrt{\operatorname{lnd}(\mathcal{Y})}} \cdot{ }_{B_{0}}\langle\xi, \eta\rangle .
\end{array}
$$

Implying that the correspondence $\mathcal{Y} \longmapsto M_{0}\left(\mathcal{Y} \boxtimes_{B_{0}} L^{2}\left(B_{0}\right)\right)_{M_{0}}$ defines a faithful bi-involutive strong monoidal functor.

A commutative 2-cell

There is a strong monoidal unitary natural isomorphism filling the following 2-cell: (the following diagram commutes)

$$
\begin{aligned}
& C \xrightarrow{\mathbb{F}} \operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}\left(B_{0}\right) \\
& \underset{G}{\square} \\
& \operatorname{Bim}_{b f}^{\text {sp }}\left(M_{0}\right)
\end{aligned}
$$

Since the functor \mathbb{G} constructed in [BHP12] is full and faithful, it then follows that \mathbb{F} is full.

A summary

Theorem (HaHe19)

Given a countably generated RC*TC C, there exists a unital simple separable exact C^{*}-algebra B_{0} with unique trace and a fully-faithful bi-involutive strong monoidal functor

$$
\mathbb{F}: C \hookrightarrow \operatorname{Bim}_{\mathrm{fgp}}^{\mathrm{tr}}\left(B_{0}\right) .
$$

Despite K-theoretical obstructions, there exists a separable C^{*}-algebra B whose category of bimodules contains an image of every fusion category.

Corollary

There exists a unital simple exact separable C^{*}-algebra B with unique trace over which we can full and faithfully realize every unitary fusion category.

Some future questions

A Using reconstruction techniques on simple C*-algebras towards defining discrete inclusions for \mathbf{C}^{*}-algebras.(?)
© $\boldsymbol{\uparrow}$ Galois correspondences: Given a discrete countable group Γ acting on B by outer automorphisms, what are all the intermediate C^{*}-algebras

$$
B \subset P \subset B \rtimes_{r} \Gamma ?
$$

Is every such P of the form $P \cong B \rtimes_{r} \Lambda$ for some $\Lambda \leq \Gamma$? [cs17] $\boldsymbol{A} \boldsymbol{\phi} \boldsymbol{\phi}$ Is this correspondence encoded by categorical data? (i.e. connected C*-algebra objects in $\operatorname{Vec}(\mathrm{C})$.
Anかん...

Thank you!

Results, applications and a few questions

References

- [BHP12] Brothier, Hartglass and Penneys, Rigid C*-tensor categories of bimodules over interpolated free group factors, arXiv:1208.5505
- [Bis97] Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Fields Institute Communications 13 (1997), 13-63.
- [CS17] Cameron, Smith, A Galois correspondence for reduced crossed products of unital simple C*-algebras by discrete groups, 1706.01803
- [EGNO] Etingof, Gelaki, Nikshych, Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, AMS, Providence, RI, 2015. MR 3242743
- [GJS10] A. Guionnet, V.F.R. Jones and D. Shlyakhtenko, Random matrices, free probability, planar algebras and subfactors, arXiv: 0712.2904.
- [Har13] Hartglass, Free product von Neumann algebras associated to graphs, and Guionnet, Jones, shlyakhtenko subfactors in infinite depth, J. Funct. Analysis 265 (2013), no. 12, 3305-3324 MR3110503
- [HP17a] Hartglass and Penneys, C*-Algebras from Planar Algebras I: Canonical C*-algebras Associated to a Planar Algebra, arXiv: 1401.2485
- [HP14] Hartglass and Penneys, C*-Algebras from Planar Algebras II: The Guionnet-Jones-Shlyakhtenko C*-algebras, arXiv:1401.2486.
- HP17b Henriques and Penneys, Bicommutant categories from fusion categories, Seleca Math. (N.S.) 23 (2017), no. 3, 1669-1708. MR 3663592

Results, applications and a few questions

References

- [JP18] Corey Jones, Penneys, Realizations of algebra objects and discrete subfactors arXiv: 1704.02035
- [Mac71] MacLane, Categories for the working mathematician Springer-Verlag, New York-Berlin, 1971, Graduate Texts in Mathematics, Vol. 5. MR0354798
- [NE19] NÆs Aaserud and Evans, Realizing the braided Temperley-Lieb-Jones C*-tensor categories as Hilbert C*-bimodules, arXiv: 1908.02674
- [JSW10] V. Jones, D. Shlyakhtenko and K. Walker An orthogonal approach to the subfactor of a planar algebra arXiv: 0807.4146.
- [KW00] Kajiwara and Watatani, Jones Index Theory by Hilbert C*-bimodules and K-Theory, Transactions of the AMS, 352, number 8, Pages 3429-3472, S 0002-9947(00)02392-8.
http://www.numdam.org/item/CTGDC_1988_29_1_9_0/.
- Pen18 Penneys, Unitary dual functors for unitary multitensor categories, arXiv e-prints, arXiv: 1808.00323
- [Rie14] E. Riehl, Category Theory in Context, avaliable at www.math.jhu.edu/ eriehl/context.pdf
- [Yua19] Yuan, Rigid C*-tensor categories and their realizations as Hilbert C^{*}-bimodules, Proceedings of the Edinburgh Mathematical Society (2019) 62, 367-393m, DOI:10.1017/S0013091518000524.

