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1. Introduction to Probability

1.1 Definitions of Probability

You are the product of a random universe. From the Big Bang to your own conception and birth,

random events have determined who we are as a species, who you are as a person, and much of your

experience to date. Ironic therefore that we are not well-tuned to understanding the randomness around

us, perhaps because millions of years of evolution have cultivated our ability to see regularity, certainty

and deterministic cause-and-effect in the events and environment about us. We are good at finding

patterns in numbers and symbols, or relating the eating of certain plants with illness and others with a

healthy meal. In many areas, such as mathematics or logic, we assume we know the results of certain

processes with certainty (e.g., 2+3=5), though even these are often subject to assumed axioms. Most

of the real world, however, from the biological sciences to quantum physics2, involves variability and

uncertainty. For example, it is uncertain whether it will rain tomorrow; the price of a given stock a

week from today is uncertain; the number of claims that a car insurance policy holder will make over a

one-year period is uncertain. Uncertainty or “randomness" (i.e. variability of results) is usually due to

some mixture of at least two factors including: (1) variability in populations consisting of animate or

inanimate objects (e.g., people vary in size, weight, blood type etc.), and (2) variability in processes or

phenomena (e.g., the random selection of 6 numbers from 49 in a lottery draw can lead to a very large

number of different outcomes). Which of these would you use to describe the fluctuations in stock

prices or currency exchange rates?

Variability and uncertainty in a system make it more difficult to plan or to make decisions without

suitable tools. We cannot eliminate uncertainty but it is usually possible to describe, quantify and deal

with variability and uncertainty using the theory of probability. This course develops both the mathe-

matical theory and some of the applications of probability. The applications of this methodology are

far-reaching, from finance to the life-sciences, from the analysis of computer algorithms to simulation

of queues and networks or the spread of epidemics. Of course we do not have the time in this course

2"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to

reality" Albert Einstein, 1921.

1
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to develop these applications in detail, but some of the end-of-chapter problems will give a hint of the

extraordinary range of application of the mathematical theory of probability and statistics.

It seems logical to begin by defining probability. People have attempted to do this by giving de-

finitions that reflect the uncertainty whether some specified outcome or “event" will occur in a given

setting. The setting is often termed an “experiment" or “process" for the sake of discussion. We of-

ten consider simple “toy" examples: it is uncertain whether the number 2 will turn up when a 6-sided

die is rolled. It is similarly uncertain whether the Canadian dollar will be higher tomorrow, relative

to the U.S. dollar, than it is today. So one step in defining probability requires envisioning a random

experiment with a number of possible outcomes. We refer to the set of all possible distinct outcomes

to a random experiment as the sample space (usually denoted by ). Groups or sets of outcomes of

possible interest, subsets of the sample space, we will call events. Then we might define probability in

three different ways:

1. The classical definition: The probability of some event is

number of ways the event can occur

number of outcomes in S


provided all points in the sample space  are equally likely. For example, when a die is rolled

the probability of getting a 2 is 1
6

because one of the six faces is a 2.

2. The relative frequency definition: The probability of an event is the (limiting) proportion (or

fraction) of times the event occurs in a very long series of repetitions of an experiment or process.

For example, this definition could be used to argue that the probability of getting a 2 from a rolled

die is 1
6
.

3. The subjective probability definition: The probability of an event is a measure of how sure the

person making the statement is that the event will happen. For example, after considering all

available data, a weather forecaster might say that the probability of rain today is 30% or 0.3.

Unfortunately, all three of these definitions have serious limitations.

Classical Definition: What does “equally likely” mean? This appears to use the concept of proba-

bility while trying to define it! We could remove the phrase “provided all outcomes are equally likely”,

but then the definition would clearly be unusable in many settings where the outcomes in  did not tend

to occur equally often.

Relative Frequency Definition: Since we can never repeat an experiment or process indefinitely, we

can never know the probability of any event from the relative frequency definition. In many cases we
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can’t even obtain a long series of repetitions due to time, cost, or other limitations. For example, the

probability of rain today can’t really be obtained by the relative frequency definition since today can’t

be repeated again under identical conditions. Intuitively, however, if a probability is correct, we expect

it to be close to relative frequency, when the experiment is repeated many times.

Subjective Probability: This definition gives no rational basis for people to agree on a right answer,

and thus would disqualify probability as an objective science. Are everyone’s opinions equally valid

or should we only consult "experts". There is some controversy about when, if ever, to use subjective

probability except for personal decision-making but it does play a part in a branch of Statistics that is

often called "Bayesian Statistics". This will not be discussed in Stat 230, but it is a common and useful

method for updating subjective probabilities with objective experimental results.

The difficulties in producing a satisfactory definition can be overcome by treating probability as

a mathematical system defined by a set of axioms. We do not worry about the numerical values of

probabilities until we consider a specific application. This is consistent with the way that other branches

of mathematics are defined and then used in specific applications (e.g., the way calculus and real-valued

functions are used to model and describe the physics of gravity and motion).

The mathematical approach that we will develop and use in the remaining chapters is based on the

following description of a probability model:

• a sample space of all possible outcomes of a random experiment is defined

• a set of events, subsets of the sample space to which we can assign probabilities, is defined

• a mechanism for assigning probabilities (numbers between 0 and 1) to events is specified.

Of course in a given run of the random experiment, a particular event may or may not occur.

In order to understand the material in these notes, you may need to review your understanding of

basic counting arguments, elementary set theory as well as some of the important series that you have

encountered in Calculus that provide a basis for some of the distributions discussed in these notes. In

the next chapter, we begin a more mathematical description of probability theory.
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1.2 Problems on Chapter 1

1.1 Try to think of examples of probabilities you have encountered which might have been obtained

by each of the three “definitions".

1.2 Which definitions do you think could be used for obtaining the following probabilities?

(a) You have a claim on your car insurance in the next year.

(b) There is a meltdown at a nuclear power plant during the next 5 years.

(c) A person’s birthday is in April.

1.3 Give examples of how probability applies to each of the following areas.

(a) Lottery draws

(b) Auditing of expense items in a financial statement

(c) Disease transmission (e.g. measles, tuberculosis, STD’s)

(d) Public opinion polls

1.4 Which of the following can be accurately described by a "deterministic" model, i.e. a model

which does not require any concept of probability?

(a) The position of a small particle in space

(b) The velocity of an object dropped from the leaning tower of Pisa

(c) The value of a stock which you purchased for $20 one month ago

(d) The purchasing power of $20 CAN according to the Consumer Price Index in one month.



2. Mathematical Probability Models

2.3 Sample Spaces and Probability

Consider some phenomenon or process which is repeatable, at least in theory, and suppose that certain

events or outcomes 1 2 3    are defined. We will often term the phenomenon or process an

“experiment" and refer to a single repetition of the experiment as a “trial". The probability of an

event , denoted  (), is a number between 0 and 1. For probability to be a useful mathematical

concept, it should possess some other properties. For example, if our “experiment” consists of tossing

a coin with two sides, Head and Tail, then we might wish to consider the two events 1 = “Head turns

up” and 2 = “Tail turns up”. It does not make much sense to allow  (1) = 06 and  (2) = 06, so

that  (1) + (2)  1. (Why is this so? Is there a fundamental reason or have we simply adopted 1

as a convenient scale?) To avoid this sort of thing we begin with the following definition.

Definition 1 A sample space  is a set of distinct outcomes for an experiment or process, with the

property that in a single trial, one and only one of these outcomes occurs.

The outcomes that make up the sample space may sometimes be called "sample points" or just

"points" on occasion. A sample space is defined as part of the probability model in a given setting but

it is not necessarily uniquely defined, as the following example shows.

Example: Roll a 6-sided die, and define the events

 = top face is , for  = 1 2 3 4 5 6

Then we could take the sample space as  = {1 2 3 4 5 6}. (Note we use the curly brackets

"{...}" to indicate the elements of a set). Instead of using this definition of the sample space we could

instead define events
 is the event that an even number turns up

 is the event that an odd number turns up
and take  = {}. Both sample spaces satisfy the definition. Which one we use would depends on

what we wanted to use the probability model for. If we expect never to have to consider events like "

5
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a number less than 3 turns up" then the space  = {} will suffice, but in most cases, if possible,

we choose sample points that are the smallest possible or "indivisible". Thus the first sample space is

likely preferred in this example.

Sample spaces may be either discrete or non-discrete;  is discrete if it consists of a finite or

countably infinite set of simple events. Recall that a countably infinite sequence is one that can be

put in one-one correspondence with the positive integers, so for example {1
2
 1
3
 1
4
 1
5
 } is countably

infinite as is the set of all rational numbers. The two sample spaces in the preceding example are

discrete. A sample space  = {1 2 3    } consisting of all the positive integers is discrete, but a

sample space  = { :   0} consisting of all positive real numbers is not. For the next few chapters

we consider only discrete sample spaces. For discrete sample spaces it is much easier to specify the

class of events to which we may wish to assign probabilities; we will allow all possible subsets of the

sample space. For example if  = {1 2 3 4 5 6} is the sample space then = {1 2 3 4}
and  = {6} and  itself are all examples of events.

Definition 2 An event in a discrete sample space is a subset  ⊂  If the event is indivisible so it

contains only one point, e.g. 1 = {1} we call it a simple event. An event  made up of two or more

simple events such as  = {1 2} is called a compound event.

Our notation will often not distinguish between the point  and the simple event  = {} which

has this point as its only element, although they differ as mathematical objects. When we mean the

probability of the event 1 = {1}, we should write  (1) or  ({1}) but the latter is often shortened

to  (). In the case of a discrete sample space it is easy to specify probabilities of events since they

are determined by the probabilities of simple events.

Definition 3 Let  = {1 2 3    } be a discrete sample space. Then probabilities  () are

numbers attached to the ’s ( = 1 2 3    ) such that the following two conditions hold:

(1) 0 ≤  () ≤ 1

(2)
P


 () = 1

The above function  (∗) on  which describes the set of probabilities { ()  = 1 2    } is called

a probability distribution on . The condition
P


 () = 1 above reflects the idea that when the

process or experiment happens, one or other of the simple events {} in  must occur (recall that

the sample space includes all possible outcomes). The probability of a more general event  (not

necessarily a simple event) is then defined as follows:
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Definition 4 The probability  () of an event is the sum of the probabilities for all the simple events

that make up  or  () =
P

∈  ()

For example, the probability of the compound event  = {1 2 3} is  (1) +  (2) +  (3)

Probability theory does not say what numbers to assign to the simple events for a given application,

only those properties guaranteeing mathematical consistency. In an actual application of a probability

model, we try to specify numerical values of the probabilities that are more or less consistent with the

frequencies of events when the experiment is repeated. In other words we try to specify probabilities

that are consistent with the real world. There is nothing mathematically wrong with a probability model

for a toss of a coin that specifies that the probability of heads is zero, except that it likely won’t agree

with the frequencies we obtain when the experiment is repeated.

Example: Suppose a 6-sided die is rolled, and let the sample space be  = {1 2 3 4 5 6}, where 1

means the top face is 1, and so on. If the die is an ordinary one, (a fair die) we would likely define

probabilities as

 () = 16 for  = 1 2 3 4 5 6 (2.1)

because if the die were tossed repeatedly by a fair roller (as in some games or gambling situations) then

each number would occur close to 16 of the time. However, if the die were weighted in some way, or

if the roller were able to manipulate the die so that 1 is more likely, these numerical values would not

be so useful. To have a useful mathematical model, some degree of compromise or approximation is

usually required. Is it likely that the die or the roller are perfectly "fair"? Given (2.1), if we wish to

consider some compound event, the probability is easily obtained. For example, if  = “even number

obtains" then because  = {2 4 6} we get  () =  (2) +  (4) +  (6) = 12.

We now consider some additional examples, starting with some simple “toy" problems involving

cards, coins and dice. Once again, to calculate probability for discrete sample spaces, we usually

approach a given problem using three steps:

(1) Specify a sample space .

(2) Assign numerical probabilities to the simple events in .

(3) For any compound event , find  () by adding the probabilities of all the simple events that

make up .

Later we will discover that having a detailed specification or list of the elements of the sample

space may be difficult. Indeed in many cases the sample space is so large that at best we can describe
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it in words. For the present we will solve problems that are stated as “Find the probability that ...”

by carrying out step (2) above, assigning probabilities that we expect should reflect the long run rela-

tive frequencies of the simple events in repeated trials, and then summing these probabilities to obtain

 ()

Some Examples

When  has only a few points, one of the easiest methods for finding the probability of an event is to

list all outcomes. In many problems a sample space  with equally probable simple events can be used,

and the first few examples are of this type.

Example: Draw 1 card from a standard well-shuffled deck (13 cards of each of 4 suits - spades, hearts,

diamonds, clubs). Find the probability the card is a club.

Solution 1: Let  = { spade, heart, diamond, club}. Then  has 4 points, with 1 of them being

“club”, so  (club)= 1
4
.

Solution 2: Let  = { 2¨,3¨,4¨ ¨ 2♥ ♣}. Then each of the 52 cards in  has probability
1
52
 The event  of interest is

 = {2♣ 3♣ ♣}

and this event has 13 simple outcomes in it all with the same probability 1
52

 Therefore

 () =
1

52
+
1

52
+ 

1

52
=
13

52
=
1

4


Note 1: A sample space is not necessarily unique, as mentioned earlier. The two solutions illustrate

this. Note that in the first solution the event  = “the card is a club” is a simple event because of the

way the sample space was defined, but in the second it is a compound event.

Note 2: In solving the problem we have assumed that each simple event in  is equally probable. For

example in Solution 1 each simple event has probability 14. This seems to be the only sensible choice

of numerical value in this setting, but you will encounter problems later on where it is not obvious

whether outcomes all are equiprobable.

The term “odds” is sometimes used in describing probabilities. In this card example the odds in

favour of clubs are 1:3; we could also say the odds against clubs are 3:1. In general,
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Figure 2.1: 9 tosses of two coins each

Definition 5 The odds in favour of an event  is the probability the event occurs divided by the

probability it does not occur or  ()

1− ()  The odds against the event is the reciprocal of this, 1− ()
 ()

.

If the odds against a given horse winning a race are 20 to 1 (or 20:1), what is the corresponding

probability that the horse will win the race? According to the definition above 1− ()
 ()

= 20 which

gives  () = 1
21
 Note that these odds are derived from bettor’s collective opinion and therefore

subjective.

Example: Toss a coin twice. Find the probability of getting one head. (In this course, "one head" is

taken to mean exactly one head. If we meant "at least one head" we would say so.)

Solution 1: Let  = {  } and assume the simple events each have probability 1
4
.

(Here, the notation means head on the 1st toss and tails on the 2nd.) Since one head occurs for sim-

ple events  and  , the event of interest is  = {} and we get  () = 1
4
+ 1
4
= 2

4
= 1

2
.

Solution 2: Let  = { 0 heads, 1 head, 2 heads } and assume the simple events each have probability
1
3
. Then  (1 head) = 1

3
.

Which solution is right? Both are mathematically “correct” in the sense that they are both consequences

of probability models. However, we want a solution that reflects the relative frequency of occurrence in

repeated trials in the real world, not just one that agrees with some mathematical model. In that respect,

the points in solution 2 are not equally likely. The event {1 head} occurs more often than either {0
head} or {2 heads} in actual repeated trials. You can experiment to verify this (for example of the nine

replications of the experiment in Figure 2.1, 2 heads occurred 2 of the nine times, 1 head occurred 6

of the 9 times. For more certainty you should replicate this experiment many times. You can do this

without benefit of coin at http://shazam.econ.ubc.ca/flip/index.html). So we say solution 2 is incorrect

for ordinary fair coins because it is based on an incorrect model. If we were determined to use the
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sample space in solution 2, we could do it by assigning appropriate probabilities to each of the three

simple events but then 0 heads would need to have a probability of 1
4
, 1 head \a probability of 1

2
and

2 heads 1
4
. We do not usually do this because there seems little point in using a sample space whose

points are not equally probable when one with equally probable points is readily available.

Example: Roll a red die and a green die. Find the probability the total is 5.

Solution: Let ( ) represent getting  on the red die and  on the green die.

Then, with these as simple events, the sample space is

 = { (1 1) (1 2) (1 3) · · · (1 6)

(2 1) (2 2) (2 3) · · · (2 6)

(3 1) (3 2) (3 3) · · · (3 6)

−− −− −−
(6 1) (6 2) (6 3) · · · (6 6)}

Each simple event, for example {(1 1)} is assigned probability 1
36
 Then the event of interest is the

event that the total is 5,  = {(1 4)(2 3)(3 2) (4 1)} Therefore  () = 4
36

Example: Suppose the 2 dice were now identical red dice or equivalently that the observer is color-

blind. Find the probability the total is 5.

Solution 1: Since we can no longer distinguish between ( ) and ( ), the only distinguishable

points in  are :
 = { (1 1) (1 2) (1 3) · · · (1 6)

(2 2) (2 3) · · · (2 6)

(3 3) · · · (3 6)

 

(6 6)}
Using this sample space, we get a total of 5 from points (1 4) and (2 3) only. If we assign equal

probability 1
21

to each point (simple event) then we get  (total is 5) = 2
21

.

At this point you should be suspicious since 2
21
6= 4

36
. The colour of the dice shouldn’t have any effect

on what total we get. The universe does not change the frequency of real physical events depending

on whether the observer is colour-blind or not, so one answer must be wrong! The problem is that the

21 points in  here are not equally likely. There was nothing theoretically wrong with the probability

model except that if this experiment is repeated in the real world, the point (1, 2) occurs about twice as

often in the long run as the point (1,1). So the only sensible way to use this sample space consistent with

the real world is to assign probability weights 1
36

to the points of the form ( ) and 2
36

to the points

( ) for  6= . We can compare these probabilities with experimental evidence. On the website
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Figure 2.2: Results of 1000 throws of 2 dice

http://www.math.duke.edu/education/postcalc/probability/dice/index.html you may throw virtual dice

up to 10,000 times and record the results. For example on 1000 throws of two dice (see Figure 2.2),

there were 121 occasions when the sum of the values on the dice was 5, indicating the probability is

around 121/1000 or 0.121 This compares with the true probability 436 = 0111

Solution 2: For a more straightforward solution to the above problem, pretend the dice can be distin-

guished even though they can’t. (Imagine, for example, that we put tiny mark on one die, or label one

of them differently.) We then get the same 36 sample points as in the example with the red die and the

green die. The fact that one die has a tiny mark cannot change the probabilities so that

 (total is 5) =
4

36

The laws determining the probabilities associated with these two dice do not, of course, know whether

your eyesight is so keen that you can or cannot distinguish the dice. These probabilities must be the

same in either case. In many problems when objects are indistinguishable and we are interested in

calculating a probability, you will discover that the calculation is made easier by pretending the objects

can be distinguished.

This illustrates a common pitfall. When treating objects in an experiment as distinguishable leads to

a different answer from treating them as identical, the points in the sample space for identical objects

are usually not “equally likely" in terms of their long run relative frequencies. It is generally safer to

pretend objects can be distinguished even when they can’t be, in order to get equally likely sample

points.
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While the method of finding probability by listing all the points in  can be useful, it isn’t practical

when there are a lot of points to write out (e.g., if 3 dice were tossed there would be 216 points in ).

We need to have more efficient ways of figuring out the number of outcomes in  or in a compound

event without having to list them all. Chapter 3 considers ways to do this, and then Chapter 4 develops

other ways to manipulate and calculate probabilities.

Although we often use “toy” problems involving things such as coins, dice and simple games for

examples, probability is used to deal with a huge variety of practical problems from finance to clinical

trials. In some settings such as in question 2.6 and 2.7 below, we need to rely on previous repetitions

of an experiment, or on related scientific data, to assign numerical probabilities to events.

2.4 Problems on Chapter 2

2.1 Students in a particular program have the same 4 math profs. Two students in the program each

independently ask one of their math professors3 for a letter of reference. Assume each is equally

likely to ask any of the math profs.

a) List a sample space for this “experiment”.

b) Use this sample space to find the probability both students ask the same prof.

2.2 a) List a sample space for tossing a fair coin 3 times.

b) What is the probability of 2 consecutive tails (but not 3)?

2.3 You wish to choose 2 different numbers without replacement (so the same number can not be

chosen twice) from {1 2 3 4 5}. List all possible pairs you could obtain, assume all pairs are

equally probable, and find the probability the numbers chosen differ by 1 (i.e. the two numbers

are consecutive).

2.4 Four letters addressed to individuals  , ,  and  are randomly placed in four addressed

envelopes, one letter in each envelope.

(a) List a 24-point sample space for this experiment. Be sure to explain your notation.

(b) List the sample points belonging to each of the following events:

: “ ’s letter goes into the correct envelope”;

: “no letters go into the correct envelopes”;

3"America believes in education: the average professor earns more money in a year than a professional athlete earns in a

whole week." Evan Esar (1899 - 1995)
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: “exactly two letters go into the correct envelopes”;

: “exactly three letters go into the correct envelopes”.

(c) Assuming that the 24 sample points are equally probable, find the probabilities of the four

events in (b).

2.5 (a) Three balls are placed at random in three boxes, with no restriction on the number of balls

per box; list the 27 possible outcomes of this experiment. Be sure to explain your notation.

Assuming that the outcomes are all equally probable, find the probability of each of the

following events:

: “the first box is empty”;

: “the first two boxes are empty”;

: “no box contains more than one ball”.

(b) Find the probabilities of events ,  and  when three balls are placed at random in 

boxes ( ≥ 3).
(c) Find the probabilities of events ,  and  when  balls are placed in  boxes ( ≥ ).

2.6 Diagnostic Tests. Suppose that in a large population some persons have a specific disease at a

given point in time. A person can be tested for the disease, but inexpensive tests are often imper-

fect, and may give either a “false positive” result (the person does not have the disease but the

test says they do) or a “false negative” result (the person has the disease but the test says they do

not).

In a random sample of 1000 people, individuals with the disease were identified according to

a completely accurate but expensive test, and also according to a less accurate but inexpensive

test. The results for the less accurate test were that

• 920 persons without the disease tested negative

• 60 persons without the disease tested positive

• 18 persons with the disease tested positive

• 2 persons with the disease tested negative.

(a) Estimate the fraction of the population that has the disease and tests positive using the

inexpensive test.

(b) Estimate the fraction of the population that has the disease.

(c) Suppose that someone randomly selected from the same population as those tested above

was administered the inexpensive test and it indicated positive. Based on the above infor-

mation, how would you estimate the probability that they actually have the disease.
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2.7 Machine Recognition of Handwritten Digits. Suppose that you have an optical scanner and

associated software for determining which of the digits 0 1  9 an individual has written in a

square box. The system may of course be wrong sometimes, depending on the legibility of the

handwritten number.

(a) Describe a sample space  that includes points ( ), where  stands for the number actu-

ally written, and  stands for the number that the machine identifies.

(b) Suppose that the machine is asked to identify very large numbers of digits, of which

0 1  9 occur equally often, and suppose that the following probabilities apply to the

points in your sample space:

(0 6) = (6 0) = 004; (0 0) = (6 6) = 096

(5 9) = (9 5) = 005; (5 5) = (9 9) = 095

(4 7) = (7 4) = 002; (4 4) = (7 7) = 098

( ) = 100 for  = 1 2 3 8

Give a table with probabilities for each point ( ) in . What fraction of numbers is

correctly identified?

2.8 1Anonymous professor X has an integer (1 ≤  ≤ 9) in mind and asks two students,  and

 to pick numbers between 1 and 9 Whichever is closer to  gets 90% and the other 80%

in Stat 230. If they are equally close, they both get 85% If the professor’s number and that of

Allen are chosen purely at random and Allen announces his number out loud, describe a sample

space and a strategy which leads Beth to the highest possible mark.

2.9 1In questions 2.4-2.7, what can you say about how appropriate you think the probability model

is for the experiment being modelled?

1Solution not in appendix



3. Probability – Counting Techniques

Some probability problems can be attacked by specifying a sample space  = {1 2     } in

which each simple event has probability 1


(i.e. is “equally likely"). This is referred to a a uniform

distribution over the set {1 2     } If a compound event  contains  points, then  () = 


.

In other words, we need to be able to count the number of events in  which are in . We review first

some basic ways to count outcomes from “experiments".

3.1 Counting Arguments

There are two helpful rules for counting, phrased in terms of “jobs" which are to be done.

1. The Addition Rule: Suppose we can do job 1 in  ways and job 2 in  ways. Then we can do

either job 1 OR job 2 (but not both), in +  ways.

For example, suppose a class has 30 men and 25 women. There are 30 + 25 = 55 ways the prof.

can pick one student to answer a question. If there are 5 vowels and 20 consonants on a list and I must

pick one letter, this can be done in 5+20 ways.

2. The Multiplication Rule: Suppose we can do job 1 in  ways and, for each of these ways,

we can do job 2 in  ways. Then we can do both job 1 AND job 2 in ×  ways.

For example, if there are 5 vowels and 20 consonants and I must choose one consonant followed

by one vowel for a two-letter word, this can be done in 20 × 5 ways (there are 100 such words). To

ride a bike, you must have the chain on both a front sprocket and a rear sprocket. For a 21 speed bike

there are 3 ways to select the front sprocket and 7 ways to select the rear sprocket, i.e. 3× 7 = 21 such

combinations.

This interpretation of "OR" as addition and "AND" as multiplication evident in the addition and

multiplication rules above will occur throughout probability, so it is helpful to make this association in

your mind. Of course questions do not always have an AND or an OR in them and you may have to

play around with re-wording the question to discover implied AND’s or OR’s.

15



16

Example: Suppose we pick 2 numbers from digits 1, 2, 3, 4, 5 with replacement. (Note: “with

replacement” means that after the first number is picked it is “replaced” in the set of numbers, so it

could be picked again as the second number.) Assume a uniform distribution on the sample space, i.e.

that every pair of numbers has the same probability. Let us find the probability that one number is even.

This can be reworded as: “The first number is even AND the second is odd (this can be done in 2× 3
ways) OR the first is odd AND the second is even (done in 3×2ways).” Since these are connected with

the word OR, we combine them using the addition rule to calculate that there are (2×3)+(3×2) = 12
ways for this event to occur. Since the first number can be chosen in 5 ways AND the second in 5 ways,

 contains 5 × 5 = 25 points and since each point has the same probability, they all have probability
1
25

.

Therefore  (one number is even) =
12

25

When objects are selected and replaced after each draw, the addition and multiplication rules are gen-

erally sufficient to find probabilities. When objects are drawn without being replaced, some special

rules may simplify the solution.

Note: The phrases at random, or uniformly are often used to mean that all of the points in the sample

space are equally likely so that in the above problem, every possible pair of numbers chosen from this

set has the same probability 1
25


Problems:

3.1.1 (a) A course has 4 sections with no limit on how many can enrol in each section. Three students

each pick a section at random.

(i) Specify the sample space 

(ii) Find the probability they all end up in the same section

(iii) Find the probability they all end up in different sections

(iv) Find the probability nobody picks section 1.

(b) Repeat (a) in the case when there are  sections and  students ( ≥ ).

3.1.2 Canadian postal codes consist of 3 letters (of 26 possible letters) alternated with 3 digits (of the 10

possible), starting with a letter (e.g. N2L 3G1). Assume no other restrictions on the construction

of postal codes. For a postal code chosen at random, what is the probability:

(a) all 3 letters are the same?

(b) the digits are all even or all odd? Treat 0 as being neither even nor odd.
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3.1.3 Suppose a password has to contain between six and eight digits, with each digit either a letter or

a number from 1 to 9. There must be at least one number present.

(a) What is the total number of possible passwords?

(b) If you started to try passwords in random order, what is the probability you would find the

correct password for a given situation within the first 1,000 passwords you tried?

We have already discussed a special class of discrete probability models, the uniform model, in

which all of the outcomes have the same probability. In such a model, we can calculate the probability

of any event A by counting the number of outcomes in the event 

 () =
Number of outcomes in 

Total Number of outcomes in 

Here we look at some formal counting methods to help calculate probabilities in uniform models.

Counting Arrangements: In many problems, the sample space is a set of arrangements or sequences.

These are classically called permutations. A key step in the argument is to be sure to understand what

it is you are counting. It is helpful to invent a notation for the outcomes in the sample space and the

events of interest (these are the objects you are counting).

Example. Suppose the letters are arranged at random to form a six-letter word (an arrangement) – we

must use each letter once only. The sample space

 = {   }

has a large number of outcomes and, because we formed the word “at random”, we assign the same

probability to each. To count the number of words in , count the number of ways that we can construct

such a word – each way corresponds to a unique word. Consider filling the boxes corresponding to the

six positions in the arrangement

We can fill the first box in 6 ways with any one of the letters. For each of these choices, we can fill

the second box in 5 ways with any one of the remaining letters. Thus there are 6× 5 = 30 ways to fill

the first two boxes. (If you are not convinced by this argument, list all the possible ways that the first

two boxes can be filled.)

For each of these 30 choices, we can fill the third box in 4 ways using any one of the remaining

letters so there are 6× 5× 4 = 120 ways to fill the first three boxes. Applying the same reasoning, we
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see that there are 6× 5× 4× 3× 2× 1 = 720 ways to fill the 6 boxes and hence 720 equally probable

words in .

Now consider events such as : the second letter is  or  so A={ afbcde,aebcdf,...,efdcba}. We

can count the number of outcomes in  using a similar argument if we start with the second box.

We can fill the second box in 2 ways i.e., with an  or  . For each of these choices, we can then fill

the first box in 5 ways, so now we can fill the first two boxes in 2 × 5 = 10 ways. For each of these

choices, we can fill the remaining four boxes in 4× 3× 2× 1 = 24 ways so the number of outcomes

in A is 10× 24 = 240. Since we have a uniform probability model, we have

 () =
number of outcomes in 
number of outcomes in 

=
240

720
=
1

3


In determining the number of outcomes in A, it is important that we start with the second box.

Suppose, instead, we start by saying there are 6 ways to fill the first box. Now the number of ways of

filling the second box depends on what happened in the first. If we used  or  in the first box, there is

only one way to fill the second. If we used    or  for the first box, there are 2 ways of filling the

second. We avoid this complication by starting with the second box.

We can generalize the above problem in several ways. In each case we count the number of arrange-

ments by counting the number of ways we can fill the positions in the arrangement. Suppose we start

with  symbols. Then we can make

• × (− 1)× × 1 arrangements of length  using each symbol once and only once. This

product is denoted by ! (read “ factorial”). Note that ! = × (− 1)!
• × (− 1)× × (−  + 1) arrangements of length  using each symbol at most once. This

product is denoted by () (read “ to  factors”). Note that () = !
(−)! 

• × × ×  =  arrangements of length  using each symbol as often as we wish.

The terms above, especially the factorial ! grow at an extraordinary rate as a function of  For

example (we will discuss 0! shortly),

 0 1 2 3 4 5 6 7 8 9 10

! 1 1 2 6 24 120 720 5040 40320 362880 3628800

There is an approximation to ! called Stirling’s formula which is often used for large  First what

would it mean for two sequences of numbers which are growing very quickly to be asymptotically

equal? Suppose we wish to approximate one sequence  with another sequence  and want the

percentage error of the approximation to approach zero as  grows. This is equivalent to saying

 → 1 as  → ∞ and under these circumstances we will call the two sequences asymptotically

equivalent. Stirling’s approximation says that ! is asymptotically equivalent to −
√
2 The

error in Stirling’s approximation is less than 1% if  ≥ 8 and becomes very small quite quickly as 

increases
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For many problems involving sampling from a deck of cards or a reasonably large population, counting

the number of cases by simple conventional means is virtually impossible, and we need the counting

arguments dealt with here. The extraordinarily large size of populations, in part due to the large

size of quantities like  and ! is part of the reason that statistics, sampling, counting methods and

probability calculations play such an important part in modern science and business.

Example. A pin number of length 4 is formed by randomly selecting (with replacement) 4 digits

from the set {0 1 2  9}. Find the probability of the events:

: the pin number is even

: the pin number has only even digits

: all of the digits are unique

: the pin number contains at least one 1.

Since we pick the digits with replacement, the outcomes in the sample space can have repeated

digits.

The sample space is  = {0000 0001  9999} with 104 equally probable outcomes. For the

event  = {0000 0002  9998}, we can select the last digit to be any one of 0 2 6 4 8 in 5 ways.

Then for each of these choices, we can select the first digit in 10 ways and so on. There are 5 × 103
outcomes in  and

 () =
5× 103
104

=
1

2


The event  = {0000 0002  8888}. We can select the first digit in 5ways, and for each of these

choices, the second in 5 ways, and so on. There are 54 outcomes in  and

 () =
54

104
=
1

16


The event  = {0123 0124  9876}. We can select the first digit in 10 ways and for each of

these choices, the second in 9 ways and so on. There are 10× 9× 8× 7 outcomes in  and so

 () =
10× 9× 8× 7

104
=
63

125


The event  = {0001 0011 0111 1111 }. To count the number of outcomes, consider the comple-

ment of, or the set of all outcomes in  but not inWe denote this event = {0000 0002  9999}
There are 94 outcomes in  and so there are 104 − 94 outcomes in  and

 () =
104 − 94
104

=
3439

10000


For a general event  the complement of  denoted  is the set of all outcomes in  which are

not in  It is often easier to count outcomes in the complement rather than in the event itself.
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Example. A pin number of length 4 is formed by randomly selecting (without replacement) 4 digits

from the set {0 1 2 3 4 5 6 7 8 9}. Find the probability of the events:

: the pin number is even.

: the pin number has only even digits.

: the pin number begins or ends with a 1

: the pin number contains 1.

The sample space is

 = {0123 0132  6789}
with 10(4) equally probable outcomes. For the event  = {1230 0134  9876}, we can select

the last digit to be any one of 0 2 6 4 8 in 5 ways. Then for each of these choices, we can select the

first digit in 9 ways, the third in 8 ways and so on. There are 5× 9× 8× 7 outcomes in  and

 () =
5× 9× 8× 7

10(4)
=
1

2


The event  = {0246 0248  8642}. The pin numbers in  are all 5(4) arrangements of length

4 using only the even digits {0 2 4 6 8} and so

 () =
5(4)

10(4)
=
5× 4× 3× 2
10× 9× 8× 7 =

1

42


The event  = {1023 0231  9871}. There are 2 positions for the 1. For each of these choices,

we can fill the remaining three positions in 9(3) ways and so

 () =
2× 9(3)
10(4)

=
1

5


The event  = {1234 2134  9871}. We can use the complement and count the number of pin

numbers that do not contain a 1. There are 9(4) pin numbers that do not contain 1 and so there are

10(4) − 9(4) that do contain a 1. Therefore

 () =
10(4) − 9(4)
10(4)

= 1− 9(4)

10(4)
=
2

5


Note that this is 1−  () where  is the complement of 

Counting Subsets. In some problems, the outcomes in the sample space are subsets of a fixed size.

Here we look at counting such subsets. Again, it is useful to write a short list of the subsets you are

counting.

Example. Suppose we randomly select a subset of 3 digits from the set {0 1 2 3 4 5 6 7 8 9} so

that the sample space is

 = {{1 2 3} {0 1 3} {0 1 4} {7 8 9}}
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All the digits in each outcome are unique i.e. we do not consider {1 1 2} to be a subset of . Also,

the order of the elements in a subset is not relevant. This is true in general for sets; the subsets {1 2 3}
and {3 1 2} are the same. To count the number of outcomes in , we use what we have learned about

counting arrangements. Suppose there are  such subsets. Using the elements of any subset of size

3, we can form 3! arrangements of length 3. For example, the subset {1 2 3} generates the 3! = 6

arrangements

123 132 213 231 312 321

and any other subset generates a different 3! arrangements so that the total number of arrangements of

3 digits taken without replacement from the set {0 1 2 3 4 5 6 7 8 9} is  × 3!. But we know the

total number of arrangements is 10(3) so × 3! = 10(3) Solving we get

 =
10(3)

3!
= 120

Number of subsets of size  We use the combinatorial symbol
¡



¢
(read  choose ) to denote the

number of subsets of size  that can be selected from a set of  objects. By an argument similar

to that above, if  denotes the number of subsets of size  that can be selected from  things, then

× ! = () and so we have  is equal µ




¶
=

()

!


In the example, since we selected the subset at random, each of the 120 subsets has the same

probability 1120. Now find the probability of the following events.

: the digit 1 is included in the selected subset

: all the digits in the selected subset are even

: at least one of the digits in the selected subset is less than 5

The event : To count the outcomes, we must have 1 in the subset and we can select the other two

elements from the remaining 9 digits in
¡
9
2

¢
ways. And so

 () =

¡
9
2

¢¡
10
3

¢ = 9(2)2!

10(3)3!
=
3

10


The event  = {{0 2 4} {0 2 6} } We can form the outcomes in  by selecting 3 digits from the

five even digits {0 2 4 6 8} in
¡
5
3

¢
ways. And so

 () =

¡
5
3

¢¡
10
3

¢ 
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The event  = {{0 1 2} {0 1 6} {0 6 7} } Here it is convenient to consider the complement

 in which the outcomes are {{6 7 8} {6 7 9} } i.e. subsets with all elements greater than 5. We

can form the subsets in  by selecting a subset of size 3 from the set {6 7 8 9} in
¡
4
3

¢
ways. Therefore

the number of points in  is
¡
10
3

¢− ¡4
3

¢
and its probability is

 () =

¡
10
3

¢− ¡4
3

¢¡
10
3

¢ = 1−
¡
4
3

¢¡
10
3

¢ = 1−  ()

Example. Suppose a box contains 10 balls of which 3 are red, 4 are white and 3 are green. A sample

of 4 balls is selected at random without replacement. Find the probability of the events

: the sample contains 2 red balls

 : the sample contains 2 red, 1 white and 1 green ball

: the sample contains 2 or more red balls

Imagine that we label the balls from 1 to 10 with labels 1 2 3 being red, 4 5 6 7 being white and

8 9 10 being green. Construct a uniform probability model in which all subsets of size 4 are equally

probable. The sample space is

 = {{1 2 3 4} {1 2 3 5}  {7 8 9 10}}

and each outcome has probability 1
¡
10
4

¢
.

The event : To count the number of outcomes in , we can construct a subset with two red balls by

first choosing the two red balls from the three in
¡
3
2

¢
ways. For each of these choices we can select the

other two balls from the seven non-red balls in
¡
7
2

¢
ways so there

¡
3
2

¢× ¡7
2

¢
are outcomes in  and

 () =

¡
3
2

¢× ¡7
2

¢¡
10
4

¢ =
3

10


The event  = {{1 2 4 8} {1 2 4 9} }: To count the number of outcomes in  , we can select the

two red balls in
¡
3
2

¢
ways, then the white ball in

¡
4
1

¢
ways and the green ball in

¡
3
1

¢
ways. So we have

 ( ) =

¡
3
2

¢¡
4
1

¢¡
3
1

¢¡
10
4

¢ =
6

35


The event  = {{1 2 3 4} {1 2 4 5} } has outcomes with both 2 and 3 red balls. We need to

count these separately (see below). There are
¡
3
2

¢¡
7
2

¢
outcomes with exactly two red balls and

¡
3
3

¢¡
7
1

¢
outcomes with three red balls. Hence we have

 () =

¡
3
2

¢¡
7
2

¢
+
¡
3
3

¢¡
7
1

¢¡
10
4

¢ =
1

3
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A common mistake is to count the outcomes in  as follows. There are
¡
3
2

¢
ways to select two red

balls and then for each of these choices we can select the remaining two balls from the remaining eight

in
¡
8
2

¢
ways. So the number of outcomes in  is

¡
3
2

¢ × ¡8
2

¢
. You can easily check that this is greater

than
¡
3
2

¢¡
7
2

¢
+
¡
3
3

¢¡
7
1

¢
. The reason for the error is that some of the outcomes in  have been counted

more than once. For example, you might pick red balls 1,2 and then other balls 3,4 to get the subset

{1 2 3 4}. Or you may pick red balls 1,3 and then other balls 2,4 to get the subset {1 3 2 4}. These

are counted as two separate outcomes but they are in fact the same subset. To avoid this counting error,

whenever you are asked about events defined in terms such as “at most. . . ”, “more than . . . ”, “ fewer

than...” etc., break the events into pieces where each piece has outcomes with specific values e.g. two

red balls, three red balls.

Properties of
¡



¢
 You should be able to prove the following:

1. () = !
(−)! = (− 1)(−1) for  ≥ 1

2.
¡



¢
= !

!(−)! =
()

!

3.
¡



¢
=
¡


−
¢

for all  = 0 1  

4. If we define 0! = 1 then the formulas above make sense for
¡

0

¢
=
¡



¢
= 1

5. (1 + ) =
¡

0

¢
+
¡

1

¢
+

¡

2

¢
2 + +

¡



¢
 ( this is the binomial theorem)

In many problems, we can combine counting arguments for arrangements and subsets as in the

following example.

Example. A binary sequence is an arrangement of zeros and ones. Suppose we have a uniform

probability model on the sample space of all binary sequences of length 10. What is the probability

that the sequence has exactly 5 zeros?

The sample space is  = {0000000000 0000000001  1111111111}. We can fill each of the 10

positions in the sequence in 2 ways and hence  has 210 outcomes each with probability 1
210

. The event

 with exactly 5 zeros and 5 ones is  = {0000011111 1000001111  1111100000}. To count the

outcomes in , think of constructing the sequence by filling boxes below

We can choose the 5 boxes for the zeros in
¡
10
5

¢
ways and then the ones go in the remaining boxes

in 1 way. Hence we have

 () =

¡
10
5

¢
210
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Example. Suppose the letters of the word STATISTICS are arranged at random. Find the prob-

ability of the event  that the arrangement begins and ends with S. The sample space is  =

{  } Here we need to count arrangements when some of the el-

ements are the same. We use the same idea as in the last example. We construct the arrangements by

filling 10 boxes corresponding to the positions in the arrangement.

We can choose the three positions for the three S’s in
¡
10
3

¢
ways. For each of these choices, we can

choose the positions for the three T’s in
¡
7
3

¢
ways. Then we can place the two Is in

¡
4
2

¢
ways, then the

C in
¡
2
1

¢
ways and finally the A in

¡
1
1

¢
ways. The number of equally probable outcomes in S isµ

10

3

¶µ
7

3

¶µ
4

2

¶µ
2

1

¶µ
1

1

¶
=
10!

3!7!

7!

3!4!

4!

2!2!

2!

1!1!

1!

1!0!
=

10!

3!3!2!1!1!

The event  = {  }: To count the outcomes in  we must have 

in the first and last position

S S
Now we can use the same technique to arrange the remaining 8 letters. Having placed two of the

S’s, there remain 8 free boxes, in which we are to place three Ts in
¡
8
3

¢
ways, two Is in

¡
5
2

¢
ways, one

C in
¡
3
1

¢
ways, one A in

¡
2
1

¢
ways and finally the remaining S in the last empty box in

¡
1
1

¢
way. There

are µ
8

3

¶µ
5

2

¶µ
3

1

¶µ
2

1

¶µ
1

1

¶
=

8!

3!2!1!1!1!
= 3360

elements in  and

 () =
8!

3!2!1!1!1!
10!

3!3!2!1!1!

=
3360

50400
=
1

15


Number of Arrangements when some symbols are alike: In general, if we have  symbols of type

  = 1 2   with 1+2+ + = , then the number of arrangements using all of the symbols

is µ


1

¶
×
µ
− 1

2

¶
×
µ
− 1 − 2

3

¶
× ×

µ




¶
=

!

1!2!!

Example. Suppose we make a random arrangement of length 3 using letters from the set {         }.
What is the probability of the event  that the letters are in alphabetic order if
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a) letters are selected without replacement

b) letters are selected with replacement

For (a), the sample space is {   } with 10(3) equally probable outcomes.

The event  = {   }. To count the outcomes in , we first select the three (different)

letters to form the arrangement in
¡
10
3

¢
ways. There is then 1 way to make an arrangement with the

selected letters in alphabetic order. So we have

 () =

¡
10
3

¢
10(3)

=
1

6


For (b), the sample space is {   } with 103 equally probable outcomes. To count the

elements in , consider the following cases

Case 1: all three letters are the same. There are 10 such arrangements {   } all in alpha-

betic order.

Case 2: there are two different letters e.g. {     }. We can choose the two

letters in
¡
10
2

¢
ways. For each of these choices, we can then make 2 arrangements with the letters in

alphabetic order e.g. { } There are
¡
10
2

¢× 2 arrangements in this case.

Case 3: all three letters are different. We can select the three letters in
¡
10
3

¢
ways and then make 1

arrangement that is in alphabetic order (as in part (a)).

Combining the three cases, we have

 () =
10 +

¡
10
2

¢× 2 + ¡10
3

¢
103

=
11

50

Example: We form a 4 digit number by randomly selecting and arranging 4 digits from 1, 2, 3,. . . 7

without replacement. Find the probability the number formed is (a) even (b) over 3000 (c) an even

number over 3000.

Solution: Let  be the set of all possible 4 digit numbers using digits 1 2     7 sampled without

replacement. Then  has 7(4) outcomes.

(a) For a number to be even, the last digit must be even. We can fill this last position with a 2, 4, or

6; i.e. in 3 ways. The first 3 positions can be filled by choosing and arranging 3 of the 6 digits not

used in the final position. i.e. in 6(3) ways. Then there are 3× 6(3) ways to fill the final position

AND the first 3 positions to produce an even number. Therefore the probability the number is

even is 3×6(3)
7(4)

= 3
7
 Alternatively, the four digit number is even if and only if the last digit is

even. The last digit is equally likely to be any one of the numbers 1, ..., 7 so the probability it is

even is the probability it is either 2,4, or 6 or 3
7


(b) To get a number over 3000, we require the first digit to be 3, 4, 5, 6, or 7; i.e. it can be chosen

in 5 ways. The remaining 3 positions can be filled in 6(3) ways. Therefore the probability the
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number is greater than 3000 is 5×6
(3)

7(4)
= 5

7
 Alternatively, note that the four digit number is over

3000 if and only if the first digit is one of 3, 4, 5, 6 or 7. Since each of 1, ..., 7 is equally likely to

be the first digit, we get the probability the number is greater than 3000 is 5
7


In both (a) and (b) we dealt with positions which had restrictions first, before considering po-

sitions with no restrictions. This is generally the best approach to follow in applying counting

techniques.

(c) This part has restrictions on both the first and last positions. To illustrate the complication this

introduces, suppose we decide to fill positions in the order 1 then 4 then the middle two. We can

fill position 1 in 5 ways. How many ways can we then fill position 4? The answer is either 2 or

3 ways, depending on whether the first position was filled with an even or odd digit. Whenever

we encounter a situation such as this, we have to break the solution into separate cases. One case

is where the first digit is even. The positions can be filled in 2 ways for the first (i.e. with a 4 or

6), 2 ways for the last, and then 5(2) ways to arrange 2 of the remaining 5 digits in the middle

positions. This first case then occurs in 2 × 2 × 5(2) ways. The second case has an odd digit in

position one. There are 3 ways to fill position one (3, 5, or 7), 3 ways to fill position four (2, 4,

or 6), and 5(2) ways to fill the remaining positions. Case 2 then occurs in 3× 3× 5(2) ways. We

need case 1 OR case 2. Therefore the probability we obtain an even number greater than 3000 is

2× 2× 5(2) + 3× 3× 5(2)
7(4)

=
13× 5(2)
7× 6× 5(2) =

13

42


Another way to do this is to realize that we need only to consider the first and last digit, and to

find  (first digit is ≥ 3 and last digit is even). There are 7× 6 = 42 different choices for (first

digit, last digit) and it is easy to see there are 13 choices for which first digit ≥ 3, last digit is

even ( 5× 3minus the impossible outcomes (4, 4) and (6, 6)). Thus the desired probability is 13
42

.

Exercise: Try to solve part (c) by filling positions in the order 4, 1, middle. You should get the same

answer.

Exercise: Can you spot the flaw in the following argument? There are 3× 6(3) ways to get an even

number (part (a)). There are 5 × 6(3) ways to get a number ≥ 3000 (part (b)). Therefore by the

multiplication rule there are [3× 6(3)]× [5× 6(3)] ways to get a number which is even and  3000.

Example: 5 men and 3 women are placed in random seats in a row. Find the probability that

(a) the same gender is at each end

(b) the women all sit together.
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What are you assuming in your solution? Is it likely in real life that individuals are randomly

seated?

Solution: If we treat the people as being 8 objects, 5 of one type and 3 of another, i.e. 5 and 3 ,

our sample space will have 8!
5!3!

= 56 points.

(a) To get the same gender at each end we need either

M M OR W W

The number of distinct arrangements with a man at each end is 6!
3!3!

= 20, since we are arranging

3 ’s and 3 ’s in the middle 6 positions. The number with a woman at each end is 6!
5!1!

= 6.

Thus

 (same gender at each end) =
20 + 6

56
=
13

28

assuming each arrangement is equally likely.

(b) Treating  as a single unit, we are arranging 6 objects, 5 ’s and 1 object we might call

“ 00. There are 6!
5!1!

= 6 arrangements. Thus,

 (women sit together) =
6

56
=
3

28


Our solution is based on the assumption that all points in  are equally likely. This would mean

the people sit in a purely random order. Random seating is unlikely in real life, since friends are

more likely to sit together.

Problems:

3.1.4 Digits 1, 2, 3, . . . , 7 are arranged at random to form a 7 digit number. Find the probability that

(a) the even digits occur together, in any order

(b) the digits at the 2 ends are both even or both odd.

3.1.5 The letters of the word EXCELLENT are arranged in a random order. Find the probability that

(a) the same letter occurs at each end.

(b)  and  occur together, in any order.

(c) the letters occur in alphabetical order.
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Example: In the Lotto 6/49 lottery, six numbers are drawn at random, without replacement, from the

numbers 1 to 49. Find the probability that

(a) the numbers drawn are {1, 2, 3, 4, 5, 6}.

(b) no even number is drawn.

Solution:

(a) Let the sample space  consist of all subsets of 6 numbers from 1, ..., 49; there are
¡
49
6

¢
of them.

Since 1, 2, 3, 4, 5, 6 consist of one of these subsets, the probability of this particular set is 1
¡
49
6

¢
,

which is about 1 in 13.9 million.

(b) There are 25 odd and 24 even numbers, so there are
¡
25
6

¢
choices in which all the numbers are

odd. Therefore the probability no even number is drawn is the probability they are all odd, or¡
25
6

¢¡
49
6

¢ ' 00127

Example: Find the probability a bridge hand (13 cards picked at random from a standard deck4

without replacement) has

(a) 3 aces

(b) at least 1 ace

(c) 6 spades, 4 hearts, 2 diamonds, 1 club

(d) a 6-4-2-1 split between the 4 suits

(e) a 5-4-2-2 split.

Solution: Since order of selection does not matter, we take  to have
¡
52
13

¢
outcomes, each with the

same probability.

(a) We can choose 3 aces in
¡
4
3

¢
ways. We also have to choose 10 other cards from the 48 non-aces.

This can be done in
¡
48
10

¢
ways. Hence the probability of exactly three aces is

(43)(
48
10)

(5213)

4A standard deck has 13 cards in each of four suits, hearts, diamonds, clubs and spades for a total of 52 cards. There are

four aces in the deck (one of each suit).
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(b) Solution 1: At least 1 ace means 1 ace or 2 aces or 3 aces or 4 aces. Calculate each part as in (a)

and use the addition rule to get that the probability of at least one ace is¡
4
1

¢¡
48
12

¢
+
¡
4
2

¢¡
48
11

¢
+
¡
4
3

¢¡
48
10

¢
+
¡
4
4

¢¡
48
9

¢¡
52
13

¢ 

Solution 2: If we subtract all cases with 0 aces from the
¡
52
13

¢
points in  we are left with all points having at

least 1 ace. There are
¡
4
0

¢¡
48
13

¢
=
¡
48
13

¢
possible hands with 0 aces since all cards must be drawn

from the non-aces. (The term
¡
4
0

¢
can be omitted since

¡
4
0

¢
= 1, but was included here to show

that we were choosing 0 of the 4 aces) This gives that the probability of at least one ace is¡
52
13

¢− ¡48
13

¢¡
52
13

¢ = 1−
¡
48
13

¢¡
52
13

¢

This solution is incorrect, but illustrates a common error. Choose 1 of the 4 aces then any

12 of the remaining 51 cards. This guarantees we have at least 1 ace, so the probability of at

least one ace is
(41)(

51
12)

(5213)
 The flaw in this solution is that it counts some points more than once by

partially keeping track of order. For example, we could get the ace of spades on the first choice

and happen to get the ace of clubs in the last 12 draws. We also could get the ace of clubs on

the first draw and then get the ace of spades in the last 12 draws. Though in both cases we have

the same outcome, they would be counted as 2 different outcomes. The strategies in solution 1

and 2 above are safer. We often need to inspect a solution carefully to avoid double or multiple

counting.

(c) Choose the 6 spades in
¡
13
6

¢
ways and the hearts in

¡
13
4

¢
ways and the diamonds in

¡
13
2

¢
ways and

the clubs in
¡
13
1

¢
ways. Therefore the probability of 6 spades, 4 hearts, 2 diamonds and one clubs

is

¡
13
6

¢¡
13
4

¢¡
13
2

¢¡
13
1

¢¡
52
13

¢ ' 000196

(d) The split in (c) is only 1 of several possible 6-4-2-1 splits. In fact, filling in the numbers 6, 4, 2

and 1 in the spaces below

Spades Hearts Diamonds Clubs

defines a 6-4-2-1 split. There are 4!ways to do this, and having done this, there are
¡
13
6

¢¡
13
4

¢¡
13
2

¢¡
13
1

¢
ways to pick the cards from these suits. Therefore the probability of a a 6-4-2-1 split between

the 4 suits is
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4!
¡
13
6

¢¡
13
4

¢¡
13
2

¢¡
13
1

¢¡
52
13

¢ ' 0047

(e) This is the same question as (d) except the numbers 5-4-2-2 are not all different. There are 4!
2!

different arrangements of 5-4-2-2 in the spaces below.

Spades Hearts Diamonds Clubs

Therefore, the probability of a a 5-4-2-2 split is

4!
2!

¡
13
5

¢¡
13
4

¢¡
13
2

¢¡
13
2

¢¡
52
13

¢ ' 01058

Notes. While () only has a physical interpretation when  and  are positive integers with  ≥ , it

still has meaning when  is not a positive integer, as long as  is a non-negative integer. In general we

can define () = (− 1)(−  + 1). For example:

(−2)(3) = (−2)(−2− 1)(−2− 2) = (−2)(−3)(−4) = −24 and

13(2) = (13)(13− 1) = 039

Note that in order for
¡

0

¢
=
¡



¢
= 1 we must define

(0) =
!

(− 0)! = 1 and 0! = 1

Also
¡



¢
loses its physical meaning when  is not a non-negative integer ≥  but we can useµ





¶
=

()

!

to define it when  is not a positive integer but  is. For example,µ
1
2

3

¶
=
(1
2
)(3)

3!
=
(1
2
)(−1

2
)(−3

2
)

3!
=
1

16

Also, when  and  are non-negative integers and    notice that
¡



¢
=()

!
=

(−1)(0)
!

= 0

Problems:

3.2.1 A factory parking lot has 160 cars in it, of which 35 have faulty emission controls. An air quality

inspector does spot checks on 8 cars on the lot.
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(a) Give an expression for the probability that at least 3 of these 8 cars will have faulty emission

controls.

(b) What assumption does your answer to (a) require? How likely is it that this assumption

holds if the inspector hopes to catch as many cars with faulty controls as possible?

3.2.2 In a race, the 15 runners are randomly assigned the numbers 1 2 · · ·  15. Find the probability

that

(a) 4 of the first 6 finishers have single digit numbers.

(b) the fifth runner to finish is the 3rd finisher with a single digit number.

(c) number 13 is the highest number among the first 7 finishers.

3.2 Review of Useful Series and Sums

We will be making use the following series and sums.

1. Geometric Series:

+  + 2 + · · ·+ −1 =
 (1− )

1− 
=

 ( − 1)
 − 1 for  6= 1

If ||  1, then

+  + 2 + · · · = 

1− 

2. Binomial Theorem: There are various forms of this theorem. We will use the form

(1 + ) = 1 +

µ


1

¶
1 +

µ


2

¶
2 + +

µ




¶
 =

X
=0

µ




¶


Justification: One way of verifying this formula uses the counting arguments of this chapter.

Imagine a product of the individual terms:

(1 + ) (1 + ) (1 + )  (1 + )

To evaluate this product we must add together all of the possibilities obtained by taking one of

the two possible terms from the first bracketed expression, i.e. one of {1 ) multiplying by one

{1 ) taken from the second bracketed expression. etc. In how many ways do we obtain the

term  where  = 0 1 2  ? We might choose  from each of the first  terms above and

then 1 from the remaining terms, or indeed we could choose  from any  of the terms in
¡



¢
ways and then 1 from the remaining terms.
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3. Binomial Theorem: There is a more general version of the binomial theorem that results in an

infinite series and that holds when  is not a positive integer:

(1 + ) =

∞X
=0

µ




¶
 if ||  1

Proof: Recall from Calculus the Maclaurin’s series which says that a sufficiently smooth func-

tion () can be written as an infinite series using an expansion around  = 0

() = (0) +
 0(0)
1

+
 00(0)
2!

2 + 

provided that this series is convergent. In this case, with () = (1 + )  (0) = 1  0(0) =
  00(0) = (− 1) and  ()(0) = () Substituting,

() = 1 +


1
+

(− 1)
2!

2 + +
()

!
 +  =

∞X
=0

µ




¶


It is not hard to show that this converges whenever ||  1

4. Multinomial Theorem: A generalization of the binomial theorem is

(1 + 2 + · · ·+ )
 =

X !

1!2! · · ·!
11 22 · · ·  

with the summation over all 1 2 · · ·   with
P

 = .

Justification: Again we could verify this formula uses the counting arguments. Imagine a

product of the individual terms:

(1 + 2 + · · ·+ ) (1 + 2 + · · ·+ )  (1 + 2 + · · ·+ )

To evaluate this product we must add together all of the possibilities obtained by taking one of

the terms from the first bracketed expression, i.e. one of {1 2 · · ·  } multiplying by one

{1 2 · · ·  } taken from the second bracketed expression. etc. In how many ways do we

obtain the term 11 22 · · ·  where
P

 = ? We can choose 1 a total of 1times from any

of the  terms in
¡

1

¢
ways, and then 2 from any of the remaining −1 terms in

¡
−1
2

¢
ways,

and so on so there areµ


1

¶µ
− 1

2

¶µ
− 1 − 2

3

¶


µ




¶
=

!

1!2! · · ·!
ways or obtaining this term in the product. The case  = 2 gives the binomial theorem in the

form

(1 + 2)
 =

X
1=0

µ


1

¶
11 −12
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5. Hypergeometric Identity:

∞X
=0

µ




¶µ


− 

¶
=

µ
+ 



¶


There will not be an infinite number of terms if  and  are positive integers since the terms

become 0 eventually. For exampleµ
4

5

¶
=
4

5!

(5)

=
(4)(3)(2)(1)(0)

5!
= 0

Proof: We prove this in the case that  and  are non-negative integers. Obviously

(1 + )+ = (1 + ) × (1 + )

If we expand each term using the binomial theorem we obtain

+X
=0

µ
+ 



¶
 =

X
=0

µ
+ 



¶
 ×

X
=0

µ




¶
 

Note that the coefficient of  on the right side is
P
=0

¡



¢¡


−
¢

and so this must equal
¡
+


¢
 the

coefficient of  on the left side.

6. Exponential series: This is another example of a Maclaurin series expansion, if we let () =

 then  ()(0) = 1 and so

 =
0

0!
+

1

1!
+

2

2!
+

3

3!
+ · · · =

∞X
=0



!

We will also use the limit definition of the exponential function: for all real 

 = lim
→∞

³
1 +





´
7. Special series involving integers:

1 + 2 + 3 + · · ·+  =
(+ 1)

2

12 + 22 + 32 + · · ·+ 2 =
(+ 1)(2+ 1)

6

13 + 23 + 33 + · · ·+ 3 =

∙
(+ 1)

2

¸2
Example: Find

∞X
=0

 (− 1)
µ




¶µ


− 

¶
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Solution: For  = 0 or 1 the term becomes 0, so we can start summing at  = 2. For  ≥ 2, we

can expand ! as (− 1)(− 2)!
∞X
=0

(− 1)
µ




¶µ


− 

¶
=

∞X
=2

(− 1) !

(− 1)(− 2)!(− )!

µ


− 

¶


Cancel the (− 1) terms and try to re-group the factorial terms as “something choose something”.

!

(− 2)!(− )!
=

(− 1)(− 2)!
(− 2)! [(− 2)− (− 2)]! = (− 1)

µ
− 2
− 2

¶


Then ∞X
=0

(− 1)
µ




¶µ


− 

¶
=

∞X
=2

(− 1)
µ
− 2
− 2

¶µ


− 

¶


Factor out (− 1) and let  = − 2 to get

(− 1)
∞X
=0

µ
− 2


¶µ


− ( + 2)
¶
= (− 1)

µ
+ − 2
− 2

¶
by the hypergeometric identity.
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3.3 Problems on Chapter 3

3.1 Six digits from 2, 3, 4, . . . , 8 are chosen and arranged in a row without replacement. Find the

probability that

(a) the number is divisible by 2

(b) the digits 2 and 3 appear consecutively in the proper order (i.e. 23)

(c) digits 2 and 3 appear in the proper order but not consecutively.

3.2 Suppose  passengers get on an elevator at the basement floor. There are  floors above (num-

bered 1, 2, 3, . . . , ) where passengers may get off.

(a) Find the probability

(i) no passenger gets off at floor 1

(ii) passengers all get off at different floors ( ≥ ).

(b) What assumption(s) underlies your answer to (a)? Comment briefly on how likely it is that

the assumption(s) is valid.

3.3 There are 6 stops left on a subway line and 4 passengers on a train. Assume they are each equally

likely to get off at any stop. What is the probability

(a) they all get off at different stops?

(b) 2 get off at one stop and 2 at another stop?

3.4 Give an expression for the probability a bridge hand of 13 cards contains 2 aces, 4 face cards

(Jack, Queen or King) and 7 others. You might investigate the various permutations and combina-

tions relating to card hands using the Java applet at  : 

3.5 The letters of the word STATISTICS are arranged in a random order. Find the probability

(a) they spell statistics

(b) the same letter occurs at each end.
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3.6 Three digits are chosen in order from 0, 1, 2, . . . , 9. Find the probability the digits are drawn in

increasing order; (i.e., the first  the second  the third) if

(a) draws are made without replacement

(b) draws are made with replacement.

3.7 The Birthday Problem. 5 Suppose there are  persons in a room. Ignoring February 29 and as-

suming that every person is equally likely to have been born on any of the 365 other days in a year,

find the probability that no two persons in the room have the same birthday. Find the numerical

value of this probability for  = 20 40 and 60. There is a graphic Java applet for illustrating the

frequency of common birthdays at http://www-stat.stanford.edu/%7Esusan/surprise/Birthday.html

3.8 You have  identical looking keys on a chain, and one opens your office door. If you try the keys

in random order then

(a) what is the probability the 0th key opens the door?

(b) what is the probability one of the first two keys opens the door (assume  ≥ 3)?
(c) Determine numerical values for the answer in part (b) for the cases  = 3 5 7.

3.9 From a set of 2 + 1 consecutively numbered tickets, three are selected at random without

replacement. Find the probability that the numbers of the tickets form an arithmetic progression.

[The order in which the tickets are selected does not matter.]

3.10 The 10,000 tickets for a lottery are numbered 0000 to 9999. A four-digit winning number is

drawn and a prize is paid on each ticket whose four-digit number is any arrangement of the num-

ber drawn. For instance, if winning number 0011 is drawn, prizes are paid on tickets numbered

0011, 0101, 0110, 1001, 1010, and 1100. A ticket costs $1 and each prize is $500.

(a) What is the probability of winning a prize (i) with ticket number 7337? (ii) with ticket

number 7235? What advice would you give to someone buying a ticket for this lottery?

(b) Assuming that all tickets are sold, what is the probability that the operator will lose money

on the lottery?

5" My birthday was a natural disaster, a shower of paper full of flattery under which one almost drowned" Albert Einstein,

1954 on his seventy-fifth birthday.
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3.11 (a) There are 25 deer in a certain forested area, and 6 have been caught temporarily and tagged.

Some time later, 5 deer are caught. Find the probability that 2 of them are tagged. (What

assumption did you make to do this?)

(b) Suppose that the total number of deer in the area was unknown to you. Describe how you

could estimate the number of deer based on the information that 6 deer were tagged earlier,

and later when 5 deer are caught, 2 are found to be tagged. What estimate do you get?

3.12 Lotto 6/49. In Lotto 6/49 you purchase a lottery ticket with 6 different numbers, selected from the

set {1 2  49}. In the draw, six (different) numbers are randomly selected. Find the probability

that

(a) Your ticket has the 6 numbers which are drawn. (This means you win the main Jackpot.)

(b) Your ticket matches exactly 5 of the 6 numbers drawn.

(c) Your ticket matches exactly 4 of the 6 numbers drawn.

(d) Your ticket matches exactly 3 of the 6 numbers drawn.

3.13 (Texas Hold-em) Texas Hold-em is a poker game in which players are each dealt two cards face

down (called your hole or pocket cards), from a standard deck of 52 cards, followed by a round

of betting, and then five cards are dealt face up on the table with various breaks to permit players

to bet the farm. These are communal cards that anyone can use in combination with their two

pocket cards to form a poker hand. Players can use any five of the face-up cards and their two

cards to form a five card poker hand. Probability calculations for this game are not only required

at the end, but also at intermediate steps and are quite complicated so that usually simulation is

used to determine the odds that you will win given your current information, so consider a simple

example. Suppose we were dealt 2 Jacks in the first round.

(a) What is the probability that the next three cards (face up) include at least one Jack?

(b) Given that there was no Jack among these next three cards, what is the probability that there

is at least one among the last two cards dealt face-up?

(c) What is the probability that the 5 face-up cards show two Jacks, given that I have two in my

pocket cards?

3.14 Show that
X

=0



µ




¶
(1− )− = 

(use the binomial theorem).
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3.15 I have a quarter which turns up heads with probability 0.6, and a fair dime. The quarter is flipped

until a head occurs. Independently the dime is flipped until a head occurs. Find the probability

that the number of flips is the same for both coins.

3.16 Some other summation formulas can be obtained by differentiating the above equations on both

sides. Show that + 2 + 32 + · · · = 
(1−)2 by starting with the geometric series formula.

Assume ||  1.

3.17 Players  and  decide to play chess until one of them wins. Assume games are independent

with  ( wins) = .3,  ( wins) = .25 and  (draw) = .45 on each game. If the game ends in a

draw another game will be played. Find the probability  wins before .



4. Probability Rules and Conditional

Probability

4.1 General Methods

Recall that a probability model consists of a sample space  a set of events or subsets of the sample

space to which we can assign probabilities and a mechanism for assigning these probabilities. The

probability of an arbitrary event  can be determined by summing the probabilities of simple events

in  and so we have the following rules:

Rule 1  () = 1

Proof:  () =
P

∈  () =
P

all   () = 1

Rule 2 For any event  0 ≤  () ≤ 1
Proof:  () =

P
∈  () ≤ P

∈  () = 1 and so since each  () ≥ 0 we have

0 ≤  () ≤ 1

Rule 3 If  and  are two events with  ⊆  (that is, all of the points in  are also in ), then

 () ≤  ()

Proof:  () =
P

∈  () ≤P∈  () =  () so  () ≤  ()

Before continuing with the set-theoretic description of a probability model, let us review some of

the basic ideas in set theory. First what do sets have to do with the occurrence of events? Suppose

a random experiment having sample space  is run (for example a die with  = {1 2 3 4 5 6} is

thrown). When would we say an event  ⊂ , or in the case of the die, the event  = {2 4 6} occurs?

In the latter case, the event  means that the number showing is even, i.e. in general that one of the

simple outcomes in  occurred. We often illustrate the relationship among sets using Venn diagrams.

In the drawings below, think of  consisting of all of the points in a rectangle of area one6. To illustrate

6As you may know, however, the number of points in a rectangle is NOT countable, so this is not a discrete sample space.

Nevertheless this definition of  is used to illustrate various combinations of sets

39
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the event  we can draw a region within the rectangle with area roughly proportional to the probability

of the event  We might think of the random experiment as throwing a dart at the rectangle in Figure

4.3, and we say the event  occurs if the dart lands within the region 

Figure 4.3: Set  in sample space 

What if we combine two events  by including all of the points in either  or  or both. This

is the union of the two events or  ∪ illustrated in Figure 4.4. The union of the events occurs if one

Figure 4.4: The union of two sets  ∪

of the outcomes in either A or B or both occurs. In language we refer to this as the event " or " with

the understanding that in this course we will use the word "or" inclusively to also permit both. Another

way of expressing a union is  ∪  occurs if at least one of  occurs. Similarly if we have three

events  the event  ∪ ∪  means "at least one of ”.

What about the intersection of two events ( ∩) or the set of all points in  that are in both 

and? This is illustrated in Figure 4.5. The event∩ occurs if and only if a point in the intersection

occurs which means both A and B occur. It is common to shorten the notation for the intersection of
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Figure 4.5: The intersection of two events  ∩

two events so that  means  ∩  and  means  ∩  ∩  Finally the complement of the

event  is denoted ̄ and means the set of all points which are in  but not in  as in Figure 4.6.

Figure 4.6: ̄ =the complement of the event 

There are two special events in a probability model that we will use. One is the whole sample space

 Because  () = 1, this event is certain to occur. Another is the empty event, or the null set  This

is a set with no elements at all and so it must have probability 0 Notice that  = 

The illustrations above showing the relationship among sets are examples of Venn diagrams. At

the URL http://stat-www.berkeley.edu/users/stark/Java/Venn.htm, there is an applet which allows you

to vary the area of the intersection and construct Venn diagrams for a variety of purposes. Since

probability theory is built from the relationships among sets, it is often helpful to use Venn diagrams in

solving problems. For example there are rules (De Morgan‘s laws) governing taking the complements

of unions and intersections that can easily be verified using Venn diagrams.
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Exercise: Verify de Morgan‘s laws:

a.  ∪ =  ∩

b.  ∩ =  ∪
Proof of a: One can argue such set theoretic rules using the definitions of the sets. For example

when is a point  in the set  ∪ This means  ∈  but  is not in  ∪  which in turn

implies  is not in  and it is not in  or  ∈  and  ∈ equivalently  ∈  ∩  As

and alternative demonstration, we can use a Venn diagram (Figure 4.7) in which  is indicated

with vertical lines,  with horizontal lines and so ∩ is the region with cross hatching. This

agrees with the shaded region  ∪

Figure 4.7: Illustration of De Morgan‘s law using a Venn diagram. The region indicated with vertical

bars is  and with horizonal lines, , The shaded region,  ∪ is identical to  ∩

The following example demonstrates solving a problem using a Venn diagram.

Example: Suppose for students finishing second year Math that 22% have a math average greater than

80%, 24% have a STAT 230 mark greater than 80%, 20% have an overall average greater than 80%,

14% have both a math average and STAT 230 greater than 80%, 13% have both an overall average and

STAT 230 greater than 80%, 10% have all 3 of these averages greater than 80%, and 67% have none of

these 3 averages greater than 80%. Find the probability a randomly chosen math student finishing 2A

has math and overall averages both greater than 80% and STAT 230 less than or equal to 80%.

Solution: When using rules of probability it is generally helpful to begin by labeling the events of

interest. Imagine a student is chosen at random from all students finishing second year Math. For this

student, let
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 be the event “math average greater than 80%”

 be the event “overall average greater than 80%”

 be the event “STAT 230 mark greater than 80%”

In terms of these symbols, we are given:

 () = 022  () = 013

 () = 020  () = 01

 () = 024  (̄̄̄) = 067

 () = 014

Let us interpret some of these expressions; for example ̄̄̄ means ̄ ∩ ̄ ∩ ̄ or (not ) and (not

) and (not ), or that none of the marks or averages are greater than 80% for the randomly chosen

student. We are asked to find  (̄), the shaded region in Figure 4.8. Filling in this information on

a Venn diagram, in the order indicated by (1), (2), (3), etc. below (and rather loosely identifying the

area of a set with its probability)

Figure 4.8: Venn Diagram for Math Averages Example
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(1)  () is given= 01

(2)  ()−  () = 014− 01 = 004
(3)  ()−  () = 013− 01 = 003
(4)  ()−  ()− 003 = 024− 014− 003 = 007
(5)  () is unknown, so let  () = 

(6)  ()−  ()−  () = 022− 014−  = 008− 

(7)  ()−  ()−  () = 020− 013−  = 007− 

(8)  ( ∪ ∪) = 067 is given
Adding all probabilities from (1) to (8) we obtain, since  () = 1

01 + 004 + 003 + 007 + + 008− + 007− + 067 = 1

giving 106−  = 1 and solving for ,  (̄) =  = 006

Problems:

4.1.1 In a typical year, 20% of the days have a high temperature  22C. On 40% of these days there

is no rain. In the rest of the year, when the high temperature ≤ 22C, 70% of the days have no

rain. What percent of days in the year have rain and a high temperature ≤ 22C?

4.1.2 According to a survey of people on the last Ontario voters list, 55% are female, 55% are polit-

ically to the right, and 15% are male and politically to the left. What percent are female and

politically to the right? Assume voter attitudes are classified simply as left or right.
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4.2 Rules for Unions of Events

In addition to the two rules which govern probabilities listed in Section 4.1, we have the following

Rule 4 a (probability of unions)  ( ∪) =  () +  ()−  ()

Proof: Suppose we denote set differences by  =  ∩  the set of points which are in 

but not in  Then

 () +  () =
X
∈

 () +
X
∈

 ()

=

⎛⎝ X
∈

 () +
X
∈

 ()

⎞⎠+
⎛⎝ X

∈
 () +

X
∈

 ()

⎞⎠
=

⎛⎝ X
∈

 () +
X
∈

 () +
X

∈
 ()

⎞⎠+ X
∈

 ()

=
X

∈∪
 () +

X
∈

 ()

=  ( ∪) +  ()

Subtracting  () we obtain  ( ∪ ) =  () +  () −  () as required. This can

also be justified by using a Venn diagram. Each point in  ∪  must be counted once. In the

expression  ()+ () however, points in  have their probability counted twice - once in

 () and once in  () - so they need to be subtracted once.

Rule 4 b (the probability of the union of three events) By a similar argument, we have

 ( ∪ ∪ ) =  () +  () +  ()−  ()−  ()−  () +  () (4.2)

(see Figure 4.9). The proof is similar. In the sum  () +  () +  () those points in the regions

labelled   in Figure 4.9 lie in only one of the events and their probabilities are added only

once. However points in the regions labelled  , for example, lie in two of the events. We can

compensate for this double-counting by subtracting these probabilities once, e.g. using  ()+ ()+

 () − [ () +  () +  ()] However, now those points in all three sets, i.e. those points

in  =  have their probabilities added in three times and then subtracted three times so they are

not included at all: we must correct the formula to give (4.2).
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Figure 4.9: The union  ∪ ∪

Rule 4 c There is an obvious generalization of the above formula to  events 1 . This is of-

ten referred to as the inclusion-exclusion principle because of the process discussed above for

constructing it:

 (1 ∪2 ∪3 ∪ · · · ∪) =
X


 ()−
X


 () +
X


 () (4.3)

−
X



 () + · · ·

(where the subscripts are all distinct, for example       ).

Proof: This is easy to prove using rule 4a and induction. Let  = 1 ∪2 ∪3 ∪ · · · ∪ for

 = 1 2 . Then 4a shows that (4.3) holds for  = 2 Suppose the rule is true for  Then

 (1 ∪2 ∪3 ∪ · · · ∪ ∪+1) =  ( ∪+1)

=  () +  (+1)−  (+1)

=
X
≤

 ()−
X

≤
 () +

X
≤

 () + +  (+1)

−
X
≤

 (+1) +
X

≤
 (+1)−

X
≤

 (+1) + 

We will use (4.3) rarely in this course7.

Definition 6 Events  and  are mutually exclusive if  =  (the empty event).

7i.e. do not memorize
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Since mutually exclusive events  and  have no common points,  () =  () = 0.

In general, events 1 2 · · ·   are mutually exclusive if  =  for all  6= . This means

that there is no chance of two or more of these events occurring together, we either have exactly one of

the events occur, or none. For example, if a die is rolled twice, the events

 is the event that 2 occurs on the first roll,

 is the event that the total is 10,

are mutually exclusive. Similarly the events 2 3 12 where  is the event that the total on the

two dice is  are all mutually exclusive events. In the case of mutually exclusive events, rule 4 above

simplifies to rule 5 below.

Rule 5 a (unions of mutually exclusive events). Let  and  be mutually exclusive events. Then  ( ∪
) =  () +  () This is a consequence or rule 4a and the fact that  () =  () = 0

Rule 5 b In general, let 1 2 · · · be mutually exclusive events. Then  (1 ∪2 ∪ · · · ∪) =
P
=1

 ()

This is easily proven from rule 5a above using induction or as an immediate consequence of 4c.

Rule 6 (probability of complements)  () = 1−  (̄)

Proof:  and ̄ are mutually exclusive and  ∪ ̄ =  so by Rule 5a,

 ( ∪ ̄) =  () +  (̄)

But since  ( ∪ ̄) =  () = 1,

1 =  () +  (̄) or

 () = 1−  (̄)

This result is useful whenever  (̄) is easier to obtain than  ().

Example: Two ordinary dice are rolled. Find the probability that at least one of them turns up a six.
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Solution 1: The sample space is  = (1 1) (1 2) (1 3) Let  be the event that we obtain 6 on the

first die ,  be the event that we obtain 6 on the second die and note (by rule 4) that

 (at least one die shows 6) =  ( ∪)
=  () +  ()−  ()

= 1
6
+ 1

6
− 1

36

= 11
36

Solution 2: This is an example where it is perhaps somewhat easier to obtain the complement of the

event  ∪ since the complement is the event that there is no six showing on either die, and there are

exactly 25 such points, (1 1) (1 5) (2 1) (2 5) (5 5) Therefore

 (at least one die shows 6) = 1−  (no 6 on either die)

= 1− 25
36

= 11
36

Example: Roll a die 3 times. Find the probability of getting at least one 6.

Solution 1: Let  be the event "least one die shows 6”. Then ̄ is the event that no 6 on any die shows.

Using counting arguments, there are 6 outcomes on each roll, so  = {(1 1 1) (1 1 2)(6 6 6)}
has 6 × 6 × 6 = 216 points. For ̄ to occur we can’t have a 6 on any roll. Then ̄ can occur in

5× 5× 5 = 125 ways.

Therefore  (̄) =
125

216
 Hence  () = 1− 125

216
=
91

216

Solution 2: Can you spot the flaw in the following argument? Let
 be the event that 6 occurs on the first roll

 be the event that 6 occurs on the second roll

 be the event that 6 occurs on the third roll
Then

 (one or more six) =  ( ∪ ∪ )
=  () +  () +  ()

=
1

6
+
1

6
+
1

6
=
1

2

You should have noticed that , and  are not mutually exclusive events, so we should have used

 ( ∪ ∪ ) =  () +  () +  ()−  ()−  ()−  () +  ()
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Each of , and  occurs 6 times in the 216 point sample space and so  () = 1
36
=

 () =  () Also  () = 1
216

Therefore  ( ∪ ∪ ) = 1

6
+
1

6
+
1

6
− 1

36
− 1

36
− 1

36
+

1

216
=
91

216


Note: Rules 3, 4, and (indirectly) 5 link the concepts of addition of probabilities with unions of

events, and complements. The next segment will consider intersection, multiplication of probabilities,

and a concept known as independence. Making these linkages will make problem solving and the

construction of probability models easier.

Problems:

4.2.1 Let  and  be events for which

 () = 02  () = 05  () = 03 and  () = 01

(a) Find the largest possible value for  ( ∪ ∪ )
(b) For this largest value to occur, are the events and  mutually exclusive, not mutually

exclusive, or can this not be determined?

4.2.2 Prove that  ( ∪) = 1−  ( ) for arbitrary events  and  in .
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4.3 Intersections of Events and Independence

Dependent and Independent Events:

Consider the events  : airplane engine fails in flight and  : airplane reaches its destination safely.

Do we normally consider these events as related or dependent in some way. Certainly if a Canada

Goose is sucked into one jet engine, that effects the probability that the airplane safely reaches its

destination, i.e. it effects the probability that should be assigned to the event  Suppose we toss a fair

coin twice. What about the two events  :  is obtained on first toss and  :  is obtained on both

tosses. Again there appears to be some dependence. On the other hand if we replace  by  : 

is obtained on second toss, we do not think that the occurrence of  affects the chances that  will

occur. When we should reassess the probability of one event  given that the event  occurred we

call a pair of events dependent, and otherwise we call them independent. We formalize this concept in

the following mathematical definition.

Definition 7 Events  and  are independent if and only if  () =  () (). If they are not

independent, we call the events dependent.

When we used Venn diagrams, we imagined that the probability of events was roughly proportional

to their area. This is justified in part because area and probability are to examples of “measures”

in mathematics and share much the same properties. Let us continue this tradition, so that in the

figure below, the probability of events is represented by the area of the corresponding region. Then if

two events are independent, the “size” of their intersection as measured by the probability measure is

required to be the product of the individual probabilities. This means, of course, that the intersection

must be non-empty, and so the events are not mutually exclusive8. For example in the Venn diagram

depicted in Figure 4.10,  () = 03  () = 04 and  () = 012 so in this case the two events

are independent. If you were to hold the rectangle  in place and move the rectangle  down and to

the right, the probability of the intersection as represented by the area would decrease and the events

would become dependent.

For another example, suppose we toss a fair coin twice. Let  = {head on 1st toss} and  = {head

on 2nd toss}. Clearly  and  are independent since the outcome on each toss is unrelated to other

tosses, so  () = 1
2
  () = 1

2
  () = 1

4
=  () ().

8Can you think of a pair of events that are both independent and mutually exclusive? Suppose  () = 05 and  is an

event such that  ∩ =  and  () = 0 Then  () () = 0 =  (∩) so this pair of events is independent. Does

this make sense to you?
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A

B

P(AB)=P(A)P(B)

S

Figure 4.10: Suppose that the probability of a region is equal to its area (so that the aread of  is 1)

Then this illustrates Independent events 

However, if we roll a die once and let  = {the number is even} and  = {number  3} the events will

be dependent since

 () =
1

2
  () =

1

2
  () =  (4 or 6 occurs) =

2

6
6=  () ()

(Rationale:  only happens half the time. If  occurs we know the number is 2, 4, or 6. So  occurs
2
3

of the time when  occurs. The occurrence of  does affect the chances of  occurring so  and 

are not independent.)

When there are more than 2 events, the above definition generalizes to:

Definition 8 The events 1 2 · · ·   are independent if and only if

 (1  2  · · ·  ) =  (1) (2) · · · ()

for all sets (1 2 · · ·  ) of distinct subscripts chosen from (1 2 · · ·  )9

For example, for  = 3, we need

 (12) =  (1) (2)

 (13) =  (1) (3)

 (23) =  (2) (3)

9We need all subsets so that events are independent of combinations of other events. For example if 1 is independent of

2 and 4 is to be independent of 12 then,  (124) =  (12) (4) =  (1) (2) (4)
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and

 (123) =  (1) (2) (3)

Technically, we have defined “mutually independent” events, but we will shorten the name to “inde-

pendent” to reduce confusion with “mutually exclusive.”

The definition of independence works two ways. If we can find  ()  (), and  () then we can

determine whether  and  are independent. Conversely, if we know (or assume) that  and  are

independent, then we can use the definition as a rule of probability to calculate  (). Examples of

each follow.

Example: Toss a die twice. Let  be the event that the first toss is a 3 and  the event that

the total is 7. Are  and  independent? (What do you think?) Using the definition to check, we

get  () = 1
6
  () = 6

36
(points (1,6), (2,5), (3,4), (4,3), (5,2) and (6,1) give a total of 7) and

 () = 1
36

(only the point (3,4) makes  occur).

Therefore,  () =  () () and so  and  are independent events.

Now suppose we define  to be the event that the total is 8. This is a minor change from the definition

of 

Then

 () =
1

6
  () =

5

36
and  () =

1

36

Therefore  () 6=  () ()

and consequently  and  are dependent events.

This example often puzzles students. Why are they independent if is a total of 7 but dependent for :

total is 8? The key is that regardless of the first toss, there is always one number on the 2nd toss which

makes the total 7. Since the probability of getting a total of 7 started off being 6
36
= 1

6
, the outcome of

the 1st toss doesn’t affect the chances. However, for any total other than 7, the outcome of the 1st toss

does affect the chances of getting that total (e.g., a first toss of 1 guarantees the total cannot be 8)10.

Example: A random number generator on the computer can give a sequence of independent random

digits chosen from  = {0 1     9}. This means that (i) each digit has probability of 1
10

of being any

of 0 1     9, and (ii) events determined by the different trials are independent of one another. We call

this an “experiment with independent trials”. Determine the probability that

10This argument is in terms of “conditional probability” closely related to independence and to be treated in the next

section.
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(a) in a sequence of 5 trials, all the digits generated are odd

(b) the number 9 occurs for the first time on trial 10.

Solution:

(a) Define the events : digit from trial  is odd,  = 1     5.

Then

 (all digits are odd) =  (12345)

=

5Y
=1

 ()

since the ’s are mutually independent. Since  () =
1
2
, we get  (all digits are odd)= 1

25
.

(b) Define events : 9 occurs on trial , for  = 1 2    . Then we want

 (̄1̄2    ̄910) =  (̄1) (̄2)     (̄9) (10)

= (9)9(1)

because the ’s are independent, and  () = 1−  (̄) = 01.

Note: We have used the fact here that if  and  are independent events, then so are ̄ and . To see

this note that

 =  ∪ ̄ where  and ̄ are mutually exclusive events, so

 () =  () +  (̄).

Therefore

 (̄) =  ()−  ()

=  ()−  () () (since  and  are independent)

= (1−  ()) ()

=  (̄) ()

Note: We have implicitly assumed independence of events by using the discrete uniform model some

of our earlier probability calculations. For example, suppose a coin is tossed 3 times, and we consider

the sample space

 = {    }
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Assuming that the outcomes on the three tosses are independent, and that

 () =  ( ) =
1

2

on any single toss, we get that

 () =  () () () = (
1

2
)3 =

1

8


Similarly, all the other simple events have probability 1
8
. In earlier calculations we implicitly assumed

this was true by assigning the same probability 1
8

to all possible outcomes without thinking directly

about independence. However, it is clear that if somehow the 3 tosses were not independent then it

might be a bad idea to assume each outcome had probability 1
8
. (For example, instead of heads and

tails, suppose stands for “rain” and  stands for “no rain” on a given day; now consider 3 consecutive

days. Would you want to assign a probability of 1
8

to each of the 8 simple events even if this were in a

season when the probability of rain on a day was 1
2
?)

Note: The definition of independent events can thus be used either to check for independence or,

if events are known to be independent, to calculate  (). Many problems are not obvious, and

scientific study is needed to determine if two events are independent. For example, are the events 

and  independent if, for a random child living in a country, the events are defined as : the child lives

within 5 Kim. of a nuclear power plant and : the child has leukemia? Determining whether such

events are dependent and if so the extent of the dependence are problems of substantial importance,

and can be handled by methods in later statistics courses.

Problems:

4.3.1 A weighted die is such that  (1) =  (2) =  (3) = 01  (4) =  (5) = 02 and  (6) = 03

Assume that events determined by different throws of the die are independent.

(a) If the die is thrown twice what is the probability the total is 9?

(b) If a die is thrown twice, and this process repeated 4 times, what is the probability the total will

be 9 on exactly 1 of the 4 repetitions?

4.3.2 Suppose among UW students that 15% speaks French and 45% are women. Suppose also that

20% of the women speak French. A committee of 10 students is formed by randomly selecting

from UW students. What is the probability there will be at least 1 woman and at least 1 French

speaking student on the committee11?

4.3.3 Prove that  and  are independent events if and only if  and  are independent.
11Although the sampling is conducted without replacement, because the population is very large, whether we replace or
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4.4 Conditional Probability

In many situations we may want to determine the probability of some event , while knowing that

some other event  has already occurred. For example, what is the probability a randomly selected

person is over 6 feet tall, given that she is female? Let the symbol  (|) represent the probability

that event  occurs, when we know that  occurs. We call this the conditional probability of  given

. While we will give a definition of  (|), let’s first consider an example we looked at earlier, to

get some sense of why  (|) is defined as it is.

Example: Suppose we roll a die once so that sample space is  = {1 2 3 4 5 6}. Let  be the

event that the number is even and  the event that the number is greater than 3. If we know that 

occurs, that tells us that we have a 4, 5, or 6. Of the times when  occurs, we have an even number 2
3

of the time. So  (|) = 2
3
. More formally, we could obtain this result by calculating  ()

 ()
, since

 () =  (4  6) = 2
6

and  () = 3
6
.

Definition 9 the conditional probability of event , given event , is

 (|) =  ()

 ()
, provided  () 6= 0

Note: If  and  are independent,

 () =  () () so

 (|) =  () ()

 ()
=  ()

This can be taken as an equivalent definition of independence; that is,  and  are independent iff

 (|) =  (). We did not use this definition simply because it does not apply in the case that

 () = 0 You should investigate the behaviour of the conditional probabilities as we move the events

around on the web-site http://stat-www.berkeley.edu/%7Estark/Java/Venn3.htm.

Example: If a fair coin is tossed 3 times, find the probability that if at least 1 Head occurs, then

exactly 1 Head occurs.

Solution: The sample space is  = { } Define the events  : we obtain1

Head, and  : we obtain at least 1 Head. What we are being asked to find is  (|). This equals

 () (), and so we find

 () = 1−  (0 heads) =
7

8

not will make little difference. Therefore assume in your calculations that sampling is with replacement so the 10 draws are

independent.
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and

 () =  (we obtain one head AND we obtain at least one head)

=  (we obtain one head)

=  ({  })

=
3

8

using either the sample space with equally probably points, or the fact that the 3 tosses are independent.

Thus,

 (|) =  ()

 ()
=

3
8
7
8

=
3

7


Example: The probability a randomly selected male is colour-blind is .05, whereas the probability a

female is colour-blind is only .0025. If the population is 50% male, what is the fraction that is colour-

blind?

Solution: Let be the event that the person selected is colour-blind,  the event that the person

selected is male and  =  the event that the person selected is female. We are asked to find  ().

We are told that

 (|) = 005
 (| ) = 00025 and

 () = 05 =  ( )

Note that from the definition of conditional probability

 (|) () =
 ()

 ()
 () =  () and similarly  (| ) ( ) =  ( )

To get  () we can therefore use the fact that

 =  ∪  and the events  and  are mutually exclusive so

 () =  () +  ( )

=  (|) () +  (| ) ( )
= (005)(05) + (00025)(05)

= 002625
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4.5 Multiplication and Partition Rules

The preceding example suggests two more useful probability rules. They are based on breaking events

of interest into mutually exclusive pieces.

Rule 6. Product rules. Let     be arbitrary events in a sample space. Assume that

 ()  0  ()  0 and  ()  0 Then

 () =  () (|)
 () =  () (|) (|)

 () =  () (|) (|) (|)

and so on.

Proof:

The first rule comes directly from the definition  (|) since

 () (|) =  ()
 ()

 ()
=  () assuming  ()  0

The right hand side of the second rule equals (assuming  ()  0 and  ()  0)

 () (|) (|) =  ()
 ()

 ()
 (|)

=  () (|)

=  ()
 ()

 ()

=  ()

and so on.

In order to remember these rules you can imagine that the events unfold in some chronological

order, even if they do not. For example  () =  () (|) (|) (|) could

be interpreted as the probability that “A occurs” (first) and then "given A occurs, that  occurs" (next),

etc.

Partition Rule. Let 1      be a partition of the sample space  into disjoint (mutually

exclusive) events, that is

1 ∪2 ∪ · · · ∪ =  and  ∩ =  if  6= 

Let  be an arbitrary event in . Then

 () =  (1) +  (2) + · · ·+  ()

=
P
=1

 (|) ()
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Proof: Note that the events 1     are all mutually exclusive and their union is  that is

 = (1)∪ · · ·∪() Therefore  () =  (1)+ (2)+ · · ·+ () By the product

rule,  () =  (|) () so this becomes  () =  (|1) (1)+ (|2) (2)+ +

 (|) ()

Example: In an insurance portfolio 10% of the policy holders are in Class 1 (high risk), 40% are

in Class 2 (medium risk), and 50% are in Class 3 (low risk). The probability there is a claim on a

Class 1 policy in a given year is .10; similar probabilities for Classes 2 and 3 are .05 and .02. Find

the probability that if a claim is made, it is made on a Class 1 policy.

Solution: For a randomly selected policy, let
 = {policy has a claim }

 = {policy is of Class },  = 1 2 3
We are asked to find  (1|). Note that

 (1|) =  (1)

 ()

and that

 () =  (1) +  (2) +  (3)

We are told that

 (1) = 010  (2) = 040  (3) = 050

and that

 (|1) = 010  (|2) = 005  (|3) = 002
Thus

 (1) =  (1) (|1) = 01

 (2) =  (2) (|2) = 02

 (3) =  (3) (|3) = 01

Therefore  () = 04 and  (1|) = 0104 = 25.

Tree Diagrams

Tree diagrams can be a useful device for keeping track of conditional probabilities when using mul-

tiplication and partition rules. The idea is to draw a tree where each path represents a sequence of

events. On any given branch of the tree we write the conditional probability of that event given all the

events on branches leading to it. The probability at any node of the tree is obtained by multiplying the
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probabilities on the branches leading to the node, and equals the probability of the intersection of the

events leading to it.

For example, the immediately preceding example could be represented by the tree in Figure 4.11.

Note that the probabilities on the terminal nodes must add up to 1.

P(A
1
) =.1

P(A
2
) =.4

P(A
3
) =.5

P(B|A
1
) =.1

P(B|A
2
) =.05

P(B|A
3
) =.02

P(A
1
B) =.01

P(A
2
B) =.02

P(A
3
B) =.01

P(A
1
B) =.09

P(A
2
B) =.38

P(A
3
B) =.49

.9

.95

.98

Figure 4.11:

Here is another example involving diagnostic tests for disease. See if you can represent the problem by

a tree.

Example. Testing for HIV

Tests used to diagnose medical conditions are often imperfect, and give false positive or false negative

results, as described in Problem 2.6 of Chapter 2. A fairly cheap blood test for the Human Immunod-

eficiency Virus (HIV) that causes AIDS (Acquired Immune Deficiency Syndrome) has the following

characteristics: the false negative rate is 2% and the false positive rate is 0.5%. It is assumed that

around .04% of Canadian males are infected with HIV.

Find the probability that if a male tests positive for HIV, he actually has HIV.

Solution: Suppose a male is randomly selected from the population, and define the events
 = {selected male has HIV}

 = {blood test is positive}
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We are asked to find  (|). From the information given we know that

 () = 0004  (̄) = 9996

 (|) = 98  (|̄) = 005

Therefore we can find

 () =  () (|) = 000392

 (̄) =  (̄) (|̄) = 004998

Therefore  () =  () +  (̄) = 00539

and

 (|) =  ()

 ()
= 0727

Thus, if a randomly selected male tests positive, there is still only a small probability (.0727) that they

actually have HIV!

Exercise: Try to explain in ordinary words why this is the case.

Note: Bayes Theorem. Bayes theorem allows us to write conditional probabilities in terms of similar

conditional probabilities but with the order of conditioning reversed:

 (|) =  (|) ()
 (|) () +  (|) ()

The proof of this result is simple since using the product rule,

 (|) ()
 (|) () +  (|) () =

 ()

 () +  ()
=

 ()

 ()
by the partition rule

=  (|)

This result is called Bayes Theorem, after a mathematician12 who proved it in the 1700’s. It is a

simple theorem, but it has inspired approaches to problems in statistics and other areas such as machine

learning, classification and pattern recognition. In these areas the term “Bayesian methods” is often

used.

Problems:

4.4.1 If you take a bus to work in the morning there is a 20% chance you’ll arrive late. When you go

by bicycle there is a 10% chance you’ll be late. 70% of the time you go by bike, and 30% by

bus. Given that you arrive late, what is the probability you took the bus?
12(Rev) Thomas Bayes (1702-1761) was an English Nonconformist minister, turned Presbyterian. He may have been

tutored by De Moivre. His famous paper introducing this rule was published after his death. “Bayesians” are statisticians

who opt for a purely probabilistic view of inference. All unknowns obtain from some distribution and ultimately, the

distribution says it all.
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4.4.2 A box contains 4 coins – 3 fair coins and 1 biased coin for which  (heads) = .8. A coin is picked

at random and tossed 6 times. It shows 5 heads. Find the probability this coin is fair.

4.4.3 At a police spot check, 10% of cars stopped have defective headlights and a faulty muffler. 15%

have defective headlights and a muffler which is satisfactory. If a car which is stopped has

defective headlights, what is the probability that the muffler is also faulty?
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4.6 Problems on Chapter 4

4.1 If and are mutually exclusive events with () = 025 and () = 04, find the probability

of each of the following events:

̄; ̄;  ∪;  ∩; ̄ ∪ ̄; ̄ ∩ ̄;  ∩

4.2 Three digits are chosen at random with replacement from 0 1  9; find the probability of each

of the following events.

: “the digits are all nonzero”;

: “all three digits are the same”; : “the digits all exceed 4”;

: “all three digits are different”;  “digits all have the same parity (all odd or all even)”.

Then find the probability of each of the following events, which are combinations of the previous

five events:

;  ∪;  ∪ ∪; ( ∪);  ∪ ()
Show the last two of these events in Venn diagrams.

4.3 Let  and  be events defined on the same sample space, with  () = 03,  () = 04 and

 (|) = 05. Given that event  does not occur, what is the probability of event ?

4.4 A die is loaded to give the probabilities:

number 1 2 3 4 5 6

probability .3 .1 .15 .15 .15 .15

The die is thrown 8 times. Events determined by different throws of the die are assumed inde-

pendent. Find the probability

(a) 1 does not occur

(b) 2 does not occur

(c) neither 1 nor 2 occurs

(d) both 1 and 2 occur.

4.5 Events  and  are independent with  () = 3 and  () = 2. Find  ( ∪).

4.6 Students  and  each independently answer a question on a test. The probability of getting

the correct answer is .9 for , .7 for  and .4 for . If 2 of them get the correct answer, what is

the probability  was the one with the wrong answer?

4.7 Customers at a store independently decide whether to pay by credit card or with cash. Suppose

the probability is 70% that a customer pays by credit card. Find the probability
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(a) 3 out of 5 customers pay by credit card

(b) the 5th customer is the 3rd one to pay by credit card.

4.8 Let  and  be independent with  =  ∪  and  = . Prove that either  () = 0 or

else 
¡
 

¢
= 0.

4.9 In a large population, people are one of 3 genetic types  and : 30% are type , 60% type

 and 10% type . The probability a person carries another gene making them susceptible for

a disease is .05 for , .04 for  and .02 for . If ten unrelated persons are selected, what is the

probability at least one is susceptible for the disease?

4.10 Two baseball teams play a best-of-seven series, in which the series ends as soon as one team wins

four games. The first two games are to be played on ’s field, the next three games on ’s field,

and the last two on ’s field. The probability that  wins a game is 0.7 at home and 0.5 away.

Assume that the results of the games are independent. Find the probability that:

(a)  wins the series in 4 games; in 5 games;

(b) the series does not go to 6 games.

4.11 A population consists of  females and  males; the population includes  female smokers and

 male smokers. An individual is chosen at random from the population. If  is the event that

this individual is female and  is the event he or she is a smoker, find necessary and sufficient

conditions on  , ,  and  so that  and  are independent events.

4.12 An experiment has three possible outcomes ,  and  with respective probabilities ,  and ,

where +  +  = 1. The experiment is repeated until either outcome  or outcome  occurs.

Show that  occurs before  with probability (+ ).

4.13 In the game of craps, a player rolls two dice. They win at once if the total is 7 or 11, and lose at

once if the total is 2, 3, or 12. Otherwise, they continue rolling the dice until they either win by

throwing their initial total again, or lose by rolling 7.

Show that the probability they win is 0.493.

(Hint: You can use the result of Problem 4.12)

4.14 A researcher wishes to estimate the proportion  of university students who have cheated on an

examination. The researcher prepares a box containing 100 cards, 20 of which contain Question

A and 80 Question B.

Question A: Were you born in July or August?

Question B: Have you ever cheated on an examination?
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Each student who is interviewed draws a card at random with replacement from the box and

answers the question it contains. Since only the student knows which question he or she is an-

swering, confidentiality is assured and so the researcher hopes that the answers will be truthful13.

It is known that one-sixth of birthdays fall in July or August.

(a) What is the probability that a student answers ‘yes’?

(b) If  of  students answer ‘yes’, estimate .

(c) What proportion of the students who answer ‘yes’ are responding to Question B?

4.15 Diagnostic tests. Recall the discussion of diagnostic tests in Problem 2.6 for Chapter 2. For a

randomly selected person let  = ‘person has the disease’ and  = ‘the test result is positive’.

Give estimates of the following probabilities:  (|),  (|̄),  ().

4.16 Slot machines. Standard slot machines have three wheels, each marked with some number of

symbols at equally spaced positions around the wheel. For this problem suppose there are 10

positions on each wheel, with three different types of symbols being used: flower, dog, and

house. The three wheels spin independently and each has probability 0.1 of landing at any

position. Each of the symbols (flower, dog, house) is used in a total of 10 positions across the

three wheels. A payout occurs whenever all three symbols showing are the same.

(a) If wheels 1, 2, 3 have 2, 6, and 2 flowers, respectively, what is the probability all three

positions show a flower?

(b) In order to minimize the probability of all three positions showing a flower, what number

of flowers should go on wheels 1, 2 and 3? Assume that each wheel must have at least one

flower.

4.17 Spam detection 1. Many methods of spam detection are based on words or features that appear

much more frequently in spam than in regular email. Conditional probability methods are then

used to decide whether an email is spam or not. For example, suppose we define the following

events associated with a random email message.
Spam = “Message is spam”

Not Spam = “Message is not spam (“regular”)”

A = “Message contains the word Viagra”

If we know the values of the probabilities  (Spam),  (| Spam) and  (| Not Spam), then

we can find the probabilities  (Spam|) and  (Not Spam|).
13"A foolish faith in authority is the worst enemy of truth" Albert Einsten, 1901.



65

(a) From a study of email messages coming into a certain system it is estimated that  (Spam)

= .5,  (|Spam) = .2, and  (|Not Spam) = .001. Find  (Spam|) and  (Not Spam|).
(b) If you declared that any email containing the word Viagra was Spam, then find what fraction

of regular emails would be incorrectly identified as Spam.

4.18 Spam detection 2. The method in part (b) of the preceding question would only filter out 20% of

Spam messages. (Why?) To increase the probability of detecting spam, we can use a larger set of

email “features”; these could be words or other features of a message which tend to occur with

much different probabilities in spam and in regular email. (From your experience, what might be

some useful features?) Suppose we identify  binary features, and define events

 = feature  appears in a message.

We will assume that 1      are independent events, given that a message is spam, and that

they are also independent events, given that a message is regular.

Suppose  = 3 and that
 (1|Spam) = .2  (1|Not Spam) = .005

 (2|Spam) = .1  (2|Not Spam) = .004

 (3|Spam) = .1  (3|Not Spam) = .005

Assume as in the preceding question that  (Spam) = .5.

(a) Suppose a message has all of features 1, 2, and 3 present. Determine  (Spam |123).
(b) Suppose a message has features 1 and 2 present, but feature 3 is not present. Determine

 (Spam |12̄3).
(c) If you declared as spam any message with one or more of features 1, 2 or 3 present, what

fraction of spam emails would you detect?

4.19 Online fraud detection. Methods like those in problems 4.17 and 4.18 are also used in moni-

toring events such as credit card transactions for potential fraud. Unlike the case of spam email,

however, the fraction of transactions that are fraudulent is usually very small. What we hope to

do in this case is to “flag” certain transactions so that they can be checked for potential fraud, and

perhaps to block (deny) certain transactions. This is done by identifying features of a transaction

so that if  = “transaction is fraudulent”, then

 =
 (feature present| )
 (feature present|̄ )

is large.
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(a) Suppose  ( ) =0.0005 and that  (feature present|̄ ) = 02. Determine  ( | feature

present) as a function of , and give the values when  = 10,30 and 100.

(b) Suppose  = 100 and you decide to flag transactions with the feature present. What per-

centage of transactions would be flagged? Does this seem like a good idea?

4.20∗ Challenge problem:  music lovers have reserved seats in a theatre containing a total of + 

seats ( seats are unassigned). The first person who enters the theatre, however, lost his seat

assignment and chooses a seat at random. Subsequently, people enter the theatre one at a time

and sit in their assigned seat unless it is already occupied. If it is, they choose a seat at random

from the remaining empty seats. What is the probability that person  the last person to enter

the theatre, finds their seat already occupied?

4.21∗ Challenge problem: (Monty Hall) You have been chosen as finalist on a television show. For

your prize, the host shows you three doors. Behind one door is a sports car, and behind the other

two are goats.. After you choose one door, the host, who knows what is behind each of the

three doors, opens one (never the one you chose or the one with the car) and then says:“You are

allowed to switch the door you chose if you find that advantageous”. Should you switch?



5. Discrete Random Variables and

Probability Models

5.1 Random Variables and Probability Functions

Probability models are used to describe outcomes associated with random processes. So far we have

used sets     in sample spaces to describe such outcomes. In this chapter we introduce

numerical-valued variables     to describe outcomes. This allows probability models to be ma-

nipulated easily using ideas from algebra, calculus, or geometry.

A random variable (r.v.) is a numerical-valued variable that represents outcomes in an experiment or

random process. For example, suppose a coin is tossed 3 times; then

 = Number of Heads that occur

would be a random variable. Associated with any random variable is a range , which is the set

of possible values for the variable. For example, the random variable  defined above has range

 = {0 1 2 3}.
Random variables are denoted by capital letters like     and their possible values are denoted by

     . This gives a nice short-hand notation for outcomes: for example, “ = 2” in the experiment

above stands for “2 heads occurred”.

Random variables are always defined for every outcome of the random experiment, i.e. for every

outcome  ∈  For each possible value  of the random variable  there is a corresponding set of

outcomes  in the sample space  which results in this value of  (i.e. so that “ = ” occurs). In

rigorous mathematical treatments of probability, a random variable is defined as a function on a sample

space, as follows:

Definition 10 A random variable is a function that assigns a real number to each point in a sample

space .

To understand this definition, consider the experiment in which a coin is tossed 3 times, and suppose

67
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that we used the sample space

 = {   }

and define a random variable as  =Number of heads. In this case the range of the random variable,

or the set of possible values of  is the set {0 1 2 3} For points in the sample space, for example

 =  the value of the function () is obtained by counting the number of heads, () = 2

in this case. Each of the outcomes “ = ” (where  = number of heads) represents an event (either

simple or compound). For example they are as follows:

Events Definition of this event

 = 0 {}
 = 1 {  }
 = 2 { }
 = 3 {}

Table 4.1

and since some value of  in the range  must occur, the events of the form ” = ” for  ∈ 

form a partition of the sample space  For example the events in the second column of Table 4.1 are

mutually exclusive (for example {} ∩ {  } = ) and their union is the whole

sample space: {} ∪ {  } ∪ { } ∪ {} = .

As you may recall, a function is a mapping of each point in a domain into a unique point. e.g. The

function () = 3 maps the point  = 2 in the domain into the point (2) = 8 in the range. We

are familiar with this rule for mapping being defined by a mathematical formula. However, the rule for

mapping a point in the sample space (domain) into the real number in the range of a random variable

is often given in words rather than by a formula. As mentioned above, we generally denote random

variables, in the abstract, by capital letters ( , etc.) and denote the actual numbers taken by random

variables by small letters ( , etc.). You should know that there is a difference between a function

(() or ()) and the value of a function ( for example (2) or () = 2).

Since “ = ” represents an event of some kind, we will be interested in its probability, which we

write as  ( = ). In the above example in which a fair coin is tossed three times, we might wish the

probability that  is equal to 2, or  ( = 2) This is  ({ }) = 3
8

in the example.

We classify random variables into two types, according to how big their range of values is:

Discrete random variables take integer values or, more generally, values in a countable set (recall

that a set is countable if its elements can be placed in a one-one correspondence with a subset of the

positive integers).

Continuous random variables take values in some interval of real numbers like (0 1) or (0∞) or

(−∞∞)You should be aware that the cardinality of the real numbers in an interval is NOT countable.
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Examples of each might be

Discrete Continuous14

number of people in a car total weight of people in a car

number of cars in a parking lot distance between cars in a parking lot

number of phone calls to 911 time between calls to 911.

In theory there could also be mixed random variables which are discrete-valued over part of their range

and continuous-valued over some other portion of their range. We will ignore this possibility here and

concentrate first on discrete random variables. Continuous random variables are considered in Chapter

9.

Our aim is to set up general models which describe how the probability is distributed among the pos-

sible values a random variable can take. To do this we define for any discrete random variable  the

probability function.

Definition 11 The probability function (p.f.) of a random variable  is the function

() =  ( = ) defined for all  ∈ 

The set of pairs {( ()) :  ∈ } is called the probability distribution of . All probability

functions must have two properties:

1. () ≥ 0 for all values of  (i.e. for  ∈ )

2.
P

all ∈
() = 1

By implication, these properties ensure that () ≤ 1 for all . We consider a few “toy” examples

before dealing with more complicated problems.

Example: Let be the number obtained when a die is thrown. We would normally use the probability

function () = 16 for  = 1 2 3 · · ·  6. In fact there probably is no absolutely perfect die in

existence. For most dice, however, the 6 sides will be close enough to being equally likely that () =

16 is a satisfactory model for the distribution of probability among the possible outcomes.

Example: Suppose a “fair” coin is tossed 3 times, with the results on the three tosses independent,

and let  be the total number of heads occurring. Refer to Table 4.1 and compute the probabilities of

the four events listed there; you obtain
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Events Definition of this event  ( = )

 = 0 {} 1
8

 = 1 {  } 3
8

 = 2 { } 3
8

 = 3 {} 1
8

Table 4.2

Thus the probability function has values (0) = 1
8
 (1) = 3

8
 (2) = 3

8
 (3) = 1

8
. In this case it

is easy to see that the number of points in each of the four events of the form " = ” is
¡
3


¢
using

the counting arguments of Chapter 3, so we can give a simple algebraic expression for the probability

function,

() =

¡
3


¢
8

for  = 0 1 2 3

Example 3: Find the value of  which makes () below a probability function.

 0 1 2 3

()  2 03 4

Since the probability of all possible outcomes must add to one,
3P

=0

() = 1 giving 7 + 03 = 1.

Hence  = 01.

While the probability function is the most common way of describing a probability model, there are

other possibilities. One of them is by using the cumulative distribution function (c.d.f.).

Definition 12 The cumulative distribution function (c.d.f.) of  is the function usually denoted by

 ()

 () =  ( ≤ )

defined for all real numbers .

In the last example, with  = 01, the range of values for the random variable is  = {0 1 2 3} and

we have for  ∈ 

 ()  () =  ( ≤ )

0 01 01

1 02 03

2 03 06

3 04 1
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Figure 5.1: A simple cumulative distribution function

Note that the values in the third column are partial sums of the values of the probability function in the

second column. For example ,

 (1) =  ( ≤ 1) =  ( = 0) +  ( = 1) = (0) + (1) = 03

 (2) =  ( ≤ 2) = (0) + (1) + (2) = 06

Similarly,  () is defined for real numbers  ∈  not in the range of the random variable, for example

 (25) =  (2) = 06 and  (38) = 1

The c.d.f. for this example is plotted in Figure 5.1.

In general,  () can be obtained from () by the fact that

 () =  ( ≤ ) =
X
≤

()

A c.d.f.  () has certain properties, just as a probability function () does. Obviously, since it

represents a probability,  () must be between 0 and 1. In addition it must be a non-decreasing

function (e.g.  ( ≤ 8) cannot be less than  ( ≤ 7)). Thus we note the following properties of a

c.d.f.  ():

1.  () is a non-decreasing function of 

2. 0 ≤  () ≤ 1 for all 

3. lim→−∞  () = 0 and lim→∞  () = 1
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We have noted above that  () can be obtained from (). The opposite is also true; for example

the following result holds:

If  takes on integer values then for values  such that  ∈  and − 1 ∈ ,

() =  ()−  (− 1)

This says that () is the size of the jump in  () at the point 

To prove this, just note that

 ()−  (− 1) =  ( ≤ )−  ( ≤ − 1) =  ( = )

When a random variable has been defined it is sometimes simpler to find its probability function (p.f.)

() first, and sometimes it is simpler to find  () first. The following example gives two approaches

for the same problem.

Example: Suppose that  balls labelled 1 2     are placed in a box, and  balls ( ≤ ) are

randomly selected without replacement. Define the r.v.

 = largest number selected

Find the probability function for .

Solution 1: If  =  then we must select the number  plus −1 numbers from the set {1 2     −
1}. (Note that this means we need  ≥ .) This gives

() =  ( = ) =

¡
1
1

¢¡
−1
−1
¢¡




¢ =

¡
−1
−1
¢¡




¢  =  + 1     

Solution 2: First find  () =  ( ≤ ). Noting that  ≤  if and only if all  balls selected are

from the set {1 2     }, we get

 () =

¡



¢¡



¢ for  =  + 1    

We can now find

() =  ()−  (− 1)

=

¡



¢− ¡−1


¢¡



¢
=

¡
−1
−1
¢¡




¢
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Figure 5.2: Probability histogram for () = +1
10

  = 0 1 2 3

as before.

Remark: When you write down a probability function, don’t forget to give its domain (i.e. the possible

values of the random variable, or the values for which () is defined). This is an essential part of the

function’s definition.

We frequently graph the probability function () using a (probability) histogram. For now, we’ll

define this only for random variables whose range is some set of consecutive integers {0 1 2    }.
A histogram of () is then a graph consisting of adjacent bars or rectangles. At each  we place a

rectangle with base on (− 5 + 5) and with height (). In the above Example 3, a histogram of

() looks like that in Figure 5.2.

Notice that the areas of these rectangles correspond to the probabilities, so for example  ( = 1)

is the area of the bar above and centered around the value 1 and  (1 ≤  ≤ 3) is the sum of the area

of the three rectangles above the points 1 2 and 3 (actually the area of the region above between the

points  = 05 and  = 35) In general in a probability histogram, probabilities are depicted by areas.

Model Distributions:

Many processes or problems have the same structure. In the remainder of this course we will

identify common types of problems and develop probability distributions that represent them. In doing

this it is important to be able to strip away the particular wording of a problem and look for its essential

features. For example, the following three problems are all essentially the same.

(a) A fair coin is tossed 10 times and the “number of heads obtained” () is recorded.

(b) Twenty seeds are planted in separate pots and the “number of seeds germinating” () is recorded.
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(c) Twelve items are picked at random from a factory’s production line and examined for defects.

The number of items having no defects () is recorded.

What are the common features? In each case the process consists of “trials" which are repeated a stated

number of times - 10, 20, and 12. In each repetition there are two types of outcomes - heads/tails,

germinate/don’t germinate, and no defects/defects. These repetitions are independent (as far as we can

determine), with the probability of each type of outcome remaining constant for each repetition. The

random variable we record is the number of times one of these two types of outcome occurred.

Six model distributions for discrete random variables will be developed in the rest of this chapter. Stu-

dents often have trouble deciding which one (if any) to use in a given setting, so be sure you understand

the physical setup which leads to each one. Also, as illustrated above you will need to learn to focus on

the essential features of the situation as well as the particular content of the problem.

Statistical Computing

A number of major software systems have been developed for probability and statistics. We will use

a system called , which has a wide variety of features and which has Unix and Windows versions.

Appendix 6.1 at the end of this chapter gives a brief introduction to , and how to access it. For this

course,  can compute probabilities for all the distributions we consider, can graph functions or data,

and can simulate random processes. In the sections below we will indicate how  can be used for some

of these tasks.

Problems:

5.1.1 Let  have probability function
 0 1 2

() 92 9 2
. Find .

5.1.2 Suppose that 5 people, including you and a friend, line up at random. Let  be the number of

people standing between you and your friend. Tabulate the probability function and the cumula-

tive distribution function for .
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5.2 Discrete Uniform Distribution

We define each model in terms of an abstract “physical setup", or setting, and then consider specific

examples of the setup.

Physical Setup: Suppose  takes values   + 1  + 2 · · ·   with all values being equally likely.

Then  has a discrete uniform distribution, on the set { + 1 + 2 · · ·  }.
Illustrations:

1. If  is the number obtained when a die is rolled, then  has a discrete uniform distribution with

 = 1 and  = 6.

2. Computer random number generators give uniform [1  ] variables, for a specified positive in-

teger  . These are used for many purposes, e.g. generating lottery numbers or providing auto-

mated random sampling from a set of  items.

Probability Function: There are −+1 values  can take so the probability at each of these values

must be 1
−+1 in order that

P
=

() = 1. Therefore

() =

(
1

−+1 ;  =  + 1 · · ·  
0; otherwise

Example. Suppose a fair die is thrown once and let  be the number on the face. First find the c.d.f.,

 () of 

This is an example of a discrete uniform distribution on the set {1 2 3 4 5 6} having  = 1  = 6

and probability function

() =

(
1
6
;  = 1 2 · · ·  6
0; otherwise

The cumulative distribution function is  () =  ( ≤ )

 () =

⎧⎪⎨⎪⎩
0 if   1
[]
6

if 1 ≤   6

1 if  ≥ 6

where by [] we mean the integer part of the real number  or the largest whole number less than or

equal to 

Many distributions are constructed using discrete uniform random variables. For example we might

throw two dice and sum the values on their faces.
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Example. Suppose two fair dice (suppose for simplicity one is red and the other is green) are thrown.

Let  be the sum of the values on their faces. Find the c.d.f.,  () of 

In this case we can consider the sample space to be

 = {(1 1) (1 2) (1 3)  (5 6) (6 6)}

where for example the outcome ( ) means we obtained  on the red die and  on the green. There

are 36 outcomes in this sample space, all with the same probability 1
36
 The probability function of

 is easily found. For example (5) is the probability of the event  = 5 or the probability of

{(1 4) (2 3) (3 2) (4 1)} so (5) = 4
36
 The probability function and the cumulative distribution

function is as listed below:

 = 2 3 4 5 6 7 8 9 10 11 12

() 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

 () 1
36

3
36

6
36

10
36

15
36

21
36

26
36

30
36

33
36

35
36

1

Although it is a bit more difficult to give a formula for the c.d.f. for general argument  in this case,

it is clear for example that  () =  ([]) and  () = 0 for   2,  () = 1 for  ≥ 12
Example. Let  be the largest number when a die is rolled 3 times. First find the c.d.f.,  (), and

then find the probability function, () of 

This is another example of a distribution constructed from the discrete uniform. In this case the

sample space

 = {(1 1 1) (1 1 2)  (6 6 6)}
consists of all 63 possible outcomes of the 3 dice, with each outcome having probability 1

216
 Suppose

that  is an integer between 1 and 6. What is the probability that the largest of these three numbers

is less than or equal to ?This requires that all three of the dice show numbers less than or equal to 

and there are exactly 3 points in  which satisfy this requirement. Therefore the probability that the

largest number is less than or equal to  is, for  = 1 2 3 4 5or 6,

 () =
3

63

and more generally if  is not an integer between 1 and 6,

 () =

⎧⎪⎨⎪⎩
[]3

216
for 1 ≤   6

0 for   1

1 for  ≥ 6
To find the probability function we may use the fact that for  in the domain of the probability function

(in this case for  ∈ {1 2 3 4 5 6}) we have  ( = ) =  ( ≤ ) −  (  ) so that for

 ∈ {1 2 3 4 5 6}
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() =  ()−  (− 1)

=
3 − (− 1)3

216

=
[− (− 1)][2 + (− 1) + (− 1)2]

216

=
32 − 3+ 1

216
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5.3 Hypergeometric Distribution♦
15Physical Setup: We have a collection of  objects which can be classified into two distinct types.

Call one type “success”16 () and the other type “failure” ( ). There are  successes and  − 

failures. Pick  objects at random without replacement. Let  be the number of successes obtained.

Then  has a hypergeometric distribution.

Illustrations:

1. The number of aces  in a bridge hand has a hypergeometric distribution with  = 52  = 4,

and  = 13.

2. In a fleet of 200 trucks there are 12 which have defective brakes. In a safety check 10 trucks

are picked at random for inspection. The number of trucks  with defective brakes chosen for

inspection has a hypergeometric distribution with  = 200  = 12  = 10.

Probability Function: Using counting techniques we note there are
¡



¢
points in the sample space

 if we don’t consider order of selection. There are
¡



¢
ways to choose the  success objects from the

 available and
¡
−
−

¢
ways to choose the remaining (− ) objects from the ( − ) failures. Hence

() =

¡



¢¡
−
−

¢¡



¢
The range of values for  is somewhat complicated. Of course,  ≥ 0. However if the number, ,

picked exceeds the number,  − , of failures, the difference,  − ( − ) must be successes. So

 ≥ max(0 −+). Also,  ≤  since we can’t get more successes than the number available. But

 ≤ , since we can’t get more successes than the number of objects chosen. Therefore  ≤ min( ).

Example: In Lotto 6/49 a player selects a set of six numbers (with no repeats) from the set {1 2     49}.
In the lottery draw six numbers are selected at random. Find the probability function for , the number

from your set which are drawn.

Solution: Think of your numbers as the  objects and the remainder as the  objects. Then  has a

hypergeometric distribution with  = 49  = 6 and  = 6, so

 ( = ) = () =

¡
6


¢¡
43
6−
¢¡

49
6

¢ , for  = 0 1     6

15♦ This section optional for stat 220
16"If  is a success in life, then  equals  plus  plus  Work is ;  is play; and  is keeping your mouth shut." Albert

Einstein, 1950
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For example, you win the jackpot prize if  = 6; the probability of this is
¡
6
6

¢

¡
49
6

¢
, or about 1 in 13.9

million.

Remark: When parameter values are large, Hypergeometric probabilities may be tedious to compute

using a basic calculator. The  functions  and  can be used to evaluate () and the

c.d.f  (). In particular, (  −  ) gives () and (  −  ) gives  ().

Using this we find for the Lotto 6/49 problem here, for example, that (6) is calculated by typing

(6 6 43 6) in , which returns the answer 7151124× 10−8 or 113 983 186.

For all of our model distributions we can also confirm that
P
all 

() = 1. To do this here we use a

summation result from Chapter 5 called the hypergeometric identity. Letting  =   =  −  in that

identity we get

X
all 

() =
X¡




¢¡
−
−

¢¡



¢ =
1¡



¢Xµ




¶µ
 − 

− 

¶
=

¡
+−



¢¡



¢ = 1

Problems:

5.3.1 A box of 12 tins of tuna contains  which are tainted. Suppose 7 tins are opened for inspection

and none of these 7 is tainted.

a) Calculate the probability that none of the 7 is tainted for  = 0 1 2 3.

b) Do you think it is likely that the box contains as many as 3 tainted tins?

5.3.2 Suppose our sample space distinguishes points with a different orders of selection. For example

suppose that  = { } consists of all words of length  where letters are drawn

without replacement from a total of  Ss and  −  Fs. Derive a formula for the probability

that the word contains exactly  Ss. In other words, determine the hypergeometric probability

function using a sample space in which order of selection is considered.
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5.4 Binomial Distribution

Physical Setup:

Suppose an “experiment" has two types of distinct outcomes. Call these types “success” () and “fail-

ure” ( ), and let their probabilities be  (for ) and 1− (for  ). Repeat the experiment  independent

times. Let  be the number of successes obtained. Then  has what is called a binomial distribu-

tion. (We write  ∼ ( ) as a shorthand for “ is distributed according to a binomial distribution

with  repetitions and probability  of success”.) The  individual experiments in the process just

described are often called “trials” or “Bernoulli trials” and the process is called a Bernoulli17 process

or a binomial process.

Illustrations:

1. Toss a fair die 10 times and let  be the number of sixes that occur. Then  ∼ (10 16).

2. In a microcircuit manufacturing process, 90% of the chips produced work (10% are defective).

Suppose we select 25 chips, independently18 and let  be the number that work. Then  ∼
(25 6).

Comment: We must think carefully whether the physical process we are considering is closely

approximated by a binomial process, for which the key assumptions are that (i) the probability  of

success is constant over the  trials, and (ii) the outcome ( or  ) on any trial is independent of the

outcome on the other trials. For Illustration 1 these assumptions seem appropriate. For Illustration 2

we would need to think about the manufacturing process. Microcircuit chips are produced on “wafers”

containing a large number of chips and it is common for defective chips to cluster on wafers. This

could mean that if we selected 25 chips from the same wafer, or from only 2 or 3 wafers, that the

“trials” (chips) might not be independent, or perhaps that the probability of defectives changes.

17After James (Jakob) Bernoulli (1654 – 1705), a Swiss member of a family of eight mathematicians. Nicolaus Bernoulli

was an important citizen of Basel, being a member of the town council and a magistrate. Jacob Bernoulli’s mother also came

from an important Basel family of bankers and local councillors. Jacob Bernoulli was the brother of Johann Bernoulli and the

uncle of Daniel Bernoulli. He was compelled to study philosophy and theology by his parents, graduated from the University

of Basel with a master’s degree in philosophy and a licentiate in theology but against his parents wishes, studied mathematics

and astronomy . He was offered an appointment in the Church he turned it down instead taught mechanics at the University

in Basel from 1683, giving lectures on the mechanics of solids and liquids. Jakob Bernoulli is responsible for many of the

combinatorial results dealing with independent random variables which take values 0 or 1 in these notes. He was also a fierce

rival of his younger brother Johann Bernoulli, also a mathematician, who would have liked the chair of mathematics at Basel

which Jakob held.

18for example we select at random with replacement or without replacement from a very large number of chips.
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Figure 5.3: The Binomial(20 03) probability histogram.

Probability Function: There are !
!(−)! =

¡



¢
different arrangements of  s and ( − )  s

over the  trials. The probability for each of these arrangements has  multiplied together  times and

(1− ) multiplied (− ) times, in some order, since the trials are independent. So each arrangement

has probability (1− )−.

Therefore () =

µ




¶
 (1− )− ;  = 0 1 2 · · ·  

Checking that
P

() = 1:
P

=0

() =
P

=0

¡



¢
 (1− )− = (1− )

P
=0

¡



¢ ³

1−
´

= (1− )
³
1 + 

1−
´

by the binomial theorem

= (1− )
³
1−+
1−

´
= 1 = 1

We graph in Figure 5.3 the probability function for the Binomial distribution with parameters  = 20

and  = 03 Although the formula for () may seem complicated this shape is increasing to a

maximum value near  and then decreasing thereafter.

Computation: Many software packages and some calculators give binomial probabilities. In  we

use the function (  ) to compute () and (  ) to compute the corresponding

c.d.f.  () =  ( ≤ ).

Example Suppose that in a weekly lottery you have probability .02 of winning a prize with a single

ticket. If you buy 1 ticket per week for 52 weeks, what is the probability that (a) you win no prizes, and

(b) that you win 3 or more prizes?

Solution: Let  be the number of weeks that you win; then  ∼ (52 02). We find
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(a)  ( = 0) = (0) =
¡
52
0

¢
(02)0(98)52 = 0350

(b)  ( ≥ 3) = 1−  ( ≤ 2)
= 1− (0)− (1)− (2)

= 00859

(Note that  ( ≤ 2) is given by the  command (2 52 02).)

Comparison of Binomial and Hypergeometric Distributions:

These distributions are similar in that an experiment with 2 types of outcome ( and  ) is repeated 

times and  is the number of successes. The key difference is that the binomial requires independent

repetitions with the same probability of , whereas the draws in the hypergeometric are made from a

fixed collection of objects without replacement. The trials (draws) are therefore not independent. For

example, if there are  = 10  objects and  −  = 10  objects, then the probability of getting an 

on draw 2 depends on what was obtained in draw 1. If these draws had been made with replacement,

however, they would be independent and we’d use the binomial rather than the hypergeometric model.

If  is large and the number, , being drawn is relatively small in the hypergeometric setup then

we are unlikely to get the same object more than once even if we do replace it. So it makes little

practical difference whether we draw with or without replacement. This suggests that when we are

drawing a fairly small proportion of a large collection of objects the binomial and the hypergeometric

models should produce similar probabilities. As the binomial is easier to calculate, it is often used as

an approximation to the hypergeometric in such cases.

Example: Suppose we have 15 cans of soup with no labels, but 6 are tomato and 9 are pea soup. We

randomly pick 8 cans and open them. Find the probability 3 are tomato.

Solution: The correct solution uses hypergeometric, and is (with = number of tomato soups picked)

(3) =  ( = 3) =

¡
6
3

¢¡
9
5

¢¡
15
8

¢ = 0396

If we incorrectly used binomial, we’d get

(3) =

µ
8

3

¶µ
6

15

¶3µ
9

15

¶5
= 0279

As expected, this is a poor approximation since we’re picking over half of a fairly small collection of

cans.

However, if we had 1500 cans - 600 tomato and 900 pea, we’re not likely to get the same can again

even if we did replace each of the 8 cans after opening it. (Put another way, the probability we get
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a tomato soup on each pick is very close to .4, regardless of what the other picks give.) The exact,

hypergeometric, probability is now
(6003 )(

900
5 )

(15008 )
= 2794. Here the binomial probability,

µ
8

3

¶µ
600

1500

¶3µ
900

1500

¶5
= 0279

is a very good approximation.

Problems:

5.4.1 Megan audits 130 clients during a year and finds irregularities for 26 of them.

a) Give an expression for the probability that 2 clients will have irregularities when 6 of her

clients are picked at random,

b) Evaluate your answer to (a) using a suitable approximation.

5.4.2 The flash mechanism on camera  fails on 10% of shots, while that of camera  fails on 5% of

shots. The two cameras being identical in appearance, a photographer selects one at random and

takes 10 indoor shots using the flash.

(a) Give the probability that the flash mechanism fails exactly twice. What assumption(s) are

you making?

(b) Given that the flash mechanism failed exactly twice, what is the probability camera  was

selected?
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5.5 Negative Binomial Distribution♦
19Physical Setup:

The setup for this distribution is almost the same as for binomial; i.e. an experiment (trial) has two

distinct types of outcome ( and  ) and is repeated independently with the same probability, , of

success each time. Continue doing the experiment until a specified number, , of success have been

obtained. Let  be the number of failures obtained before the th success. Then  has a negative

binomial distribution. We often write  ∼ ( ) to denote this.

Illustrations:

(1) If a fair coin is tossed until we get our 5th head, the number of tails we obtain has a negative

binomial distribution with  = 5 and  = 1
2
.

(2) As a rough approximation, the number of half credit failures a student collects before successfully

completing 40 half credits for an honours degree has a negative binomial distribution. (Assume

all course attempts are independent, with the same probability of being successful, and ignore

the fact that getting more than 6 half credit failures prevents a student from continuing toward an

honours degree.)

Probability Function: In all there will be  +  trials (  ’s and  ’s) and the last trial must be a

success. In the first  +  − 1 trials we therefore need  failures and ( − 1) successes, in any order.

There are (+−1)!
!(−1)! =

¡
+−1



¢
different orders. Each order will have probability (1−) since there

must be  trials which are failures and  which are success. Hence

() =

µ
+  − 1



¶
(1− );  = 0 1 2 · · ·

Note: An alternate version of the negative binomial distribution defines  to be the total number

of trials needed to get the th success. This is equivalent to our version. For example, asking for the

probability of getting 3 tails before the 5th head is exactly the same as asking for a total of 8 tosses in

order to get the 5th head. You need to be careful to read how  is defined in a problem rather than

mechanically “plugging in” numbers in the above formula for ().

Checking that
P

() = 1 requires somewhat more work for the negative binomial distribution. We

first re-arrange the
¡
+−1



¢
term,µ

+  − 1


¶
=
(+  − 1)

!

()

=
(+  − 1)(+  − 2) · · · ( + 1)()

!

19♦ This section optional for stat 220
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Factor a (-1) out of each of the  terms in the numerator, and re-write these terms in reverse order,µ
+  − 1



¶
=(−1) (−)(− − 1) · · · (− − + 2)(− − + 1)

!

= (−1) (−)
!

()

= (−1)
µ−



¶
Then (using the binomial theorem)

∞X
=0

() =

∞X
=0

µ−


¶
(−1)(1− )

= 
∞X
=0

µ−


¶
[(−1)(1− )] =  [1 + (−1)(1− )]−

= − = 1

Comparison of Binomial and Negative Binomial Distributions

These should be easily distinguished because they reverse what is specified or known in advance and

what is variable.

• Binomial: we know the number  if trials in advance but we do not know the number of

successes we will obtain until after the experiment.

• Negative Binomial: We know the number  of successes in advance but do not know the number

of trials that will be needed to obtain this number of successes until after the experiment.

Example: The fraction of a large population that has a specific blood type  is .08 (8%). For blood

donation purposes it is necessary to find 5 people with type  blood. If randomly selected individuals

from the population are tested one after another, then (a) What is the probability  persons have to be

tested to get 5 type  persons, and (b) What is the probability that over 80 people have to be tested?

Solution: Think of a type  person as a success () and a non-type  as an  . Let  = number of

persons who have to be tested and let  = number of non-type  persons in order to get 5 ’s. Then

 ∼ ( = 5  = 08) and

 ( = ) = () =

µ
+ 4



¶
(08)5(92)  = 0 1 2   

We are actually asked here about  =  + 5. Thus

 ( = ) =  ( =  − 5)
= ( − 5)

=

µ
 − 1
 − 5

¶
(08)5(92)−5 for  = 5 6 7   
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Thus we have the answer to (a) as given above, and for (b)

 (  80) =  (  75) = 1−  ( ≤ 75)

= 1−
75X
=0

() = 02235

Note: Calculating such probabilities is easy with . To get () we use (  ) and to get

 () =  ( ≤ ) we use (  ).

Problems:

5.5.1 You can get a group rate on tickets to a play if you can find 25 people to go. Assume each person

you ask responds independently and has a 20% chance of agreeing to buy a ticket. Let  be the

total number of people you have to ask in order to find 25 who agree to buy a ticket. Find the

probability function of .

5.5.2 A shipment of 2500 car headlights contains 200 which are defective. You choose from this

shipment without replacement until you have 18 which are not defective. Let  be the number

of defective headlights you obtain.

(a) Give the probability function, ().

(b) Using a suitable approximation, find (2).
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5.6 Geometric Distribution

Physical Setup: Consider the negative binomial distribution with  = 1 In this case we repeat

independent Bernoulli trials with two types of outcome ( and  ) each time, and the same probability,

, of success each time until we obtain the first success. Let  be the number of failures obtained

before the first success.

Illustrations:

(1) The probability you win a lottery prize in any given week is a constant . The number of weeks

before you win a prize for the first time has a geometric distribution.

(2) If you take STAT 230 until you pass it and attempts are independent with the same probability of

a pass each time20, then the number of failures would have a geometric distribution. (Thankfully

these assumptions are unlikely to be true for most persons! Why is this?)

Probability Function: There is only the one arrangement with  failures followed by 1 success.

This arrangement has probability

() = (1− );  = 0 1 2 · · ·

Alternatively if we substitute  = 1 in the probability function for the negative binomial, we obtain

() =

µ
+ 1− 1



¶
1(1− ); for  = 0 1 2 · · ·

= (1− ) for  = 0 1 2 · · ·

which is the same. To checking that
P

() = 1, we will need to evaluate a geometric series,

∞X
=0

() =

∞X
=0

(1− ) = + (1− )+ (1− )2+ · · ·

=


1− (1− )
=




= 1

Note: The names of the models so far derive from the summation results which show () sums

to 1. The geometric distribution involved a geometric series; the hypergeometric distribution used

the hypergeometric identity; both the binomial and negative binomial distributions used the binomial

theorem.

20you burn all notes and purge your memory of the course after each failure
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Bernoulli Trials. Once again remember that the binomial, negative binomial and geometric models

all involve trials (experiments) which:
(1) are independent

(2) have 2 distinct types of outcome ( and  )

(3) have the same probability  of “success” () each time.
Such trials are known as Bernoulli trials.

Problem 5.6.1

Suppose there is a 30% chance of a car from a certain production line having a leaky windshield. The

probability an inspector will have to check at least  cars to find the first one with a leaky windshield

is .05. Find .
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5.7 Poisson Distribution from Binomial

The Poisson21 distribution has probability function (p.f.) of the form

() = −


!
 = 0 1 2   

where   0 is a parameter whose value depends on the setting for the model. Mathematically, we can

see that () has the properties of a p.f., since () ≥ 0 for  = 0 1 2    and since

∞P
=0

() = −
∞P
=0



!

= −() = 1

The Poisson distribution arises in physical settings where the random variable  represents the number

of events of some type. In this section we show how it arises from a binomial process, and in the

following section we consider another derivation of the model.

We will sometimes write  ∼ Poisson () to denote that  has the p.f. above.

Physical Setup: One way the Poisson distribution arises is as a limiting case of the binomial distri-

bution as  → ∞ and  → 0. In particular, we keep the product  fixed at some constant value, ,

while letting  → ∞. This automatically makes  → 0. Let us see what the limit of the binomial p.f.

() is in this case.

21After Siméon Denis Poisson (1781-1840), a French mathematician who was supposed to become a surgeon but, fortu-

nately for his patients, failed medical school for lack of coordination. He was forced to do theoretical research, being too

clumsy for anything in the lab. He wrote a major work on probability and the law, Recherchés sur la probabilité des juge-

ments en matière criminelle et matière civile (1837), discovered the Poisson distribution (called law of large numbers) and

to him is ascribed one of the more depressing quotes in our discipline “Life is good for only two things: to study mathematics

and to teach it”
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Probability Function: Since  =  Therefore  = 


and for  fixed,

() =

µ




¶
(1− )− =

()

!

³


´ ³
1− 



´−

=


!

 termsz }| {
(− 1)(− 2) · · · (− + 1)

()() () · · · ()

³
1− 



´−
=



!

³


´µ− 1


¶µ
− 2


¶
· · ·
µ
− + 1



¶³
1− 



´ ³
1− 



´−
=



!
(1)

µ
1− 1



¶µ
1− 2



¶
· · ·
µ
1− − 1



¶³
1− 



´ ³
1− 



´−
lim
→∞ () =



!
(1)(1)(1) · · · (1)| {z }

 terms

−(1)−
µ

since  = lim
→∞

µ
1 +





¶¶

=
−

!
; for  = 0 1 2 · · ·

(For the binomial the upper limit on  is , but we are letting  → ∞.) This result allows us to use

the Poisson distribution with  =  as a close approximation to the binomial distribution ( ) in

processes for which  is large and  is small.

Example: 200 people are at a party. What is the probability that 2 of them were born on Jan. 1?

Solution: Assuming all days of the year are equally likely for a birthday (and ignoring February

29) and that the birthdays are independent (e.g. no twins!) we can use the binomial distribution with

 = 200 and  = 1365 for  = number born on January 1, giving

(2) =

µ
200

2

¶µ
1

365

¶2µ
1− 1

365

¶198
= 086767

Since  is large and  is close to 0, we can use the Poisson distribution to approximate this binomial

probability, with  =  = 200
365

, giving

(2) =

¡
200
365

¢2
−(

200
365)

2!
= 086791

As might be expected, this is a very good approximation.

Notes:

(1) If  is close to 1 we can also use the Poisson distribution to approximate the binomial. By in-

terchanging the labels “success” and “failure”, we can get the probability of “success” (formerly

labelled “failure”) close to 0.
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(2) The Poisson distribution used to be very useful for approximating binomial probabilities with 

large and  near 0 since the calculations are easier. (This assumes values of  to be available.)

With the advent of computers, it is just as easy to calculate the exact binomial probabilities

as the Poisson probabilities. However, the Poisson approximation is useful when employing a

calculator without a built in binomial function.

(3) The  functions ( ) and ( ) give () and  ().

Problem 5.7.1

An airline knows that 97% of the passengers who buy tickets for a certain flight will show up on time.

The plane has 120 seats.

a) They sell 122 tickets. Find the probability that more people will show up than can be carried on

the flight. Compare this answer with the answer given by the Poisson approximation.

b) What assumptions does your answer depend on? How well would you expect these assumptions

to be met?
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5.8 Poisson Distribution from Poisson Process♦
22We now derive the Poisson distribution as a model for the number of a certain kind of event or

occurrence (e.g. births, insurance claims, web site hits) that occur at points in time or in space. To this

end, we use the “order” notation (∆) = (∆) as∆→ 0 to mean that the function  approaches 0

faster than∆ as ∆ approaches zero, or that

(∆)

∆
→ 0 as∆→ 0

For example (∆) = (∆)2 = (∆) but (∆)12 is not (∆)

Physical Setup: Consider a situation in which a certain type of event occurs at random points in time

(or space) according to the following conditions:

1. Independence: the number of occurrences in non-overlapping intervals are independent.

2. Individuality: for sufficiently short time periods of length ∆ the probability of 2 or more

events occurring in the interval is close to zero i.e. events occur singly not in clusters. More

precisely, as ∆→ 0 the probability of two or more events in the interval of length∆ must go

to zero faster than∆→ 0 or that

 (2 or more events in ( +∆)) = (∆) as∆→ 0

3. Homogeneity or Uniformity: events occur at a uniform or homogeneous rate  over time so

that the probability of one occurrence in an interval ( +∆) is approximately ∆ for small

∆ for any value of  More precisely,

 (one event in ( +∆)) = ∆+ (∆)

These three conditions together define a Poisson Process.

Let  be the number of event occurrences in a time period of length . Then it can be shown (see

below) that  has a Poisson distribution with  = .

Illustrations:

22♦ This section optional for stat 220
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(1) The emission of radioactive particles from a substance follows a Poisson process. (This is used

in medical imaging and other areas.)

(2) Hits on a web site during a given time period often follow a Poisson process.

(3) Occurrences of certain non-communicable diseases sometimes follow a Poisson process.

Probability Function: We can derive the probability function () =  ( = ) from the conditions

above. We are interested in time intervals of arbitrary length , so as a temporary notation, let ()

be the probability of  occurrences in a time interval of length . We now relate () and +∆().

From that we can determine what () is. To find +∆() we note that for ∆ small there are only

2 ways to get a total of  event occurrences by time +∆. Either there are  events by time  and no

more from  to  +∆ or there are  − 1 by time  and 1 more from  to  +∆. (since  (2 or more

events in (  +∆)) = (∆), other possibilities are negligible if ∆ is small). This and condition 1

above (independence) imply that

+∆()

= ()(1− ∆) + (− 1)(∆) + (∆)

Re-arranging gives +∆()−()
∆


=  [(− 1)− ()]+ (1). Taking the limit as∆→ 0 we get




() =  [(− 1)− ()]  (5.4)

This provides a “differential-difference" equation that needs to be solved for the functions () as

functions of  for each fixed integer value of  We know that in interval of length 0 zero events will

occur, so that 0(0) = 1 and 0() = 0 for  = 1 2 3 · · · . At the moment we may not know how to

solve such a system but let’s approach the problem using the binomial approximation of the last section.

Suppose that the interval (0 ) is divided into  = 
∆

small subintervals of length∆ The probability

that an event falls in any subinterval (record this as a success) is approximately  = ∆ provided

the interval length is small. The probability of two or more events falling in any one subinterval is

less than  (2 or more events in (  + ∆)) =  × (∆) which goes to 0 as ∆ → 0 so we can

ignore the possibility that one of the subintervals has 2 or more events in it. Also the “successes” are

independent on the  different subintervals or “trials”, and so the total number of successes recorded,

 is approximately binomial( ) Therefore

 ( = ) '
µ




¶
(1− )− =

()

!
(1− )

µ
1

1− 

¶

Notice that for fixed   as ∆→ 0  = ∆ → 0 and  = 
∆
→∞ and (1− ) → −. Also,

for fixed  () → () This yields the approximation

 ( = ) ' ()−

!
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You can easily confirm that this, i.e.

() = () =
()−

!
;  = 0 1 2 · · ·

provides a solution to the system (5.4) with the required initial conditions. If we let  = , we can

re-write () as () = −
!

, which is the Poisson distribution from Section 5.7. That is:

In a Poisson process with rate of occurrence , the number of event occurrences 

in a time interval of length  has a Poisson distribution with  = .

Interpretation of  and :  is referred to as the intensity or rate of occurrence parameter for

the events. It represents the average rate of occurrence of events per unit of time (or area or volume,

as discussed below). Then  =  represents the average number of occurrences in  units of time.

It is important to note that the value of  depends on the units used to measure time. For example, if

phone calls arrive at a store at an average rate of 20 per hour, then  = 20 when time is in hours and the

average in 3 hours will be 3×20 or 60. However, if time is measured in minutes then  = 2060 = 13;

the average in 180 minutes (3 hours) is still (13)(180) = 60.

Example Suppose earthquakes recorded in Ontario each year follow a Poisson process with an

average of 6 per year. What is the probability that 7 will be recorded in a 2-year period?

In this case  = 2(years) and the intensity of earthquakes is  = 6 . Therefore  the number of

earthquakes in the two-year period follows a Poisson distribution with parameter  =  = 12 The

probability that 7 earthquakes will be recorded in a 2 year period is (7) = 127−12
7!

= 0437.

Example At a nuclear power station an average of 8 leaks of heavy water are reported per year. Find

the probability of 2 or more leaks in 1 month, if leaks follow a Poisson process.

Solution: Assume leaks satisfy the conditions for a Poisson process and that a month is 112 of a year.

Let  be the number of leaks in one month. Then  has the the Poisson distribution with  = 8 and

 = 112, so  =  = 812. Thus

 ( ≥ 2) = 1−  (  2)

= 1− [(0) + (1)]

= 1−
"
(812)0 −812

0!
+

¡
8
12

¢1
−812

1!

#
' 01443
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Random Occurrence of Events in Space: The Poisson process also applies when “events” occur

randomly in space (either 2 or 3 dimensions). For example, the “events” might be bacteria in a volume

of water or blemishes in the finish of a paint job on a metal surface. If  is the number of events in a

volume or area in space of size  and if  is the average number of events per unit volume (or area),

then  has a Poisson distribution with  = . For this model to be valid, it is assumed that the

Poisson process conditions given previously apply here, with “time” replaced by “volume” or “area”.

Once again, note that the value of  depends on the units used to measure volume or area.

Example: Coliform bacteria occur in river water with an average intensity of 1 bacteria per 10 cubic

centimeters (cc) of water. Find (a) the probability there are no bacteria in a 20cc sample of water which

is tested, and (b) the probability there are 5 or more bacteria in a 50cc sample. (To do this assume that

a Poisson process describes the location of bacteria in the water at any given time.)

Solution: Let  = number of bacteria in a sample of volume  cc. Since  = 0.1 bacteria per cc (1

per 10cc) the p.f. of  is Poisson with  = 1,

() = −1
(1)

!
 = 0 1 2   

Thus we find

(a) With  = 20  = 2 so  ( = 0) = (0) = −2 = 135

(b) With  = 50  = 5 so () = −55! and  ( ≥ 5) = 1−  ( ≤ 4) = 440

(Note: we can use the  command (4 5) to get  ( ≤ 4).)

Exercise: In each of the above examples, how well are each of the conditions for a Poisson process

likely to be satisfied?

Distinguishing Poisson from Binomial and Other Distributions

Students often have trouble knowing when to use the Poisson distribution and when not to use it. To be

certain, the three conditions for a Poisson process need to be checked. However, a quick decision can

often be made by asking yourself the following questions:

1. Can we specify in advance the maximum value which  can take?

If we can, then the distribution is not Poisson. If there is no fixed upper limit, the distribution

might be Poisson, but is certainly not binomial or hypergeometric, e.g. the number of seeds

which germinate out of a package of 25 does not have a Poisson distribution since we know in

advance that  ≤ 25. The number of cardinals sighted at a bird feeding station in a week might
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be Poisson since we can’t specify a fixed upper limit on . At any rate, this number would not

have a binomial or hypergeometric distribution. Of course if it is binomial with a very large

value of  and a small value of  we may still use the Poisson distribution, but in this case it is

being used to approximate a binomial.

2. Does it make sense to ask how often the event did not occur?

If it does make sense, the distribution is not Poisson. If it does not make sense, the distribution

might be Poisson. For example, it does not make sense to ask how often a person did not hiccup

during an hour. So the number of hiccups in an hour might have a Poisson distribution. It would

certainly not be binomial, negative Binomial, or hypergeometric. If a coin were tossed until the

3rd head occurs it does make sense to ask how often heads did not come up. So the distribution

would not be Poisson. (In fact, we’d use negative binomial for the number of non-heads; i.e.

tails.)

Problems:

5.8.1 Suppose that emergency calls to 911 follow a Poisson process with an average of 3 calls per

minute. Find the probability there will be

a) 6 calls in a period of 21
2

minutes.

b) 2 calls in the first minute of a 21
2

minute period, given that 6 calls occur in the entire period.

5.8.2 Misprints are distributed randomly and uniformly in a book, at a rate of 2 per 100 lines.

(a) What is the probability a line is free of misprints?

(b) Two pages are selected at random. One page has 80 lines and the other 90 lines. What is

the probability that there are exactly 2 misprints on each of the two pages?



♦ 97

5.9 Combining Other Models with the Poisson Process♦
23While we’ve considered the model distributions in this chapter one at a time, we will sometimes need

to use two or more distributions to answer a question. To handle this type of problem you’ll need to

be very clear about the characteristics of each model. Here is a somewhat artificial illustration. Lots of

other examples are given in the problems at the end of the chapter.

Example: A very large (essentially infinite) number of ladybugs is released in a large orchard. They

scatter randomly so that on average a tree has 6 ladybugs on it. Trees are all the same size.

a) Find the probability a tree has  3 ladybugs on it.

b) When 10 trees are picked at random, what is the probability 8 of these trees have  3 ladybugs

on them?

c) Trees are checked until 5 with  3 ladybugs are found. Let  be the total number of trees

checked. Find the probability function, ().

d) Find the probability a tree with  3 ladybugs on it has exactly 6.

e) On 2 trees there are a total of  ladybugs. Find the probability that  of these are on the first of

these 2 trees.

Solution:

a) If the ladybugs are randomly scattered the most suitable model is the Poisson distribution with

 = 6 and  = 1 (i.e. any tree has a “volume" of 1 unit), so  = 6 and

 (  3) = 1−  ( ≤ 3) = 1− [(0) + (1) + (2) + (3)]

= 1−
h
60−6
0!

+ 61−6
1!

+ 62−6
2!

+ 63−6
3!

i
= 8488

b) Using the binomial distribution where “success” means  3 ladybugs on a tree, we have  =

10  = 8488 and

(8) =

µ
10

8

¶
(8488)8(1− 8488)2 = 2772

c) Using the negative binomial distribution, we need the number of successes, , to be 5, and the

number of failures to be (− 5). Then

() =
¡
−5+5−1

−5
¢
(8488)5(1− 8488)−5

=
¡
−1
−5
¢
(8488)5(1− 8488)−5 or

¡
−1
4

¢
(8488)5(1512)−5;  = 5 6 7 · · ·

23♦ This section optional for stat 220
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d) This is conditional probability. Let  = { 6 ladybugs} and

 = { more than 3 ladybugs }. Then

 (|) =  ()

 ()
=

 (6 ladybugs)

 (more than 3 ladybugs)
=

66−6
6!

08488
= 01892

e) Again we need to use conditional probability.

 ( on 1st tree|total of ) =
 ( on 1st tree and total of )

 (total of )

=
 ( on 1st tree and − on 2nd tree)

 ( total of )

=
 ( on 1st tree)  (− on 2nd tree)

 (total of )

Use the Poisson distribution to calculate each, with  = 6 × 2 = 12 in the denominator since

there are 2 trees.

 ( on 1st tree|total of ) =

³
6−6
!

´³
6−−6
(−)!

´
12−12

!

=
!

!(− )!

µ
6

12

¶µ
6

12

¶−

=

µ




¶µ
1

2

¶µ
1− 1

2

¶−
  = 0 1 · · ·  

Caution: Don’t forget to give the range of . If the total is , there couldn’t be more than  ladybugs

on the 1st tree.

Exercise: The answer to (e) is a binomial probability function. Can you reach this answer by general

reasoning rather than using conditional probability to derive it?

Problems:

5.9.1 In a Poisson process the average number of occurrences is  per minute. Independent 1 minute

intervals are observed until the first minute with no occurrences is found. Let  be the number

of 1 minute intervals required, including the last one. Find the probability function, ().

5.9.2 Calls arrive at a telephone distress centre during the evening according to the conditions for a

Poisson process. On average there are 1.25 calls per hour.
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(a) Find the probability there are no calls during a 3 hour shift.

(b) Give an expression for the probability a person who starts working at this centre will have

the first shift with no calls on the 15th shift.

(c) A person works one hundred 3 hour evening shifts during the year. Give an expression for

the probability there are no calls on at least 4 of these 100 shifts. Calculate a numerical

answer using a Poisson approximation.

5.10 Summary of Single Variable Discrete Models

Name Probability Function

Discrete Uniform () = 1
−+1 ;  =  + 1 + 2 · · · 

Hypergeometric () =
()(

−
−)

()
;  = max(0 − ( − )) · · · min( )

Binomial () =
¡



¢
 (1− )− ;  = 0 1 2 · · ·

Negative Binomial () =
¡
+−1



¢
 (1− ) ;  = 0 1 2 · · ·

Geometric () =  (1− ) ;  = 0 1 2 · · ·

Poisson () = −
!

;  = 0 1 2 · · ·
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5.11 Problems on Chapter 5

5.1 Suppose that the probability () a person born in 1950 lives at least to certain ages  is as given

in the table below.

: 30 50 70 80 90

Females .980 .955 .910 .595 .240

Males .960 .920 .680 .375 .095

(a) If a female lives to age 50, what is the probability she lives to age 80? To age 90? What are

the corresponding probabilities for males?

(b) If 51% of persons born in 1950 were male, find the fraction of the total population (males

and females) that will live to age 90.

5.2 Let  be a non-negative discrete random variable with cumulative distribution function

 () = 1− 2− for  = 0 1 2 

(a) Find the probability function of .

(b) Find the probability of the event  = 5; the event  ≥ 5.

5.3 Two balls are drawn at random from a box containing ten balls numbered 0 1  9. Let random

variable  be the larger of the numbers on the two balls and random variable  be their total.

(a) Tabulate the p.f. of  and of  if the sampling is without replacement.

(b) Repeat (a) if the sampling is with replacement.

5.4 Let  have a geometric distribution with () = (1−) ; = 0 1 2 · · · . Find the probability

function of , the remainder when  is divided by 4.

5.5 (a) Todd decides to keep buying a lottery ticket each week until he has 4 winners (of some

prize). Suppose 30% of the tickets win some prize. Find the probability he will have to buy

10 tickets.

(b) A coffee chain claims that you have a 1 in 9 chance of winning a prize on their “roll up

the edge" promotion, where you roll up the edge of your paper cup to see if you win. If

so, what is the probability you have no winners in a one week period where you bought 15

cups of coffee?

(c) Over the last week of a month long promotion you and your friends bought 60 cups of

coffee, but there was only 1 winner. Find the probability that there would be this few (i.e.

1 or 0) winners. What might you conclude?
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5.6 An oil company runs a contest in which there are 500,000 tickets; a motorist receives one ticket

with each fill-up of gasoline, and 500 of the tickets are winners.

(a) If a motorist has ten fill-ups during the contest, what is the probability that he or she wins

at least one prize?

(b) If a particular gas bar distributes 2,000 tickets during the contest, what is the probability

that there is at least one winner among the gas bar’s customers?

5.7 Jury selection. During jury selection a large number of people are asked to be present, then

persons are selected one by one in a random order until the required number of jurors has been

chosen. Because the prosecution and defense teams can each reject a certain number of persons,

and because some individuals may be exempted by the judge, the total number of persons selected

before a full jury is found can be quite large.

(a) Suppose that you are one of 150 persons asked to be present for the selection of a jury. If

it is necessary to select 40 persons in order to form the jury, what is the probability you are

chosen?

(b) In a recent trial the numbers of men and women present for jury selection were 74 and

76. Let  be the number of men picked for a jury of 12 persons. Give an expression for

 ( = ), assuming that men and women are equally likely to be picked.

(c) For the trial in part (b), the number of men selected turned out to be two. Find  ( ≤ 2).
What might you conclude from this?

5.8 A waste disposal company averages 6.5 spills of toxic waste per month. Assume spills occur

randomly at a uniform rate, and independently of each other, with a negligible chance of 2 or

more occurring at the same time. Find the probability there are 4 or more spills in a 2 month

period.

5.9 Coliform bacteria are distributed randomly and uniformly throughout river water at the average

concentration of one per twenty cubic centimeters of water.

(a) What is the probability of finding exactly two coliform bacteria in a 10 cubic centimeters

sample of the river water?

(b) What is the probability of finding at least one coliform bacterium in a 1 cubic centimeter

sample of the river water?

(c) In testing for the concentration (average number per unit volume) of bacteria it is possible

to determine cheaply whether a sample has any (i.e. 1 or more) bacteria present or not.
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Suppose the average concentration of bacteria in a body of water is  per cubic centimeter.

If 10 independent water samples of 10 c.c. each are tested, let the random variable  be the

number of samples with no bacteria. Find  ( = ).

(d) Suppose that of 10 samples, 3 had no bacteria. Find an estimate for the value of .

5.10 In a group of policy holders for house insurance, the average number of claims per 100 policies

per year is  = 80. The number of claims for an individual policy holder is assumed to follow a

Poisson distribution.

(a) In a given year, what is the probability an individual policy holder has at least one claim?

(b) In a group of 20 policy holders, what is the probability there are no claims in a given year?

What is the probability there are two or more claims?

5.11 Assume power failures occur independently of each other at a uniform rate through the months of

the year, with little chance of 2 or more occurring simultaneously. Suppose that 80% of months

have no power failures.

a) Seven months are picked at random. What is the probability that 5 of these months have no

power failures?

b) Months are picked at random until 5 months without power failures have been found. What

is the probability that 7 months will have to be picked?

c) What is the probability a month has more than one power failure?

5.12 a) Let () =
()(

−
−)

()
, and keep  = 


fixed. (e.g. If  doubles then  also doubles.)

Prove that lim
→∞

() =
¡



¢
(1− )−.

b) What part of the chapter is this related to?

5.13 Spruce budworms are distributed through a forest according to a Poisson process so that the

average is  per hectare.

a) Give an expression for the probability that at least 1 of  one hectare plots contains at least

 spruce budworms.

b) Discuss briefly which assumption(s) for a Poisson process may not be well satisfied in this

situation.

5.14 A person working in telephone sales has a 20% chance of making a sale on each call, with

calls being independent. Assume calls are made at a uniform rate, with the numbers made in

non-overlapping periods being independent. On average there are 20 calls made per hour.
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a) Find the probability there are 2 sales in 5 calls.

b) Find the probability exactly 8 calls are needed to make 2 sales.

c) If 8 calls were needed to make 2 sales, what is the probability there was 1 sale in the first 3

of these calls?

d) Find the probability of 3 calls being made in a 15 minute period.

5.15 A bin at a hardware store contains 35 forty watt lightbulbs and 70 sixty watt bulbs. A customer

wants to buy 8 sixty watt bulbs, and withdraws bulbs without replacement until these 8 bulbs

have been found. Let  be the number of 40 watt bulbs drawn from the bin. Find the probability

function, ().

5.16 During rush hour the number of cars passing through a particular intersection24 has a Poisson

distribution with an average of 540 per hour.

a) Find the probability there are 11 cars in a 30 second interval and the probability there are

11 or more cars.

b) Find the probability that when 20 disjoint 30 second intervals are studied, exactly 2 of them

had 11 cars.

c) We want to find 12 intervals having 11 cars in 30 seconds.

(i) Give an expression for the probability 1400 30 second intervals have to be observed to

find the 12 having the desired traffic flow.

(ii) Use an approximation which involves the Poisson distribution to evaluate this proba-

bility and justify why this approximation is suitable.

5.17 (a) Bubbles are distributed in sheets of glass, as a Poisson process, at an intensity of 1.2 bubbles

per square metre. Let  be the number of sheets of glass, in a shipment of  sheets, which

have no bubbles. Each sheet is 0.8m2. Give the probability function of .

(b) The glass manufacturer wants to have at least 50% of the sheets of glass with no bubbles.

How small will the intensity  need to be to achieve this?

5.18 Random variable  takes values 1,2,3,4,5 and has c.d.f.

 0 1 2 3 4 5

 () 0 .1 .2 .5  42

Find  () and  (2   ≤ 4). Draw a histogram of ().

24"Traffic signals in New York are just rough guidelines." David Letterman (1947 - )
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5.19 Let random variable  have a geometric distribution  ( = ) = (1−) for  = 0 1 2  .

(a) Find an expression for  ( ≥ ), and show that  ( ≥ + | ≥ ) =  ( ≥ ) for all

non-negative integers , .

(b) What is the most probable value of  ?

(c) Find the probability that  is divisible by 3.

(d) Find the probability function of random variable , the remainder when  is divided by 3.

5.20 Polls and Surveys. Polls or surveys in which people are selected and their opinions or other

characteristics are determined are very widely used. For example, in a survey on cigarette use

among teenage girls, we might select a random sample of  girls from the population in question,

and determine the number  who are regular smokers. If  is the fraction of girls who smoke,

then  ∼ ( ). Since  is unknown (that is why we do the survey) we then estimate it as

̂ = . (In probability and statistics a “hat" is used to denote an estimate of a model parameter

based on data.) The binomial distribution can be used to study how “good" such estimates are,

as follows

(a) Suppose  = 3 and  = 100. Find the probability  (27 ≤ 

≤ 33). Many surveys try

to get an estimate  which is within 3% (.03) of  with high probability. What do you

conclude here?

(b) Repeat the calculation in (a) if  = 400 and  = 1000. What do you conclude?

(c) If  = 5 instead of .3, find  (47 ≤ 

≤ 53) when  = 400 and 1000.

(d) Your employer asks you to design a survey to estimate the fraction  of persons age 25-34

who download music via the internet. The objective is to get an estimate accurate to within

3%, with probability close to .95. What size of sample () would you recommend?

5.21 Telephone surveys. In some “random digit dialing" surveys, a computer phones randomly se-

lected telephone numbers. However, not all numbers are “active" (belong to a telephone account)

and they may belong to businesses as well as to individual or residences.

Suppose that for a given large set of telephone numbers, 57% are active residential or individual

numbers. We will call these “personal" numbers.

Suppose that we wish to interview (over the phone) 1000 persons in a survey.

(a) Suppose that the probability a call to a personal number is answered is .8, and that the prob-

ability the person answering agrees to be interviewed is .7. Give the probability distribution

for , the number of calls needed to obtain 1000 interviews.
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(b) Use R software to find  ( ≤ ) for the values  = 2900 3000 3100 3200.

(c) Suppose instead that 3200 randomly selected numbers were dialed. Give the probability

distribution for  , the number of interviews obtained, and find  ( ≥ 1000).

(Note: The R functions pnbinom and pbinom give negative binomial and binomial probabilities,

respectively.)

5.22∗ Challenge problem: Suppose that  independent tosses of a coin having probability  of coming

up heads are made. Show that the probability of an even number of heads is given by 1
2
[1 + (−

)] where  = 1− 



6. Computational Methods and ♦F

25One of the giant steps towards democracy in the last century was the increased democratization of

knowledge26, facilitated by the personal computer, Wikipedia and the advent of free open-source (GNU)

software such as Linux. The statistical software package implements a dialect of the S language that

was developed at AT&T Bell Laboratories by Rick Becker, John Chambers and Allan Wilks. Versions

of  are available, at no cost, for 32-bit versions of Microsoft Windows for Linux, for Unix and for

Macintosh systems. It is available through the Comprehensive R Archive Network (CRAN) (download-

able for unix, windows or MAC platforms at http://cran.r-project.org/). This means that a community of

interested statisticians voluntarily maintain and updates the software. Like the licensed software Matlab

and Splus,  permits easy matrix and numerical calculations, as well as a programming environment

for high-level computations. The  software also provides a powerful tool for handling probability

distributions, generating random variables, and graphical display. Because it is freely available and

used by statisticians world-wide, high level programs in  are often available on the web. These notes

provide a glimpse of a few of the features of . Web resources have much more information and more

links can be found on the Stat 230 web page. We will provide a brief description of commands on a

windows machine here, but the MAC and UNIX commands will generally be similar once  is started.

6.1 Preliminaries

Begin by installing R on your personal computer and then invoke it on Math Unix machines by typing

 or on a windows machine by clicking on the  icon. For these notes, we will simply describe typing

commands into the R command window following the R prompt "" in interactive mode. This window

is displayed below in Figure 6.1

Objects include variables, functions, vectors, arrays, lists and other items. To see online documenta-

tion about something, we use the "help" function. For example, to see documentation on the function

mean(), type

25♦F This section optional for Stat 220 and Stat 230
26"Knowledge is the most deomocratic source of power" Alvin Toffler
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Figure 6.1: An R, version 2.7.1 command window in windows

help(mean).

In some cases help.search() is helpful. For example

help.search("matrix")

lists all functions whose help pages have a title or alias in which the text string “matrix” appears.

The - is a left diamond bracket () followed by a minus sign (-). It means “is assigned to”, for

example,

x<-15

assigns the value 15 to variable x. To quit an R session, type

q()

You need the brackets () because you wish to run the function "q". Typing q on its own, without

the parentheses, displays the text of the function on the screen. Try it! Alternatively to quit R, you can

click on the "File" menu and then on Exit or on the x in the top right corner of the R window. You are

asked whether you want to save the workspace image. Clicking "Yes" (safer) will save all the objects

that remain in the workspace both those at the start of the session and those added.
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6.2 Vectors

Vectors can consist of numbers or other symbols; we will consider only numbers here. Vectors are

defined using c(): for example,

x<-c(1,3,5,7,9)

defines a vector of length 5 with the elements given. Vectors and other classes of objects possess certain

attributes. For example, typing

length(x)

will give the length of the vector x. Vectors are a convenient way to store values of a function (e.g. a

probability function or a c.d.f) or values of a random variable that have been recorded in some experi-

ment or process. We can also read a table of values from a text file that we created earlier called say

"mydata.txt" on a disk in drive c:

> mydata <- read.table("c:/mydata.txt", header=T)

Use of "header=T" causes  to use the first line of the text file to get header information for the

columns. If column headings are not included in the file, the argument can be omitted and we obtain a

table with just the data. The  object "mydata" is a special form known as a "data frame". Data frames

that consist entirely of numeric data have a structure that is similar to that of numeric matrices. The

names of the columns can be displayed with the command

> names(mydata)

6.3 Arithmetic Operations

The following R commands and responses should explain the most basic arithmetic operations.

> 7+3

[1] 10

> 7*3

[1] 21

> 7/3

[1] 2.333333

> 2^3

[1] 8

In the last example the result is 8. The [1] says basically “first requested element follows” but here

there is just one element. The "" indicates that R is ready for another command.
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6.4 Some Basic Functions

Functions of many types exist in R. Many operate on vectors in a transparent way, as do arithmetic

operations. For example, if x and y are vectors then x+y adds the vectors element-wise; thus x and y

must be the same length. Some examples, with comments, follow. Note that anything that follows a #

on the command line is taken as comment and ignored by R.

> x<- c(1,3,5,7,9) # Defines a vector x

> x # displays x

[1] 1 3 5 7 9

> y<- seq(1,2,.25) #seq defines vector whose elements are an arithmetic progression

> y

[1] 1.00 1.25 1.50 1.75 2.00

> y[2] #displays the second element of vector y

[1] 1.25

> y[c(2,3)] #displays vector of second and third elements of vector y

[1] 1.25 1.50

> mean(x) #computes mean of the elements of vector x

[1] 5

> summary(x) #function which summarizes features of a vector x

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 3 5 5 7 9

> var(x) # Computes the (sample) variance of the elements of x

[1] 10

> exp(1) # The exponential function

[1] 2.718282

> exp(y)

[1] 2.718282 3.490343 4.481689 5.754603 7.389056

> round(exp(y),2) # round(y,n) rounds elements of vector y to n decimals

[1] 2.72 3.49 4.48 5.75 7.39

> x+2*y

[1] 3.0 5.5 8.0 10.5 13.0
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6.5 R Objects

Type "ls()" to see a list of names of all objects, including functions and data structures, in your

workspace.

If you type the name of an object, vector, matrix or function, you are returned its contents. (Try

typing "q" or "mean").

Before you quit, you may remove objects that you no longer require with "rm()" and then save the

workspace image. The workspace image is automatically loaded when you restart  in that directory.

6.6 Graphs

To open a graphics window in Unix, type x11(). Note that in R, a graphics window opens automatically

when a graphical function is used.

There are various plotting and graphical functions. Two useful ones are

plot(x,y) # Gives a scatterplot of x versus y; thus x and y must be

#vectors of the same length.

hist(x) # Creates a frequency histogram based on the values in the

#vector x. To get a relative frequency histogram (areas of

#rectangles sum to one) use

hist(x,prob=T).

Graphs can be tailored with respect to axis labels, titles, numbers of plots to a page etc. Type help(plot),

help(hist) or help(par) for some information. Try

x<-(0:20)*pi/10

plot(x, sin(x))

Is it obvious that these points lie on a sine curve? One can make it more obvious by changing

the shape of the graph. Place the cursor over the lower border of the graph sheet, until it becomes a

double-sided and then drag the border in towards the top border, to make the graph sheet short and

wide.

To save/print a graph in R using UNIX, you generate the graph you would like to save/print in R using

a graphing function like plot() and type:
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dev.print(device,file="filename")

where device is the device you would like to save the graph to (i.e. x11) and filename is the name of

the file that you would like the graph saved to. To look at a list of the different graphics devices you

can save to,

type help(Devices).

To save/print a graph in  using Windows, you can do one of two things.

a) You can go to the File menu when the graph window is active and save the graph using one of

several formats (i.e. postscript, jpeg, etc.) or print it. You may also copy the graph to the clipboard

using one of the formats and then paste to an editor, such as MS Word.

b) You can right click on the graph. This gives you a choice of copying the graph and then pasting

to an editor, such as MS Word, or saving the graph as a metafile or bitmap or print directly to a printer.

6.7 Distributions

There are functions which compute values of probability or probability density functions, cumulative

distribution functions, and quantiles for various distributions. It is also possible to generate (pseudo)

random samples from these distributions. Some examples follow for Binomial and Poisson distribu-

tions. For other distribution information, type

help(rhyper),

help(rnbinom)

and so on. Note that  does not have any function specifically designed to generate random samples

from a discrete uniform distribution (although there is one for a continuous uniform distribution). To

generate n random samples from a discrete UNIF(a,b), use

sample(a:b,n,replace=T).

> y<- rbinom(10,100,0.25) # Generate 10 random values from the Binomial

#distribution Bi(100,0.25). The values are stored in the vector y.

> y # Display the values

[1] 24 24 26 18 29 29 33 28 28 28
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> pbinom(3,10,0.5) # Compute P(Y<=3) for a Bi(10,0.5) random variable.

[1] 0.171875

> qbinom(.95,10,0.5) # Find the .95 quantile (95th percentile) for

[1] 8 Bi(10,0.5).

> z<- rpois(10,10) # Generate 10 random values from the Poisson distribution

#Poisson(10). The values are stored in the vector z.

> z # Display the values

[1] 6 5 12 10 9 7 9 12 5 9

> ppois(3,10) # Compute P(Y<=3) for a Poisson(10) random variable.

[1] 0.01033605

> qpois(.95,10) # Find the .95 quantile (95th percentile) for

[1] 15 Poisson(10).

To illustrate how to plot the probability function for a random variable, a Bi(10,0.5) random variable is

used.

# Assign all possible values of the random variable, X ~ Bi(10,0.5)

x <- seq(0,10,by=1)

# Determine the value of the probability function for possible values of X

x.pf <- dbinom(x,10,0.5)

# Plot the probability function

barplot(x.pf,xlab="X",ylab="Probability Function",

names.arg=c("0","1","2","3","4","5","6","7","8","9","10"))

Loops in R are easy to construct but long loops can be slow and should be avoided where possible. For

example

x=0

for (i in 1:10) x<- c(x,i)

can be replaced by

x=c(0:10)
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Commonly used functions.

print() # Prints a single R object

cat() # Prints multiple objects, one after the other

length() # Number of elements in a vector or of a list

mean() # mean of a vector of data

median() # median of a vector of data

range() # Range of values of a vector of data

unique() # Gives the vector of distinct values

diff() # the vector of first differences so diff(x) has

# one less element than x

sort() # Sort elements into order, omitting NAs

order() # x[order(x)] orders elements of x, with NAs last

cumsum() # vector of partial or cumuulative sums

cumprod() # vector of partial or cumuulative products

rev() # reverse the order of vector element

6.8 Problems on Chapter 6

6.1 The following ten observations, taken during the years 1970-79, are on October snow cover for

Eurasia. (Snow cover is in millions of square kilometers).
Year Snow.cover

1970 6.5

1971 12

1972 14.9

1973 10

1974 10.7

1975 7.9

1976 21.9

1977 12.5

1978 14.5

1979 9.2

(a) Enter the data into R. To save keystrokes, enter the successive years as 1970:1979

(b) Plot snow.cover versus year.

(c) Use "hist()" to plot a histogram of the snow cover values.
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(d) Repeat b and c after taking logarithms of snow cover.

6.2 Input the following data, on damage that had occurred in space shuttle launches prior to the

disastrous Challenger space shuttle launch of Jan 28 1986.

Date Temperature Number of damage incidents

Date Temperature (F)
Number of

Damage Incidents
Date Temperature (F)

Number of

Damage Incidents

4/12/81 66 0 10/5/84 78 0

11/12/81 70 1 11/8/84 67 0

3/22/82 69 0 1/24/85 53 3

6/27/82 80 NA 4/12/85 67 0

1/11/82 68 0 4/29/85 75 0

4/4/83 67 0 6/17/85 70 0

6/18/83 72 0 7/29/85 81 0

8/30/83 73 0 8/27/85 76 0

11/28/83 70 0 10/3/85 79 0

2/3/84 57 1 10/30/85 75 2

4/6/84 63 1 11/26/85 76 0

8/30/84 70 1 1/12/86 58 1

This was then followed by the disasterous CHALLENGER incident on 1/28/86.

(a) Enter the temperature data into a data frame, with (for example) column names temperature,

damage.

(b) Plot total incidents against temperature. Do you see any relationship? On the date of the

challenger incident the temperature at launch was 31 degrees F. What would you expect for

the number of damage incidents?



7. Expected Value and Variance

7.1 Summarizing Data on Random Variables

When we return midterm tests, someone almost always asks what the average was. While we could

list out all marks to give a picture of how students performed, this would be tedious. It would also

give more detail than could be immediately digested. If we summarize the results by telling a class

the average mark, students immediately get a sense of how well the class performed. For this reason,

“summary statistics” are often more helpful than giving full details of every outcome.

To illustrate some of the ideas involved, suppose we were to observe cars crossing a toll bridge, and

record the number, , of people in each car. Suppose in a small study27 data on 25 cars were collected.

We could list out all 25 numbers observed, but a more helpful way of presenting the data would be in

terms of the frequency distribution below, which gives the number of times (the “frequency”) each

value of  occurred.

X Frequency Count Frequency

1 | | | |   | 6

2 | | | |  | | | 8

3 | | | | 5

4 | | | 3

5 | | 2

6 | 1

We could also draw a frequency histogram of these frequencies:

Frequency distributions or histograms are good summaries of data because they show the variability

in the observed outcomes very clearly. Sometimes, however, we might prefer a single-number sum-

mary. The most common such summary is the average, or arithmetic mean of the outcomes. The mean

27"Study without desire spoils the memory, and it retains nothing that it takes in." Leonardo da Vinci

115



116

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

Figure 7.1: Frequency Histogram

of  outcomes 1      for a random variable  is
P
=1

, and is denoted by ̄. The arithmetic

mean for the example above can be calculated as

(6× 1) + (8× 2) + (5× 3) + (3× 4) + (2× 5) + (1× 6)
25

=
65

25
= 260

That is, there was an average of 2.6 persons per car. A set of observed outcomes 1      for a

random variable  is termed a sample in probability and statistics. To reflect the fact that this is the

average for a particular sample, we refer to it as the sample mean. Unless somebody deliberately

“cooked” the study, we would not expect to get precisely the same sample mean if we repeated it

another time. Note also that ̄ is not in general an integer, even though  is.

Two other common summary statistics are the median and mode.

Definition 13 The median of a sample is a value such that half the results are below it and half above

it, when the results are arranged in numerical order.

If these 25 results were written in order, the 13th outcome would be a 2. So the median is 2. By

convention, we go half way between the middle two values if there are an even number of observations.

Definition 14 The mode of the sample is the value which occurs most often. In this case the mode is 2.

There is no guarantee there will be only a single mode.

Exercise: Give a data set with a total of 11 values for which the medianmodemean.
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7.2 Expectation of a Random Variable

The statistics in the preceding section summarize features of a sample of observed -values. The

same idea can be used to summarize the probability distribution of a random variable . To illustrate,

consider the previous example, where  is the number of persons in a randomly selected car crossing

a toll bridge.

Note that we can re-arrange the expression used to calculate  for the sample, as

(6× 1) + (8× 2) + · · ·+ (1× 6)
25

= (1)

µ
6

25

¶
+(2)

µ
8

25

¶
+(3)

µ
5

25

¶
+(4)

µ
3

25

¶
+(5)

µ
2

25

¶
+(6)

µ
1

25

¶

=

6X
=1

× fraction of times  occurs

Now suppose we know that the probability function of  is given by

 1 2 3 4 5 6

() .30 .25 .20 .15 .09 .01

Using the relative frequency “definition” of probability, if we observed a very large number of cars, the

fraction (or relative frequency) of times  = 1 would be .30, for  = 2, this proportion would be .25,

etc. So, in theory, (according to the probability model) we would expect the mean to be

(1)(30) + (2)(25) + (3)(20) + (4)(15) + (5)(09) + (6)(01) = 251

if we observed an infinite number of cars. This “theoretical” mean is usually denoted by  or(), and

requires us to know the distribution of . With this background we make the following mathematical

definition.

Definition 15 The expected value (also called the mean or the expectation) of a discrete random vari-

able  with probability function () is

() =
X
all x

()

The expected value of  is also often denoted by the Greek letter . The expected value 28 of 

can be thought of physically as the average of the -values that would occur in an infinite series of

repetitions of the process where  is defined. This value not only describes one aspect of a probability

distribution, but is also very important in certain types of applications. For example, if you are playing

28Oft expectation fails, and most oft where most it promises; and oft it hits where hope is coldest; and despair most sits.

William Shakespeare (1564 - 1616)
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a casino game in which  represents the amount you win in a single play, then () represents your

average winnings (or losses!) per play.

Sometimes we may not be interested in the average value of  itself, but in some function of .

Consider the toll bridge example once again, and suppose there is a toll which depends on the number

of car occupants. For example, a toll of $1 per car plus 25 cents per occupant would produce an average

toll for the 25 cars in the study of Section 7.1 equal to

(125)

µ
6

25

¶
+(150)

µ
8

25

¶
+(175)

µ
5

25

¶
+(200)

µ
3

25

¶
+(225)

µ
2

25

¶
+(250)

µ
1

25

¶
= $165

If  has the theoretical probability function () given above, then the average value of this $(.25X +

1) toll would be defined in the same way, as,

(125)(30) + (150)(25) + (175)(20) + (200)(15) + (225)(09) + (250)(01) = $16275

We call this the expected value of (025 + 1) and write  (025 + 1) = 16275.

As a further illustration, suppose a toll designed to encourage car pooling charged $122 if there were

 people in the car. This scheme would yield an average toll, in theory, of

µ
12

1

¶
(30) +

µ
12

4

¶
(25) +

µ
12

9

¶
(20) +

µ
12

16

¶
(15) +

µ
12

25

¶
(09) +

µ
12

36

¶
(01) = $47757

that is,



µ
12

2

¶
= 47757

is the “ expected value ” of
¡
12
2

¢
.

With this as background, we can now make a formal definition.

Theorem 16 Suppose the random variable  has probability function () Then the expected value

of some function () of  is given by

 [()] =
X
all 

()()

Proof. To use definition 15, we need to determine the expected value of the random variable

 = () by first finding the probability function of  say  () =  ( = ) and then computing

[()] = ( ) =
X
all 

 () (7.5)
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Notice that if we let  = {; () = } be the set of  values with a given value  for () then

 () =  (() = ) =
X
∈

()

Substituting this in (7.5) we obtain

[()] =
X
all 

 ()

=
X
all 


X
∈

()

=
X
all 

X
∈

()()

=
X
all 

()()

Notes:

(1) You can interpret [()] as the average value of () in an infinite series of repetitions of the

process where  is defined.

(2)  [()] is also known as the “expected value” of (). This name is somewhat misleading

since the average value of () may be a value which () never takes - hence unexpected!

(3) The case where () =  reduces to our earlier definition of ().

(4) Confusion sometimes arises because we have two notations for the mean of a probability distri-

bution:  and () mean the same thing. There is a small advantage to using the (lower case)

letter  It makes it visually clearer that the expected value is NOT a random variable like  but

a non-random constant.

(5) When calculating expectations, look at your answer to be sure it makes sense. If  takes values

from 1 to 10, you should know you’ve made an error if you get ()  10 or ()  1. In

physical terms, () is the balance point for the histogram of ().

Let us note a couple of mathematical properties of expected value that can help to simplify calculations.

Linearity Properties of Expectation: If your linear algebra is good, it may help if you think of 

as being a linear operator, and this may save memorizing these properties.
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1. For constants  and ,

 [() + ] =  [()] + 

Proof:

 [() + ] =
X
all 

[() + ] ()

=
X
all 

[()() + ()]

= 
X
all 

()() + 
X
all 

()

=  [()] +  since
X
all 

() = 1

2. Similarly for constants  and  and two functions 1 and 2, it is also easy to show

 [1() + 2()] =  [1()] +  [2()]

Don’t let expected value intimidate you. Much of it is common sense. For example, using property

1, with we let  = 0 and  = 13 we obtain (13) = 13. The expected value of a constant  is,

of course, equal to . The property also implies  (2) = 2() if we use  = 2,  = 0, and

() = . This is obvious also. Note, however, that for () a nonlinear function, it is NOT

generally true that [()] = (()); this is a common mistake. (Check this for the example

above when () = 122.)
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7.3 Some Applications of Expectation

Because expected value is an average value, it is frequently used in problems where costs or profits

are connected with the outcomes of a random variable . It is also used as a summary statistic; for

example, one often hears about the expected life (expectation of lifetime) for a person or the expected

return on an investment. Be cautious however. The expected value does NOT tell the whole story

about a distribution. One investment could have a higher expected value than another but much much

larger probability of large losses.

The following are examples.

Example: Expected Winnings in a Lottery. A small lottery29 sells 1000 tickets numbered 000 001     999;

the tickets cost $10 each. When all the tickets have been sold the draw takes place: this consists of a

single ticket from 000 to 999 being chosen at random. For ticket holders the prize structure is as

follows:

• Your ticket is drawn - win $5000.

• Your ticket has the same first two number as the winning ticket, but the third is different - win

$100.

• Your ticket has the same first number as the winning ticket, but the second number is different -

win $10.

• All other cases - win nothing.

Let the random variable  represent the winnings from a given ticket. Find ().

Solution: The possible values for  are 0, 10, 100, 5000 (dollars). First, we need to find the

probability function for . We find (make sure you can do this) that () =  ( = ) has values

(0) = 0900 (10) = 0090 (100) = 009 (5000) = 001

The expected winnings are thus the expected value of , or

() =
X
all x

() = $680

Thus, the gross expected winnings per ticket are $6.80. However, since a ticket costs $10 your expected

net winnings are negative, -$3.20 (i.e. an expected loss of $3.20).

29"Here’s something to think about: How come you never see a headline like ’Psychic Wins Lottery’? " Jay Leno (1950 - )
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Remark: For any lottery or game of chance the expected net winnings per play is a key value. A fair

game is one for which this value is 0. Needless to say, casino games and lotteries are never fair: the

expected net winnings for a player are always negative.

Remark: The random variable associated with a given problem may be defined in different ways but

the expected winnings will remain the same. For example, instead of defining  as the amount won

we could have defined  = 0 1 2 3 as follows:

 = 3 all 3 digits of number match winning ticket

 = 2 1st 2 digits (only) match

 = 1 1st digit (but not the 2nd) match

 = 0 1st digit does not match

Now, we would define the function () as the winnings when the outcome  =  occurs. Thus,

(0) = 0 (1) = 10 (2) = 100 (3) = 5000

The expected winnings are then

(()) =

3X
=0

()() = $680

the same as before.

Example: Diagnostic Medical Tests: Often there are cheaper, less accurate tests for diagnosing the

presence of some conditions in a person, along with more expensive, accurate tests. Suppose we have

two cheap tests and one expensive test, with the following characteristics. All three tests are positive if

a person has the condition (there are no “false negatives”), but the cheap tests give “false positives”.

Let a person be chosen at random, and let  = {person has the condition}. The three tests are

Test 1:  (positive test |) = .05; test costs $5.00

Test 2:  (positive test |) = .03; test costs $8.00

Test 3:  (positive test |) = 0; test costs $40.00

We want to check a large number of people for the condition, and have to choose among three testing

strategies:

(i) Use Test 1, followed by Test 3 if Test 1 is positive30.

(ii) Use Test 2, followed by Test 3 if Test 2 is positive.

30Assume that given  or , tests are independent of one another.
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(iii) Use Test 3.

Determine the expected cost per person under each of strategies (i), (ii) and (iii). We will then choose

the strategy with the lowest expected cost. It is known that about .001 of the population have the

condition (i.e.  () = 001  () = 999).

Solution: Define the random variable  as follows (for a random person who is tested):

 = 1 if the initial test is negative

 = 2 if the initial test is positive

Also let () be the total cost of testing the person. The expected cost per person is then

[()] =

2X
=1

()()

The probability function () for  and function () differ for strategies (i), (ii) and (iii). Consider

for example strategy (i). Then

 ( = 2) =  (initial test positive)

=  () +  (positive|) ()
= 001 + (05)(999) = 00510

The rest of the probabilities, associated values of () and [()] are obtained below.

(i) (1) =  ( = 1) = 1− (2) = 1− 00510 = 0949 (see (2) below)

(2) = 00510 (obtained above)

(1) = 5 (2) = 45

[()] = 5(949) + 45(0510) = $704

(ii) (2) = 001 + (03)(999) = 03097

(1) = 1− (2) = 96903

(1) = 8 (2) = 48

[()] = 8(96903) + 48(03097) = $92388

(iii) (2) = 001 (1) = 999

(0) = (1) = 40

[()] = $4000
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Thus, it is cheapest to use strategy (i).

Problem:

7.3.1 A lottery31 has tickets numbered 000 to 999 which are sold for $1 each. One ticket is selected

at random and a prize of $200 is given to any person whose ticket number is a permutation of

the selected ticket number. All 1000 tickets are sold. What is the expected profit or loss to the

organization running the lottery?

31"I’ve done the calculation and your chances of winning the lottery are identical whether you play or not." Fran Lebowitz

(1950 - )
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7.4 Means and Variances of Distributions

Its useful to know the means,  = () of probability models derived in Chapter 6.

Example: (Expected Value of the binomial distribution) Let  ∼ ( ). Find ().

Solution:

 = () =
P

=0


¡



¢
(1− )−

=
P

=0

 !
!(−)!

(1− )−

When  = 0 the value of the expression is 0. We can therefore begin our sum at  = 1. Provided

 6= 0, we can expand ! as (− 1)! (so it is important to eliminate the term when  = 0).

Therefore =

X
=1

(− 1)!
(− 1)! [(− 1)− (− 1)]!

−1(1− )(−1)−(−1)

= (1− )−1
X

=1

µ
− 1
− 1

¶µ


1− 

¶−1

Let  = − 1 in the sum, to get

 = (1− )−1
−1P
=0

¡
−1


¢ ³

1−
´

=  (1− )−1
³
1 + 

1−
´−1

(binomial theorem)

=  (1− )−1 (1−+)
−1

(1−)−1 = 

Exercise: Does this result make sense? If you try something 100 times and there is a 20% chance of

success each time, how many successes do you expect to get, on average?

Example: (Expected value of the Poisson distribution) Let  have a Poisson distribution where

 is the average rate of occurrence and the time interval is of length . Find  = ().

Solution: The probability function of  is () = ()−
!

. Then  = () =
∞P
=0


()−

!
.

As in the binomial example, we can eliminate the term when  = 0 and expand ! as ( − 1)! for
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 = 1 2 · · · ∞.

 =

∞X
=1


() −

!
=

∞X
=1


() −

(− 1)!

=

∞X
=1

()−
()−1

(− 1)! = () 
−

∞X
=1

()−1

(− 1)!

= ()−
∞X
=0

()

!
letting  = − 1 in the sum

= ()− since  =
∞X
=0



!

= 

Note that we used the symbol  =  earlier in connection with the Poisson model; this was because

we knew (but couldn’t show until now) that () = .

Exercise: These techniques can also be used to work out the mean for the hypergeometric or negative

binomial distributions. Looking back at how we proved that
P

() = 1 shows the same method of

summation used to find . However, in Chapter 8 we will give a simpler method of finding the means

of these distributions, which are () =  (hypergeometric) and () = (1− ) (negative

binomial).

Variability: While an average or expected value is a useful summary of a set of observations, or a

probability distribution, it omits another important piece of information, namely the amount of vari-

ability. For example, it would be possible for car doors to be the right width, on average, and still have

no doors fit properly. In the case of fitting car doors, we would also want the door widths to all be close

to this correct average. We give a way of measuring the amount of variability next. You might think

we could use the average difference between  and  to indicate the amount of variation. In terms of

expectation, this would be  ( − ). However,  ( − ) = ()−  (since  is a constant) = 0.

We soon realize that for a measure of variability, we can use the expected value of a function that has

the same sign for    and for   . One might try the expected value of the distance between

 and its mean, e.g. (| − |) An alternative, more mathematically tractable version squares the

distance (much as Euclidean distance in < involves a sum of squared distances) is the variance.

Definition 17 The variance of a r.v  is 
h
( − )2

i
, and is denoted by 2 or by Var ().

In words, the variance is the average square of the distance from the mean. This turns out to be a very

useful measure of the variability of .
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Example: Let  be the number of heads when a fair coin is tossed 4 times. Then  ∼ 
¡
4 1
2

¢
so

 =  = (4)
¡
1
2

¢
= 2. Find  ()

Without doing any calculations we know  () = 2 ≤ 4 This is because  is always between 0

and 4 and so the maximum possible value for ( − )2 is (4− 2)2 or (0− 2)2 which is 4. An ex-

pected value of a function, say (()] is always somewhere between the minimum and the maximum

value of the function () so in this case 0 ≤  () ≤ 4 The values of () are

 0 1 2 3 4 since () =
¡
4


¢ ¡
1
2

¢ ¡1
2

¢4−
() 116 416 616 416 116 =

¡
4


¢ ¡
1
2

¢4
The value of  () (i.e. 2) is easily found here:

2 = 
h
( − )2

i
=

4P
=0

(− )2 ()

= (0− 2)2 ¡ 1
16

¢
+ (1− 2)2 ¡ 4

16

¢
+ (2− 2)2 ¡ 6

16

¢
+ (3− 2)2 ¡ 4

16

¢
+ (4− 2)2 ¡ 1

16

¢
= 1

If we keep track of units of measurement the variance will be in peculiar units; e.g. if  is the number

of heads in 4 tosses of a coin, 2 is in units of heads2! We can regain the original units by taking

(positive)
√
variance. This is called the standard deviation of , and is denoted by , or as ().

Definition 18 The standard deviation of a random variable  is  =

r

h
( − )2

i
Both variance and standard deviation are commonly used to measure variability.

The basic definition of variance is often awkward to use for mathematical calculation of 2, whereas

the following two results are often useful:

(1) 2 = 
¡
2
¢− 2

(2) 2 =  [( − 1)] + − 2

Proof:

(1) Using properties of expected value ,

2 = 
h
( − )2

i
= 

£
2 − 2 + 2

¤
= 

¡
2
¢− 2() + 2 (since  is constant )

= 
¡
2
¢− 22 + 2 ( Therefore () = )

= 
¡
2
¢− 2
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(2) since 2 = ( − 1) +

Therefore 
¡
2
¢− 2 =  [ ( − 1) +]− 2

=  [( − 1)] +()− 2

=  [( − 1)] + − 2

Formula (2) is most often used when there is an ! term in the denominator of (). Otherwise, formula

(1) is generally easier to use.

Example: (Variance of binomial distribution)

Let  ∼ ( ). Find Var ().

Solution: The probability function for the binomial is

() =
!

!(− )!
 (1− )−

so we’ll use formula (2) above,

 [( − 1)] =
X

=0

(− 1) !

!(− )!
(1− )−

If  = 0 or  = 1 the value of the term is 0, so we can begin summing at  = 2. For  6= 0 or 1, we

can expand the ! as (− 1)(− 2)!

Therefore  [ ( − 1)] =
X

=2

!

(− 2)!(− )!
(1− )−

Now re-group to fit the binomial theorem, since that was the summation technique used to showP
() = 1 and to derive  = .

 [( − 1)] =
X

=2

(− 1)(− 2)!
(− 2)! [(− 2)− (− 2)]!

2−2(1− )(−2)−(−2)

= (− 1)2(1− )−2
X

=2

µ
− 2
− 2

¶µ


1− 

¶−2

Let  = − 2 in the sum, giving

 [( − 1)] = (− 1)2(1− )−2
−2X
=0

µ
− 2


¶µ


1− 

¶

= (− 1)2(1− )−2
³
1 + 

1−
´−2

= (− 1)2(1− )−2 (1−+)
−2

(1−)−2 = (− 1)2
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Then
2 =  [ ( − 1)] + − 2

= (− 1)2 + − ()2
= 22 − 2 + − 22 = (1− )

Remember that the variance of a binomial distribution is (1− ), since we’ll be using it later in the

course.

Example: (Variance of Poisson distribution) Find the variance of the Poisson distribution.

Solution: The probability function of the Poisson is

() =
−

!

from which we obtain

 [( − 1)] =
∞X
=0

(− 1)
−

!

=

∞X
=2

(− 1) −

(− 1)(− 2)!  setting the lower limit to 2 and expanding !

= 2−
∞X
=2

−2

(− 2)!

Let  = − 2 in the sum, giving

 [( − 1)] = 2−
∞X
=0



!
= 2− = 2 so

2 =  [( − 1)] + − 2

= 2 + − 2 = 

(For the Poisson distribution, the variance equals the mean.)

Properties of Mean and Variance

If  and  are constants and  =  + , then

 =  +  and 2 = 22

(where  and 2 are the mean and variance of  and  and 2 are the mean and variance of  ).

Proof:

We already showed that ( + ) = () + .
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i.e.  =  + , and then

2 = 
h
( −  )

2
i
= 

n
[( + )− ( + )]2

o
= 

h
( − )

2
i
= 

h
2 ( − )

2
i

= 2
h
( − )

2
i
= 22

This result is to be expected. Adding a constant, , to all values of  has no effect on the amount of

variability. So it makes sense that Var ( + ) doesn’t depend on the value of . Also since variance

is in squared units, multiplication by a constant results in multiplying the variance by the constant

squared. A simple way to relate to this result is to consider a random variable  which represents a

temperature in degrees Celsius (even though this is a continuous random variable which we don’t study

until Chapter 9). Now let  be the corresponding temperature in degrees Fahrenheit. We know that

 =
9

5
 + 32

and it is clear if we think about it that  = (95) + 32 and that 2 = (
9
5
)22 .

Problems:

7.4.1 An airline knows that there is a 97% chance a passenger for a certain flight will show up, and

assumes passengers arrive independently of each other. Tickets cost $100, but if a passenger

shows up and can’t be carried on the flight the airline has to refund the $100 and pay a penalty

of $400 to each such passenger. If the passenger does not show up, the airline must fully refund

the price of the ticket. How many tickets should they sell for a plane with 120 seats to maximize

their expected ticket revenues after paying any penalty charges? Assume ticket holders who don’t

show up get a full refund for their unused ticket.

7.4.2 A typist typing at a constant speed of 60 words per minute makes a mistake in any particular word

with probability .04, independently from word to word. Each incorrect word must be corrected;

a task which takes 15 seconds per word.

(a) Find the mean and variance of the time (in seconds) taken to finish a 450 word passage.

(b) Would it be less time consuming, on average, to type at 45 words per minute if this reduces

the probability of an error to .02?
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7.5 Moment Generating Functions♦
32We have now seen two functions which characterize a distribution, the probability function and the

cumulative distribution function. There is a third type of function, the moment generating function,

which uniquely determines a distribution. The moment generating function is closely related to other

transforms used in mathematics, the Laplace and Fourier transforms.

Definition 19 Consider a discrete random variable  with probability function (). The moment

generating function (m.g.f.) of  is defined as

() = () =
X


()

We will assume that the moment generating function is defined and finite for values of  in an interval

around 0 (i.e. for some   0 ,
P


() ∞ for all  ∈ [− ]).

The moments of a random variable  are the expectations of the functions  for  = 1 2    .

The expected value () is called th moment of . The mean  = () is therefore the first

moment, (2) the second and so on. It is often easy to find the moments of a probability distribution

mathematically by using the moment generating function. This often gives easier derivations of means

and variances than the direct summation methods in the preceding section. The following theorem

gives a useful property of m.g.f.’s.

Theorem 20 Let the random variable  have m.g.f. (). Then

() = ()(0)  = 1 2   

where  ()(0) stands for () evaluated at  = 0.

Proof:

() =
P


() and if the sum converges, then

 ()() = 


P


()

=
P




()()

=
P


()

Therefore  ()(0) =
P

 
() = (), as stated.

32♦ This section optional for stat 220
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This sometimes gives a simple way to find the moments for a distribution.

Example 1. Suppose X has a Binomial( )distribution. Then its moment generating function is

() =

X
=0


µ




¶
(1− )−

=

X
=0

µ




¶
()(1− )−

= ( + 1− )

Therefore

 0() = ( + 1− )−1

 00() = ( + 1− )−1 + (− 1)22( + 1− )−2

and so

() = 0(0) = 

(2) =”(0) = + (− 1)2

Var() = (2)−()2 = (1− )

Exercise. Poisson distribution

Show that the Poisson distribution with probability function

() = −!  = 0 1 2   

has m.g.f. () = −+

. Then show that () =  and  () = .

The m.g.f. also uniquely identifies a distribution in the sense that two different distributions cannot

have the same m.g.f. This result is often used to find the distribution of a random variable. For example

if I can show somehow that the moment generating function of a random variable  is

2(
−1)

then I know, from the above exercise that the random variable must have a Poisson(2) distribution.

Moment generating functions are often used to identify a given distribution. If two random variables

have the same moment generating function, they have the same distribution (so the same probability

function, cumulative distribution function, moments, etc.). Of course the moment generating functions

must match for all values of  in other words they agree as functions, not just at a few points. Moment

generating functions can also be used to determine that a sequence of distributions gets closer and
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closer to some limiting distribution. To show this (albeit a bit loosely), suppose that a sequence of

probability functions () have corresponding moment generating functions

() =
X


()

Suppose moreover that the probability functions () converge to another probability function ()

pointwise in  as →∞. This is what we mean by convergence of discrete distributions. Then since

()→ () as →∞ for each  (7.6)X


()→
X


() as →∞ for each  (7.7)

which says that () converges to () the moment generating function of the limiting distribution.

It shouldn’t be too surprising that a very useful converse to this result also holds. (This is strictly an

aside and may be of interest only to those with a thing for infinite series, but is it always true that

because the individual terms in a series converge as in (7.6) does this guarantee that the sum of the

series also converges (7.7)?)

Suppose conversely that  has moment generating function () and ()→ () for each

 such that ()  ∞ For example we saw in Chapter 6 that a Binomial( ) distribution with very

large  and very small  is close to a Poisson distribution with parameter  =  Consider the moment

generating function of such a binomial random variable

() = ( + 1− )

= {1 + ( − 1)}

= {1 + 


( − 1)} (7.8)

Now take the limit of this expression as →∞ Since in general

(1 +



) → 

the limit of (7.8) as →∞ is

(
−1) = −+



and this is the moment generating function of a Poisson distribution with parameter  This shows

a little more formally than we did earlier that the binomial( ) distribution with (small)  = 

approaches the Poisson() distribution as →∞
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7.6 Problems on Chapter 7

7.1 Let  have probability function () =

(
1
2
for  = 2 3 4 5 or 6

1140 for  = 1
Find the mean and vari-

ance for .

7.2 A game is played where a fair coin is tossed until the first tail occurs. The probability  tosses will

be needed is () = 5;  = 1 2 3 · · · . You win $2 if  tosses are needed for  = 1 2 3 4 5

but lose $256 if   5. Determine your expected winnings.

7.3 Diagnostic tests. Consider diagnostic tests like those discussed above in the example of Section

7.3 and in Problem 15 for Chapter 4. Assume that for a randomly selected person,  () = 02,

 (|) = 1,  (|) = 05, so that the inexpensive test only gives false positive, and not false

negative, results.

Suppose that this inexpensive test costs $10. If a person tests positive then they are also given a

more expensive test, costing $100, which correctly identifies all persons with the disease. What

is the expected cost per person if a population is tested for the disease using the inexpensive test

followed, if necessary, by the expensive test?

7.4 Diagnostic tests II. Two percent of the population has a certain condition for which there are two

diagnostic tests. Test A, which costs $1 per person, gives positive results for 80% of persons

with the condition and for 5% of persons without the condition. Test B, which costs $100 per

person, gives positive results for all persons with the condition and negative results for all persons

without it.

(a) Suppose that test B is given to 150 persons, at a cost of $15,000. How many cases of the

condition would one expect to detect?

(b) Suppose that 2000 persons are given test A, and then only those who test positive are

given test B. Show that the expected cost is $15,000 but that the expected number of cases

detected is much larger than in part (a).

7.5 The probability that a roulette wheel stops on a red number is 18/37. For each bet on “red” you

are returned twice your bet (including your bet) if the wheel stops on a red number, and lose your

money if it does not.

(a) If you bet $1 on each of 10 consecutive plays, what is your expected winnings? What is

your expected winnings if you bet $10 on a single play?

(b) For each of the two cases in part (a), calculate the probability that you made a profit (that

is, your “winnings” are positive, not negative).
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7.6 Slot machines. Consider the slot machine discussed above in Problem 16 for Chapter 4. Suppose

that the number of each type of symbol on wheels 1, 2 and 3 is as given below:

Wheel

Symbols 1 2 3

Flower 2 6 2

Dog 4 3 3

House 4 1 5

If all three wheels stop on a flower, you win $20 for a $1 bet. If all three wheels stop on a dog,

you win $10, and if all three stop on a house, you win $5. Otherwise you win nothing.

Find your expected winnings per dollar spent.

7.7 Suppose that  people take a blood test for a disease, where each person has probability  of

having the disease, independent of other persons. To save time and money, blood samples from

 people are pooled and analyzed together. If none of the  persons has the disease then the test

will be negative, but otherwise it will be positive. If the pooled test is positive then each of the 

persons is tested separately (so  + 1 tests are done in that case).

(a) Let  be the number of tests required for a group of  people. Show that

() =  + 1− (1− )

(b) What is the expected number of tests required for  groups of  people each? If  = 01,

evaluate this for the cases  = 1 5 10.

(c) Show that if  is small, the expected number of tests in part (b) is approximately ( +

−1), and is minimized for 

= −12.

7.8 A manufacturer of car radios ships them to retailers in cartons of  radios. The profit per radio

is $59.50, less shipping cost of $25 per carton, so the profit is $ (595− 25) per carton. To

promote sales by assuring high quality, the manufacturer promises to pay the retailer $2002 if

 radios in the carton are defective. (The retailer is then responsible for repairing any defective

radios.) Suppose radios are produced independently and that 5% of radios are defective. How

many radios should be packed per carton to maximize expected net profit per carton?

7.9 Let  have a geometric distribution with probability function

() = (1− );  = 0 1 2 

(a) Calculate the m.g.f. () = 
¡

¢
, where  is a parameter.
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(b) Find the mean and variance of .

(c) Use your result in (b) to show that if  is the probability of “success” () in a sequence of

Bernoulli trials, then the expected number of trials until the first  occurs is 1. Explain

why this is “obvious”.

7.10 Analysis of Algorithms: Quicksort. Suppose we have a set  of distinct numbers and we wish

to sort them from smallest to largest. The quicksort algorithm works as follows: When  = 2

it just compares the numbers and puts the smallest one first. For   2 it starts by choosing a

random “pivot” number from the  numbers. It then compares each of the other − 1 numbers

with the pivot and divides them into groups 1 (numbers smaller than the pivot) and ̄1 ( numbers

bigger than the pivot). It then does the same thing with 1 and ̄1 as it did with , and repeats this

recursively until the numbers are all sorted. (Try this out with, say  = 10 numbers to see how

it works.) In computer science it is common to analyze such algorithms by finding the expected

number of comparisons (or other operations) needed to sort a list. Thus, let

 = expected number of comparisons for lists of length 

(a) Show that if  is the number of comparisons needed,

 =

X
=1

(| initial pivot is th smallest number)

µ
1



¶
(b) Show that

(|initial pivot is th smallest number) = − 1 + −1 + −

and thus that  satisfies the recursion (note 0 = 1 = 0)

 = − 1 + 2



−1X
=1

  = 2 3   

(c) Show that

(+ 1)+1 = 2+ (+ 2)  = 1 2   

(d) (Harder) Use the result of part (c) to show that for large ,

+1

+ 1
∼ 2 log (+ 1)

(Note:  ∼  means  → 1 as →∞) This proves a result from computer science

which says that for Quicksort,  ∼ (  ).
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7.11 Find the distributions that correspond to the following moment-generating functions:

(a) () = 1
3−−2 , for   ln(32)

(b) () = 2(
−1) for  ∞

7.12 Find the moment generating function of the discrete uniform distribution  on { + 1  };

 ( = ) =
1

− + 1
 for  =  + 1  

What do you get in the special case  =  and in the case  = +1? Use the moment generating

function in these two cases to confirm the expected value and the variance of 

7.13 Let be a random variable taking values in the set {0 1 2}with moments() = 1, (2) =

32

(a) Find the moment generating function of 

(b) Find the first six moments of 

(c) Find  ( = )  = 0 1 2

(d) Show that any probability distribution on {0 1 2} is completely determined by its first two

moments.

7.14 Assume that each week a stock either increases in value by $1 with probability 1
2

or decreases by

$1, these moves independent of the past. The current price of the stock is $50. I wish to purchase

a call option which allows me (if I wish to do so) the option of buying the stock 13 weeks from

now at a “strike price” of $55. Of course if the stock price at that time is $55 or less there is no

benefit to the option and it is not exercised. Assume that the return from the option is

(13) = max(13 − 55 0)

where 13 is the price of the stock in 13 weeks. What is the fair price of the option today

assuming no transaction costs and 0% interest; i.e. what is [(13)]?

7.15∗ Challenge problem: Let  be the number of ascents in a random permutation of the integers

{1 2 } For example, the number of ascents in the permutation 213546 is three, since

2 135 46 form ascending sequences.

(a) Show that the following recursion for the probabilities () =  [ = ]

() =
 + 1


−1() +

− 


−1( − 1)
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(b) Cards numbered 1,2,....,n are shuffled, drawn and put into a pile as long as the card drawn

has a number lower than its predecessor. A new pile is started whenever a higher card is

drawn. Show that the distribution of the number of piles that we end with is that of 1+

and that the expected number of piles is +1
2




8. Discrete Multivariate Distributions

8.1 Basic Terminology and Techniques

Many problems involve more than a single random variable. When there are multiple random variables

associated with an experiment or process we usually denote them as     or as 12    . For

example, your final mark in a course might involve 1=your assignment mark, 2=your midterm test

mark, and 3 =your exam mark. We need to extend the ideas introduced for single variables to deal

with multivariate problems. Here we only consider discrete multivariate problems, though continuous

multivariate variables are also common in daily life (e.g. consider a person’s height  and weight 

or 1 =the return from Stock 1, 2 =return from stock 2). To introduce the ideas in a simple setting,

we’ll first consider an example in which there are only a few possible values of the variables. Later

we’ll apply these concepts to more complex examples. The ideas themselves are simple even though

some applications can involve fairly messy algebra.

Joint Probability Functions:

First, suppose there are two random variables  and  , and define the function

( ) =  ( =  and  = )

=  ( =   = )

We call ( ) the joint probability function of ( ). In general,

(1 2 · · ·  ) =  (1 = 1 and 2 = 2 and    and  = )

if there are  random variables 1    .

The properties of a joint probability function are similar to those for a single variable; for two random

variables we have ( ) ≥ 0 for all ( ) and

X
all(xy)

( ) = 1

139
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Example: Consider the following numerical example, where we show ( ) in a table.



( ) 0 1 2

1 .1 .2 .3



2 .2 .1 .1

for example (0 2) =  ( = 0 and  = 2) = 02 We can check that ( ) is a proper

joint probability function since ( ) ≥ 0 for all 6 combinations of ( ) and the sum of these 6

probabilities is 1. When there are only a few values for  and  it is often easier to tabulate ( )

than to find a formula for it. We’ll use this example below to illustrate other definitions for multivariate

distributions, but first we give a short example where we need to find ( ).

Example: Suppose a fair coin is tossed 3 times. Define the random variables  = number of Heads

and  = 1(0) if ( ) occurs on the first toss. Find the joint probability function for ( ).

Solution: First we should note the range for ( ), which is the set of possible values ( ) which

can occur. Clearly  can be 0, 1, 2, or 3 and  can be 0 or 1, but we’ll see that not all 8 combinations

( ) are possible.

We can find ( ) =  ( =   = ) by just writing down the sample space

 = {    } that we have used before for this process.

Then simple counting gives ( ) as shown in the following table:



( ) 0 1 2 3

0 1
8

2
8

1
8

0



1 0 1
8

2
8

1
8

For example, ( ) = (0 0) if and only if the outcome is  ; ( ) = (1 0) iff the outcome

is either  or  .

Note that the range or joint p.f. for ( ) is a little awkward to write down here in formulas, so we

just use the table.
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Marginal Distributions: We may be given a joint probability function involving more variables than

we’re interested in using. How can we eliminate any which are not of interest? Look at the first example

above. If we’re only interested in , and don’t care what value  takes, we can see that

 ( = 0) =  ( = 0  = 1) +  ( = 0  = 2)

so  ( = 0) = (0 1) + (0 2) = 03 Similarly

 ( = 1) = (1 1) + (1 2) = 3 and

 ( = 2) = (2 1) + (2 2) = 4

The distribution of  obtained in this way from the joint distribution is called the marginal proba-

bility function of :

 0 1 2

() .3 .3 .4

In the same way, if we were only interested in  , we obtain

 ( = 1) = (0 1) + (1 1) + (2 1) = 6

since  can be 0, 1, or 2 when  = 1. The marginal probability function of  would be:

 1 2

() .6 .4

Our notation for marginal probability functions is still inadequate. What is (1)? As soon as we

substitute a number for  or , we don’t know which variable we’re referring to. For this reason, we

generally put a subscript on the  to indicate whether it is the marginal probability function for the first

or second variable. So 1(1) would be  ( = 1) = 3, while 2(1) would be  ( = 1) = 06. An

alternative notation that you may see is () and  ()

In general, to find 1() we add over all values of  where  = , and to find 2() we add over all

values of  with  = . Then

1() =
X
all y

( ) and

2() =
X
all x

( )

This reasoning can be extended beyond two variables. For example, with three variables (123),
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1(1) =
X

all (x2 x3 )

(1 2 3) and

13(1 3) =
X
all x2

(1 2 3) =  (1 = 13 = 3)

where 13(1 3) is the marginal joint distribution of (13)

Independent Random Variables:

For events  and , we have defined  and  to be independent if and only if  () =  ()  ().

This definition can be extended to random variables ( ): two random variables are independent if

their joint probability function is the product of the marginal probability functions.

Definition 21  and  are independent random variables iff ( ) = 1()2() for all values

( )

Definition 22 In general, 12 · · ·  are independent random variables iff

(1 2 · · ·  ) = 1(1)2(2) · · · () for all 1 2 

In our first example  and  are not independent since 1()2() 6= ( ) for any of the 6 combina-

tions of ( ) values; e.g., (1 1) = 2 but 1(1)2(1) = (03) (06) 6= 02. Be careful applying this

definition. You can only conclude that and  are independent after checking all ( ) combinations.

Even a single case where 1()2() 6= ( ) makes  and  dependent.

Conditional Probability Functions:

Again we can extend a definition from events to random variables. For events  and , recall that

 (|) =  ()

 ()
. Since  ( = | = ) =  ( =   = ) ( = ), we make the following

definition.

Definition 23 The conditional probability function of  given  =  is (|) = ()

2()
.

Similarly, (|) = ()

1()
(provided, of course, the denominator is not zero).
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In our first example let us find (| = 1).

(| = 1) = ( 1)

2(1)


This gives:

 0 1 2

(| = 1) 1
6
= 1

6
2
6
= 1

3
3
6
= 1

2

As you would expect, marginal and conditional probability functions are probability functions in

that they are always ≥ 0 and their sum is 1.

Functions of Variables:

In an example earlier, your final mark in a course might be a function of the 3 variables 123 -

assignment, midterm, and exam marks33. Indeed, we often encounter problems where we need to find

the probability distribution of a function of two or more random variables. The most general method

for finding the probability function for some function of random variables  and  involves looking at

every combination ( ) to see what value the function takes. For example, if we let  = 2( −) in

our example, the possible values of  are seen by looking at the value of  = 2(− ) for each ( )

in the range of ( ).



 0 1 2

1 2 0 -2



2 4 2 0

Then  ( = −2) =  ( = 2 and  = 1) = (2 1) = 3

 ( = 0) =  ( = 1 and  = 1 or  = 2 and  = 2)

= (1 1) + (2 2) = 3

 ( = 2) = (0 1) + (1 2) = 2

 ( = 4) = (0 2) = 2

The probability function of  is thus

33"Don’t worry about your marks. Just make sure that you keep up with the work and that you don’t have to repeat a year.

It s not necessary to have good marks in everything" Albert Einstein in letter to his son, 1916.
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 -2 0 2 4

() .3 .3 .2 .2

For some functions it is possible to approach the problem more systematically. One of the most com-

mon functions of this type is the total. Let  =  +  . This gives:



 0 1 2

1 1 2 3



2 2 3 4

Then  ( = 3) = (1 2) + (2 1) = 4, for example. Continuing in this way, we get

 1 2 3 4

() .1 .4 .4 .1

(We are being a little sloppy with our notation by using “” for both () and ( ). No confusion

arises here, but better notation would be to write  () for  ( = ).) In fact, to find  ( = ) we

are simply adding the probabilities for all ( ) combinations with  +  = . This could be written

as:

() =

P
all (x y)

with x+y=t

( )

However, if +  = , then  = − . To systematically pick out the right combinations of ( ), all

we really need to do is sum over values of  and then substitute −  for . Then,

() =
X
all x

( − ) =
X
all x

 ( =   = − )

So  ( = 3) would be

 ( = 3) =
X
all 

( 3− ) = (0 3) + (1 2) + (2 1) = 04

(note (0 3) = 0 since  can’t be 3.)

We can summarize the method of finding the probability function for a function  = ( ) of two

random variables  and  as follows:

Let ( ) =  ( =   = ) be the probability function for ( ). Then the probability function

for  is

 () =  ( = ) =
X

all():

()=

( )
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This can also be extended to functions of three or more random variables  = (12    ):

() =  ( = ) =
X

(1):

(1)=

(1     )

(Note: Do not get confused between the functions  and  in the above: ( ) is the joint probability

function of the random variables  whereas  = ( ) defines the “new” random variable that

is a function of  and  , and whose distribution we want to find.)

Example: Let  and  be independent random variables having Poisson distributions with averages

(means) of 1 and 2 respectively. Let  =  +  . Find its probability function, ().

Solution: We first need to find ( ). Since  and  are independent we know

( ) = 1()2()

Using the Poisson probability function,

( ) =
1

−1

!



2
−2

!

where  and  can equal 0, 1, 2,    . Now,

 ( = ) =  ( +  = ) =
X
all 

 ( =   = − )

Then

() =
X
all 

( − )

=

X
=0

1
−1

!

−2 −2

(− )!

To evaluate this sum, factor out constant terms and try to regroup in some form which can be

evaluated by one of our summation techniques.

() = 2
−(1+2)

X
=0

1

!(− )!

µ
1

2

¶
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If we had a ! on the top inside the
P

=0

, the sum would be of the form
P

=0

¡



¢ ³
1
2

´
. This is the

right hand side of the binomial theorem. Multiply top and bottom by ! to get:

() =
2

−(1+2)

!

X
=0

µ




¶µ
1

2

¶

=
2

−(1+2)

!
(1 +

1

2
) by the binomial theorem.

Take a common denominator of 2 to get

() =
2 

−(1+2)

!

(1 + 2)


2
=
(1 + 2)



!
−(1+2) for  = 0 1 2 · · ·

Note that we have just shown that the sum of 2 independent Poisson random variables also has a Poisson

distribution.

Example: Three sprinters,  and , compete against each other in 10 independent 100 m. races.

The probabilities of winning any single race are .5 for , .4 for , and .1 for . Let 12 and 3 be

the number of races  and  win.

(a) Find the joint probability function, (1 2 3)

(b) Find the marginal probability function, 1(1)

(c) Find the conditional probability function, (2|1)

(d) Are 1 and 2 independent? Why?

(e) Let  = 1 +2. Find its probability function, ().

Solution: Before starting, note that 1 + 2 + 3 = 10 since there are 10 races in all. We really only

have two variables since 3 = 10 − 1 − 2. However it is convenient to use 3 to save writing and

preserve symmetry.

(a) The reasoning will be similar to the way we found the binomial distribution in Chapter 6 except

that there are now 3 types of outcome. There are 10!
1!2!3!

different outcomes (i.e. results for races

1 to 10) in which there are 1 wins by  2 by , and 3 by . Each of these arrangements has

a probability of (.5) multiplied 1 times, (.4) 2 times, and (.1) 3 times in some order;

i.e., (5)1(4)2(1)3
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Therefore

(1 2 3) =
10!

1!2!3!
(5)1(4)2(1)3

The range for (1 2 3) is triples (1 2 3) where each  is an integer between 0 and 10,

and where 1 + 2 + 3 = 10.

(b) It would also be acceptable to drop 3 as a variable and write down the probability function for

12 only; this is

(1 2) =
10!

1!2!(10− 1 − 2)!
(5)1 (4)2 (1)10−1−2 

because of the fact that 3 must equal 10 − 1 − 2. For this probability function 1 =

0 1 · · ·  10; 2 = 0 1 · · ·  10 and 1 + 2 ≤ 10. This simplifies finding 1(1) a little . We

now have 1(1) =
P
2

(1 2). The limits of summation need care: 2 could be as small as 0,

but since 1 + 2 ≤ 10, we also require 2 ≤ 10− 1. (For example if 1 = 7 then  can win

0 1 2, or 3 races.) Thus,

1(1) =

10−1X
2=0

10!

1!2!(10− 1 − 2)!
(5)1(4)2(1)10−1−2

=
10!

1!
(5)1(1)10−1

10−1X
2=0

1

2!(10− 1 − 2)!

µ
4

1

¶2

(Hint: In
¡



¢
= !

!(−)! the 2 terms in the denominator add to the term in the numerator, if we

ignore the ! sign.) Multiply top and bottom by [2 + (10− 1 − 2)]! = (10− 1)! This gives

1(1) =
10!

1!(10− 1)!
(05)1(01)10−1

10−1X
2=0

µ
10− 1

2

¶µ
04

01

¶2

=

µ
10

1

¶
(05)1(01)10−1(1 +

4

1
)10−1 (again using the binomial theorem)

=

µ
10

1

¶
(05)1(01)10−1

(01 + 04)10−1

(01)10−1
=

µ
10

1

¶
(05)1(05)10−1

Here 1(1) is defined for 1 = 0 1 2 · · ·  10.

Note: While this derivation is included as an example of how to find marginal distributions by sum-

ming a joint probability function, there is a much simpler method for this problem. Note that each race
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is either won by  (“success”) or it is not won by  (“failure”). Since the races are independent and

1 is now just the number of “success” outcomes, 1 must have a binomial distribution, with  = 10

and  = 5.

Hence 1(1) =
¡
10
1

¢
(5)1(5)10−1 ; for 1 = 0 1     10, as above.

(c) Remember that (2|1) =  (2 = 2|1 = 1), so that

(2|1) = (1 2)

1(1)
=

10!
1!2!(10−1−2)!(5)

1(4)2(1)10−1−2

10!
1!(10−1)!(5)

1(5)10−1

=
(10− 1)!

2! (10− 1 − 2)!

(4)2 (1)10−1−2

(5)2 (5)10−1−2
=

µ
10− 1

2

¶µ
4

5

¶2
µ
1

5

¶10−1−2

For any given value of 1 2 ranges through 0 1     (10 − 1) (So the range of 2 depends

on the value 1, which makes sense: if  wins 1 races then the most  can win is 10− 1.)

Note: As in (b), this result can be obtained more simply by general reasoning. Once we are given

that  wins 1 races, the remaining (10 − 1) races are all won by either  or . For these races, 

wins 4
5

of the time and  1
5

of the time, because  ( wins) = 04 and  ( wins) = 01; i.e.,  wins

4 times as often as . More formally

 ( wins | or  wins) = 08

Therefore (2|1) =
µ
10− 1

2

¶µ
4

5

¶2
µ
1

5

¶10−1−2
from the binomial distribution.

(d) 1 and 2 are clearly not independent since the more races  wins, the fewer races there are for

 to win. More formally,

1(1)2(2) =

µ
10

1

¶
(5)1(5)10−1

µ
10

2

¶
(4)2(6)10−2 6= (1 2)

(In general, if the range for 1 depends on the value of 2, then 1 and 2 cannot be indepen-

dent.)
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(e) If  = 1 +2 then

() =
X
1

 (1 − 1)

=

X
1=0

10!

1!(− 1)! (10− 1 − (− 1))!| {z }
(10−)!

(5)1(4)−1(1)10−

The upper limit on 1 is  because, for example, if  = 7 then  could not have won more than 7

races. Then

() =
10!

(10− )!
(4)(1)10−

X
1=0

1

1!(− 1)!

µ
5

4

¶1

What do we need to multiply by on the top and bottom? Can you spot it before looking below?

() =
10!

!(10− )!
(4)(1)10−

X
1=0

!

1!(− 1)!

µ
5

4

¶1

=

µ
10



¶
(4)(1)10−

µ
1 +

5

4

¶

=

µ
10



¶
(4)(1)10−

(4 + 5)

(4)
=

µ
10



¶
(9)(1)10− for  = 0 1     10

Exercise: Explain to yourself how this answer can be obtained from the binomial distribution, as we

did in the notes following parts (b) and (c).

The following problem is similar to conditional probability problems that we solved in Chapter 4.

Now we are dealing with events defined in terms of random variables. Earlier results give us things like

 ( = ) =
X
all 

 ( = | = ) ( = ) =
X
all 

(|)1()

Example: In an auto parts company an average of  defective parts are produced per shift. The

number, , of defective parts produced has a Poisson distribution. An inspector checks all parts prior

to shipping them, but there is a 10% chance that a defective part will slip by undetected. Let  be the

number of defective parts the inspector finds on a shift. Find (|). (The company wants to know

how many defective parts are produced, but can only know the number which were actually detected.)

Solution: Think of  =  being event  and  =  being event ; we want to find  (|). To do

this we’ll use

 (|) =  ()

 ()
=

 (|) ()
 ()
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We know 1() =
−
!

=  ( = ) Also, for a given number  of defective items produced, the

number,  , detected has a binomial distribution with  =  and  = 9, assuming each inspection takes

place independently. Then

 (|) =
µ




¶
(9) (1)− =

( )

1()


Therefore

( ) = 1()(|) = −

!

!

!(− )!
(9)(1)−

To get (|) we’ll need 2(). We have

2() =
X
all 

( ) =

∞X
=

−

!(− )!
(9)(1)−

( ≥  since the number of defective items produced can’t be less than the number detected.)

=
(9)−

!

∞X
=

(1)−

(− )!

We could fit this into the summation result  = 0

0!
+ 1

1!
+ 2

2!
+ · · · by writing  as −. Then

2() =
(9)−

!

∞X
=

(1)−

(− )!

=
(9)−

!

∙
(1)0

0!
+
(1)1

1!
+
(1)2

2!
+ · · ·

¸
=
(9)−

!
1 =

(9)−9

!

(|) = ( )

2()
=

−(9)(1)−
!((−)!

(9)−9
!

=
(1)−−1

(− )!
for  =   + 1  + 2 · · ·

Problems:

8.1.1 The joint probability function of ( ) is:



( ) 0 1 2

0 .09 .06 .15

 1 .15 .05 .20

2 .06 .09 .15
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a) Are  and  independent? Why?

b) Tabulate the conditional probability function,  (| = 0).

c) Tabulate the probability function of  =  −  .

8.1.2 In problem 6.14, given that  sales were made in a 1 hour period, find the probability function

for  , the number of calls made in that hour.

8.1.3  and  are independent, with () =
¡
+−1



¢
(1− ) and

() =
¡
+−1



¢
(1− ). Let  =  +  . Find the probability function, (). You may use

the result
¡
+−1



¢
= (−1)¡−



¢
.

8.2 Multinomial Distribution

There is only this one multivariate model distribution introduced in this course, though other mul-

tivariate distributions exist. The multinomial distribution defined below is very important. It is a

generalization of the binomial model to the case where each trial has  possible outcomes.

Physical Setup: This distribution is the same as binomial except there are  types of outcome rather

than two. An experiment is repeated independently  times with  distinct types of outcome each time.

Let the probabilities of these  types be 1 2 · · ·   each time. Let 1 be the number of times the 1st

type occurs, 2 the number of times the 2nd occurs, · · · ,  the number of times the th type occurs.

Then (12 · · · ) has a multinomial distribution.

Notes:

(1) 1 + 2 + · · ·+  = 1

(2) 1 +2 + · · ·+ = ,

If we wish we can drop one of the variables (say the last), and just note that  equals −1 −
2 − · · ·−−1.

Illustrations:

(1) In the example of Section 8.1 with sprinters A,B, and C running 10 races we had a multinomial

distribution with  = 10 and  = 3.

(2) Suppose student marks are given in letter grades as A, B, C, D, or F. In a class of 80 students the

number getting A, B, ..., F might have a multinomial distribution with  = 80 and  = 5.
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Joint Probability Function: The joint probability function of 1     is given by extending the

argument in the sprinters example from  = 3 to general . There are !
1!2!···! different outcomes of

the  trials in which 1 are of the 1st type, 2 are of the 2nd type, etc. Each of these arrangements has

probability 11 22 · · ·  since 1 is multiplied 1 times in some order, etc.

Therefore  (1 2 · · ·  ) = !

1!2! · · ·!
11 22 · · · 

The restriction on the ’s are  = 0 1 · · ·   and
P
=1

 = .

As a check that
P

 (1 2 · · ·  ) = 1 we use the multinomial theorem to getX !

1!2! · · ·!
11 · · ·  = (1 + 2 + · · ·+ )

 = 1

We have already seen one example of the multinomial distribution in the sprinter example. Here is

another simple example.

Example: Every person is one of four blood types: A, B, AB and O. (This is important in determining,

for example, who may give a blood transfusion to a person.) In a large population let the fraction that

has type A, B, AB and O, respectively, be 1 2 3 4. Then, if  persons are randomly selected from

the population, the numbers 1234 of types A, B, AB, O have a multinomial distribution with

 = 4 (In Caucasian people the values of the ’s are approximately 1 = 45 2 = 08 3 = 03 4 =

44)

Remark: We sometimes use the notation (1    ) ∼ (; 1     ) to indicate that

(1    ) have a multinomial distribution.

Remark: For some types of problems its helpful to write formulas in terms of 1     −1 and

1     −1 using the fact that

 = − 1 − · · ·− −1 and  = 1− 1 − · · ·− −1

In this case we can write the joint p.f. as (1     −1) but we must remember then that 1     −1
satisfy the condition 0 ≤ 1 + · · ·+ −1 ≤ .

The multinomial distribution can also arise in combination with other models, and students often have

trouble recognizing it then.

Example: A potter is producing teapots one at a time. Assume that they are produced independently

of each other and with probability  the pot produced will be “satisfactory”; the rest are sold at a

lower price. The number, , of rejects before producing a satisfactory teapot is recorded. When 12
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satisfactory teapots are produced, what is the probability the 12 values of  will consist of six 0’s,

three 1’s, two 2’s and one value which is ≥ 3?

Solution: Each time a “satisfactory” pot is produced the value of  falls in one of the four categories

 = 0 = 1 = 2 ≥ 3. Under the assumptions given in this question,  has a geometric

distribution with

() = (1− ); for  = 0 1 2 · · ·
so we can find the probability for each of these categories. We have  ( = ) = () for 0 1 2 and

we can obtain  ( ≥ 3) in various ways:

a)

 ( ≥ 3) = (3) + (4) + (5) + · · · = (1− )3 + (1− )4 + (1− )5 + · · ·

=
(1− )3

1− (1− )
= (1− )3

since we have a geometric series.

b)

 ( ≥ 3) = 1−  (  3) = 1− (0)− (1)− (2)

With some re-arranging, this also gives (1− )3.

c) The only way to have ≥ 3 is to have the first 3 pots produced all being rejects. Therefore  ( ≥ 3) =
 (3 consecutive rejects) = (1− )(1− )(1− ) = (1− )3

Reiterating that each time a pot is successfully produced, the value of  falls in one of 4 cate-

gories (0 1 2  ≥ 3), we see that the probability asked for is given by a multinomial distribution,

Mult(12; (0) (1) (2)  ( ≥ 3)):

(6 3 2 1) = 12!
6!3!2!1!

[(0)]6 [(1)]3[(2)]2[ ( ≥ 3)]1
= 12!

6!3!2!1!
6 [(1− )]3

£
(1− )2

¤2 £
(1− )3

¤1
= 12!

6!3!2!1!
11(1− )10

Problems:

8.2.1 An insurance company classifies policy holders as class A,B,C, or D. The probabilities of a

randomly selected policy holder being in these categories are .1, .4, .3 and .2, respectively. Give

expressions for the probability that 25 randomly chosen policy holders will include

(a) 3A’s, 11B’s, 7C’s, and 4D’s.
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(b) 3A’s and 11B’s.

(c) 3A’s and 11B’s, given that there are 4D’s.

8.2.2 Chocolate chip cookies are made from batter containing an average of 0.6 chips per c.c. Chips

are distributed according to the conditions for a Poisson process. Each cookie uses 12 c.c. of

batter. Give expressions for the probabilities that in a dozen cookies:

(a) 3 have fewer than 5 chips.

(b) 3 have fewer than 5 chips and 7 have more than 9.

(c) 3 have fewer than 5 chips, given that 7 have more than 9.

8.3 Markov Chains♦
34Consider a sequence of (discrete) random variables 12    each of which takes integer values

1 2     (called states). We assume that for a certain matrix  (called the transition probability

matrix), the conditional probabilities are given by corresponding elements of the matrix; i.e.

 [+1 = | = ] =    = 1      = 1    

and furthermore that the chain only uses the last state occupied in determining its future; i.e. that

 [+1 = | = −1 = 1−2 = 2− = ] =  [+1 = | = ] = 

for all   1 2     and  = 2 3 . Then the sequence of random variables is called a Markov35

Chain. Markov Chain models are the most common simple models for dependent variables, and are

used to predict weather as well as movements of security prices. They allow the future of the process to

depend on the present state of the process, but the past behaviour can influence the future only through

the present state.

34♦ This section optional for stat 220
35After Andrei Andreyevich Markov (1856-1922), a Russian mathematician, Professor at Saint Petersburg University.

Markov studied sequences of mutually dependent variables, hoping to establish the limiting laws of probability in their most

general form and discovered Markov chains, launched the theory of stochastic processes. As well, Markov applied the method

of continued fractions, pioneered by his teacher Pafnuty Chebyshev, to probability theory, completed Chebyschev’s proof of

the central limit theorem (see Chapter 9) for independent non-identically distributed random variables. For entertainment,

Markov was also interested in poetry and studied poetic style.
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Example. Rain-No rain

Suppose that the probability that tomorrow is rainy given that today is not raining is  (and it does not

otherwise depend on whether it rained in the past) and the probability that tomorrow is dry given that

today is rainy is  If tomorrow’s weather depends on the past only through whether today is wet or

dry, we can define random variables

 =

(
1 if Day  is wet

0 if Day  is dry

(beginning at some arbitrary time origin, day  = 0 ). Then the random variables   = 0 1 2 

form a Markov chain with  = 2 possible states and having probability transition matrix

 =

Ã
1−  

 1− 

!

Properties of the Transition Matrix 

Note that  ≥ 0 for all   and
P

=1  = 1 for all  This last property holds because given that

 =  +1 must occupy one of the states  = 1 2  

The distribution of 

Suppose that the chain is started by randomly choosing a state for 0 with distribution  [0 = ] =

  = 1 2     . Then the distribution of 1 is given by

 (1 = ) =

X
=1

 (1 = 0 = )

=

X
=1

 (1 = |0 = ) (0 = )

=

X
=1



and this is the 0 element of the vector 

 where  is the column vector of values . To obtain the

distribution at time  = 1 premultiply the transition matrix  by a vector representing the distribution

at time  = 0 Similarly the distribution of 2 is the vector  2 where  2 is the product of the

matrix  with itself and the distribution of  is  Under very general conditions, it can be

shown that these probabilities converge because the matrix  converges pointwise to a limiting

matrix as  → ∞ In fact, in many such cases, the limit does not depend on the initial distribution 

because the limiting matrix has all of its rows identical and equal to some vector of probabilities 

Identifying this vector  when convergence holds is reasonably easy.
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Definition

A limiting distribution of a Markov chain is a vector ( say) of long run probabilities of the individual

states so

 = lim
→∞

 [ = ]

Now let us suppose that convergence to this distribution holds for a particular initial distribution  so

we assume that

 →  as →∞

Then notice that

() → 

but also

() = +1 →  as →∞
so  must have the property that

 = 

Any limiting distribution must have this property and this makes it easy in many examples to identify

the limiting behaviour of the chain.

Definition 24 A stationary distribution of a Markov chain is the column vector ( say) of probabilities

of the individual states such that  =  .

Example: (weather continued)

Let us return to the weather example in which the transition probabilities are given by the matrix

 =

Ã
1−  

 1− 

!
What is the long-run proportion of rainy days? To determine this we need to solve the equations

 = ³
0 1

´Ã 1−  

 1− 

!
=
³
0 1

´
subject to the conditions that the values 0 1 are both probabilities (non-negative) and add to one. It

is easy to see that the solution is

0 =


+ 

1 =


+ 
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which is intuitively reasonable in that it says that the long-run probability of the two states is propor-

tional to the probability of a switch to that state from the other. So the long-run probability of a dry day

is the limit

0 = lim
→∞ ( = 0) =



+ 


You might try verifying this by computing the powers of the matrix  for  = 1 2  and show that

 approaches the matrix Ã


+


+


+


+

!
as  → ∞ There are various mathematical conditions under which the limiting distribution of a

Markov chain is unique and independent of the initial state of the chain but roughly they assert that the

chain is such that it forgets the more and more distant past.

Independent Random Variables

Consider a Markov chain with transition probability matrix

 =

Ã
1−  

1−  

!


Notice that both rows of this matrix are identical so  (+1 = 1| = 0) =  =  (+1 = 1| =

1) For this chain the conditional distribution of +1 given  =  evidently does not depend on the

value of  This demonstrates independence. Indeed if  and  are two discrete random variables and

if the conditional probability function |(|) of  given  is identical for all possible values of 

then it must be equal to the unconditional (marginal) probability function () If |(|) = ()

for all values of  and  then  and  are independent random variables. Therefore if a Markov

Chain has transition probability matrix with all rows identical, it corresponds to independent random

variables 12 . This is the most forgetful of all Markov chains. It pays no attention whatever to

the current state in determining the next state.

Is the stationary distribution unique? One might wonder whether it is possible for a Markov chain

to have more than one stationary distribution and consequently possibly more than one limiting distri-

bution. We have seen that the 2× 2 Markov chain with transition probability matrix

 =

Ã
1−  

 1− 

!
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has a solution of  =  and 0 + 1 = 1 given by 0 =


+
 1 =


+

 Is there is any

other solution possible? Rewriting the equation  =  in the form  ( − ) = 0 note that

the dimension of the subspace of solutions  is one provided that the rank of the matrix  −  is

one (i.e. the solutions  are all scalar multiples of the vector  ), and the dimension is 2 provided

that the rank of the matrix  −  is 0 Only if rank( − ) = 0 will there be two linear independent

solutions and hence two possible candidates for equilibrium distributions. But if − has rank 0 then

 = , the transition probability matrix of a very stubborn Markov chain which always stays in the

state currently occupied. For two-dimensional Markov Chains, only in the case  =  is there more

than one stationary distribution and any probability vector  satisfies  =  and is a stationary

distribution. This is at the opposite end of the spectrum from the independent case above which pays

no attention to the current state in determining the next state. The chain with  =  never leaves the

current state.

Example (Gene Model) A simple form of inheritance of traits occurs when a trait is governed by

a pair of genes  and  An individual may have an  of an  combination (in which case they

are indistinguishable in appearance, or " dominates ”). Let us call an AA individual dominant, 

recessive and  hybrid. When two individuals mate, the offspring inherits one gene of the pair from

each parent, and we assume that these genes are selected at random. Now let us suppose that two

individuals of opposite sex selected at random mate, and then two of their offspring mate, etc. Here the

state is determined by a pair of individuals, so the states of our process can be considered to be objects

like () indicating that one of the pair is  and the other is  (we do not distinguish the order

of the pair, or male and female-assuming these genes do not depend on the sex of the individual)

Number State

1 ()

2 ()

3 ( )

4 ()

5  )

6 ( )

For example, consider the calculation of  (+1 = | = 2) In this case each offspring has

probability 12 of being a dominant , and probability of 12 of being a hybrid (). If two off-

spring are selected independently from this distribution the possible pairs are () () ()
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with probabilities 14 12 14 respectively. So the transitions have probabilities below:

() () ( ) () ( ) ( )

() 1 0 0 0 0 0

() 25 5 0 25 0 0

( ) 0 0 0 1 0 0

() 0625 25 125 25 25 0625

( ) 0 0 0 25 5 25

( ) 0 0 0 0 0 1

and transition probability matrix

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

25 5 0 25 0 0

0 0 0 1 0 0

0625 25 125 25 25 0625

0 0 0 25 5 25

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
What is the long-run behaviour in such a system? For example, the two-generation transition proba-

bilities are given by

 2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

03906 03125 00313 01875 00625 01156

00625 025 0125 025 025 00625

01406 01875 00312 03125 01875 014063

001562 00625 00313 01875 03125 03906

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which seems to indicate a drift to one or other of the extreme states 1 or 6. To confirm the long-run

behaviour calculate:

 100 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

075 0 0 0 0 025

05 0 0 0 0 05

05 0 0 0 0 05

025 0 0 0 0 075

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
which shows that eventually the chain is absorbed in either of state 1 or state 6, with the probability of

absorption depending on the initial state. This chain, unlike the ones studied before, has more than one

possible stationary distribution, for example,  = (1 0 0 0 0 0) and  = (0 0 0 0 0 1) and in

these circumstances the chain does not have the same limiting distribution for all initial states.
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8.4 Expectation for Multivariate Distributions: Covariance and Corre-

lation

It is easy to extend the definition of expected value to multiple variables. Generalizing  [ ()] =P
all 

()() leads to the definition of expected value in the multivariate case

Definition 25

 [ ( )] =
X

all ()

( )( )

and

 [ (12 · · · )] =
X

all (12··· )
 (1 2 · · ·)  (1 · · ·  )

As before, these represent the average value of ( ) and (1    ).  [ ( )] could also

be determined by finding the probability function () of  = ( ) and then using the definition

of expected value () =
P

all  ()

Example: Let the joint probability function, ( ), be given by



( ) 0 1 2

1 .1 .2 .3

 2 .2 .1 .1

Find ( ) and ().

Solution:

 ( ) =
X

all ()

( )

= (0× 1× 1) + (1× 1× 2) + (2× 1× 3) + (0× 2× 2) + (1× 2× 1) + (2× 2× 1)

= 14

To find () we have a choice of methods. First, taking ( ) =  we get

() =
X

all ()

( )

= (0× 1) + (1× 2) + (2× 3) + (0× 2) + (1× 1) + (2× 1)

= 11
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Alternatively, since () only involves , we could find 1() and use

() =

2X
=0

1() = (0× 3) + (1× 3) + (2× 4) = 11

Example: In the example of Section 8.1 with sprinters A, B, and C we had (using only 1 and 2 in

our formulas)

 (1 2) =
10!

1!2!(10− 1 − 2)!
(5)1(4)2(1)10−1−2

where A wins 1 times and B wins 2 times in 10 races. Find  (12).

Solution: This will be similar to the way we derived the mean of the binomial distribution but, since

this is a multinomial distribution, we’ll be using the multinomial theorem to sum.

 (12) =
X

12(1 2) =
X
1 6=0
2 6=0

12
10!

1(1 − 1)!2(2 − 1)!(10− 1 − 2)!
(5)1(4)2(1)10−1−2

=
X
1 6=0
2 6=0

(10)(9)(8!)

(1 − 1)!(2 − 1)! [(10− 2)− (1 − 1)− (2 − 1)]! (5)(5)
1−1(4)(4)2−1(1)(10−2)−(1−1)−(2−1)

= (10)(9)(5)(4)
X
1 6=0
2 6=0

8!

(1 − 1)!(2 − 1)! [8− (1 − 1)− (2 − 1)]! (5)
1−1(4)2−1(1)8−(1−1)−(2−1)

Let 1 = 1 − 1 and 2 = 2 − 1 in the sum and we obtain

 (12) = (10)(9)(5)(4)
X
(12)

8!

1!2!(8− 1 − 2)!
(5)1(4)2(1)8−1−2

= 18(5 + 4 + 1)8 = 18

Property of Multivariate Expectation: It is easily proved (make sure you can do this) that

 [1( ) + 2( )] =  [1( )] +  [2( )]

This can be extended beyond 2 functions 1 and 2, and beyond 2 variables  and  .

Relationships between Variables:

Independence is a “yes/no” way of defining a relationship between variables. We all know that there

can be different types of relationships between variables which are dependent. For example, if 
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is your height in inches and  your height in centimeters the relationship is one-to-one and linear.

More generally, two random variables may be related (non-independent) in a probabilistic sense. For

example, a person’s weight  is not an exact linear function of their height , but  and  are

nevertheless related. We’ll look at two ways of measuring the strength of the relationship between two

random variables. The first is called covariance.

Definition 26 The covariance of  and  , denoted Cov( ) or  , is

Cov( ) =  [( − )( −  )]

For calculation purposes this definition is usually harder to use than the formula which follows, which

is proved noting that

Cov( ) =  [( − ) ( −  )] =  ( −  − +  )

= ( )− ( )− () + 

= ( )−()( )−( )() +()( )

Therefore Cov( ) = ( )−()( )

Example:

In the example with joint probability function



( ) 0 1 2

1 1 2 3



2 2 1 1

find Cov ( ).

Solution: We previously calculated ( ) = 14 and () = 11. Similarly, ( ) = (1× 6) +

(2× 4) = 14

Therefore Cov( ) = 14− (11)(14) = −14

Exercise: Calculate the covariance of 1 and 2 for the sprinter example. We have already found

that  (12) = 18. The marginal distributions of 1 and of 2 are models for which we’ve already

derived the mean. If your solution takes more than a few lines you’re missing an easier solution.
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Interpretation of Covariance:

(1) Suppose large values of  tend to occur with large values of  and small values of  with

small values of  . Then ( − ) and ( −  ) will tend to be of the same sign, whether

positive or negative. Thus ( − ) ( −  ) will be positive. Hence Cov ( )  0.

For example in Figure 8.2 we see several hundred points plotted. Notice that the majority

of the points are in the two quadrants (lower left and upper right) labelled with "+" so that for

these ( − ) ( −  )  0 A minority of points are in the other two quadrants labelled

"-" and for these ( − ) ( −  )  0. Moreover the points in the latter two quad-

rants appear closer to the mean (   ) indicating that on average, over all points generated

(( − ) ( −  ))  0 Presumably this implies that over the joint distribution of

( ) [( − ) ( −  )]  0 or ( )  0

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

+

+

−

−

μ
X

μ
Y

x

y

Figure 8.2: Random points ( ) with covariance 0.5, variances 1.

For example of  =person’s height and  =person’s weight, then these two random variables

will have positive covariance.

(2) Suppose large values of  tend to occur with small values of  and small values of  with

large values of  . Then ( − ) and ( −  ) will tend to be of opposite signs. Thus

( − ) ( −  ) tends to be negative. Hence Cov ( )  0. For example see Figure 8.3

For example if  =thickness of attic insulation in a house and  =heating cost for the house, then

( )  0
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−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Figure 8.3: Covariance=-0.5, variances=1

Theorem 27 If  and  are independent then Cov ( ) = 0.

Proof: Recall  ( − ) = ()−  = 0. Let  and  be independent.

Then ( ) = 1()2().

Cov ( ) =  [( − ) ( −  )] =
P
all 

∙P
all 

(− ) ( −  ) 1()2()

¸
=

P
all 

∙
( −  ) 2()

P
all 

(− ) 1()

¸
=

P
all 

[( −  ) 2() ( − )]

=
P
all 

0 = 0

The following theorem gives a direct proof the result above, and is useful in many other situations.

Theorem 28 Suppose random variables  and  are independent. Then, if 1() and 2( ) are any

two functions,

[1()2( )] = [1()][2( )]
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Proof: Since  and  are independent, ( ) = 1()2(). Thus

[1()2( )] =
P

all()

1()2()( )

=
P
all 

P
all 

1()1()2()2()

= [
P
all 

1()1()][
P
all 

2()2()]

= [1()][2( )]

To prove result (3) above, we just note that if  and  are independent then

Cov( ) = [( − )( −  )]

= ( − )( −  ) = 0

Caution: This result is not reversible. If Cov ( ) = 0 we can not conclude that  and  are

independent. For example suppose that the random variable  is uniformly distributed on the val-

ues {−1−09 09 1} and define  = sin(2) and  = cos(2) It is easy to see that

Cov( ) = 0 but the two random variables  are clearly related because the points ( )

are always on a circle.

Example: Let ( ) have the joint probability function (0 0) = 02 (1 1) = 06 (2 0) =

02; i.e. ( ) only takes 3 values.

 0 1 2

1() .2 .6 .2

and

 0 1

2() .4 .6
are marginal probability functions. Since 1()2() 6= ( ) therefore,  and  are not

independent. However,

 ( ) = (0× 0× 2) + (1× 1× 6) + (2× 0× 2) = 6

() = (0× 2) + (1× 6) + (2× 2) = 1 and ( ) = (0× 4) + (1× 6) = 6

Therefore Cov ( ) = ( )−()( ) = 6− (1)(6) = 0
So  and  have covariance 0 but are not independent. If Cov ( ) = 0 we say that  and  are

uncorrelated, because of the definition of correlation 36 given below.

36" The finest things in life include having a clear grasp of correlations. " Albert Einstein, 1919.



166

(4) The actual numerical value of Cov ( ) has no interpretation, so covariance is of limited use

in measuring relationships.

Exercise:

(a) Look back at the example in which ( ) was tabulated and Cov ( ) = −14. Considering

how covariance is interpreted, does it make sense that Cov ( ) would be negative?

(b) Without looking at the actual covariance for the sprinter exercise, would you expect Cov (12)

to be positive or negative? (If A wins more of the 10 races, will B win more races or fewer races?)

We now consider a second, related way to measure the strength of relationship between  and  .

Definition 29 The correlation coefficient of  and  is  =
Cov ( )


The correlation coefficient measures the strength of the linear relationship between  and  and

is simply a rescaled version of the covariance, scaled to lie in the interval [−1 1] You can attempt to

guess the correlation between two variables based on a scatter diagram of values of these variables at

the web page

http://statweb.calpoly.edu/chance/applets/guesscorrelation/GuessCorrelation.html

For example in Figure 8.4 I guessed a correlation of -0.9 whereas the true correlation coefficient gen-

erating these data was  = −092
Properties of :

1) Since  and  , the standard deviations of  and  , are both positive,  will have the same

sign as Cov ( ). Hence the interpretation of the sign of  is the same as for Cov ( ), and

 = 0 if  and  are independent. When  = 0 we say that  and  are uncorrelated.

2) −1 ≤  ≤ 1 and as → ±1 the relation between  and  becomes one-to-one and linear.

Proof: Define a new random variable  =  +  , where  is some real number. We’ll show that the

fact that Var() ≥ 0 leads to 2) above. We have

Var () = {( − )
2}

= {[( +  )− ( +  )]
2}

= {[( − ) + ( −  )]
2}

= {( − )
2 + 2( − )( −  ) + 2( −  )

2}
= 2 + 2Cov( ) + 22
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Figure 8.4: Guessing the correlation based on a scatter diagram of points

Since  () ≥ 0 for any real number  this quadratic equation must have at most one real root

(value of  for which it is zero). Therefore

(2Cov( ))2 − 422 ≤ 0

leading to the inequality ¯̄̄̄
Cov( )



¯̄̄̄
≤ 1

To see that  = ±1 corresponds to a one-to-one linear relationship between  and  , note that  = ±1
corresponds to a zero discriminant in the quadratic equation. This means that there exists one real

number ∗ for which

Var () = Var ( + ∗ ) = 0

But for Var( + ∗ ) to be zero,  + ∗ must equal a constant . Thus  and  satisfy a linear

relationship.

Exercise: Calculate  for the sprinter example. Does your answer make sense? (You should already

have found Cov (12) in a previous exercise, so little additional work is needed.)
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Problems:

8.4.1 The joint probability function of ( ) is:



( ) 0 1 2

0 .06 .15 .09



1 .14 .35 .21

Calculate the correlation coefficient, . What does it indicate about the relationship between 

and  ?

8.4.2 Suppose that  and  are random variables with joint probability function:



( ) 2 4 6

-1 1/8 1/4 



1 1/4 1/8 1
4
− 

(a) For what value of  are  and  uncorrelated?

(b) Show that there is no value of  for which  and  are independent.

8.5 Mean and Variance of a Linear Combination of Random Variables

Many problems require us to consider linear combinations of random variables; examples will be given

below and in Chapter 9. Although writing down the formulas is somewhat tedious, we give here some

important results about their means and variances.

Results for Means:

1.  ( +  ) = () + ( ) =  +  , when  and  are constants. (This follows

from the definition of expected value .) In particular,  ( +  ) =  + and  ( −  ) =

 −  .

2. Let  be constants (real numbers) and  () = . Then  (
P

) =
P

. In particular,

 (
P

) =
P

 ().
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3. Let 12 · · ·  be random variables which have mean . (You can imagine these being

some sample results from an experiment such as recording the number of occupants in cars

travelling over a toll bridge.) The sample mean is  =


=1




. Then 

¡

¢
= .

Proof: From (2), 

µ
P
=1



¶
=

P
=1

 () =
P
=1

 = . Thus



µ
1



X


¶
=
1



³X



´
=
1


 = 

Results for Covariance:

1. Cov () =  [( − ) ( − )] = 
h
( − )2

i
=   ()

2. Cov ( +   +  ) =   ()+  ( )+  ()+  (  )

where    and  are constants.

Proof:

 ( +   +  ) =  [( +  −  −  ) ( +  −  −  )]

=  {[ ( − ) +  ( −  )] [ ( − ) +  ( −  )]}
=  [( − ) ( −  )] +  [( − ) ( −  )]

+  [( −  ) ( −  )] +  [( −  ) ( −  )]

=  Cov () +  Cov ( ) +  Cov () +  Cov (  )

This type of result can be generalized, but gets messy to write out.

Results for Variance:

1. Variance of a linear combination:

Var ( +  ) = 2 Var () + 2 Var( ) + 2 Cov ( )

Proof:

Var ( +  ) = 
h
( +  −  −  )

2
i

= 
n
[ ( − ) +  ( −  )]

2
o

= 
h
2 ( − )

2 + 2 ( −  )
2 + 2 ( − ) ( −  )

i
= 2

h
( − )

2
i
+ 2

h
( −  )

2
i
+ 2 [( − ) ( −  )]

= 22 + 22 + 2 Cov ( )
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Exercise: Try to prove this result by writing   ( +  ) as Cov ( +   +  ) and using

properties of covariance.

2. Variance of a sum of independent random variables: Let  and  be independent. Since

Cov ( ) = 0, result 1. gives

Var ( +  ) = 2 + 2 ;

i.e., for independent variables, the variance of a sum is the sum of the variances. Also note

Var ( −  ) = 2 + (−1)22 = 2 + 2 ;

i.e., for independent variables, the variance of a difference is the sum of the variances.

3. Variance of a general linear combination: Let  be constants and Var () = 2 . Then

Var
³X



´
=
X

2
2
 + 2

X


 Cov () 

This is a generalization of result 1. and can be proved using either of the methods used for 1.

4. Variance of a linear combination of independent: Special cases of result 3. are:

a) If 12 · · ·  are independent then Cov () = 0, so that

Var
³X



´
=
X

2
2
 

b) If 12 · · ·  are independent and all have the same variance 2, then

Var
¡

¢
= 2

Proof of 4 (b):  = 1


P
. From 4(a), Var (

P
) =

P
=1

  () = 2. Using Var

( + ) = 2   (), we get:

Var
¡

¢
= Var

µ
1



X


¶
=
1

2
Var

³X


´
=

2

2
= 2
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Remark: This result is a very important one in probability and statistics. To recap, it says that if

1     are independent random variables with the same mean  and some variance 2, then the

sample mean ̄ = 1


P
=1

 has

(̄) = 

Var (̄) = 2

This shows that the average ̄ of  random variables with the same distribution is less variable than

any single observation , and that the larger  is the less variability there is. This explains mathe-

matically why, for example, that if we want to estimate the unknown mean height  in a population of

people, we are better to take the average height for a random sample of  = 10 persons than to just take

the height of one randomly selected person. A sample of  = 20 persons would be better still. There

are interesting applets at the url http://users.ece.gatech.edu/users/gtz/java/samplemean/notes.html and

http://www.ds.unifi.it/VL/VL_EN/applets/BinomialCoinExperiment.html which allows one to sample

and explore the rate at which the sample mean approaches the expected value. In Chapter 9 we will see

how to decide how large a sample we should take for a certain degree of precision. Also note that as

 → ∞  (̄) → 0, which means that ̄ becomes arbitrarily close to . This is sometimes called

the “law of averages37”. There is a formal theorem which supports the claim that for large sample sizes,

sample means approach the expected value, called the “law of large numbers”.

Indicator Variables

The results for linear combinations of random variables provide a way of breaking up more complicated

problems, involving mean and variance, into simpler pieces using indicator variables; an indicator

variable is just a binary variable (0 or 1) that indicates whether or not some event occurs. We’ll illustrate

this important method with 3 examples.

Example: Mean and Variance of a Binomial R.V.

Let  ∼ ( ) in a binomial process. Define new variables  by:
 = 0 if the th trial was a failure

 = 1 if the th trial was a success.

i.e.  indicates whether the outcome “success” occurred on the th trial. The trick we use is that the

total number of successes, , is the sum of the ’s:

 =

X
=1



37"I feel like a fugitive from the law of averages."

William H. Mauldin (1921 - 2003)
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We can find the mean and variance of  and then use our results for the mean and variance of a sum

to get the mean and variance of . First,

 () =

1X
=0

 () = 0(0) + 1(1) = (1)

But (1) =  since the probability of success is  on each trial. Therefore  () = . Since  = 0

or 1,  = 2
 , and therefore


¡
2


¢
=  () = 

Thus

Var () = 
¡
2


¢− [ ()]
2 = − 2 = (1− )

In the binomial distribution the trials are independent so the ’s are also independent. Thus

() = 

µ
P
=1



¶
=

P
=1

 () =
P
=1

 = 

Var() = Var

µ
P
=1



¶
=

P
=1

Var () =
P
=1

(1− ) = (1− )

These, of course, are the same as we derived previously for the mean and variance of the binomial

distribution. Note how simple the derivation here is!

Remark: If  is a binary random variable with  ( = 1) =  = 1−  ( = 0) then () = 

and Var() = (1−), as shown above. (Note that  ∼ (1 ) is actually a binomial r.v.) In some

problems the ’s are not independent, and then we also need covariances.

Example: Let  have a hypergeometric distribution. Find the mean and variance of .

Solution: As above, let us think of the setting, which involves drawing  items at random from a total

of  , of which  are “” and  −  are “” items. Define

 =

(
0 if th draw is a failure ( ) item

1 if th draw is a success () item

Then  =
P
=1

 as for the binomial example, but now the ’s are dependent. (For example, what

we get on the first draw affects the probabilities of  and  for the second draw, and so on.) Therefore

we need to find Cov() for  6=  as well as () and Var() in order to use our formula for

the variance of a sum.
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We see first that  ( = 1) =  for each of  = 1     . (If the draws are random then the

probability an  occurs in draw  is just equal to the probability position  is an  when we arrange 

’s and  −   ’s in a row.) This immediately gives

() = 

Var() =



(1− 


)

since

Var() = (2
 )−()

2 = ()−()
2

The covariance of  and ( 6= ) is equal to ()−()(), so we need

() =
1P

=0

1P
=0

( )

= (1 1)

=  ( = 1 = 1)

The probability of an  on both draws  and  is just

( − 1)[( − 1)] =  ( = 1) ( = 1| = 1)

Thus,
Cov () =  ()− () ()

=
(−1)
(−1) −

¡



¢ ¡



¢
=
¡



¢ ³
−1
−1 − 



´
= − (−)

2(−1)
(Does it make sense that Cov () is negative? If you draw a success in draw , are you more or

less likely to have a success on draw ?) Now we find () and Var(). First,

() = 
³X



´
=

X
=1

 () =

X
=1

³ 



´
= 

³ 



´
Before finding Var (), how many combinations  are there for which   ? Each  and  takes

values from 1 2 · · ·   so there are
¡

2

¢
different combinations of ( ) values. Each of these can only

be written in 1 way to make   . Therefore There are
¡

2

¢
combinations with    (e.g. if  = 1 2 3

and  = 1 2 3, the combinations with    are (1,2) (1,3) and (2,3). So there are
¡
3
2

¢
= 3 different

combinations.)

Now we can find

Var() = Var

µ
P
=1



¶
=

P
=1

Var () + 2
P


Cov ()

= 
(−)
2 + 2

¡

2

¢ h− (−)
2(−1)

i
= 

¡



¢ ¡
−


¢ h
1− (−1)

(−1)
i ³

since 2
¡

2

¢
=

2(−1)
2

= (− 1)
´

= 
¡



¢ ¡
1− 



¢ ³
−
−1

´
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In the last two examples, we know (), and could have found () and Var() without using

indicator variables. In the next example () is not known and is hard to find, but we can still use

indicator variables for obtaining  and 2. The following example is a famous problem in probability.

Example: We have  letters to  different people, and  envelopes addressed to those  people.

One letter is put in each envelope at random. Find the mean and variance of the number of letters

placed in the right envelope.

Solution:

Let =

(
0; if letter  is not in envelope 

1; if letter  is in envelope 

Then
P
=1

 is the number of correctly placed letters. Once again, the ’s are dependent (Why?).

First  () =
1P

=0

() = (1) = 1

= 

¡
2


¢
(since there is 1 chance in  that letter  will be

put in envelope ) and then,

Var () =  ()− [ ()]
2 =

1


− 1

2
=
1



µ
1− 1



¶

Exercise: Before calculating cov (), what sign do you expect it to have? (If letter  is correctly

placed does that make it more or less likely that letter  will be placed correctly?)

Next,  () = (1 1) (As in the last example, this is the only non-zero term in the sum.) Now,

(1 1) = 1


1
−1 since once letter  is correctly placed there is 1 chance in  − 1 of letter  going in

envelope .

Therefore  () =
1

( − 1)
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For the covariance,

Cov () =  ()− () () =
1

( − 1) −
µ
1



¶µ
1



¶
=
1



µ
1

 − 1 −
1



¶
=

1

2( − 1)



Ã
X
=1



!
=

X
=1

 () =

X
=1

1


=

µ
1



¶
 = 1

Var

Ã
X
=1



!
=

X
=1

Var () + 2
X


Cov ()

=

X
=1

1



µ
1− 1



¶
+ 2

µ


2

¶
1

2( − 1)

= 
1



µ
1− 1



¶
+ 2

µ


2

¶
1

2( − 1)
= 1− 1


+ 2

( − 1)
2

1

2( − 1) = 1

(Common sense often helps in this course, but we have found no way of being able to say this result

is obvious. On average 1 letter will be correctly placed and the variance will be 1, regardless of how

many letters there are.)

Problems:

8.5.1 The joint probability function of ( ) is given by:



( ) 0 1 2

0 .15 .1 .05



1 .35 .2 .15

Calculate(), Var (), Cov ( ) and Var (3−2 ). You may use the fact that( ) = 7

and Var ( ) = .21 without verifying these figures.

8.5.2 In a row of 25 switches, each is considered to be “on” or “off”. The probability of being on is

.6 for each switch, independently of other switch. Find the mean and variance of the number of

unlike pairs among the 24 pairs of adjacent switches.

8.5.3 Suppose Var () = 169, Var ( ) = 4,  = 05; and let  = 2 −  . Find the standard

deviation of  .
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8.5.4 Let 0 1 · · ·   be uncorrelated random variables with mean 0 and variance 2. Let 1 =

0 + 1 2 = 1 + 2 · · ·   = −1 + . Find Cov (−1) for  = 2 3 · · ·   and

Var

µ
P
=1



¶
.

8.5.5 A plastic fabricating company produces items in strips of 24, with the items connected by a thin

piece of plastic:

Item 1 – Item 2 – ... – Item 24

A cutting machine then cuts the connecting pieces to separate the items, with the 23 cuts made

independently. There is a 10% chance the machine will fail to cut a connecting piece. Find the

mean and standard deviation of the number of the 24 items which are completely separate after

the cuts have been made. (Hint: Let  = 0 if item  is not completely separate, and  = 1 if

item  is completely separate.)

8.6 Multivariate Moment Generating Functions♦F
38Suppose we have two possibly dependent random variables ( ) and we wish to characterize their

joint distribution using a moment generating function. Just as the probability function and the cumu-

lative distribution function are, in tis case, functions of two arguments, so is the moment generating

function.

Definition 30 The joint moment generating function of ( ) is

( ) = {+ }

Recall that if  happen to be independent, 1() and 2( ) are any two functions,

[1()2( )] = [1()][2( )] (8.9)

and so with 1() =  and 2( ) =  we obtain, for independent random variables 

( ) =() ()

the product of the moment generating functions of  and  respectively.

There is another labour-saving property of moment generating functions for independent random

variables. Suppose  are independent random variables with moment generating functions ()

38♦F This section optional for Stat 220 and Stat 230
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and  (). Suppose you wish the moment generating function of the sum  =  +  One could

attack this problem by first determining the probability function of 

() =  ( = ) =
X
all 

 ( =   =  − )

=
X
all 

 ( = ) ( =  − )

=
X
all 

() ( − )

and then calculating

() =
X
all 

()

Evidently lots of work! On the other hand recycling (8.9) with

1() = 

2( ) = 

gives

() = (+ ) = ()( ) =() ()

Theorem 31 The moment generating function of the sum of independent random variables is the prod-

uct of the individual moment generating functions.

For example if both  and  are independent with the same (Bernoulli) distribution

 = 0 1

() = 1−  

then both have moment generating function

() = () = (1− + )

and so the moment generating function of the sum  is () () = (1−+)2 Similarly if we

add another independent Bernoulli the moment generating function is (1− + )3 and in general the

sum of  independent Bernoulli random variables is (1− + ) the moment generating function

of a Binomial( ) distribution. This confirms that the sum of independent Bernoulli random variables

has a Binomial( ) distribution.
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8.7 Problems on Chapter 8

8.1 The joint probability function of ( ) is given by:



( ) 0 1 2

0 .15 .1 .05



1 .35 .2 .15

a) Are  and  independent? Why?

b) Find  (   ) and  ( = 1| = 0)

8.2 For a person whose car insurance and house insurance are with the same company, let  and

 represent the number of claims on the car and house policies, respectively, in a given year.

Suppose that for a certain group of individuals,  ∼ Poisson (mean = 10) and  ∼ Poisson

(mean = 05).

(a) If  and  are independent, find  (+  1) and find the mean and variance of + .

(b) Suppose it was learned that  ( = 0  = 0) was very close to 94. Show why  and 

cannot be independent in this case. What might explain the non-independence?

8.3 Consider Problem 2.7 for Chapter 2, which concerned machine recognition of handwritten digits.

Recall that ( ) was the probability that the number actually written was , and the number

identified by the machine was .

(a) Are the random variables  and  independent? Why?

(b) What is  ( =  ), that is, the probability that a random number is correctly identified?

(c) What is the probability that the number 5 is incorrectly identified?

8.4 Blood donors arrive at a clinic and are classified as type A, type O, or other types. Donors’ blood

types are independent with  (type A) = ,  (type O) = , and  (other type) = 1 −  − .

Consider the number, , of type A and the number,  , of type O donors arriving before the 10th

other type.

a) Find the joint probability function, ( )

b) Find the conditional probability function, (|).
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8.5 Slot machine payouts. Suppose that in a slot machine there are +1 possible outcomes1     +1

for a single play. A single play costs $1. If outcome  occurs, you win $, for  = 1     .

If outcome +1 occurs, you win nothing. In other words, if outcome  ( = 1     ) occurs

your net profit is  − 1; if +1 occurs your net profit is - 1.

(a) Give a formula for your expected profit from a single play, if the probabilities of the + 1

outcomes are  =  ()  = 1     + 1.

(b) The owner of the slot machine wants the player’s expected profit to be negative. Suppose

 = 4, with 1 = 1 2 = 3 = 4 = 04 and 5 = 78. If the slot machine is set to pay

$3 when outcome 1 occurs, and $5 when either of outcomes 2 3 4 occur, determine

the player’s expected profit per play.

(c) The slot machine owner wishes to pay  dollars when outcome  occurs, where  = 1


and  is a number between 0 and 1. The owner also wishes his or her expected profit to be

$.05 per play. (The player’s expected profit is -.05 per play.) Find  as a function of  and

+1. What is the value of  if  = 10 and +1 = 7?

8.6 Bacteria are distributed through river water according to a Poisson process with an average of

5 per 100 c.c. of water. What is the probability five 50 c.c. samples of water have 1 with no

bacteria, 2 with one bacterium, and 2 with two or more?

8.7 A box contains 5 yellow and 3 red balls, from which 4 balls are drawn one at a time, at random,

without replacement. Let  be the number of yellow balls on the first two draws and  the

number of yellow balls on all 4 draws.

a) Find the joint probability function, ( ).

b) Are  and  independent? Justify your answer.

8.8 In a quality control inspection items are classified as having a minor defect, a major defect, or

as being acceptable. A carton of 10 items contains 2 with minor defects, 1 with a major defect,

and 7 acceptable. Three items are chosen at random without replacement. Let  be the number

selected with minor defects and  be the number with major defects.

a) Find the joint probability function of  and  .

b) Find the marginal probability functions of  and of  .

c) Evaluate numerically  ( =  ) and  ( = 1| = 0).

8.9 Let  and  be discrete random variables with joint probability function ( ) =  2
+

!!
for

 = 0 1 2 · · · and  = 0 1 2 · · · , where  is a positive constant.
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a) Derive the marginal probability function of .

b) Evaluate .

c) Are  and  independent? Explain.

d) Derive the probability function of  =  +  .

8.10 “Thinning” a Poisson process. Suppose that events are produced according to a Poisson process

with an average of  events per minute. Each event has a probability  of being a “Type A” event,

independent of other events.

(a) Let the random variable  represent the number of Type A events that occur in a one-

minute period. Prove that  has a Poisson distribution with mean . (Hint: let  be the

total number of events in a 1 minute period and consider the formula just before the last

example in Section 8.1).

(b) Lighting strikes in a large forest region occur over the summer according to a Poisson

process with  = 3 strikes per day. Each strike has probability .05 of starting a fire. Find

the probability that there are at least 5 fires over a 30 day period.

8.11 In a breeding experiment involving horses the offspring are of four genetic types with probabili-

ties:

Type 1 2 3 4

Probability 3/16 5/16 5/16 3/16

A group of 40 independent offspring are observed. Give expressions for the following probabili-

ties:

(a) There are 10 of each type.

(b) The total number of types 1 and 2 is 16.

(c) There are exactly 10 of type 1, given that the total number of types 1 and 2 is 16.

8.12 In a particular city, let the random variable  represent the number of children in a randomly

selected household, and let  represent the number of female children. Assume that the proba-

bility a child is female is 05, regardless of what size household they live in, and that the marginal

distribution of  is as follows:

(0) = 20 (1) = 25 (2) = 35 (3) = 10 (4) = 05

(5) = 02 (6) = 01 (7) = 01 (8) = 01
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(a) Determine ().

(b) Find the probability function for the number of girls  in a randomly chosen family. What

is ( )?

8.13 In a particular city, the probability a call to a fire department concerns various situations is as

given below:

1. fire in a detached home - 1 = 10

2. fire in a semi detached home - 2 = 05

3. fire in an apartment or multiple unit residence - 3 = 05

4. fire in a non-residential building - 4 = 15

5. non-fire-related emergency - 5 = 15

6. false alarm - 6 = 50

In a set of 10 calls, let 1 6 represent the numbers of calls of each of types 1  6.

(a) Give the joint probability function for 1 6.

(b) What is the probability there is at least one apartment fire, given that there are 4 fire-related

calls?

(c) If the average costs of calls of types 1  6 are (in $100 units) 5, 5, 7, 20, 4, 2 respectively,

what is the expected total cost of the 10 calls?

8.14 Suppose 1     have joint p.f. (1     ). If (1     ) is a function such that

 ≤ (1     ) ≤  for all (1     ) in the range of  ,

then show that  ≤ [(1    )] ≤ .

8.15 Let  and  be random variables with Var () = 13, Var( ) = 34 and  = −07. Find

Var( − 2 ).

8.16 Let  and  have a trinomial distribution with joint probability function

( ) =
!

!!(− − )!
(1− − )−−;

 = 0 1 · · ·  
 = 0 1 · · ·  

and +  ≤ . Let  =  +  .

a) What distribution does  have? Either explain why or derive this result.

b) For the distribution in (a), what is ( ) and Var( )?

c) Using (b) find Cov( ), and explain why you expect it to have the sign it does.
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8.17 Jane and Jack each toss a fair coin twice. Let  be the number of heads Jane obtains and  the

number of heads Jack obtains. Define  =  +  and  =  −  .

a) Find the means and variances of  and  .

b) Find Cov (  )

c) Are  and  independent? Why?

8.18 A multiple choice exam has 100 questions, each with 5 possible answers. One mark is awarded

for a correct answer and 1/4 mark is deducted for an incorrect answer. A particular student has

probability  of knowing the correct answer to the th question, independently of other questions.

a) Suppose that on a question where the student does not know the answer, he or she guesses

randomly. Show that his or her total mark has mean
P

 and variance
P

 (1− ) +
(100− )

4
.

b) Show that the total mark for a student who refrains from guessing also has mean
P

, but

with variance
P

 (1− ). Compare the variances when all ’s equal (i) .9, (ii) .5.

8.19 Let  and  be independent random variables with () = ( ) = 0, Var() = 1 and Var

( ) = 2. Find Cov( +  −  ).

8.20 An automobile driveshaft is assembled by placing parts A, B and C end to end in a straight line.

The standard deviation in the lengths of parts A, B and C are 0.6, 0.8, and 0.7 respectively.

(a) Find the standard deviation of the length of the assembled driveshaft.

(b) What percent reduction would there be in the standard deviation of the assembled driveshaft

if the standard deviation of the length of part B were cut in half?

8.21 The inhabitants of the beautiful and ancient canal city of Pentapolis live on 5 islands separated

from each other by water. Bridges cross from one island to another as shown.
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1 2

4 3

5

On any day, a bridge can be closed, with probability , for restoration work. Assuming that the 8

bridges are closed independently, find the mean and variance of the number of islands which are

completely cut off because of restoration work.

8.22 A Markov chain has a doubly stochastic transition matrix if both the row sums and the column

sums of the transition matrix  are all 1. Show that for such a Markov chain, the uniform

distribution on {1 2     } is a stationary distribution.

8.23 A salesman sells in three cities A,B, and C. He never sells in the same city on successive weeks.

If he sells in city A, then the next week he always sells in B. However if he sells in either B

or C, then the next week he is twice as likely to sell in city A as in the other city. What is the

long-run proportion of time he spends in each of the three cities?

8.24 Find

lim
→



where

 =

⎡⎢⎣ 0 1 0
1
6

1
2

1
3

0 2
3

1
3

⎤⎥⎦
8.25 Suppose  and  are independent having Poisson distributions with parameters 1 and 2 re-

spectively. Use moment generating functions to identify the distribution of the sum  + 

8.26 Waterloo in January is blessed by many things, but not by good weather. There are never two

nice days in a row. If there is a nice day, we are just as likely to have snow as rain the next day. If

we have snow or rain, there is an even chance of having the same the next day. If there is change
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from snow or rain, only half of the time is this a change to a nice day. Taking as states the kinds

of weather R, N, and S. the transition probabilities  are as follows

 =

⎛⎜⎜⎜⎜⎝
R N S

R 1
2

1
4

1
4

N 1
2

0 1
2

S 1
4

1
4

1
2

⎞⎟⎟⎟⎟⎠
If today is raining, find the probability of Rain, Nice, Snow three days from now. Find the

probabilities of the three states in five days, given (1) today is raining (ii) today is nice (iii) today

is snowing.

8.27 (One-card Poker) A card game, which, for the purposes of this question we will call Metzler

Poker, is played as follows. Each of 2 players bets an initial $1 and is dealt a card from a deck

of 13 cards numbered 1-13. Upon looking at their card, each player then decides (unaware of

the other’s decision) whether or not to increase their bet by $5 (to a total stake of $6). If both

increase the stake ("raise"), then the player with the higher card wins both stakes-i.e. they get

their money back as well as the other player’s $6. If one person increases and the other does not,

then the player who increases automatically wins the pot (i.e. money back+$1). If neither person

increases the stake, then it is considered a draw-each player receives their own $1 back. Suppose

that Player A and B have similar strategies, based on threshold numbers {a,b} they have chosen

between 1 and 13. A chooses to raise whenever their card is greater than or equal to a and B

whenever B’s card is greater than or equal to b.

(a) Suppose B always raises (so that b=1). What is the expected value of A’s win or loss for

the different possible values of a=1,2,...,13.

(b) Suppose a and b are arbitrary. Given that both players raise, what is the probability that A

wins? What is the expected value of A’s win or loss?

(c) Suppose you know that b=11. Find your expected win or loss for various values of a and

determine the optimal value. How much do you expect to make or lose per game under this

optimal strategy?

8.28 (Searching a database) Suppose that we are given 3 records, 1 2 3 initially stored in that

order. The cost of accessing the j’th record in the list is j so we would like the more frequently

accessed records near the front of the list. Whenever a request for record j is processed, the

“move-to-front” heuristic stores  at the front of the list and the others in the original order.

For example if the first request is for record 2 then the records will be re-stored in the order

2 1 3 Assume that on each request, record  is requested with probability   for  =

1 2 3
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(a) Show that if  is the permutation that obtains after  requests for records (e.g. 2 =

(2 1 3)), then    = 1 2  is a Markov chain.

(b) Find the stationary distribution of this Markov chain. (Hint: what is the probability that

 takes the form (2 ∗ ∗) for large ?)

(c) Find the expected long-run cost per record accessed in the case 1 2 3 = 01 03 06

respectively.

(d) How does this expected long-run cost compare with keeping the records in random order,

and with keeping them in order of decreasing values of (only possible if we know )

8.29 (Secretary Problem) Suppose you are to interview  candidates for a job, one at a time. You

must decide immediately after each interview whether to hire the current candidate or not and

you wish to maximize your chances of choosing the best person for the job (there is no benefit

from choosing the second or third best). For simplicity, assume candidate  has numerical value

 chosen without replacement from {1 2  } where 1 =worst  =best. Our strategy is to

interview  candidates first, and then pick the first of the remaining  −  that has value greater

than max(12 ). What is the best choice of ? (Hint: you may use the approximationP−1
=1

1

' ln()) For this choice, what is the approximate probability that you do choose the

maximum?

8.30 Three stocks are assumed to have returns over the next year 123 which have the same

expected value () = 008  = 1 2 3 and variances  (1) = (02)2  (2) = (03)
2

 (4) = (04)
2Assuming that the returns are independent, find portfolio weights1 2 3

so that the linear combination

11 + 22 + 33

has the smallest variance among all such linear combinations subject to 1 + 2 + 3 = 1

8.31∗ Challenge problem: A drunken probabilist stands  steps from a cliffs edge. He takes random

steps, either towards or away from the cliff, each step independent of the past. At any point, the

probability of taking a step away is 2/3, or a step toward, 1/3. What are his chances of escaping

the cliff?



9. Continuous Probability Distributions

9.1 General Terminology and Notation

Continuous random variables have a range (set of possible values) an interval (or a collection of

intervals) on the real number line. They have to be treated a little differently than discrete random

variables because  ( = ) is zero for each . To illustrate a random variable with a continuous

distribution, consider the simple spinning pointer in Figure 9.1. and suppose that all numbers in the

13

2

4
X

Figure 9.1: Spinner: a device for generating a continuous random variable (in a zero-gravity, virtually

frictionless environment)

interval (0,4] are equally likely. The probability of the pointer stopping precisely at any given number

 must be zero, because if each number has the same probability   0 then the probability of

 = { : 0   ≤ 4} is the sum
P

(04]  = ∞, since the set  is uncountably infinite. For

a continuous random variable the probability of each point is 0 and probability functions cannot be

used to describe a distribution. On the other hand, intervals of the same length  entirely contained in

(0,4], for example the interval (0 1
4
] and (13

4
 2] all have the same probability (1/16 in this case). For

continuous random variables we specify the probability of intervals, rather than individual points.

186
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Figure 9.2:

Consider another example produced by choosing a “random point” in a region. Suppose we plot a

graph a function () as in Figure 9.2 (assume the function is positive and has finite integral) and then

generate a point at random by closing our eyes and firing a dart from a distance until at least one lands in

the shaded region under the graph. We assume such a point, here denoted "*" is “uniformly” distributed

under the graph. This means that the point is equally likely to fall in any one of many possible regions of

a given area located in the shaded region so we only need to know the area of a region to determine the

probability that a point falls in it. Consider the x-coordinate  of the point "*" as our random variable

(in Figure 9.2 it appears to be around 04) Notice that the probability that  falls in a particular

interval ( ) is the measured by the area of the region above this interval, i.e.
R 

() and so

the probability of any particular point  ( = ) is the area of the region immediately above this

single point
R 

() = 0 This is another example of a random variable  which has a continuous

distribution. For continuous , there are two commonly used functions which describe its distribution.

The first is the cumulative distribution function, used before for discrete distributions, and the second

is the probability density function, the derivative of the c.d.f.

Cumulative Distribution Function:

For discrete random variables we defined the c.d.f.,  () =  ( ≤ ) for continuous random vari-

ables as well as for discrete. For the spinner, the probability the pointer stops between 0 and 1 is 1/4 if

all values  are equally “likely"; between 0 and 2 the probability is 1/2, between 0 and 3 it is 3/4; and

so on. In general,  () = 4 for 0   ≤ 4. Also,  () = 0 for  ≤ 0 since there is no chance

of the pointer stopping at a number ≤ 0, and  () = 1 for   4 since the pointer is certain to stop

at number below  if   4. In our second example in which we generated a point at random under

the graph of a function () if we assume that the total area under the graph is one, the cumulative

distribution function  () is the area under the graph but to the left of the point  as in Figure 9.3.
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Figure 9.3:

Most properties of a c.d.f. are the same for continuous variables as for discrete variables. These are:

1.  (−∞) = 0;and  (∞) = 1
2.  () is a non-decreasing function of 

3.  (   ≤ ) =  ()−  ().
Note that, as indicated before, for a continuous distribution, we have 0 =  ( = ) = lim→0  (−
   ≤ ) = lim→0  () −  ( − ). This means that lim→0  ( − ) =  () or that the

continuous distribution function is a continuous function (in the sense of continuity in calculus). Also,

since the probability is 0 at each point:

 (    ) =  ( ≤  ≤ ) =  ( ≤   ) =  (   ≤ ) =  ()−  ()

(For a discrete random variable, each of these 4 probabilities could be different.). For the continuous

distributions in this chapter, we do not worry about whether intervals are open, closed, or half-open

since the probability of these intervals is the same.

Probability Density Function (p.d.f.): While the c.d.f. can be used to find probabilities, it does not

give an intuitive picture of which values of  are more likely, and which are less likely. To develop

such a picture suppose that we take a short interval of -values, [  +∆]. The probability  lies

in the interval is

 ( ≤  ≤ +∆) =  (+∆)−  ()

To compare the probabilities for two intervals, each of length ∆, is easy. Now suppose we consider

what happens as ∆ becomes small, and we divide the probability by ∆. This leads to the following

definition.

Definition 32 The probability density function (p.d.f.) () for a continuous random variable  is
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the derivative

() =
 ()



where  () is the c.d.f. for .

Notice that if the function () graphed in Figure 9.3 has total integral one, the c.d.f. or the area to

the left of a point  is given by () =
R 
−∞ () and so the derivative of the c.d.f. is 0() = ()

It is clear from the way in which  was generated that () represents the relative likelihood of (small

intervals around) different -values. To do this we first note some properties of a p.d.f. It is assumed

that () is a continuous function of  at all points for which 0   ()  1.

Properties of a probability density function

1.  ( ≤  ≤ ) =  ()−  () =
R 

(). (This follows from the definition of ())

2. () ≥ 0. (since  () is non-decreasing, its derivative is non-negative)

3.
R∞
−∞ () =

R
all

() = 1. (This is because  (−∞ ≤  ≤ ∞) = 1)

4.  () =
R 
−∞ (). (This is just property 1 with  = −∞)

To see that () represents the relative likelihood of different outcomes, we note that for∆ small,

 (− ∆
2
≤  ≤ +

∆

2
) =  (+

∆

2
)−  (− ∆

2
)

= ()∆

Thus, () 6=  ( = ) but ()∆ is the approximate probability that  is inside an interval of

length∆ centered about the value  when∆ is small. A plot of the function () shows such values

clearly and for this reason it is very common to plot the probability density functions of continuous

random variables.

Example: Consider the spinner example, where

 () =

⎧⎪⎨⎪⎩
0 for  ≤ 0

4

for 0   ≤ 4
1 for   4

Thus, the p.d.f. is () =  0(), or

() =
1

4
for 0    4

and outside this interval the p.d.f. is 0Figure 9.4 shows the probability density function (); for

obvious reasons this is called a “uniform” distribution.
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x

f(x)

0 1 2 3 4

0.0
0.1

0.2
0.3

0.4

Figure 9.4: Uniform p.d.f.

Remark: Continuous probability distributions are, like discrete distributions, mathematical39 models.

Thus, the uniform distribution assumed for the spinner above is a model, though it seems likely it would

be a good model for many real spinners.

Remark: It may seem paradoxical that  ( = ) = 0 for a continuous r.v. and yet we record the

outcomes  =  in real “experiments" with continuous variables. The catch is that all measurements

have finite precision; they are in effect discrete. For example, the height 60 +  inches is within the

range of the height  of people in a population but we could never observe the outcome  = 60 + 

if we selected a person at random and measured their height.

To summarize, in measurements we are actually observing something like

 (− 05∆ ≤  ≤ + 05∆)

where ∆ may be very small, but not zero. The probability of this outcome is not zero: it is (approxi-

mately) ()∆.

We now consider a more complicated mathematical example of a continuous random variable Then

we’ll consider real problems that involve continuous variables. Remember that it is always a good idea

to sketch or plot the p.d.f. () for a random variable.

Example:

39"How can it be that mathematics, being after all a product of human thought which is independent of experience, is so

admirably appropriate to the objects of reality? Is human reason, then, without experience, merely by taking thought, able to

fathom the properties of real things?" Albert Einstein.
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Let () =

⎧⎪⎨⎪⎩
2; 0   ≤ 1

(2− ); 1    2

0; otherwise

be a p.d.f.

Find

a) 

b)  ()

c) 
¡
12    11

2

¢

Solution:

a) Set
R∞
−∞ () = 1 to solve for . When finding the area of a region bounded by different

functions we split the integral into pieces.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x
)

x

(We normally wouldn’t even write down the parts with
R
0)

1 =

Z ∞

−∞
()

=

Z 0

−∞
0+

Z 1

0

2+

Z 2

1

(2− )+

Z ∞

2

0

= 0 + 

Z 1

0

2+ 

Z 2

1

(2− )+ 0

= 
3

3

¯̄
1
0 + 

µ
2− 2

2
|21
¶

=
5

6

Therefore  = 6
5


b) Doing the easy pieces, which are often left out, first:
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 () = 0 if  ≤ 0
and  () = 1 if  ≥ 2 (since all probability is below  if  is a number above 2)

For 0    1  ( ≤ ) =
R 
0
6
5
2 = 6

5
× 3

3
|0= 23

5

For 1    2  ( ≤ ) =
R 1
0
6
5
2 +

R 
1
6
5
(2− ) 

(see the shaded area below)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

F(x)

f(x
)

x

= 6
5
3

3
|10 +6

5

³
2− 2

2
|1

= 12−32−7
5

i.e.

 () =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0;  ≤ 0
235; 0   ≤ 1
12−32−7

5
; 1    2

1;  ≥ 2
As a rough check, since for a continuous distribution there is no probability at any point,  () should

have the same value as we approach each boundary point from above and from below.

e.g.

As → 0+ 23

5
→ 0

As → 1− 23

5
→ 2

5

As → 1+ 12−32−7
5

→ 2
5

As → 2− 12−32−7
5

→ 1

This quick check won’t prove your answer is right, but will detect many careless errors.
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c)


¡
1
2
   11

2

¢
=

R 1 1
2

12
()

or 
¡
11
2

¢− 
¡
1
2

¢
(easier)

=
12( 32)−3( 32)

2−7
5

− 2( 12)
3

5
= 45

Defined Variables or Change of Variable:

When we know the p.d.f. or c.d.f. for a continuous random variable  we sometimes want to find the

p.d.f. or c.d.f. for some other random variable  which is a function of . The procedure for doing

this is summarized below. It is based on the fact that the c.d.f.  () for  equals  ( ≤ ), and this

can be rewritten in terms of  since  is a function of . Thus:

1) Write the c.d.f. of  as a function of .

2) Use () to find  (). Then if you want the p.d.f.  (), you can differentiate the expression

for  ().

3) Find the range of values of .

Example: In the earlier spinner example,

() = 1
4
; 0   ≤ 4

and  () = 
4
; 0   ≤ 4

Let  = 1. Find ().

Solution:

 () =  ( ≤ ) = 
¡
1

≤ 

¢
= 

³
 ≥ 1



´
= 1−  (  1)

= 1−  (1) (this completes step (1))

For step (2), we can do either:

 () = 1−

1



4

(substituting 1


for  in ())

= 1− 1
4

Therefore  () = 

 () =

1
42
; 1

4
≤  ∞
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(As  goes from 0 to 4,  = 1


goes between∞ and 1
4
.)

or :  () = 

 () =



(1−  (1))

= − 

(1) = − 


(1)



|=1 (chain rule)

= − (1)
³
− 1

2

´
= −1

4

³
− 1

2

´
= 1

42
; 1
4
≤  ∞

Generally if () is known it is easier to substitute first, then differentiate. If () is in the form of

an integral that can’t be solved, it is usually easier to differentiate first, then substitute ().

Extension of Expectation, Mean, and Variance to Continuous Distributions

Definition 33 When  is continuous, we still define

(()) =

Z
all x

()()

With this definition, all of the earlier properties of expected value and variance still hold; for exam-

ple with  = ()

2 = Var() = [( − )2] = (2)− 2

(This definition can be justified by writing
R
all 

()() as a limit of a Riemann sum and recog-

nizing the Riemann sum as being in the form of an expected value for discrete random variables.)

Example: In the spinner example with () = 1
4
; 0   ≤ 4

 =
R 4
0
1
4
 = 1

4

³
2

2

´
|40= 2


¡
2
¢
=

R 4
0
2 1

4
 = 1

4

³
3

3

´
|40= 16

3

2 = 
¡
2
¢− 2 = 16

3
− 4 = 43

Example: Let  have p.d.f.

() =

⎧⎪⎨⎪⎩
62

5
; 0   ≤ 1

6
5
(2− ); 1    2

0; otherwise
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Then

 =

Z
all 

() =

Z 1

0


6

5
2+

Z 2

1


6

5
(2− ) (splitting the integral)

=
6

5

∙
4

4
|10 +

µ
2 − 3

3

¶
|21
¸
= 1110 or 11

(2) =

Z 1

0

2
6

5
2+

Z 2

1

2
6

5
(2− )

=
6

5

µ
5

5
|10 +2

µ
3

3

¶
|21 −

4

4
|21
¶
=
67

50

2 = 
¡
2
¢− 2 =

67

50
−
µ
11

10

¶2
=
13

100
or 013
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Problems:

9.1.1 Let  have p.d.f. () =

(
2; −1    1

0; otherwise
Find

a) 

b) the c.d.f.,  ()

c)  (−1    2)

d) the mean and variance of .

e) let  = 2. Derive the p.d.f. of  .

9.1.2 A continuous distribution has c.d.f.  () = 

1+
for   0, where  is a positive constant.

(a) Evaluate .

(b) Find the p.d.f., ().

(c) What is the median of this distribution? (The median is the value of  such that half the

time we get a value below it and half the time above it.)

9.2 Continuous Uniform Distribution

Just as we did for discrete random variables, we now consider some special types of continuous proba-

bility distributions. These distributions arise in certain settings, described below. This section considers

what we call uniform distributions.

Physical Setup:

Suppose  takes values in some interval [a,b] (it doesn’t actually matter whether interval is open or

closed) with all subintervals of a fixed length being equally likely. Then  has a continuous uniform

distribution. We write  ∼  [ ].

Illustrations:

(1) In the spinner example  ∼ (0 4].

(2) Computers can generate a random number  which appears as though it is drawn from the dis-

tribution (0 1). This is the starting point for many computer simulations of random processes;

an example is given below.
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The probability density function and the cumulative distribution function:

Since all points are equally likely (more precisely, intervals contained in [ ] of a given length, say

0.01, all have the same probability), the probability density function must be a constant () = ;  ≤
 ≤  for some constant . To make

R 

() = 1, we require  = 1

− .

Therefore () =
1

− 
for  ≤  ≤ 

 () =

⎧⎪⎨⎪⎩
0 for   R 


1
− =

−
− for  ≤  ≤ 

1 for   

Mean and Variance:

 =

Z 




1

− 
 =

1

− 

µ
2

2
|
¶
=

2 − 2

2(− )

=
(− )(+ )

2(− )
=

+ 

2

(2) =

Z 



2
1

− 
 =

1

(− )

µ
3

3
|
¶

=
3 − 3

3(− )
=
(− )

¡
2 + + 2

¢
3(− )

=
2 + + 2

3

2 = 
¡
2
¢− 2 =

2 + + 2

3
−
µ
+ 

2

¶2
=
42 + 4+ 42 − 32 − 6− 32

12

=
2 − 2+ 2

12
=
(− )2

12

Example: Suppose  has the continuous p.d.f.

() = 1−1   0

(This is called an exponential distribution and is discussed in the next section. It is used in areas such

as queueing theory and reliability.) We’ll show that the new random variable

 = −1

has a uniform distribution, (0 1). To see this, we follow the steps in Section 9.1:
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 () =  ( ≤ )

=  (−1 ≤ )

=  ( ≥ −10  )

= 1−  (  −10  )

= 1− (−10  )

Since () =
R 
0
1−1 = 1− −1 we get

 () = 1− (1− −1(−10 ))

=  for 0    1

(The range of  is (0,1) since   0.) Thus  () =  0 () = 1(0    1) and so  ∼ (0 1).

Many computer software systems have “random number generator" functions that will simulate ob-

servations  from a (0 1) distribution. (These are more properly called pseudo-random number

generators because they are based on deterministic algorithms. In addition they give observations 

that have finite precision so they cannot be exactly like continuous (0 1) random variables. However,

good generators give  ’s that appear indistinguishable in most ways from (0 1) random variables.)

Given such a generator, we can also simulate random variables  with the exponential distribution

above by the following algorithm:

1. Generate  ∼ (0 1) using the computer random number generator.

2. Compute  = −10   .

Then  has the desired distribution. This is a particular case of a method described in Section 9.4

for generating random variables from a general distribution. In  software the command ()

produces a vector consisting of  independent (0 1) values.

Problem:

9.2.1 If  has c.d.f.  (), then  =  () has a uniform distribution on [0,1]. (Show this.) Suppose

you want to simulate observations from a distribution with () = 3
2
2; −1    1, by using

the random number generator on a computer to generate  [0 1) numbers. What value would 

take when you generated the random number .27125?
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9.3 Exponential Distribution

The continuous random variable  is said to have an exponential distribution if its p.d.f. is of the

form

() = −   0

where   0 is a real parameter value. This distribution arises in various problems involving the time

until some event occurs. The following gives one such setting.

Physical Setup: In a Poisson process for events in time let  be the length of time we wait for the

first event occurrence. We’ll show that  has an exponential distribution. (Recall that the number

of occurrences in a fixed time has a Poisson distribution. The difference between the Poisson and

exponential distributions lies in what is being measured.)

Illustrations:

(1) The length of time  we wait with a Geiger counter until the emission of a radioactive particle

is recorded follows an exponential distribution.

(2) The length of time between phone calls to a fire station (assuming calls follow a Poisson process)

follows an exponential distribution.

Derivation of the probability density function and the c.d.f.
 () =  ( ≤ ) =  (time to 1st occurrence ≤ )

= 1−  (time to 1st occurrence   )

= 1−  (no occurrences in the interval (0 ))
Check that you understand this last step. If the time to the first occurrence  , there must be no occur-

rences in (0 ), and vice versa. We have now expressed  () in terms of the number of occurrences

in a Poisson process by time . But the number of occurrences has a Poisson distribution with mean

 = , where  is the average rate of occurrence.

Therefore  () = 1− 0−

0!
= 1− −

Since  =   () = 1− −; for   0. Thus

() =



 () = −; for   0

which is the formula we gave above.
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Alternate Form: It is common to use the parameter  = 1 in the exponential distribution. (We’ll

see below that  = ().) This makes

 () = 1− −

and () = 1

−

Exercise:

Suppose trees in a forest are distributed according to a Poisson process. Let  be the distance from an

arbitrary starting point to the nearest tree. The average number of trees per square metre is . Derive

() the same way we derived the exponential p.d.f. You’re now using the Poisson distribution in 2

dimensions (area) rather than 1 dimension (time).

Mean and Variance:

Finding  and 2 directly involves integration by parts. An easier solution uses properties of gamma

functions, which extends the notion of factorials beyond the integers to the positive real numbers.

Definition 34 The Gamma Function: Γ() =
R∞
0

−1− is called the gamma function of ,

where   0.

Note that  is 1 more than the power of  in the integrand. e.g.
R∞
0

4− = Γ(5). There are 3

properties of gamma functions which we’ll use.

1. Γ() = (− 1)Γ(− 1) for   1

Proof: Using integration by parts,Z ∞

0

−1− = −−1−|∞0 + (− 1)
Z ∞

0

−2−

and provided that   1 −1−|∞0 = 0 ThereforeZ ∞

0

−1− = (− 1)
Z ∞

0

−2−

2. Γ() = (− 1)! if  is a positive integer.

Proof: It is easy to show that Γ(1) = 1 Using property 1 repeatedly, we obtain

Γ(2) = 1Γ(1) = 1

Γ(3) = 2Γ(2) = 2!

Γ(4) = 3Γ(3) = 3! etc.

In general, Γ(+ 1) = ! for integer 
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3. Γ
¡
1
2

¢
=
√


(This can be proved using double integration.)

Returning to the exponential distribution:

 =

Z ∞

0


1


−

Let  = 

. Then  =  and

 =
R∞
0

− = 
R∞
0

1− = Γ(2)

= 

Note: Read questions carefully. If you’re given the average rate of occurrence in a Poisson process,

that is . If you’re given the average time you wait for an occurrence, that is .

To get 2 = Var(), we first find


¡
2
¢
=

R∞
0

2 1

−

=
R∞
0

22 1

− = 2

R∞
0

2−
= 2Γ(3) = 2!2 = 22

Therefore 2 = 
¡
2
¢− 2 = 22 − 2 = 2

Example:

Suppose #7 buses arrive at a bus stop according to a Poisson process with an average of 5 buses per

hour. (i.e.  = 5/hr. So  = 1
5

hr. or 12 min.) Find the probability (a) you have to wait longer than 15

minutes for a bus (b) you have to wait more than 15 minutes longer, having already been waiting for 6

minutes.

Solution:

a)  (  15) = 1−  ( ≤ 15) = 1−  (15)

= 1− ¡1− −1512
¢
= −125 = 2865

b) If  is the total waiting time, the question asks for the probability

 (  21|  6) =
 (  21 and  6)

 (  6)
=

 (  21)

 (  6)

=
1− ¡1− −2112

¢
1− ¡1− −612

¢ = −2112

−612
= −1512 = −125 = 2865
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Does this surprise you? The fact that you’re already waited 6 minutes doesn’t seem to matter.

This illustrates the “memoryless property” of the exponential distribution:

 (  + |  ) =  (  )

Fortunately, buses don’t follow a Poisson process so this example needn’t cause you to stop using

the bus.

Problems:

9.3.1 In a bank with on-line terminals, the time the system runs between disruptions has an exponential

distribution with mean  hours. One quarter of the time the system shuts down within 8 hours of

the previous disruption. Find .

9.3.2 Flaws in painted sheets of metal occur over the surface according to the conditions for a Poisson

process, at an intensity of  per 2. Let  be the distance from an arbitrary starting point to the

second closest flaw. (Assume sheets are of infinite size!)

(a) Find the p.d.f., ().

(b) What is the average distance to the second closest flaw?

9.4 A Method for Computer Generation of Random Variables♦
40Most computer software has a built-in “pseudo-random number41 generator” that will simulate ob-

servations  from a (0 1) distribution, or at least a reasonable approximation to this uniform distri-

bution. If we wish a random variable with a non-uniform distribution, the standard approach is to take

a suitable function of  By far the simplest and most common method for generating non-uniform

variates is based on the inverse cumulative distribution function. For arbitrary c.d.f.  (), define

−1() =min {; () ≥ }. This is a real inverse (i.e.  (−1()) = −1( ()) = ) in the

case that the c.d.f. is continuous and strictly increasing, so for example for a continuous distribution.

However, in the more general case of a possibly discontinuous non-decreasing c.d.f. (such as the c.d.f.

of a discrete distribution) the function continues to enjoy at least some of the properties of an inverse.

−1 is useful for generating a random variables having c.d.f.  () from  a uniform random variable

on the interval [0 1]

40♦ This section optional for stat 220
41"The generation of random numbers is too important to be left to chance." Robert R. Coveyou, Oak Ridge National

Laboratory
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Theorem 35 If  is an arbitrary c.d.f. and  is uniform on [0 1] then the random variable defined

by  = −1() has c.d.f.  ().

Proof:

The proof is a consequence of the fact that

[   ()] ⊂ [ ≤ ] ⊂ [ ≤  ()] for all .

You can check this graphically be checking, for example, that if [   ()] then [−1() ≤ ]

(this confirms the left hand “⊂00) Taking probabilities on all sides of this, and using the fact that

 [ ≤  ()] =  [   ()] =  (), we discover that  [ ≤ ] =  ()

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U

X=F−1(U) x

F(
x) F(x)

Figure 9.5: Inverting a Cumulative Distribution Function

The relation  = −1() implies that  () ≥  and for any point     ()   For

example, for the rather unusual looking piecewise linear cumulative distribution function in Figure 9.5,

we find the solution  = −1() by drawing a horizontal line at  until it strikes the graph of the

c.d.f. (or where the graph would have been if we had joined the ends at the jumps) and then  is the

− of this point. This is true in general,  is the coordinate of the point where a horizontal

line first strikes the graph of the c.d.f. We provide one simple example of generating random variables

by this method, for the geometric distribution.



204

Example: A geometric random number generator

For the Geometric distribution, the cumulative distribution function is given by

 () = 1− (1− )+1 for  = 0 1 2 

Then if  is a uniform random number in the interval [0 1] we seek an integer  such that

 ( − 1)   ≤  ()

(you should confirm that this is the value of  at which the above horizontal line strikes the graph of

the c.d.f) and solving these inequalities gives

1− (1− )   ≤ 1− (1− )+1

(1− )  1−  ≥ (1− )+1

 ln(1− )  ln(1− ) ≥ ( + 1) ln(1− )

 
ln(1− )

ln(1− )
≤  + 1

so we compute the value of
ln(1− )

ln(1− )

and round down to the next lower integer.

Exercise: An exponential random number generator.

Show that the inverse transform method above results in the generator for the exponential distribution

 = −1

ln(1− )

9.5 Normal Distribution

Physical Setup:

A random variable  defined on (−∞∞) has a normal42 distribution if it has probability density

function of the form

() =
1√
2

−
1
2
(−


)2 −∞   ∞

42"The only normal people are the ones you don’t know very well." Joe Ancis,
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where −∞   ∞ and   0 are parameters. It turns out (and is shown below) that () =  and

Var() = 2 for this distribution; that is why its p.d.f. is written using the symbols  and . We write

 ∼ ( 2)

to denote that  has a normal distribution with mean  and variance 2 (standard deviation ).

The normal distribution is the most widely used distribution in probability and statistics. Physical

processes leading to the normal distribution exist but are a little complicated to describe. (For example,

it arises in physics via statistical mechanics and maximum entropy arguments.) It is used for many

processes where  represents a physical dimension of some kind, but also in many other settings.

We’ll see other applications of it below. The shape of the p.d.f. () above is what is often termed a

“bell shape” or “bell curve”, symmetric about 0 as shown in Figure 9.6.(you should be able to verify

the shape without graphing the function)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

−4.8

φ(x
)

Figure 9.6: The Standard Normal ((0 1)) probability density function

Illustrations:

(1) Heights or weights of males (or of females) in large populations tend to follow normal distribu-

tions.

(2) The logarithms of stock prices are often assumed to be normally distributed.

The cumulative distribution function: The c.d.f. of the normal distribution ( 2) is

 () =

Z 

−∞

1√
2

−
1
2
(
−

)2

as shown in Figure 9.7. This integral cannot be given a simple mathematical expression so numerical

methods are used to compute its value for given values of   and . This function is included in many

software packages and some calculators.
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−5 −4 −3 −2 −1 0 1 2 3 4 5
0
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0.3

0.4

0.5
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0.9

1
Φ(x

)

x

−4.7

Figure 9.7: The standard normal c.d.f.

In the statistical packages  and -Plus we get  () above using the function (  ).

Before computers, people needed to produce tables of probabilities  () by numerical integration,

using mechanical calculators. Fortunately it is necessary to do this only for a single normal distribution:

the one with  = 0 and  = 1. This is called the “standard" normal distribution and denoted

(0 1).

It is easy to see that if ∼ ( 2) then the “new" random variable = (−) is distributed

as  ∼ (0 1). (Just use the change of variables methods in Section 9.1.) We’ll use this to compute

 () and probabilities for  below, but first we show that () integrates to 1 and that () =  and

Var() = 2. For the first result, note thatZ ∞

−∞

1√
2

−
1
2
(
−

)2 =

Z ∞

−∞

1√
2

−
1
2
2 where we let  = (− ))

= 2

Z ∞

0

1√
2

−
1
2
2

= 2

Z ∞

0

1√
2

−
√
2

1
2

Note:  =
1

2
2; and  =

√
2

1
2

=
1√


Z ∞

0

−
1
2 −

=
1√

Γ(
1

2
) (where Γ is the gamma function)

= 1

Mean, Variance, Moment generating function: Recall that an odd function, (), has the property

that (−) = −(). If () is an odd function then
R∞
−∞ () = 0, provided the integral exists.
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Consider

 ( − ) =

Z ∞

−∞
(− )

1


√
2


− (−)2

22 

Let  = − . Then

 ( − ) =

Z ∞

−∞


1


√
2


− 2

22 

where  1


√
2

− 2

22 is an odd function so that  ( − ) = 0. But since  ( − ) = () − ,

this implies

() = 

and so  is the mean. To obtain the variance,

Var() = 
h
( − )2

i
=
R∞
−∞ (− )2 1


√
2

− (−)2

22 

= 2
R∞

(− )2 1


√
2

− (−)2

22  ( since the function is symmetric about )

We can obtain a gamma function by letting  = (−)2
22

.

Then (− )2 = 22

(− ) = 
√
2 (   so the positive root is taken)

 = 
√
2

2
√

= √

2


Then

Var() = 2
Z ∞

0

¡
22

¢ 1


√
2

−
µ

√
2



¶
=
22√


Z ∞

0

12− =
22√

Γ

µ
3

2

¶
=
22√


µ
1

2

¶
Γ

µ
1

2

¶
=
22

¡
1
2

¢√
√



= 2

and so 2 is the variance. We now find the moment generating function of the ( 2) distribution.
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If  has the ( 2) distribution, then

() = () =

Z ∞

−∞
()

=
1


√
2

Z ∞

−∞


− (−)2
22 

=
1


√
2

Z ∞

−∞

− 1

22
(2−2−22+2)



=
+

222


√
2

Z ∞

−∞

− 1

22
{2−2(+2)+(+2)2}



=
+

222


√
2

Z ∞

−∞

− 1

22
{−(+2)}2



= +
222

where the last step follows since

1


√
2

Z ∞

−∞

− 1

22
{−(+2)}2



is just the integral of a (+ 2 2) probability density function and is therefore equal to one. This

confirms the values we already obtained for the mean and the variance of the normal distribution

 0
(0) = +

222(+ 2)|=0 = 

 00
(0) = 2 + 2 = (2)

from which we obtain

 () = 2

Finding Normal Probabilities Via (0 1) Tables As noted above,  () does not have an explicit

closed form so numerical computation is needed. The following result shows that if we can compute

the c.d.f. for the standard normal distribution (0 1), then we can compute it for any other normal

distribution ( 2) as well.

Theorem 36 Let  ∼ ( 2) and define  = ( − ). Then  ∼ (0 1) and

() =  ( ≤ )

= (
−

)
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Proof: The fact that  ∼ (0 1) has p.d.f.

() =
1√
2

−
1
2
2 −∞   ∞

follows immediately by change of variables. Alternatively, we can just note that

() =

Z 

−∞

1√
2

−
1
2
(
−

)2

=

Z (−)

−∞

1√
2

−
1
2
2 ( =

− 


)

= (
− 


) ¤

A table of probabilities () =  ( ≤ ) is given on the last page of these notes. A space-saving

feature is that only the values for   0 are shown; for negative values we use the fact that (0 1)

p.d.f. is symmetric about 0. The following examples illustrate how to get probabilities for  using the

tables.

Examples: Find the following probabilities, where  ∼ (0 1).

(a)  ( ≤ 211)

(b)  ( ≤ 340)

(c)  (  106)

(d)  (  −106)

(e)  (−106    211)

Solution:

a) Look up 2.11 in the table by going down the left column to 2.1 then across to the heading .01.

We find the number .9826. Then  ( ≤ 211) =  (211) = 9826. See Figure 9.8.

b)  ( ≤ 340) =  (340) = 99966

c)  (  106) = 1−  ( ≤ 106) = 1−  (106) = 1− 8554 = 1446
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−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1
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0.2

0.25

0.3
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0.4

0.9826

2.11

f(z
)

z

Figure 9.8:

d) Now we have to use symmetry:

 (  −106) =  (  106) = 1−  ( ≤ 106) = 1−  (106) = 1446

See Figure 9.5.

e)  (−106    211) =  (211)−  (−106)
=  (211)−  ( ≤ −106) =  (211)− [1−  (106)]

= 9826− (1− 8554) = 8380

In addition to using the tables to find the probabilities for given numbers, we sometimes are given the

probabilities and asked to find the number. With  or -Plus software , the function qnorm (  )

gives the 100 -th percentile (where 0    1). We can also use tables to find desired values.

Examples:

a) Find a number  such that  (  ) = 85

b) Find a number  such that  (  ) = 90

c) Find a number  such that  (−    ) = 95

Solutions:

a) We can look in the body of the table to get an entry close to .8500. This occurs for  between

1.03 and 1.04;  = 104 gives the closest value to .85. For greater accuracy, the table at the
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−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

−1.06

f(z
)

z

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

1.06

f(z
)

z

bottom of the last page is designed for finding numbers, given the probability. Looking beside

the entry .85 we find  = 10364.

b) Since  (  ) = 90 we have  () =  ( ≤ ) = 1−  (  ) = 10. There is no entry

for which  () = 10 so we again have to use symmetry, since  will be negative.

 ( ≤ ) =  ( ≥ ||)
= 1−  (||) = 10

Therefore  (||) = 90

Therefore || = 12816
Therefore  = −12816

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

d |d|

f(z
)

z

0.1 0.1
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The key to this solution lies in recognizing that  will be negative. If you can picture the situation

it will probably be easier to handle the question than if you rely on algebraic manipulations.

Exercise: Will  be positive or negative if  (  ) = 05? What if  (  ) = 99?

c) If  (−    ) = 95 we again use symmetry.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−b b

f(z
)

z

0.95

0.025 0.025

Figure 9.9:

The probability outside the interval (− ) must be .05, and this is evenly split between the area

above  and the area below −.

Therefore  (  −) =  (  ) = 025

and  ( ≤ ) = 975

Looking in the table,  = 196.

To find 
¡
 2

¢
probabilities in general, we use the theorem given earlier, which implies that if

 ∼ ( 2) then

 ( ≤  ≤ ) = 
³
−

≤  ≤ −



´
= 

³
−


´
− 

¡
−


¢
where  ∼ (0 1).

Example: Let  ∼ (3 25).

a) Find  (  2)

b) Find a number  such that  (  ) = 95.
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Solution:

a)

 (  2) = 

µ
 − 



2− 3
5

¶
=  (  −20) = 1−  (  20)

= 1−  (20) = 1− 5793 = 4207

b)

 (  ) = 

µ
 − 




− 3
5

¶
= 

µ
 

− 3
5

¶
= 95

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c−3)/5

0.95

f(z
)

z

Figure 9.10:

Therefore −3
5

= −16449
and  = −52245

Gaussian Distribution: The normal distribution is also known as the Gaussian43 distribution. The

notation  ∼ ( ) means that  has Gaussian (normal) distribution with mean  and standard

deviation . So, for example, if  ∼ (1 4) then we could also write  ∼ (1 2).

Example: The heights of adult males in Canada are close to normally distributed, with a mean of

69.0 inches and a standard deviation of 2.4 inches. Find the 10th and 90th percentiles of the height

distribution. (Recall that the a-th percentile is such that a% of the population has height less than this

value.)

43After Johann Carl Friedrich Gauss (1777-1855), a German mathematician, physicist and astronomer, discoverer of Bode’s

Law, the Binomial Theorem and a regular 17-gon. He discovered the prime number theorem while an 18 year-old student

and used least-squares (what is called statistical regression in most statistics courses) to predict the position of Ceres.
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Solution: We are being told that if  is the height of a randomly selected Canadian adult male, then

 ∼ (690 24), or equivalently  ∼ (690 576). To find the 90th percentile , we use

 ( ≤ ) = 

µ
 − 690
24

≤ − 690
24

¶
= 

µ
 ≤ − 690

24

¶
= 90

From the table we see  ( ≤ 12816) = 90 so we need

− 690
24

= 12816

which gives  = 7208 inches. Similarly, to find  such that  ( ≤ ) = 10 we find that  ( ≤
−12816) = 10, so we need

− 690
24

−−12816
or  = 6592 inches, as the 10th percentile.

Linear Combinations of Independent Normal Random Variables

Linear combinations of normal random variables are important in many applications. Since we have not

covered continuous multivariate distributions, we can only quote the second and third of the following

results without proof. The first result follows easily from the change of variables method.

1. Let  ∼ ( 2) and  =  + , where  and  are constant real numbers. Then  ∼
(+  22)

2. Let  ∼ 
¡
1 

2
1

¢
and  ∼ 

¡
2 

2
2

¢
be independent, and let  and  be constants.

Then  +  ∼ 
¡
1 + 2 

221 + 222
¢
.

In general if  ∼ 
¡
 

2


¢
are independent and  are constants,

then
P

 ∼ 
¡P


P

2
2


¢
.

3. Let 12 · · ·  be independent 
¡
 2

¢
random variables.

Then
P

 ∼ 
¡
 2

¢
and  ∼ 

¡
 2

¢
.

Actually, the only new result here is that the distributions are normal. The means and variances

of linear combinations of random variables were previously obtained in section 8.3.

Example: Let  ∼ (3 5) and  ∼ (6 14) be independent. Find  (   ).

Solution: Whenever we have variables on both sides of the inequality we should collect them on one

side, leaving us with a linear combination.

 (   ) =  ( −   0)

 −  ∼  (3− 6 5 + 14) ie (−3 19)
 ( −   0) = 

³
 

0−(−3)√
19

= 69
´
= 1−  (69) = 2451
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Example: Three cylindrical parts are joined end to end to make up a shaft in a machine; 2 type A

parts and 1 type B. The lengths of the parts vary a little, and have the distributions:  ∼  (6 4) and

 ∼  (352 6). The overall length of the assembled shaft must lie between 46.8 and 47.5 or else

the shaft has to be scrapped. Assume the lengths of different parts are independent. What percent of

assembled shafts have to be scrapped?

Exercise: Why would it be wrong to represent the length of the shaft as 2A + B? How would this

length differ from the solution given below?

Solution: Let , the length of the shaft, be  = 1 +2 +.

Then

 ∼  (6 + 6 + 352 4 + 4 + 6) = (472 14)

and so
 (468    475) = 

³
468−472√

14
   475−472√

14

´
=  (−34    25) = 2318

i.e. 23.18% are acceptable and 76.82% must be scrapped. Obviously we have to find a way to reduce

the variability in the lengths of the parts. This is a common problem in manufacturing.

Exercise: How could we reduce the percent of shafts being scrapped? (What if we reduced the vari-

ance of  and  parts each by 50%?)

Example: The heights of adult females in a large population is well represented by a normal distribu-

tion with mean 64 in. and variance 6.2 in2.

(a) Find the proportion of females whose height is between 63 and 65 inches.

(b) Suppose 10 women are randomly selected, and let ̄ be their average height ( i.e. ̄ =
10P
=1

10, where 1    10 are the heights of the 10 women). Find  (63 ≤ ̄ ≤ 65).

(c) How large must  be so that a random sample of  women gives an average height ̄ so that

 (|̄ − | ≤ 1) ≥ 95?

Solution:
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(a)  ∼ (64 62) so for the height  of a random woman,

 (63 ≤  ≤ 65) = 

µ
63− 64√
62

≤  − 


≤ 65− 64√

62

¶
=  (−0402 ≤  ≤ 0402)
= 0312

(b) ̄ ∼ 
¡
64 62

10

¢
so

 (63 ≤ ̄ ≤ 65) = 
³
63−64√

62
≤ ̄−

̄
≤ 65−64√

62

´
=  (−127 ≤  ≤ 127)
= 0796

(c) If ̄ ∼ 
¡
64 62



¢
then

 (|̄ − | ≤ 1) =  (|̄ − 64| ≤ 1)
=  (63 ≤ ̄ ≤ 65)
= 

µ
63−64√
62

≤ ̄−
̄
≤ 65−64√

62

¶
=  (−0402√ ≤  ≤ 0402√) = 95

iff 402
√
 = 196. (This is because  (−196 ≤  ≤ 196) = 95). So  (|̄ − 64| ≤ 1) ≥ 95 iff

0402
√
 ≥ 196 which is true if  ≥ (196402)2, or  ≥ 2377. Thus we require  ≥ 24 since  is

an integer.

Remark: This shows that if we were to select a random sample of  = 24 persons, then their average

height ̄ would be with 1 inch of the average height  of the whole population of women. So if we

did not know  then we could estimate it to within ±1 inch (with probability .95) by taking this small

a sample.

Exercise: Find how large  would have to be to make  (|̄ − | ≤ 5) ≥ 95.

These ideas form the basis of statistical sampling and estimation of unknown parameter values in

populations and processes. If  ∼ ( 2) and we know roughly what  is, but don’t know , then

we can use the fact that ̄ ∼ ( 2) to find the probability that the mean ̄ from a sample of size

 will be within a given distance of .

Problems:

9.5.1 Let  ∼ (10 4) and  ∼ (3 100) be independent. Find the probability
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a) 84    122

b) 2  

c)   0 where  is the sample mean of 25 independent observations on  .

9.5.2 Let  have a normal distribution. What percent of the time does  lie within one standard

deviation of the mean? Two standard deviations? Three standard deviations?

9.5.3 Let  ∼ (5 4). An independent variable  is also normally distributed with mean 7 and

standard deviation 3. Find:

(a) The probability 2 differs from  by more than 4.

(b) The minimum number, , of independent observations needed on  so that


¡| − 5|  01¢ ≥ 98 ( =

P
=1

 is the sample mean)

9.6 Use of the Normal Distribution in Approximations

The normal distribution can, under certain conditions, be used to approximate probabilities for linear

combinations of variables having a non-normal distribution. This remarkable property follows from an

amazing result called the central limit theorem. There are actually several versions of the central limit

theorem. The version given below is one of the simplest.

Central Limit Theorem (CLT):

The major reason that the normal distribution is so commonly used is that it tends to approximate

the distribution of sums of random variables. For example, if we throw  fair dice and  is the sum of

the outcomes, what is the distribution of ? The tables below provide the number of ways in which a

given value can be obtained. The corresponding probability is obtained by dividing by 6 For example

on the throw of  = 1 dice the probable outcomes are 1,2,...,6 with probabilities all 16 as indicated

in the first panel of the histogram in Figure 9.11.

If we sum the values on two fair dice, the possible outcomes are the values 2,3,...,12 as shown in

the following table and the probabilities are the values below:
Values 2 3 4 5 6 7 8 9 10 11 12

Probabilities×36 1 2 3 4 5 6 5 4 3 2 1
The probability histogram of these values is shown in the second panel. Finally for the sum of the

values on three independent dice, the values range from 3 to 18 and have probabilities which, when

multiplied by 63 result in the values

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

to which we can fit three separate quadratic functions one in the middle region and one in each of the
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The probability histogram of the sum of n Uniform1, 2, 3, 4, 5, 6 random variables

n=3

Figure 9.11: The probability histogram of the sum of =1,2,3 discrete uniform {1,2,3,4,5,6}random

variables

two tails. The histogram of these values shown in the third panel of Figure 9.11. and already resembles

a normal probability density function.In general, these distributions show a simple pattern. For  = 1,

the probability function is a constant (polynomial degree 0). For  = 2 two linear functions spliced

together. For  = 3, the histogram can be constructed from three quadratic pieces (polynomials of

degree  − 1) These probability histograms rapidly approach the shape of the normal probability

density function, as is the case with the sum or the average of independent random variables from most

distributions. You can simulate the throws of any number of dice and illustrate the behaviour of the

sums on at the url http://www.math.csusb.edu/faculty/stanton/probstat/clt.html.

Let 12 · · ·  be independent random variables all having the same distribution, with mean 

and variance 2. Then as →∞,

X
=1

 ∼ 
¡
 2

¢
(9.10)
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and

 ∼ 

µ


2



¶
 (9.11)

This is actually a rough statement of the result since, as →∞, both the
¡
 2

¢
and

¡
 2

¢
distributions fail to exist. (The former because both  and 2 →∞, the latter because 2


→ 0.) A

precise version of the results is:

Theorem 37 If 12 · · ·  be independent random variables all having the same distribution,

with mean  and variance 2, then as  → ∞, the cumulative distribution function of the random

variable P
 − 


√


approaches the (0 1) c.d.f. Similarly, the c.d.f. of

 − 


√


approaches the standard normal c.d.f.

Although this is a theorem about limits, we will use it when  is large, but finite, to approximate the

distribution of
P

 or  by a normal distribution, so the rough version of the theorem in (9.10) and

(9.11) is adequate for our purposes.

Notes:

(1) This theorem works for essentially all distributions which  could have. The only exception oc-

curs when  has a distribution whose mean or variance don’t exist. There are such distributions,

but they are rare.

(2) We will use the Central Limit Theorem to approximate the distribution of sums
P
=1

 or averages

̄. The accuracy of the approximation depends on  (bigger is better) and also on the actual

distribution the ’s come from. The approximation works better for small  when ’s p.d.f. is

close to symmetric.

(3) If you look at the section on linear combinations of independent normal random variables you

will find two results which are very similar to the central limit theorem. These are:

For 1 · · ·  independent and 
¡
 2

¢
,
P

 ∼ 
¡
 2

¢
, and  ∼ 

¡
 2

¢
.

Thus, if the ’s themselves have a normal distribution, then
P

 and  have exactly normal distri-

butions for all values of . If the ’s do not have a normal distribution themselves, then
P

 and
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 have approximately normal distributions when  is large. From this distinction you should be able

to guess that if the ’s distribution is somewhat normal shaped the approximation will be good for

smaller values of  than if the ’s distribution is very non-normal in shape. (This is related to the

second remark in (2)).

Example: Hamburger patties are packed 8 to a box, and each box is supposed to have 1 Kg of meat

in it. The weights of the patties vary a little because they are mass produced, and the weight  of a

single patty is actually a random variable with mean  = 0128 kg and standard deviation  = 0005

kg. Find the probability a box has at least 1 kg of meat, assuming that the weights of the 8 patties in

any given box are independent.

Solution: Let 1    8 be the weights of the 8 patties in a box, and  = 1 + · · · + 8 be

their total weight. By the Central Limit Theorem,  is approximately (8 82); we’ll assume this

approximation is reasonable even though  = 8 is small. (This is likely OK because ’s distribution

is likely fairly close to normal itself.) Thus  ∼ (1024 0002) and

 (  1) = 
³
  1−1024√

0002

´
=  (  −1702)

= 9554

(Note: We see that only about 95% of the boxes actually have 1 kg or more of hamburger. What would

you recommend be done to increase this probability to 99%?)

Example: Suppose fires reported to a fire station satisfy the conditions for a Poisson process, with a

mean of 1 fire every 4 hours. Find the probability the 500th fire of the year is reported on the 84th day

of the year.

Solution: Let  be the time between the (−1)st and th fires (1 is the time to the 1st fire). Then

has an exponential distribution with  = 1 = 4 hours, or  = 16 day. Since
500P
=1

 is the time until

the 500th fire, we want to find 

µ
83 

500P
=1

 ≤ 84
¶

. While the exponential distribution is not close

to normal shaped, we are summing a large number of independent exponential variables. Hence, by

the central limit theorem,
P

 has approximately a 
¡
500 5002

¢
distribution, where  = ()

and 2 = Var().

For exponential distributions,  =  = 16 and 2 = 2 = 136 so


³
83 

X
 ≤ 84

´
= 

⎛⎝83− 500
6q

500
36

  ≤ 84−
500
6q

500
36

⎞⎠
=  (−09   ≤ 18) = 1073
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Example: This example is frivolous but shows how the normal distribution can approximate even

sums of discrete random variables. In an orchard, suppose the number  of worms in an apple has

probability function:

 0 1 2 3

() .4 .3 .2 .1

Find the probability a basket with 250 apples in it has between 225 and 260 (inclusive) worms in it.

Solution:

 = () =
3P

=0

() = 1


¡
2
¢
=

3P
=0

2() = 2

Therefore 2 = 
¡
2
¢− 2 = 1

By the central limit theorem,
250P
=1

 has approximately a 
¡
250 2502

¢
distribution, where  is

the number of worms in the th apple.

i.e. X
 ∼  (250 250)


³
225 ≤

X
 ≤ 260

´
= 

µ
225− 250√

250
≤  ≤ 260− 250√

250

¶
=  (−158 ≤  ≤ 63) = 6786

While this approximation is adequate, we can improve its accuracy, as follows. When  has a discrete

distribution, as it does here,
P

 will always remain discrete no matter how large  gets. So the

distribution of
P

, while normal shaped, will never be precisely normal. Consider a probability

histogram of the distribution of
P

, as shown in Figure 9.12. (Only part of the histogram is shown.)

The area of each bar of this histogram is the probability at the  value in the centre of the interval. The

smooth curve is the p.d.f. for the approximating normal distribution. Then
260P

=225

 (
P

 = ) is the

total area of all bars of the histogram for  from 225 to 260. These bars actually span continuous 

values from 224.5 to 260.5. We could then get a more accurate approximation by finding the area under

the normal curve from 224.5 to 260.5.

i.e.  (225 ≤P ≤ 260) =  (2245 
P

  2605)

= 
³
2245−250√

250
   2605−250√

250

´
=  (−161    66) = 6917
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Figure 9.12:

Unless making this adjustment greatly complicates the solution, it is preferable to make this “continuity

correction”.

Notes:

(1) A continuity correction should not be applied when approximating a continuous distribution by

the normal distribution. Since it involves going halfway to the next possible value of , there

would be no adjustment to make if  takes real values.

(2) Rather than trying to guess or remember when to add .5 and when to subtract .5, it is often helpful

to sketch a histogram and shade the bars we wish to include. It should then be obvious which

value to use.

(3) When you are approximating a probability such as  ( = 50) where  is Binomial(100 05)

it is essential to use the continuity correction because without it, we obtain the silly approxima-

tion  ( = 50) ' 0

Example: Normal approximation to the Poisson Distribution

Let  be a random variable with a Poisson() distribution and suppose  is large. For the moment

suppose that  is an integer and recall that if we add  independent Poisson random variables, each

with parameter 1 then the sum has the Poisson distribution with parameter  In general, a Poisson
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random variable with large expected value can be written as the sum of a large number of independent

random variables, and so the central limit theorem implies that it must be close to normally distributed.

We can prove this using moment generating functions. In Section 7.5 we found the moment generating

function of a Poisson random variable 

() = −+




Then the standardized random variable is

 =
 − √



and this has moment generating function

() = () = (


−√




)

= −
√
(

√
)

= −
√
(

√
)

This is easier to work with if we take logarithms,

ln(()) = −
√
− + 

√


= (
√
 − 1− √


)

Now as →∞
√

→ 0

and


√
 = 1 +

√

+
1

2

2


+ (−1)

so

ln(()) = (
√
 − 1− √


)

= (
2

2
+ (−1))

→ 2

2
as →∞

Therefore the moment generating function of the standardized Poisson random variable  approaches


22 the moment generating function of the standard normal and this implies that the Poisson distrib-

ution approaches the normal as →∞
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Example: Suppose  ∼ (). Use the normal approximation to approximate

 (  )

Compare this approximation with the true value when  = 9

Solution We have verified above that the moment generating function of the Poisson() distribution

approaches 
22 the moment generating function of the standard normal distribution as →∞ This

implies that the cumulative distribution function of the standardized random variable

 =
 − √



(note: identify() and  () in the above standardization) approaches the cumulative distribution

function of a standard normal random variable  In particular, without a continuity correction,

 ( ≤ ) =  ( ≤ 0)→  ( ≤ 0) = 1

2
as →∞

Computing the true value when  = 9

 (  9) = 1−  ( ≤ 9) = 1− −9 − 9−9 − 9
2

2!
−9 − − 9

9

9!
−9 = 1− 05874 = 04126

There is a considerable difference here between the true value 04126 and the normal approximation
1
2

since the value of  = 9 is still quite small. However, if we use the continuity correction when we

apply the normal approximation,

 (  9) =  (  95) =  ( 
05

3
)→  (  01667) = 04338

which is much closer to the true value 04126.

Normal approximation to the Binomial Distribution

It is well-known that the binomial distribution, at least for large values of  resembles a bell-shaped

or normal curve. The most common demonstration of this is with a mechanical device common in sci-

ence museums called a "Galton board" or "Quincunx"44 which drop balls through a mesh of equally

spaced pins (see Figure 9.13 and the applet at http://javaboutique.internet.com/BallDrop/).

Notice that if balls either go to the right or left at each of the 8 levels of pins, independently of the move-

ment of the other balls, then  =number of moves to right has a (8 1
2
) distribution. If the balls

are dropped from location 0 (on the −axis) then the ball eventually rests at location 2 − 8 which is

approximately normally distributed since  is approximately normal.

The following result is easily proved using the Central Limit Theorem.

44The word comes from Latin quinque (five) unicia (twelve) and means five twelfths.
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Figure 9.13: A "Galton Board" or "Quincunx"

Theorem 38 Let  have a binomial distribution, ( ). Then for  large, the random variable

 =
 − p
(1− )

is approximately (0 1)

Proof: We use indicator variables ( = 1     ) where  = 1 if the th trial in the binomial

process is an “” outcome and 0 if it is an “” outcome. Then  =
P
=1

 and we can use the CLT.

Since

 = () =  and 2 = Var() = (1− )

we have that as →∞ P
 − p
(1− )

=
 − p
(1− )

is (0 1), as stated.

An alternative proof uses moment generating functions and is essentially a proof of this particular

case of the Central Limit Theorem. Recall that the moment generating function of the binomial random

variable  is

() = (1− + )
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As we did with the standardized Poisson random variable, we can show with some algebraic effort that

the moment generating function of 

()→ 
22 as →∞

proving that the standardized binomial random variable approaches the standard normal distribution.

Remark: We can write the normal approximation either as  ∼ (0 1) or as  ∼ ( (1 −
)).

Remark: The continuity correction method can be used here. The following numerical example

illustrates the procedure.

Example: If (i)  ∼ ( = 20  = 4), use the theorem to find the approximate probability

 (4 ≤  ≤ 12) and (ii) if  ∼ (100 4) find the approximate probability  (34 ≤  ≤ 48).

Compare the answer with the exact value in each case.

Solution (i) By the theorem above,  ∼ (8 48) approximately. Without the continuity correction,

 (4 ≤  ≤ 12) = 
³
4−8√
48
≤ −9√

48
≤ 12−8√

48

´

=  (−1826 ≤  ≤ 1826) = 0932

where  ∼ (0 1). Using the continuity correction method, we get

 (4 ≤  ≤ 12) 
= 

³
35−8√
48
≤  ≤ 125−8√

48

´
=  (−2054 ≤  ≤ 2054) = 0960

The exact probability is
12P
=4

¡
20


¢
(4)(6)20−, which (using the  function ( )) is 0.963. As

expected the continuity correction method gives a more accurate approximation.

(ii)  ∼ (40 24) approximately so without the continuity correction

 (34 ≤  ≤ 48) ' 

µ
34− 40√

24
≤  ≤ 48− 40√

24

¶
'  (−1225 ≤  ≤ 1633)
' 09488− (1− 08897) = 08385

With the continuity correction

 (34 ≤  ≤ 48) ' 

µ
335− 40√

24
≤  ≤ 485− 40√

24

¶
'  (−1327 ≤  ≤ 1735)
' 09586− (1− 09076) = 0866
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The exact value,
48P

=34

(), equals 0866 (correct to 3 decimals). The error of the normal approximation

decreases as  increases, but it is a good idea to use the continuity correction when it is convenient. For

example if we are using a normal approximation to a discrete distribution like the binomial which takes

integer values and the standard deviation of the binomial is less than 10 then the continuity correction

makes a difference of 0510 = 005 to the number we look up in the table. This can result in a

difference in the probability of up to around 002. If you are willing to tolerate errors in probabilities

of that magnitude, your rule of thumb might be to use the continuity correction whenever the standard

deviation of the integer-valued random variable being approximated is less than 10.

Example: Let  be the proportion of Canadians who think Canada should adopt the US dollar.

a) Suppose 400 Canadians are randomly chosen and asked their opinion. Let  be the number who

say yes. Find the probability that the proportion, 
400

, of people who say yes is within 002 of ,

if  is 020.

b) Find the number, , who must be surveyed so there is a 95% chance that 


lies within 002 of .

Again suppose  is 020.

c) Repeat (b) when the value of  is unknown.

Solution:

a)  ∼  (400 2). Using the normal approximation we take

 ∼ Normal with mean  = (400)(2) = 80 and variance (1− ) = (400)(2)(8) = 64

If 
400

lies within ± 02, then 18 ≤ 
400
≤ 22, so 72 ≤  ≤ 88. Thus, we find

 (72 ≤  ≤ 88) 
= 

µ
715− 80√

64
  

885− 80√
64

¶
=  (−106    106) = 711

b) Since  is unknown, it is difficult to apply a continuity correction, so we omit it in this part. By

the normal approximation,

 ∼  ( = 2 (1− ) = 16)

Therefore,




∼ 

µ
02


= 02

016

2
=
016



¶
(Recall Var () = 2 Var ())
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¡
18 ≤ 


≤ 22

¢
= 95 is the condition we need to satisfy. This gives



⎛⎝ 18− 2q
16


≤  ≤ 22− 2q
16


⎞⎠ = 95


¡−05√ ≤  ≤ 05

√

¢
= 095

Therefore,  (05
√
) = 975 and so 05

√
 = 19600 giving  = 153664 In other words, we

need to survey 1537 people to be at least 95% sure that 


lies within .02 either side of .

c) Now using the normal approximation to the binomial, approximately  ∼  ( (1− )) and

so



∼ 

µ

(1− )



¶
We wish to find  such that

095 = 

µ
− 02 ≤ 


≤ + 02

¶

= 

⎛⎝− 02− q
(1−)



≤  ≤ + 02− q
(1−)



⎞⎠
= 

⎛⎝ −02q
(1−)



≤  ≤ 02q
(1−)



⎞⎠
As is part (b),



⎛⎝ 02q
(1−)



⎞⎠ = 975

02
√
p

(1− )
= 196

Solving for 

 =

µ
196

02

¶2
(1− )

Unfortunately this does not give us an explicit expression for  because we don’t know . The

way out of this dilemma is to find the maximum value
¡
196
02

¢2
(1− ) could take. If we choose

 this large, then we can be sure of having the required precision in our estimate, 


, for any .

It’s easy to see that (1− ) is a maximum when  = 1
2
. Therefore we take

 =

µ
196

02

¶2µ
1

2

¶µ
1− 1

2

¶
= 2401



229

i.e., if we survey 2401 people we can be 95% sure that 


lies within .02 of , regardless of the

value of .

Remark: This method is used when poll results are reported in the media: you often see or hear that

“this poll is accurate to with 3 percent 19 times out of 20". This is saying that  was big enough so that

 (− 03 ≤  ≤ + 03) was 95%. (This requires  of about 1067.)

Problems:

9.6.1 Tomato seeds germinate (sprout to produce a plant) independently of each other, with probability

0.8 of each seed germinating. Give an expression for the probability that at least 75 seeds out of

100 which are planted in soil germinate. Evaluate this using a suitable approximation.

9.6.2 A metal parts manufacturer inspects each part produced. 60% are acceptable as produced, 30%

have to be repaired, and 10% are beyond repair and must be scrapped. It costs the manufacturer

$10 to repair a part, and $100 (in lost labour and materials) to scrap a part. Find the approximate

probability that the total cost associated with inspecting 80 parts will exceed $1200.
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9.7 Problems on Chapter 9

9.1 The diameters  of spherical particles produced by a machine are randomly distributed accord-

ing to a uniform distribution on [.6,1.0] (cm). Find the distribution of  , the volume of a particle.

9.2 A continuous random variable  has p.d.f.

() = (1− 2) − 1 ≤  ≤ 1

(a) Find  and the c.d.f. of . Graph () and the c.d.f.

(b) Find the value of  such that  (− ≤  ≤ ) = 95.

9.3 a) When people are asked to make up a random number between 0 and 1, it has been found

that the distribution of the numbers, , has p.d.f. close to

() =

(
4; 0   ≤ 12
4 (1− ) ; 1

2
   1

(rather than the  [0 1] distribution which would be expected). Find the mean and variance

of .

b) For 100 “random” numbers from the above distribution find the probability their sum lies

between 49.0 and 50.5.

c) What would the answer to (b) be if the 100 numbers were truly  [0 1]?

9.4 Let  have p.d.f. () = 1
20
; − 10    10, and let  = +10

20
. Find the p.d.f. of  .

9.5 A continuous random variable  which takes values between 0 and 1 has probability density

function

() = (+ 1); 0    1

a) For what values of  is this a p.d.f.? Explain.

b) Find 
¡
 ≤ 1

2

¢
and ()

c) Find the probability density function of  = 1.

9.6 The magnitudes of earthquakes in a region of North America can be modelled by an exponential

distribution with mean 2.5 (measured on the Richter scale).

(a) If 3 earthquakes occur in a given month, what is the probability that none exceed 5 on the

Richter scale?
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(b) If an earthquake exceeds 4, what is the probability it also exceeds 5?

9.7 A certain type of light bulb has lifetimes that follow an exponential distribution with mean 1000

hours. Find the median lifetime (that is, the lifetime  such that 50% of the light bulbs fail before

).

9.8 The examination scores obtained by a large group of students can be modelled by a normal

distribution with a mean of 65% and a standard deviation of 10%.

(a) Find the percentage of students who obtain each of the following letter grades:

(≥ 80%) (70− 80%) (60− 70%) (50− 60%)  ( 50%)

(b) Find the probability that the average score in a random group of 25 students exceeds 70%.

(c) Find the probability that the average scores of two distinct random groups of 25 students

differ by more than 5%.

9.9 The number of liters  that a filling machine in a water bottling plant deposits in a nominal two

liter bottle follows a normal distribution ( 2), where  = 01 (liters) and  is the setting on

the machine.

(a) If  = 200, what is the probability a bottle has less than 2 liters of water in it?

(b) What should  be set at to make the probability a bottle has less than 2 liters be less than

01?

9.10 A turbine shaft is made up of 4 different sections. The lengths of those sections are independent

and have normal distributions with  and : (8.10, .22), (7.25, .20),

(9.75, .24), and (3.10, .20). What is the probability an assembled shaft meets the specifications

28± 26?

9.11 Let  ∼ (95 2) and  ∼ (−21 075) be independent.

Find:

(a)  (90    111)

(b)  ( + 4  0)

(c) a number  such that  (  ) = 90.

9.12 The amount, , of wine in a bottle ∼ 
¡
105 00042

¢
(Note:  means liters.)
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a) The bottle is labelled as containing 1. What is the probability a bottle contains less than

1?

b) Casks are available which have a volume,  , which is (22 162). What is the probabil-

ity the contents of 20 randomly chosen bottles will fit inside a randomly chosen cask?

9.13 In problem 8.18, calculate the probability of passing the exam, both with and without guessing

if (a) each  = .45; (b) each  = 55.

What is the best strategy for passing the course if (a)  = 45 (b)  = 55?

9.14 Suppose that the diameters in millimeters of the eggs laid by a large flock of hens can be modelled

by a normal distribution with a mean of 40 mm. and a variance of 4 mm2. The wholesale selling

price is 5 cents for an egg less than 37 mm in diameter, 6 cents for eggs between 37 and 42 mm,

and 7 cents for eggs over 42 mm. What is the average wholesale price per egg?

9.15 In a survey of  voters from a given riding in Canada, the proportion 


who say they would

vote Conservative is used to estimate , the probability a voter would vote P.C. ( is the number

of Conservative supporters in the survey.) If Conservative support is actually 16%, how large

should  be so that with probability .95, the estimate will be in error at most .03?

9.16 When blood samples are tested for the presence of a disease, samples from 20 people are pooled

and analysed together. If the analysis is negative, none of the 20 people is infected. If the pooled

sample is positive, at least one of the 20 people is infected so they must each be tested separately;

i.e., a total of 21 tests is required. The probability a person has the disease is .02.

a) Find the mean and variance of the number of tests required for each group of 20.

b) For 2000 people, tested in groups of 20, find the mean and variance of the total number of

tests. What assumption(s) has been made about the pooled samples?

c) Find the approximate probability that more than 800 tests are required for the 2000 people.

9.17 Suppose 80% of people who buy a new car say they are satisfied with the car when surveyed one

year after purchase. Let  be the number of people in a group of 60 randomly chosen new car

buyers who report satisfaction with their car. Let  be the number of satisfied owners in a second

(independent) survey of 62 randomly chosen new car buyers. Using a suitable approximation,

find  (| −  | ≥ 3). A continuity correction is expected.

9.18 Suppose that the unemployment rate in Canada is 7%.

(a) Find the approximate probability that in a random sample of 10,000 persons in the labour

force, the number of unemployed will be between 675 and 725 inclusive.
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(b) How large a random sample would it be necessary to choose so that, with probability 95,

the proportion of unemployed persons in the sample is between 6.9% and 7.1%?

9.19 Gambling. Your chances of winning or losing money can be calculated in many games of

chance as described here.

Suppose each time you play a game (or place a bet) of $1 that the probability you win (thus

ending up with a profit of $1) is .49 and the probability you lose (meaning your “profit" is -$1)

is .51

(a) Let  represent your profit after  independent plays or bets. Give a normal approximation

for the distribution of .

(b) If  = 20, determine  ( ≥ 0). (This is the probability you are “ahead" after 20 plays.)

Also find  ( ≥ 0) if  = 50 and  = 100. What do you conclude?

Note: For many casino games (roulette, blackjack) there are bets for which your probability

of winning is only a little less than .5. However, as you play more and more times, the

probability you lose (end up “behind") approaches 1.

(c) Suppose now you are the casino. If all players combined place  = 100 000 $1 bets in an

evening, let  be your profit. Find the value  with the property that  (  ) = 99.

Explain in words what this means.

9.20 Gambling: Crown and Anchor. Crown and Anchor is a game that is sometimes played at

charity casinos or just for fun. It can be played with a “wheel of fortune" or with 3 dice, in which

each die has its 6 sides labelled with a crown, an anchor, and the four card suits club, diamond,

heart and spade, respectively. You bet an amount (let’s say $1) on one of the 6 symbols: let’s

suppose you bet on “heart". The 3 dice are then rolled simultaneously and you win $ if  hearts

turn up ( = 0 1 2 3).

(a) Let  represent your profits from playing the game  times. Give a normal approximation

for the distribution of .

(b) Find (approximately) the probability that   0 if (i)  = 10, (ii)  = 50.

9.21 Binary classification. Many situations require that we “classify" a unit of some type as being

one of two types, which for convenience we will term Positive and Negative. For example, a

diagnostic test for a disease might be positive or negative; an email message may be spam or not

spam; a credit card transaction may be fraudulent or not. The problem is that in many cases we

cannot tell for certain whether a unit is Positive or Negative, so when we have to decide which a

unit is, we may make errors. The following framework helps us to deal with these problems.
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For a randomly selected unit from the population being considered, define the indicator random

variable

 = (unit is Positive)

Suppose that we cannot know for certain whether  = 0 or  = 1 for a given unit, but that we

can get a measurement  with the property that

If  = 1  ∼ (1 
2
1)

If  = 0  ∼ (0 
2
0)

where 1  0. We now decide to classify units as follows, based on their measurement :

select some value  between 0 and 1, and then

• if  ≥ , classify the unit as Positive

• if   , classify the unit as Negative

(a) Suppose 0 = 0 1 = 10 0 = 4 1 = 6 and  = 5. Find the probability that

(i) If a unit is really Positive, they are wrongly classified as Negative. (This is called the

“false negative" probability.)

(ii) If a unit is really Negative, they are wrongly classified as Positive. (This is called the

“false positive" probability.)

(b) Repeat the calculations if 0 = 0 1 = 10 as in (a), but 1 = 3 2 = 3. Explain in plain

English why the false negative and false positive misclassification probabilities are smaller

than in (a).

9.22 Binary classification and spam detection. The approach in the preceding question can be used

for problems such as spam detection, which was discussed earlier in Problems 4.17 and 4.18.

Instead of using binary features as in those problems, suppose that for a given email message we

compute a measure, designed so that tends to be high for spam messages and low for regular

(non-spam) messages. (For example  can be a composite measure based on the presence or

absence of certain words in a message, as well as other features.) We will treat  as a continuous

random variable.

Suppose that for spam messages, the distribution of  is approximately (1 
2
1), and that for

regular messages, it is approximately (0 
2
0), where 1  0. This is the same setup as for

Problem 9.21. We will filter spam by picking a value , and then filtering any message for which

 ≥ . The trick here is to decide what value of  to use.
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Figure 9.14: Bertrand’s Paradox

(a) Suppose that 0 = 0 1 = 10 1 = 3 2 = 3. Calculate the probability of a false

positive (filtering a message that is regular) and a false negative (not filtering a message

that is spam) under each of the three choices (i)  = 5 (ii)  = 4 (iii)  = 6.

(b) What factors would determine which of the three choices of  would be best to use?

9.23 Random chords of a circle. Given a circle, find the probability that a chord chosen at random

be longer than the side of an inscribed equilateral triangle. For example in Figure 9.14, the line

joining  and  satisfies the condition, the other lines do not. This is called Bertrand’s paradox

(see the Java applet at http://www.cut-the-knot.org/bertrand.shtml) and there various possible

solutions, depending on exactly how you interpret the phrase “a chord chosen at random”. For

example, since the only important thing is the position of the second point relative to the first

one, we can fix the point  and consider only the chords that emanate from this point. Then it

becomes clear that 1/3 of the outcomes (those with angle with the tangent at that point between

60 and 120 degrees) will result in a chord longer than the side of an equilateral triangle. But a

chord is fully determined by its midpoint. Chords whose length exceeds the side of an equilateral

triangle have their midpoints inside a smaller circle with radius equal to 1/2 that of the given one.

If we choose the midpoint of the chord at random and uniformly from the points within the circle,

what is the probability that corresponding chord has length greater than the side of the triangle?

Can you think of any other interpretations which lead to different answers?

9.24 A model for stock returns. A common model for stock returns is as follows: the number of

trades  of stock XXX in a given day has a Poisson distribution with parameter At each trade,

say the ’th trade, the change in the price of the stock is  and has a normal distribution with

mean 0 and variance 2 say and these changes are independent of one another and independent

of  Find the moment generating function of the total change in stock price over the day. Is

this a distribution that you recognise? What is its mean and variance?
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9.25 Let 12  be independent random variable with a Normal distribution having mean 1

and variance 2 Find the moment generating function for

(a) 1

(b) 1 +2

(c)  = 1 +2 + +

(d) −12( − )

9.26∗ Challenge problem: Suppose 1 2  is a sequence of independent  [0 1] random variables.

For a given number  define the random variable

 = min{;
X
=1

 ≥ }

What is the expected value of ? How would you approximate this expected value if  were

large?
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10. Solutions to Section Problems

3.1.1 (a) Each student can choose in 4 ways and they each get to choose.

(i) Suppose we list the points in  in a specific order, for example (choice of student A,

choice of student B, choice of student C) so that the point (1 2 3)indicates  chose

section1,  chose section 2 and  chose section 3. Then  looks like

{(1 1 1) (1 1 2) (1 1 3) }

Since each student can choose in 4 ways regardless of the choice of the other two

students, by the multiplication rule  has 4× 4× 4 = 64 points.

(ii) To satisfy the condition, the first student can choose in 4 ways and the others then only

have 1 section they can go in. Therefore the probability they are all in the same section

is 4×1×1
64

= 116.

(iii) To satisfy the condition, the first to pick has 4 ways to choose, the next has 3 sections

left, and the last has 2 sections left. Therefore the probability they are all in different

sections is 4×3×2
64

= 38.

(iiii) To satisfy the condition, each has 3 ways to choose a section. Therefore the probability

there is no-one in section 1 is 3×3×3
64

= 2764

(b) (i) Now  has  points, each a sequence like (1 2 3 2 ) of length 

(ii)  (all in same section) = × 1× 1× × 1 = 1−1
(iii)  (different sections) = (− 1)(− 2)(− + 1) = ()


.

(iiii)  (nobody in section 1)=(− 1)(− 1)(− 1)(− 1) = (−1)




3.1.2 (a) There are 26 ways to choose each of the 3 letters, so in all the letters can be chosen in

26×26×26ways. If all letters are the same, there are 26 ways to choose the first letter, and

only 1 way to choose the remaining 2 letters. So  (all letters the same) is 26×1×1
263

= 1262.

(b) There are 10× 10× 10 ways to choose the 3 digits. The number of ways to choose all even

digits is 4×4×4. The number of ways to choose all odd digits is 5×5×5. Therefore  (all

even or all odd) = 43+53

103
= 189.

237
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3.1.3 (a) There are 35 symbols in all (26 letters + 9 numbers). The number of different 6-symbol

passwords is 356 − 266 (we need to subtract off the 266 arrangements in which only letters

are used, since there must be at least one number). Similarly, we get the number of 7-

symbol and 8-symbol passwords as 357− 267 and 358− 268. The total number of possible

passwords is then

(356 − 266) + (357 − 267) + (358 − 268)

(b) Let  be the answer to part (a) (the total no. of possible passwords). Assuming you never

try the same password twice, the probability you find the correct password within the first

1,000 tries is 1000 .

3.1.4 There are 7! different orders

(a) We can stick the even digits together in 3! orders. This block of even digits plus the 4 odd

digits can be arranged in 5! orders. Therefore  (even together) = 3!5!
7!
= 17

(b) For even at ends, there are 3 ways to fill the first place, and 2 ways to fill the last place and

5! ways to arrange the middle 5 digits. For odd at ends there are 4 ways to fill the first place

and 3 ways to fill the last place and 5! ways to arrange the middle 5 digits.  (even or odd

at ends) = (3)(2)(5!)+(4)(3)(5!)
7!

= 3
7
.

3.1.5 The number of arrangements in  is 9!
3!2!

(a)  at each end gives 7!
2!

arrangements of the middle 7 letters.  at each end gives 7!
3!

arrange-

ments of the middle 7 letters. Therefore  (same letter at ends) =
7!
2!
+7!
3!

9!
3!2!

= 1
9


(b) The and  can be “stuck” together in 3! ways to form a single unit. We can then

arrange the 3’s, 2’s,  , and () in 7!
3!2!

ways. Therefore  ( together) =
7!
3!2!

×3!
9!
3!2!

=

1
12

.

(c) There is only 1 way to arrange the letters in the order CEEELLNTX. Therefore  (alphabetical

order) = 1
9!
3!2!

= 12
9!

3.2.1 (a) The 8 cars can be chosen in
¡
160
8

¢
ways. We can choose  with faulty emission controls and

(8 − ) with good ones in
¡
35


¢¡
125
8−
¢

ways. Therefore  (at least 3 faulty) =

8
=3
(35 )(

125
8−)

(1608 )
since we need  = 3 or 4 or .... or 8.

(b) This assumes all
¡
160
8

¢
combinations are equally likely. This assumption probably doesn’t

hold since the inspector would tend to select older cars or those in bad shape.



239

3.2.2 (a) The first 6 finishes can be chosen in
¡
15
6

¢
ways. Choose 4 from numbers 1,2, ...., 9 in

¡
9
4

¢
ways and 2 from numbers 10, ..., 15 in

¡
6
2

¢
ways. Therefore  (4 single digits in top 6) =

(94)(
6
2)

(156 )
= 54

143
.

(b) Need 2 single digits and 2 double digit numbers in 1st4 and then a single digit. This occurs

in
¡
9
2

¢¡
6
2

¢× 7 ways. Therefore

 (5th is 3rd single digit) =

¡
9
2

¢¡
6
2

¢× 7¡
15
4

¢× 11 = 36

143

(since we can choose 1st 4 in
¡
15
4

¢
ways and then have 11 choices for the 5th)

Alternate Solution: There are 15(5) ways to choose the first 5 in order. We can choose in

order, 2 double digit and 3 single digit finishers in 6(2)9(3) ways, and then choose which

2 of the first 4 places have double digit numbers in
¡
4
2

¢
ways. Therefore  (5this 3rdsingle

digit) =
6(2)9(3)(42)
15(5)

= 36
143

.

(c) Choose 13 in 1 way and the other 6 numbers in
¡
12
6

¢
ways. (from 1,2, ....., 12). Therefore  (13

is highest) =
(126 )
(157 )

= 28
195

.

Alternate Solution: From the
¡
13
7

¢
ways to choose 7 numbers from 1,2, ..., 13 subtract the¡

12
7

¢
which don’t include 13 (i.e. all 7 chosen from 1,2, ..., 12). Therefore  (13 is highest)

=
(137 )−(

12
7 )

(157 )
= 28

195


4.1.1 Let  = {rain}and  = {temp  22◦}, and draw a Venn diagram. Then

 () = 4× 2 = 08

 () = 7× 8 = 56

(Note that the information that 40% of days with temp  22◦ have no rain is not needed to solve

the question). Therefore  ( ) = 24%. This result is to be expected since 80% of days have

a high temperature ≤ 22◦ and 30% of these days have rain.

4.1.2  () = 15,  () = 45,  () = 45 (see the Figure below)
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LM

.30 .15 .30

The region outside the circles represents females to the right. To make  () = 1. we need

 () = 25.

4.2.1 (a)

 ( ∪ ∪ ) =  () +  () +  ()−  ()−  ()−  () +  ()

= 1− 1− [ () +  ()−  ()]

= 09−  ( ∪)

Therefore  (∪∪) = 9 is the largest value, and this occurs when (∪) = 0.
(b) If each point in the sample space has strictly positive probability then if  (∪) = 0

then  =  and  =  so that  and  are mutually exclusive and  and  are

mutually exclusive. Otherwise we cannot make this determination. While  and  could

be mutually exclusive, it can’t be determined for sure.

4.2.2

 ( ∪) =  ( or  occur) = 1−  ( doesn’t occur AND  doesn’t occur)

= 1−  (̄̄)

Alternatively, (look at a Venn diagram),  = ( ∪ ) ∪ (̄̄)is a partition, so  () = 1 ⇒
 ( ∪) +  (̄̄) = 1.

4.3.1 (a) Points giving a total of 9 are: (3 6) (4 5) (5 4) and (6 3). The probabilities are (1)(3) =

03 for (3 6) and for (6 3), and (2)(2) = 04 for (4 5) and for (5 4). Therefore {(3,

6) or (4, 5) or (5, 4) or (6, 3)} = 03 + 04 + 04 + 03 = 14
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(b) There are
¡
4
1

¢
arrangements with 1 nine and 3 non-nines. Each arrangement has probability

(14)(86)3.

Therefore  (nine on 1 of 4 repetitions) =
¡
4
1

¢
(14)(86)3 = 3562

4.3.2 Let = {at least 1 woman} and = {at least 1 French speaking student}.

 ( ) = 1− ( ) = 1− (∪ ) = 1−£ ( ) +  ( )−  (̄ ̄ )
¤

(see figure below)

W F

Venn diagram, Problem 4.3.2

But  ( ) =  (no woman and no French speaking student)=  (all men who don’t speak

French)

 (woman who speaks French) = (woman) (French|woman)= 45× 20 = 09.

From Venn diagram, (man without French) = 49.

FrenchWoman

.36 .09 .06

.49

Figure 10.1: P(woman who speaks french)
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 (  ) = (49)10 and  ( ) = (55)10; ( ) = (85)10

Therefore  ( ) = 1− £(55)10 + (85)10 − (49)10¤ = 08014.
4.3.3 From a Venn diagram: (1)  () =  ()−  () (2)  ( ) =  ( ∪)

 ( ) =  () ()

⇔  ( ∪) =  () ()⇔  ( ∪) =  () ()

⇔ 1−  ( ∪) =  () ()

⇔ 1− [ () +  ()−  ()] =  () [1−  ()]

⇔ [1−  ()]− [ ()−  ()] =  ()−  () ()

⇔  ()−  () =  ()−  () ()

⇔  () () =  ()

Therefore  and  are independent iff  and  are independent.

4.4.1 Let= {bus}and = {late}.
 (|) =  ()

 ()
=

 (|) ()
 (|) ()+ (|̄) (̄) =

(3)(2)

(3)(2)+(7)(1)
= 613

4.4.2 Let = {fair}and = {5 heads}

 ( |) =  ()

 ()
=

 (| ) ( )
 (| ) ( ) +  (|̄ ) (̄ )

=
(3
4
)
¡
6
5

¢
(1
2
)6

(3
4
)
¡
6
5

¢
(1
2
)6 + (1

4
)
¡
6
5

¢
(8)5(2)1

= 04170

4.4.3 Let = { defective headlights}, = {defective muffler}

 () =
 ()

 ()
=

 ()

 ( ∪)
=

1

1 + 15
= 4

5.1.1 We need () ≥ 0 and
2P

=0

() = 1

92 + 9+ 2 = 102 + 9 = 1

Therefore 102 + 9− 1 = 0
(10− 1)(+ 1) = 0
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 = 110 or − 1
But if  = −1 we have (1)  0..which is impossible. Therefore  = 1

5.1.2 We are arranging      where  = {you}, = {friend},  = {other}. There are 5!
3!
= 20

distinct arrangements.

 = 0:      · · ·       has 4 arrangements with  first and 4 with  first.

 = 1:   · · ·    has 3 arrangements with  first and 3 with  first.

 = 2:    has 2 with  first and 2 with  .

 = 3:   has 1 with  first and 1 with  .

 0 1 2 3

() .4 .3 .2 .1

 () .4 .7 .9 1

5.3.1 (a) Using the hypergeometric distribution,

(0) =

¡

0

¢¡
12−
7

¢¡
12
7

¢
 0 1 2 3

(0) 1 512 533 5110

(b) While we could find none tainted if  is as big as 3, it is not likely to happen. This implies

the box is not likely to have as many as 3 tainted tins.

5.3.2 Considering order, there are  () points in . We can choose which  of the  selections will

have “success” in
¡



¢
ways. We can arrange the  “successes” in their selected positions in ()

ways and the (− ) “failures” in the remaining positions in ( − )(−) ways.

Therefore () =
()

()(−)(−)
() with  ranging from max (0 − ( − )) to min ( )

5.4.1 (a) Using hypergeometric, with  = 130  = 26  = 6,

(2) =

¡
26
2

¢¡
104
4

¢¡
130
6

¢ (= 2506)

(b) Using binomial as an approximation,

(2) =

µ
6

2

¶µ
26

130

¶2µ
104

130

¶4
= 02458
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5.4.2 (a)  (fail twice)

= () (fail twice |) + () (fail twice |)=
¡
1
2

¢ ¡
10
2

¢
(1)2(9)8+

¡
1
2

¢ ¡
10
2

¢
(05)2(95)8 =

1342.

Where = { camera  is picked } and = { camera  is picked }. This assumes shots are

independent with a constant failure probability.

(b)  (|failed twice) =  (   )

 ( )
=
( 12)(

10
2 )(1)

2(9)8

1342
= 7219

5.5.1 We need (− 25) “failures" before our 25th “success".

() =

µ
− 1
− 25

¶
(2)25(8)−25 or

µ
− 1
24

¶
(2)25(8)−25;  = 25 26 27 

5.5.2 (a) In the first (+ 17) selections we need to get defective (use hypergeometric distribution)

and then we need a good one on the (+ 18)th draw.

Therefore () =

¡
200


¢¡
2300
17

¢¡
2500
+17

¢ × 2283

2500− (+ 17);  = 0 1 · · ·  200

(b) Since 2500 is large and we’re only choosing a few of them, we can approximate the hyper-

geometric portion of () using binomial

(2)

=

µ
19

2

¶µ
200

2500

¶2µ
1− 200

2500

¶17
× 2283
2481

= 2440

5.6.1 Using geometric,

 ( not leaky found before first leaky) = (07)(03) = ()

 ( ≥ − 1) = (− 1) + () + (+ 1) + 

= (07)−1(03) + (07)(03) + (07)+1(03) + 

=
(7)−1(3)
1− 7

= (7)−1 = 005

(− 1) log 7 = log 05; so  = 94

At least 9.4 cars means 10 or more cars must be checked. Therefore  = 10

5.7.1 (a) Let  be the number who don’t show. Then

 ∼ (122 03)
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 (not enough seats) =  ( = 0 or 1)

=

µ
122

0

¶
(03)0(97)122 +

µ
122

1

¶
(03)1(97)121

= 01161

(To use a Poisson approximation we need  near 0. That is why we defined “success” as

not showing up).

For Poisson,  =  = (122)(03) = 366

(0) + (1) = −366 + 366−366 = 01199

(b) Binomial requires all passengers to be independent as to showing up for the flight, and that

each passenger has the same probability of showing up. Passengers are not likely inde-

pendent since people from the same family or company are likely to all show up or all not

show. Even strangers arriving on an earlier incoming flight would not miss their flight inde-

pendently if the flight was delayed. Passengers may all have roughly the same probability

of showing up, but even this is suspect. People travelling in different fare categories or in

different classes (e.g. charter fares versus first class) may have different probabilities of

showing up.

5.8.1 (a)

 = 3  = 2
1

2
  =  = 75

(6) =
756−75

6!
= 01367

(b)

 (2 in 1st minute|6 in 21
2
minutes) =

 (2 in 1st min and 6 in 21
2
min)

 (6 in 21
2
min)

=
 (2 in 1st min and 4 in last 11

2
min)

 (6 in 21
2
min)

=

³
32−3
2!

´³
454−45

4!

´
³
756−75

6!

´
=

µ
6

2

¶µ
3

75

¶2µ
45

75

¶4
= 3110

Note this is a binomial probability function.

5.8.2 Assuming the conditions for a Poisson process are met, with lines as units of “time":
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(a)  = 02 per line;  = 1line;  =  = 02

(0) =
0−

0!
= −02 = 9802

(b) 1 = 80× 02 = 16; 2 = 90× 02 = 18∙
21

−1

2!

¸ ∙
22

−2

2!

¸
= 0692

5.9.1 Consider a 1 minute period with no occurrences as a “success”. Then has a geometric distrib-

ution. The probability of “success” is

(0) =
0−

0!
= −

Therefore () = (−)(1− −)−1;  = 1 2 3 

(There must be (− 1) failures before the first success.)

5.9.2 (a)  = 3× 125 = 375
(0) =

3750−375

0!
= 0235

(b)
¡
1− −375

¢14
−375, using a geometric distribution

(c) Using a binomial distribution

() =

µ
100



¶¡
−375

¢ ¡
1− −375

¢100−
Approximate by Poisson with  =  = 100−375 = 235 ()


= −235 235



!
( large,

 small). Thus,  ( ≥ 4) = 1−  ( ≤ 3) = 1− 789 = 211.

7.3.1 There are 10 tickets with all digits identical. For these there is only 1 prize. There are 10 × 9
ways to pick a digit to occur twice and a different digit to occur once. These can be arranged

in 3!
2! 1!

= 3 different orders; i.e. there are 270 tickets for which 3 prizes are paid. There are

10× 9× 8ways to pick 3 different digits in order. For each of these 720 tickets there will be 3!

prizes paid.

The organization takes in $1,000.

Therefore (Profit) =

∙
(1000− 200)× 10

1000

¸
+

∙
(1000− 600)× 270

1000

¸

+

∙
(1000− 1200)× 720

1000

¸
= −$28

i.e., on average they lose $28.
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7.4.1 Let them sell  tickets. Suppose  show up. Then  ∼ ( 97). For the binomial distribu-

tion,  = () =  = 97

If  ≤ 120, the revenues will be 100, and the expected revenue is (100) = 100() =

97. This is maximized for  = 120. Therefore the maximum expected revenue is $11,640. For

 = 121, revenues are 100, less $500 if all 121 show up. i.e. the expected revenue is,

100× 121× 97− 500 (121) = 11 737− 500(97)121 = $11 72446

For  = 122, revenues are 100, less $500 if 121 show up, less $1000 if all 122 show. i.e. the

expected revenue is

100× 122× 97− 500
µ
122

121

¶
(97)121(03)− 1000(97)122 = $11 76377

For  = 123, revenues are 100, less $500 if 121 show, less $1,000 if 122 show, less $1500 if

all 123 show. i.e. the expected revenue is

100× 123× 97− 500
µ
123

121

¶
(97)121(03)2 − 1000

µ
123

122

¶
(97)122(03)− 1500(97)123

= $11 72113

Therefore they should sell 122 tickets.

7.4.2 (a) Let  be the number of words needing correction and let  be the time to type the passage.

Then  ∼ (450 04) and  = 450 + 15.  has mean  = 18 and variance

(1− ) = 1728.

( ) = (450 + 15) = 450 + 15() = 450 + (15)(18) = 720

Var( )= Var(450 + 15) = 152Var() = 3888.

(b) At 45 words per minute, each word takes 11
3
seconds.  ∼ (450 02)and  =

¡
450× 11

3

¢
+

15 = 600 + 15

() = 450× 02 = 9; ( ) = 600 + (15)(9) = 735, so it takes longer on average.

8.1.1 (a) The marginal probability functions are:

 0 1 2 and  0 1 2

1() 3 2 5 2() 3 4 3

Since 1() 2() 6= ( )   ( )

Therefore  and  are not independent. e.g. 1(1) 2(1) = 008 6= 005
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(b)

(| = 0) =
(0 )

1(0)
=

(0 )

3

 0 1 2

(| = 0) 3 5 2

(c)

 −2 −1 0 1 2

() 06 24 29 26 15

(e.g. ( = 0) = (0 0) + (1 1) + (2 2))

8.1.2

(|) = ( )

1()

( ) =  ( calls) ( sales| calls)
=

³
20−20

!

´ ¡¡



¢
(2)(8)−

¢
=

(20−)(8)−
(−)! · (20)(2)

!
−20; for  = 0 1 2  and  =  + 1 + 2 

( starts at  since no. of calls ≥ no. of sales).

1() =

∞X
=

( ) =
[(20)(2)]

!
−20

∞X
=

[(20)(8)]−

( − )!

=
4−20

!

∙
160

0!
+
161

1!
+
162

2!
+ 

¸
=
4−20

!
· 16

=
4−20

!
· 16 = 4−4

!

Therefore (|) =
16−
(−)!

4

!
−20

4−4
!

=
16−−16

( − )!
;  =  + 1 + 2 
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8.1.3

( ) = ()() =

µ
+  − 1



¶µ
 + − 1



¶
+(1− )+

() =

X
=0

(  = − )

=

X
=0

µ
+  − 1



¶µ
− + − 1

− 

¶
+(1− )

=

X
=0

(−1)
µ−



¶
(−1)−

µ −
− 

¶
+(1− )

= (−1)+(1− )
X

=0

µ−


¶µ −
− 

¶
= (−1)+(1− )

µ− − 



¶
using the hypergeometric identity

=

µ
+  + − 1



¶
+(1− );  = 0 1 2 · · ·

using the given identity on (−1)¡−−


¢
. ( has a negative binomial distribution)

8.2.1 (a) Use a multinomial distribution.

(3 11 7 4) =
25!

3! 11! 7! 4!
(1)3(4)11(3)7(2)4

(b) Group ’s and ’s into a single category.

(3 11 11) =
25!

3! 11! 11!
(1)3(4)11(5)11

(c) Of the 21 non ’s we need 3’s, 11 ’s and 7’s. The (conditional) probabilities for the

non-’s are: 1/8 for , 4/8 for , and 38 for .

(e.g.  (|) =  () () = 18 = 18)

Therefore (3 0 110 7 0|40) = 21!
3!11!7!

(1
8
)3(4

8
)11(3

8
)7.

8.2.2  = 6× 12 = 72

1 =  (fewer than 5 chips) =
4P

=0

72−72
!

2 =  (more than 9 chips) = 1−
9P

=0

72−72
!

(a)
¡
12
3

¢
31(1− 1)

9
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(b) 12!
3!7!2

31 
7
2 (1− 1 − 2)

2

(c) Given that 7 have 9 chips, the remaining 5 are of 2 types - under 5 chips, or 5 to 9 chips

 ( 5| ≤ 9 chips) =  ( 5 and ≤ 9)
 (≤ 9) =

1

1− 2


Using a binomial distribution,

 (3 under 5|7 over 9) =
¡
5
3

¢ ³
1
1−2

´3 ³
1− 1

1−2

´2
8.4.1

 0 1 2  0 1

1() 2 5 3 2() 3 7

() = (0× 2) + (1× 5) + (2× 3) = 11

( ) = (0× 3) + (1× 7) = 7

(2) = (02 × 2) + (12 × 5) + (22 × 3) = 17;

( 2) = 7

 () = 17− 112 = 49

 ( ) = 7− 72 = 21

( ) = (1× 1× 35) + (2× 1× 21) = 77

( ) = 77− (11)(7) = 0

Therefore  =
Cov( )p
Var()Var( )

= 0

While  = 0 indicates  and  may be independent (and indeed are in this case), it does not

prove that they are independent. It only indicates that there is no linear relationship between 

and  .

8.4.2

(a)
 2 4 6

1() 3/8 3/8 1/4

 -1 1

2()
3
8
+ 5

8
−

() =
¡
2× 3

8

¢
+
¡
4× 3

8

¢
+
¡
6× 1

4

¢
= 154; ( ) = −3

8
− + 5

8
−  = 1

4
− 2;

( ) =
¡−2× 1

8

¢
+
¡−4× 1

4

¢
+ · · ·+ ¡6× ¡1

4
− 
¢¢
= 5

4
− 12

Cov( ) = 0 = ( )−()( )⇒ 5
4
− 12 = 15

16
− 15

2


Therefore  = 572
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(b) If  and  are independent then Cov( ) = 0, and so  must be 5/72. But if  = 572

then

1(2)2(−1) = 3

8
× 4
9
=
1

6
6= (2−1)

Therefore  and  cannot be independent for any value of 

8.5.1
 = 0 1 2

1() = 05 03 02

() = (0× 5) + (1× 3) + 2× 2) = 07

(2) = (02 × 5) + (12 × 3) + (22 × 2) = 11

Var() = (2)− [()]2 = 061

( ) =
X

all 

( )and this has only two non-zero terms

= (1× 1× 02) + (2× 1× 15) = 05

Cov( ) = ( )−()( ) = 001

Var(3 − 2 ) = 9Var() + (−2)2Var( ) + 2(3)(−2)Cov( )

= 9(61) + 4(21)− 12(01) = 621

8.5.2 Let  =

(
0 if the ith pair is alike

1 if the ith pair is unlike
  = 1 2  24

() =

1X
=0

() = 1(1) =  (ON OFF ∪ OFF ON)

= (06)(04) + (04)(06) = 048

(2
 ) = () = 48 (for = 0 or 1)

Var () = 48− (48)2 = 2496

Consider a pair which has no common switch such as 13 Since 1 depends on switch 1&2

and 3 on switch 3&4 and since the switches are set independently, 1 and 3 are independent

and so (13) = 0 In fact all pairs are independent if they have no common switch, but
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may not be independent if the pairs are adjacent. In this case, for example, since +1 is also

an indicator random variable,

(+1) =  (+1 = 1)

=  (ON OFF ON ∪ OFF ON OFF)
= (6)(4)(6) + (4)(6)(4) = 24

Therefore

Cov ( +1) = (+1)−()(+1)

= 024− (48)2 = 0096

(
X

) =

24X
=1

() = 24× 48 = 1152

Var(
X

) =

24X
=1

Var() + 2

23X
=1

Cov ( +1) = (24× 2496) + (2× 23× 0096)

= 6432

8.5.3

 =
Cov( )


= 05

( ) = 05
√
169× 4 = 13

 () =  (2 −  ) = 42 + 2 − 4( ) = 556

Therefore () = 236

8.5.4

 (−1) =  (−2 + −1 −1 + )

=  (−2 −1) +  (−2 ) +  (−1 −1) +  (−1 )

= 0 + 0 +   (−1) + 0 = 2

Also,  () = 0 for  6= ± 1 and  () =  (−1) +  () = 2
2

  (
P

) =
P

 () + 2
P
=2

 (−1) = (22) + 2(− 1)2 = (4− 2)2
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8.5.5 Using  as defined, () =
1P

=0

() = (1) = 
¡
2


¢
since  = 2



 (1) =  (24) = 9 since only 1 cut is needed

 (2) =  (3) = · · · =  (23) = 92 = 81 since 2 cuts are needed.

Var(1)= Var(24) = 9− 92 = 09

Var(2)= Var(3) = · · · = Var(23) = 81− 812 = 1539

Cov () = 0if  6= ± 1 since there are no common pieces and cuts are independent.

 (+1) =
P

+1 ( +1) = (1 1)

(product is 0 if either  or +1 is a 0)

=

(
92 for  = 1 or 232 cuts needed

93 for  = 2  223 cuts needed

Cov (+1) =  (+1)−() (+1)

=

(
92 − (9)(92) = 081 for  = 1 or 23

93 − (92)(92) = 0729 for  = 2 · · ·  22



Ã
24X
=1



!
=

24X
=1

() = (2× 9) + (22× 81) = 1962

 

Ã
24X
=1



!
=

24X
=1

 () + 2
X


 ()

= (2× 09) + (22× 1539) + 2 [(2× 081) + (21× 0729)] = 69516

Therefore s.d.(
P

) =
√
69516 = 264

9.1.1 (a)
R 1
−1 

2 =  
3

3
|1−1 = 2

3
= 1

Therefore  = 32

(b)  () =

⎧⎪⎨⎪⎩
0; for  ≤ −1R 
−1

3
2
2 = 3

2
|−1 = 3

2
+ 1

2
; for− 1    1

1; for  ≥ 1
(c)  (−1    2) =  (2)−  (−1) = 504− 4995 = 0045

(d)

() =

Z 1

−1
× 3

2
2 =

3

2

Z 1

−1
3 =

3

8
4|1−1 = 0

(2) =

Z 1

−1
2
3

2
2 =

3

10
5|1−1 = 35

Therefore  () = (2)− 2 = 35
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(e)

 () =  ( ≤ ) =  (2 ≤ ) =  (−√ ≤  ≤ √)

= (
√
)− (−√) =

∙
(
√
)3

2
+
1

2

¸
−
∙
(−√)3
2

+
1

2

¸
= 32

Therefore() = 


 () =
3
2

√
 for 0 ≤   1 and is 0 otherwise.

9.1.2 (a)  (∞) = 1 = lim
→∞



1+
= lim

→∞


1

+1
= . Therefore  = 1

(b) () = 

 () = −1

(1+)2
; for   0

(c) Let  be the median. Then  () = 5 = 

1+ . Therefore  = 1 and so the median is

1

9.2.1  () =
R 
−1

3
2
2 = 3+1

2
. If  =  () = 3+1

2
is a random number between 0and 1, then

 = (2 − 1)13 For  = 27125we get  = (−4574)13 = −77054

9.3.1 Let the time to disruption be .

Then  ( ≤ 8) =  (8) = 1− −8 = 25

Therefore −8 = 75. Take natural logs giving  = − 8
ln 75

= 2781hours.

9.3.2 (a)  () =  (distance ≤ ) = 1 −  (distance  ) = 1 −  (0 flaws or 1 flaw within radius

)

The number of flaws has a Poisson distribution with mean  = 2

 () = 1− 0−

0!
− 1−

1!
= 1− −

2 ¡
1 + 2

¢
() =




 () = 2223−

2

for   0

(b)  = () =
R∞
0

2223−
2
=
R∞
0
2224−

2
. Let  = 2. Then

 = 2, so  = 

2
√


 =

Z ∞

0

22−


2
√


=
1√


Z ∞

0

32−

=
1√

Γ

µ
5

2

¶
=

1√


µ
3

2

¶
Γ

µ
3

2

¶
=

1√


µ
3

2

¶µ
1

2

¶
Γ

µ
1

2

¶
=

¡
3
2

¢ ¡
1
2

¢√
√


=

3

4
√
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9.5.1 (a)  (84    122) = 
¡
84−10
2

   122−10
2

¢
.

=  (−8    11)

=  (11)−  (−8)
=  (11)− [1−  (8)]

= 8643− (1− 7881) = 6524

(see Figure 10.2)

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.8 1.1

f(z
)

z

Figure 10.2:

(b) 2 −  is normally distributed with mean 2(3) − 10 = −4 and variance 22(100) +

(−1)2(4) = 404

 (2  ) =  (2 −  0)

=  ( 
0− (−4)√

404
= 20)

=  (  20)

= 1−  (20) = 1− 5793 = 4207

(c)  is normally distributed with mean 3 and variance 100
25

= 4 Therefore  (  0) =

 (  0−3
2
= −15) =  (  15) = 1−  (15) = 1− 9332 = 0668
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60 65 70 74.5 80 85 90 95 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

f(z
)

z

Figure 10.3:

9.5.2

 (| − |  )= (−   −   )=  (−1    1)

=  (1)− [1−  (1)] = 8413− (1− 8413) = 6826% (about 2/3)

 (| − |  2)= (−2   −   2)=  (−2    2)

=  (2)− [1−  (2)] = 9772− (1− 9772) = 9544% (about 95%)

Similarly,  (| − |  3) =  (−3    3) = 9973% (over 99%)

9.5.3 (a) 2 −  is normally distributed with mean 2(5)− 7 = 3variance 22(4) + 9 = 25

 (|2 −  |  4) =  (2 −   4) +  (2 −   −4)

= 

µ
 

4− 3
5

= 20

¶
+ 

µ
 

−4− 3
5

= −140
¶

= 42074 + 08076 = 5015

(b) 
¡¯̄
 − 5

¯̄
 01

¢
= 

³
||  01

2
√


´
= 98 ( since  ∼ (5 4)) Therefore


³

01
2
√


´
= 99

Therefore 05
√
 = 23263 and  = 21647 so we take  = 2165 observations.

9.6.1 Let  be the number germinating. Then  ∼ (100 8).

 ( ≥ 75) =
100P
=75

¡
100


¢
(8)(2)100−.

Approximate using a normal distribution with  =  = 80 and 2 = (1− ) = 16.
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 ( ≥ 75) '  (  745) (see Figure 103)

=  ( 
745− 80

4
= −1375)

'  (138) = 9162

Possible variations on this solution include calculating  (1375) as  (137)+ (138)
2

and realizing

that  ≤ 100 means

 ( ≥ 75) '  (745    1005)

However,

 ( ≥ 1005) '  ( 
1005− 80

4
= 5125) ' 0

so we get the same answer as before.

9.6.2 Let  be the cost associated with inspecting part 

 () = (0× 6) + (10× 3) + (100× 1) = 13


¡
2


¢
=
¡
02 × 6

¢
+
¡
102 × 3

¢
+
¡
1002 × 1

¢
= 1030

  () = 1030− 132 = 861

By the central limit theorem
80P
=1

 is Normal with mean 80 × 13 = 1040 and variance

80× 861 = 68 880 approximately. Since
P

 increases in $10 increments,

 (
X

  1200) ' 

µ
 

1205− 1040√
68 880

= 063

¶
= 02643



Answers to End of Chapter Problems

Chapter 2:

1.2.1 (a) Label the profs  and .

 = {}

(b) 1/4

2.2 (a) {       }
(b) 1

4
;

2.3  = {(1 2) (1 3) (1 4) (1 5) (2 3) (2 4) (2 5) (3 4) (3 5) (4 5) (2 1) (3 1) (4 1 ) (5 4)};
probability consecutive = 04;

2.4 (c) 1
4
 3
8
 1
4
 0

2.5 (a) 8
27
 1
27
 2
9

(b) (−1)
3

3

(−2)3
3

 
(3)

3
(c) (−1)



(−2)


 
()



2.6 (a) .018 (b) .020 (c) 18/78 = .231

2.7 (b) .978

Chapter 3:

1. 3.1 (a) 4/7 (b) 5/42 (c) 5/21;

3.2 (a) (i) (−1)



(ii) ()



(b) All  outcomes are equally likely. That is, all  floors are equally likely to be

selected, and each passenger’s selection is unrelated to each other person’s selection. Both

assumptions are doubtful since people may be travelling together (e.g. same family) and

the floors may not have equal traffic (e.g. more likely to use the stairs for going up 1 floor

than for 10 floors);

3.3 (a) 5/18 (b) 5/72;

258
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3.4
(42)(

12
4 )(

36
7 )

(5213)

3.5 (a) 1/50,400 (b) 7/45;

3.6 (a) 1/6 (b) 0.12;

3.7 Values for  = 20 40 and 60 are .589, .109 and .006.

3.8 (a) 1


(b) 2


3.9 1+3+···+(2−1)
(2+13 )

= 2

(2+13 )

3.10 (a) (i) .0006 (ii) .0024 (b) 10
(4)

104
= 504

3.11 (a)
¡
6
2

¢¡
19
3

¢

¡
25
5

¢
(b) 15

3.12 (a) 1
¡
49
6

¢
(b)
¡
6
5

¢¡
43
1

¢

¡
49
6

¢
(c)
¡
6
4

¢¡
43
2

¢

¡
49
6

¢
(d)
¡
6
3

¢¡
43
3

¢

¡
49
6

¢
3.13

(a) 1−
¡
48
3

¢¡
50
3

¢ (b) 1−
¡
45
2

¢¡
47
2

¢ (c)

¡
48
3

¢¡
50
5

¢
3.14 By the binomial theorem

P
=0

¡



¢
 = (1 + )

Differentiate with respect to  on both sides:
P

=0


¡



¢
−1 = (1 + )−1. Multiply by  to get

P
=0


¡



¢
 = (1 + )−1

Let  =
³


1−
´

. Then
P

=0


¡



¢ ³

1−
´
= 

³


−1
´³
1 + 

1−
´−1

= 
(1−) (1)

−1

Multiply by (1− ):

X
=0



µ




¶µ


1− 

¶

(1− ) =

X
=0



µ




¶
(1− )− =



(1− )
(1− ) = 

3.15 Let  = {heads on quarter} and ={heads on dime}. Then

 (Both heads at same time) =  ( ∪ ∪    ∪ · · · )
= (6)(5) + (4)(5)(6)(5) + (4)(5)(4)(5)(6)(5) + · · ·

=
(6)(5)

1− (4)(5) = 38 (using +  + 2 + · · · = 

1− 
with  = (4)(5))

3.16

3.17

Chapter 4:

1. 4.1 075, 06, 065, 0, 1, 0.35, 1
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4.2  () = 001,  () = 072,  () = (09)3,  () = (5)3,  () = (05)2

4.3  (|) =  ()

 ()
=

 ()− ()
1− () =

 ()− () (|)
1− () =

03−04(05)
1−04 = 1

6

4.4 (a) 00576 (b) 04305 (c) 00168 (d) 05287

4.5 0.44

4.6 0.7354

4.7 (a) 0.3087 (b) 0.1852;

4.8

4.9 0.342

4.10 (a) 0.1225, 0.175 (b) 0.395

4.11 ( 

) = (


)

4.12

4.13

4.14 (a) 1
30
+ 4

5
(b)  = (30)−1

24
(c) 24

1+24

4.15 09, 0061, 0078

4.16 (a) 0024 (b) 8 on any one wheel and 1 on the others

4.17 (a) 0995 and 0005 (b) 0001

4.18

(a) 099995

(b) 099889

(c) 02 + 01 + 01− (2)(1)− (2)(1)− (1)(1) + (2)(1)(1) = 0352

4.19 (a) 
+1999

; 0005 00148 00476 (b) 21%

Chapter 5:

1. 5.1 (a) .623, .251; for males, .408, .103 (b) .166

5.2 (a) (0) = 0 () = 2− ( = 1 2    ) (b) (5) = 1
32
;  ( ≥ 5) = 1

16

5.3

5.4 (1−)
1−(1−)4 ;  = 0 1 2 3

5.5 (a) .0800 (b) .171 (c) .00725
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5.6 (a) .010 (b) .864

5.7 (a) 4
15

(b)
¡
74


¢¡
76
12−

¢

¡
150
12

¢
(c) .0176

5.8 0.9989

5.9 (a) .0758 (b) .0488 (c)
¡
10


¢
(−10)(1− −10)10− (d)  = 12

5.10 (a) .0769 (b) 0.2019; 0.4751

5.11 (a) 0.2753 (b) 0.1966 (c) 0.0215

5.12 (b) enables us to approximate hypergeometric distribution by binomial distribution when 

is large and  near 0.

5.13 (a) 1 −
∙
−1P
=0

−
!

¸
(b) (Could probably argue for other answers also). Budworms

probably aren’t distributed at a uniform rate over the forest and may not occur singly

5.14 (a) .2048 (b) .0734 (c) .428 (d) .1404

5.15
(35 )(

70
7 )

( 105+7)
63
98− ;  = 0 1 · · ·  35

5.16 (a) .004264; .006669 (b) .0032 (c) (i)
¡
1399
11

¢
(004264)12(995736)1388 (ii) 9336× 10−5

On the first 1399 attempts we essentially have a binomial distribution with  = 1399 (large)

and  = 004264 (near 0)

5.17 (a)
¡



¢ ¡
−096

¢ ¡
1− −096

¢−
;  = 0 1 · · ·   (b)  ≤ 0866 bubbles per 2

5.18 05;
 0 1 2 3 4 5

() 0 05 15 05 25 5
; 03

5.19 (a) (1− ) (b)  = 0 (c) [1− (1− )3] (d)  ( = ) =
(1−)
1−(1−)3 for  = 0 1 2

5.20 (a) .555 (b) .809; .965 (c) .789; .946 (d)  = 1067

5.21 (a)
¡
−1
999

¢
(31921000)(6808−1000) (b) .002, .051, .350, .797 (c)

¡
3200


¢
(3192)(68083200−); 797

Chapter 7:

1. 7.1 2.775; 2.574375

7.2 -$3

7.3 $16.90

7.4 (a) 3 cases (b) 32 cases

7.5 (a) - 10/37 dollars in both cases (b) .3442; 0.4865

7.6 $.94

7.7 (b) + 

− (1− ), which gives 101 0249 0196 for  = 1 5 10
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7.8 50

7.9 (a) 
1−(1−) for   − ln(1− ); (b) 1−


; 1−

2

7.10

7.11 (a) Expand () in a power series in powers of  i.e.

() =
1

3
 +

2

9
2 +

4

27
3 +

8

81
4 +

16

243
5 + 

and this converges for

|2
3
|  1 or   ln(

3

2
)

Then  ( = ) =coefficient of  = 1
3
(2
3
)−1  = 1 2 

(b) Similarly

() = −2 + 2−2 + 2−22 +
4

3
−23 +

2

3
−24 +

4

15
−25 + 

Then  ( = ) = −2 2


!
  = 0 1 

7.12 () = 1
−+1

P
= 

 = −(+1)
(1−)(−+1)  () = 0(0) = 1

−+1
P

=  (
2) =

 00(0) = 1
−+1

P
= 

2

7.13 (a) () = 025 + 05 + 0252

(b)  ()(0)  = 1 2  6 1
2
+ 1

4

(c) 0 = 14 1 = 12 2 = 14

(d) Note that for given values of the mean () = 1 (2) = 2 there is a unique

solution to the equations 0 + 1 + 2 = 1 1 + 22 = 1 1 + 42 = 2

7.14 If  is Bin(13 1
2
) then (13) = max(2 − 18 0) and

[(13)] =

¡
13
10

¢
+ 2
¡
13
11

¢
+ 3
¡
13
12

¢
+ 4
¡
13
13

¢
212

=
485

4096

Chapter 8:

1. 8.1 (a) no (1 0) 6= 1(1)2(0) (b) 0.3 and 1/3

8.2 (a) mean = 0.15, variance = 0.15

8.3 (a) No (b) 0.978 (c) .05

8.4 (a) (++9)!
!!9!

 (1− − )10 for   = 0 1 2 

(b)
¡
++9



¢
(1− )+10;  = 0 1 2 ; 6 0527
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8.5 (b) - .10 dollars , (c)  = 95

8.7 (a) ¡
5


¢¡
3
2−
¢¡
5−
−
¢¡

1+
2+−

¢¡
8
2

¢¡
6
2

¢ ; for  = 0 1 2 ;  = (1 ) + 1 + 2;

(b) note e.g. that 1(0) 6= 0; 2(3) 6= 0, but (0 3) = 0

8.8 (a)
(2)(

1
)(

7
3−−)

(103 )
;  = 0 1 2 and  = 0 1

(b) 1() =
¡
2


¢¡
8
3−
¢

¡
10
3

¢
;  = 0 1 2;

2() =

µ
1



¶µ
9

3− 

¶


µ
10

3

¶
;  = 0 1

(c) 49/120 and 1/2

8.9 (a)  2
2

!
;  = 0 1 2  (b) −4

(c) Yes ( ) = 1()2()

(d) 4
−4
!
;  = 0 1 2   

8.10 (b) .468

8.11 (a) 40!
(10!)4

¡
3
16

¢20 ¡ 5
16

¢20
(b)
¡
40
16

¢
(12)40

(c)
¡
16
10

¢ ¡
3
8

¢10 ¡5
8

¢6
8.12 (a) 1.76 (b)  ( = ) =

8P
=

¡



¢
(1
2
)(); ( ) = 088 = 1

2
()

8.13 (a) Multinomial (b) .4602 (c) $5700

8.15 207.867

8.16 (a) ( + ) (b) (+ ) and (+ )(1− − ) (c) −
8.17 (a)  = 2  = 0 2 = 2 = 1 (b) 0

(c) no. e.g.  ( = 0) 6= 0; ( = 1) 6= 0; ( = 0 and  = 1) = 0

8.19 -1

8.20 (a) 1.22 (b) 17.67%

8.21 3(4 + ); 43(1− 3) + 4(1− 4) + 85(1− 2)

8.22 Suppose  is  ×  and let 1 be a column vector of ones of length . Consider the

probability vector corresponding to the discrete uniform distribution  = 1

1 Then

 =
1


1 =

1


(
X


1
X


2 
X


) =
1


1 =  since  is doubly stochastic.

Therefore  is a stationary distribution of the Markov chain.
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8.23 The transition matrix is

 =

⎡⎢⎣ 0 1 0
2
3
0 1

3
2
3

1
3
0

⎤⎥⎦
from which, solving  =  and rescaling so that the sum of the probabilities is

one, we obtain  = (04 045 015) the long run fraction of time spent in cities A,B,C

respectively.

8.24 By arguments similar to those in section 8.3, the limiting matrix has rows all identically

 where the vector  are the stationary probabilities satisfying  =  and

 =

⎡⎢⎣ 0 1 0
1
6

1
2

1
3

0 2
3

1
3

⎤⎥⎦
The solution is  = (01 06 03) and the limit is⎡⎢⎣ 01 06 03

01 06 03

01 06 03

⎤⎥⎦
8.25 With  =  + 

() = (+ ) = ()( ) =() () = exp(−1 + 1
) exp(−2 + 2

)

= exp(−(1 + 2) + (1 + 2)
)

and since this is the MGF of a Poisson(1 + 2) distribution, this must be the distribution

of 

8.26 If today is raining, the probability of Rain, Nice, Snow three days from now is obtainable

from the first row of the matrix  3 i.e. (0406 0203 0391) The probabilities of the three

states in five days, given (1) today is raining (ii) today is nice (iii) today is snowing are the

three rows of the matrix  5 In this case call rows are identical to three decimals; they are

all equal the equilibrium distribution  = (0400 0200 0400)

(b) If ab, and both parties raise then the probability B wins is

13− 

2(13− )

1

2

and the probability A wins is 1 minus this or 13−2+
2(13−) . If  ≤  then the probability A

wins is
13− 

2(13− )
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8.27 (a) In the special case b=1, count the number of possible pairs ( ) for which  =  ≥ 

and  =   

1 ( = 12)

2 ( = 11)

:

13−  ( = )
(13−)(13−+1)

2
Total

This leads to

 (   ≥ ) =
(13− )(13− + 1)

2(132)

Similarly, since the number of pairs () for which  ≥  and    is (13− +

1)(− 1) we have

 (   ≥ ) =  (   ≥  ≥ ) +  (   ≥   )

=
(13− )(13− + 1)

2(132)
+
(13− + 1)(− 1)

132
=
(14− )(+ 11)

2(132)

Therefore, in case b=1, the expected winnings of A are

− 1 (B raises, A does not)− 6 (both raise, B wins)+ 6 (both raise, A wins)

= −1 (  )− 6 (   ≥ ) + 6 (   ≥ )

= −1× − 1
13
− 6× (13− )(13− + 1)

2(132)
+ 6× (14− )(+ 11)

2(132)

= − 6

169
2 +

77

169
− 71

169
= − 1

169
(− 1) (6− 71)

:whose maximum (over real ) is at 7712 and over integer , at 6 or 7 For a=1,2,...,13

this gives expected winnings of 0, 0.38462, 0.69231, 0.92308, 1.0769, 1.1538, 1.1538,

1.0769, 0.92308, 0.69231, 0.38462, 0, -0.46154 respectively, and the maximum is

for a=6 or 7.

(b) We want  (   ≥  ≥ ) Count the number of pairs ( ) for which  ≥ 

and  ≥  and    Assume that  ≤ .

1 ( = 12)

2 ( = 11)

: :

13−  ( = )

(− )(13− + 1) ( ≤   )

for a total of

(13− )(13− + 1)

2
+ (− )(13− + 1) =

1

2
(14− ) (13 + − 2)
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and

 (   ≥  ≥ ) =
(14− ) (13 + − 2)

2(132)

Similarly

 (   ≥  ≥ ) =  (   ≥ ) =
(13− )(13− + 1)

2(132)

Therefore the expected return to  (still assuming  ≤ ) is

−1 (   ≥ ) + 1 ( ≥   )

+6 (   ≥  ≥ )− 6 (   ≥  ≥ )

= −1(− 1)(13− + 1)

132
+1
(− 1)(13− + 1)

132

+6
(14− ) (13 + − 2)

2(132)
−6(13− )(13− + 1)

2(132)

=
1

132
(71− 6) (− )

If    then the expected return to  is obtained by switching the role of   above,

namely
1

132
(71− 6) (− )

and so the expected return to  is

1

132
(71− 6) (− )

In general, then the expected return to A is

1

132
(71− 6max( )) (− )

(c) By part (b), A’s possible expected profit per game for a=1,2,...,13 and  = 11 is

1

132
(71− 6max( 11)) (− 11) = − 6

132

µ
max( 11)− 71

6

¶
(− 11)

For  = 1 2 13 these are, respectively,-0.2959, -0.2663, -0.2367, -0.2071, -0.1775,

-0.1479, -0.1183,-0.0888, -0.0592, -0.0296, 0, -0.0059, -0.0828. There is no strategy

that provides a positive expected return. The optimal is the break-even strategy a=11.

(Note: in this two-person zero-sum game, a= 11 and b=11 is a minimax solution)

8.28 i. The permutation+1 after +1 requests depends only on the permutation before

and the record requested at time  + 1 Thus the new state depends only only the old

state  (without knowing the previous states) and the record currently requested.



267

ii. For example the long-run probability of the state (  ) is, with  = (1− )



iii. The probability that record  is in position  = 1 2 3 is,

 for  = 1 (− )  for  = 2 1− (1 +− ) for  = 3

where  =
P3

=1 . The expected cost of accessing a record in the long run is

3X
=1

{2 + 22 (− ) + 3 [1− (1 +− )]} (10.12)

Substitute 1 = 01 2 = 03 3 = 06 so 1 =
1
9
 2 =

3
7
 3 =

6
4

and  =
1
9
+ 3

7
+ 6

4
= 20397 and (10.12) is 1.7214.

iv. If they are in random order, the expected cost= 1(1
3
) + 2(1

3
) + 3(1

3
) = 2 If they are

ordered in terms of decreasing   expected cost is 23 + 2
2
2 + 3

2
1 = 057

8.29 Let  =index of maximum.  ( = ) = 1 for  = 1 2   Let  =" your

strategy chooses the maximum".  occurs only    and if max{;     } 

max{; 1 ≤  ≤ } Given  =    the probability of this is the probability that

the maximum max{; 1 ≤   } occurs among the first  values, i.e. the probability is

( − 1) Therefore,

 () =
X


 (| = ) ( = ) =

X
=+1

 (| = )
1



=

X
=+1



 − 1
1


=




{1

+

1

 + 1
+ +

1

 − 1}

≈ 


ln(




)

Note that the value of  maximizing  ln(1) is  = −1 ≈ 037 so roughly, the best  is

−1 . The probability that you select the maximum is approximately −1 ≈ 037
8.30 The optimal weights are

1 =
1

21
 2 =

1

22
 3 =

1

23
where  =

1

21
+
1

22
+
1

23

and 1 = 02 2 = 03 3 = 04
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Chapter 9:

1. 9.1 () = (5
6
)( 6


)
1
3 −

2
3 for 036 ≤  ≤ 

6

9.2 (a)  = 75;  () = 75
³
2
3
+ − 3

3

´
for − 1 ≤  ≤ 1

(b) Find  such that 3 − 3+ 19 = 0. This gives  = 811

9.3 (a) 1/2, 1/24 (b) 0.2828 (c) 0.2043

9.4 () = 1; 0    1

9.5 (a)   −1 (b) 0.5+1 +1
+2

(c) +1
+2

; 1   ∞
9.6 (a) (1− −2)3 (b) −4

9.7 1000 log 2 = 69314

9.8 (a) .0668, .2417, .3829, .2417, .0668 (b) .0062 (c) .0771

9.9 (a) .5 (b)  ≥ 2023
9.10 0.4134

9.11 (a) .3868 (b) .6083 (c) 6.94

9.12 (a) .0062 (b) .9927

9.13 (a) .2327, .1841 (b) .8212, .8665; Guess if  = 045, don’t guess if  = 055

9.14 6.092 cents

9.15 574

9.16 (a) 7.6478, 88.7630

(b) 764.78, 8876.30, people within pooled samples are independent and each pooled sam-

ple is independent of each other pooled sample.

(c) 0.3520

9.17 0.5969

9.18 (a) .6728 (b) 250,088

9.19 (a)  ∼ (−02 9996)
(b)  ( ≥ 0) = 4641 4443 4207 (using table) for  = 20 50 100 The more you play,

the smaller your chance of winning.

(c) 1264.51

With probability .99 the casino’s profit is at least $1264.51.

9.20 (a)  is approximately 
¡−

2
 5
12

¢
(b) (i) (  0) =  (  245) = 00071 (ii)

 (  0) =  (  548) ' 0
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9.21 (a) (i) .202 (ii) .106 (b) .0475, .0475

9.22 (a) False positive probabilities are  (  
3
) = 00475 0092 0023 for  standard nor-

mal and  = 5 4 6 in (i), (ii), (iii). False negative probabilities are  (  −10
3
) =.0475,

0.023, 0.092 for  standard normal and  = 5 4 6 in (i), (ii), (iii). (b)The factors are

the security (proportion of spam in email) and proportion of legitimate messages that are

filtered out.

9.23

9.24 Let  =total change over day. Given  =   has a Normal(0 2) distribution and

therefore

[ | = ] = exp(222)

 () = [ ] =
X


[ | = ] ( = ) = −
X


exp(222)


!

= −
X


(
222)

!
= exp(−+ 

222)

Not a MGF in this course at least. The mean is  0
 (0) = 0 and the variance is ” (0) =

2

9.25 i. exp(+ 2)

ii. exp(2+ 22)

iii. exp(+ 2)

iv. exp(2)



Summary of Distributions

Discrete

Notation and

Parameters

Probability function

fx
Mean Variance Moment generating

function MXt

Binomialn,p

0  p  1,q  1 − p

n
x  pxqn−x

x  0,1,2, . . . ,n
np npq pet  qn

Bernoullip

0  p  1,q  1 − p

px1 − p1−x

x  0,1
p p1 − p pet  q

Negative Binomialk,p

0  p  1,q  1 − p

xk−1
x pkqx

x  0,1,2, . . .

kq
p

kq

p2  p

1−qet k

Geometricp

0  p  1,q  1 − p

pqx

x  0,1,2, . . .

q
p

q

p2  p

1−qet 

HypergeometricN, r,n

r  N,n  N

r
x  N−r

n−x 
N
n 

x  0,1,2, . . .min(r,n

nr
N n r

N 1 −
r
N 

N−n
N−1 intractible

Poisson

  0

e−x

x!

x  0,1, . . .
  ee

t−1

Continuous p.d.f. fx Mean Variance Moment generating

function MXt

Uniforma,b fx  1
b−a , a  x  b ab

2
b−a2

12
ebt−eat

b−at

Exponential

0  
fx  1

 e−x/, 0  x  2 1
1−t , t  1/

Normal,2

−    , 2  0

fx  1
2 

e−x−
2/22

−  x  
 2 et2t2/2



0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56750 0.57142 0.57534
0.57926 0.58317 0.58706 0.59095 0.59484 0.59871 0.60257 0.60642 0.61026 0.61409
0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91309 0.91466 0.91621 0.91774
0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09x

0.0000 0.0251 0.0502 0.0753 0.1004 0.1257 0.1510 0.1764 0.2019 0.2275
0.2533 0.2793 0.3055 0.3319 0.3585 0.3853 0.4125 0.4399 0.4677 0.4959
0.5244 0.5534 0.5828 0.6128 0.6433 0.6745 0.7063 0.7388 0.7722 0.8064
0.8416 0.8779 0.9154 0.9542 0.9945 1.0364 1.0803 1.1264 1.1750 1.2265
1.2816 1.3408 1.4051 1.4758 1.5548 1.6449 1.7507 1.8808 2.0537 2.3263

0.5
0.6
0.7
0.8
0.9

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09p

x

F(x)

-4 -3 -2 -1 0 1 2 3 4
000.

500.

100.

150.

200.

250.

300.

350.

400.

Probabilities for Standard Normal N(0,1) Distribution

This table gives the values of F(x) for x ≥ 0

This table gives the values of F   (p) for p ≥ 0.50-1


