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Preface
These notes are a work-in-progress with contributions from those students taking the

courses and the instructors teaching them. The original version of the notes was prepared

by Jerry Lawless with additions and other editorial changes made by Jock MacKay, Don

McLeish, Cyntha Struthers and others. Richard Cook furnished the example in Chapter 8.

In order to provide improved versions of the notes for students in subsequent terms, please

email lists of errors, or sections that are confusing, or additional remarks/suggestions to

your instructor or dlmcleis@uwaterloo.ca.

Specific topics in these notes also have associated video files or powerpoint shows that

can be accessed at www.watstat.ca. Where possible we will reference these videos in the

text.



Introduction to Statistical Sciences

1.1 Statistical Sciences

Statistical Sciences are concerned with all aspects of empirical studies including problem

formulation, planning of an experiment, data collection, analysis of the data, and the con-

clusions that can be made. An empirical study is one in which we learn by observation or

experiment. A key feature of such studies is that there is usually uncertainty in the conclu-

sions. An important task in empirical studies is to quantify this uncertainty. In disciplines

such as insurance or finance, decisions must be made about what premium to charge for

an insurance policy or whether to buy or sell a stock, on the basis of available data. The

uncertainty as to whether a policy holder will have a claim over the next year, or whether

the price of a stock will rise or fall, is the basis of financial risk for the insurer and the

investor. In medical research, decisions must be made about the safety and efficacy of new

treatments for diseases such as cancer and HIV.

Empirical studies deal with populations and processes; both of which are collections

of individual units. In order to increase our knowledge about a process, we examine a

sample of units generated by the process. To study a population of units we examine

a sample of units carefully selected from that population. Two challenges arise since we

only see a sample from the process or population and not all of the units are the same.

For example, scientists at a pharmaceutical company may conduct a study to assess the

effect of a new drug for controlling hypertension (high blood pressure) because they do not

know how the drug will perform on different types of people, what its side effects will be,

and so on. For cost and ethical reasons, they can involve only a relatively small sample

of subjects in the study. Variability in human populations is ever-present; people have

varying degrees of hypertension, they react differently to the drug, they have different side

effects. One might similarly want to study variations in currency or stock values, variation

in sales for a company over time, or variation in the number of hits and response times

for a commercial web site. Statistical sciences deal both with the study of variability in

processes and populations, and with good (i.e. informative, cost-effective) ways to collect

and analyze data about such processes.

We can have various objectives when we collect and analyze data on a population or

process. In addition to furthering knowledge, these objectives may include decision-making

and the improvement of processes or systems. Many problems involve a combination of

1



2 INTRODUCTION TO STATISTICAL SCIENCES

objectives. For example, government scientists collect data on fish stocks in order to further

scientific knowledge and also to provide information to policy makers who must set quotas

or limits on commercial fishing.

Statistical data analysis occurs in a huge number of areas. For example, statistical

algorithms are the basis for software involved in the automated recognition of handwritten

or spoken text; statistical methods are commonly used in law cases, for example in DNA

profiling; statistical process control is used to increase the quality and productivity of

manufacturing and service processes; individuals are selected for direct mail marketing

campaigns through statistical analysis of their characteristics. With modern information

technology, massive amounts of data are routinely collected and stored. But data do not

equal information, and it is the purpose of the Statistical Sciences to provide and analyze

data so that the maximum amount of information or knowledge may be obtained. Poor

or improperly analyzed data may be useless or misleading. The same could be said about

poorly collected data.

We use probability models to represent many phenomena, populations, or processes

and to deal with problems that involve variability. You studied these models in your first

probability course and you have seen how they describe variability. This course will focus

on the collection, analysis and interpretation of data and the probability models studied

earlier will be used extensively. The most important material from your probability course

is the material dealing with random variables, including distributions such as the Binomial,

Hypergeometric, Poisson, Multinomial, Normal or Gaussian, Uniform and Exponential.

You should review this material.

Statistical Sciences is a large discipline and this course is only an introduction. Our

broad objective is to discuss all aspects of: problem formulation, planning of a empirical

study, formal and informal analysis of data, and the conclusions and limitations of the

analysis. We must remember that data are collected and models are constructed for a

specific reason. In any given application we should keep the big picture in mind (e.g. Why

are we studying this? What else do we know about it?) even when considering one specific

aspect of a problem. We finish this introduction with a recent quote from Hal Varien,

Google’s chief economist.

“The ability to take data - to be able to understand it, to process it, to extract value

from it, to visualize it, to communicate it’s going to be a hugely important skill in the next

decades, not only at the professional level but even at the educational level for elementary

school kids, for high school kids, for college kids. Because now we really do have essen-

tially free and ubiquitous data. So the complemintary (sic) scarce factor is the ability to

understand that data and extract value from it.

I think statisticians are part of it, but it’s just a part. You also want to be able to

visualize the data, communicate the data, and utilize it effectively. But I do think those

skills - of being able to access, understand, and communicate the insights you get from data

analysis - are going to be extremely important. Managers need to be able to access and



1.2. COLLECTING DATA 3

understand the data themselves. ”

For the complete article see “How the web challenges managers” Hal Varian, The McK-

insey Quarterly, January 2009.

1.2 Collecting Data

The objects of study in this course are referred to as populations or processes. A population

is a collection of units. For example, a population of interest may be all persons under the

age of 18 in Canada as of September 1, 2012 or all car insurance policies issued by a

company over a one year period. A process is a mechanism by which units are produced.

For example, hits on a website constitute a process (the units are the distinct hits). Another

process is the sequence of claims generated by car insurance policy holders (the units are

the individual claims). A key feature of processes is that they usually occur over time

whereas populations are often static (defined at one moment in time).

We pose questions about populations (or processes) by defining variates for the units

which are characteristics of the units. For example, variates can be measured quantities

such as weight and blood pressure, discrete quantities such as the presence or absence of a

disease or the number of damaged pixels in a monitor, categorical quantities such as colour

or marital status, or more complex quantities such as an image or an open ended response to

a survey question. We are interested in functions of the variates over the whole population;

for example the average drop in blood pressure due to a treatment for individuals with

hypertension. We call these functions attributes of the population or process.

We represent variates by letters such as   . For example, we might define a variate

 as the size of the claim or the response time to a hit in the processes mentioned above.

The values of  typically vary across the units in a population or process. This variability

generates uncertainty and makes it necessary to study populations and processes by col-

lecting data about them. By data, we mean the values of the variates for a sample of units

in the population or a sample of units taken from the process.

In planning to collect data about some process or population, we must carefully specify

what the objectives are. Then, we must consider feasible methods for collecting data as

well as the extent it will be possible to answer questions of interest. This sounds simple

but is usually difficult to do well, especially since resources are always limited.

There are several ways in which we can obtain data. One way is purely according to

what is available: that is, data are provided by some existing source. Huge amounts of

data collected by many technological systems are of this type, for example, data on credit

card usage or on purchases made by customers in a supermarket. Sometimes it is not

clear what available data represent and they may be unsuitable for serious analysis. For

example, people who voluntarily provide data in a web survey may not be representative of

the population at large. Alternatively, we may plan and execute a sampling plan to collect
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new data. Statistical Sciences stress the importance of obtaining data that will be objective

and provide maximal information at a reasonable cost. There are three broad approaches:

(i) Sample Surveys The object of many studies is to learn about a finite population

(e.g. all persons over 19 in Ontario as of September 12 in a given year or all cars

produced by the car manufacturer General Motors in the past calendar year). In this

case information about the population may be obtained by selecting a “representa-

tive” sample of units from the population and determining the variates of interest

for each unit in the sample. Obtaining such a sample can be challenging and expen-

sive. Sample surveys are widely used in government statistical studies, economics,

marketing, public opinion polls, sociology, quality assurance and other areas.

(ii) Observational Studies An observational study is one in which data are collected

about a process or population without any attempt to change the value of one or

more variates for the sampled units. For example, in studying risk factors associated

with a disease such as lung cancer, we might investigate all cases of the disease at a

particular hospital (or perhaps a sample of them) that occur over a given time period.

We would also examine a sample of individuals who did not have the disease. A dis-

tinction between a sample survey and an observational study is that for observational

studies the population of interest is usually infinite or conceptual. For example, in

investigating risk factors for a disease, we prefer to think of the population of interest

as a conceptual one consisting of persons at risk from the disease recently or in the

future.

(iii) Experiments An experiment is a study in which the experimenter (i.e. the person

conducting the study) intervenes and changes or sets the values of one or more variates

on the units in the sample. For example, in an engineering experiment to quantify

the effect of temperature on the performance of a certain type of computer chip, the

experimenter might decide to run a study with 40 chips, ten of which are operated at

each of four temperatures 10, 20, 30, and 40 degrees Celsius. Since the experimenter

decides the temperature level for each chip in the sample, this is an experiment.

The three types of studies described above are not mutually exclusive, and many studies

involve aspects of all of them. Here are some slightly more detailed examples.

Example 1.2.1 A sample survey about smoking

Suppose we wish to study the smoking behaviour of Ontario residents aged 14-20 years.

(Think about reasons why such studies are considered important.) Of course, the population

of Ontario residents aged 14-20 years and their smoking habits both change over time, so

we will content ourselves with a snapshot of the population at some point in time (e.g. the

second week of September in a given year). Since we cannot afford to contact all persons

in the population, we decide to select a sample of persons from the population of interest.
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(Think about how we might do this - it is quite difficult!) We decide to measure the

following variates on each person in the sample: age, sex, place of residence, occupation,

current smoking status, length of time smoked, etc.

Note that we have to decide how we are going to obtain our sample and how large it

should be. The former question is very important if we want to ensure that our sample

provides a good picture of the overall population. The amount of time and money available

to carry out the study heavily influences how we will proceed.

Example 1.2.2 A study of a manufacturing process

When a manufacturer produces a product in packages stated to weigh or contain a

certain amount, they are generally required by law to provide at least the stated amount in

each package. Since there is always some inherent variation in the amount of product which

the manufacturing process deposits in each package, the manufacturer has to understand

this variation and set up the process so that no packages or only a very small fraction of

packages contain less than the required amount.

Consider, for example, soft drinks sold in nominal 355 ml cans. Because of inherent

variation in the filling process, the amount of liquid  that goes into a can varies over a

small range. Note that the manufacturer would like the variability in  to be as small as

possible, and for cans to contain at least 355 ml. Suppose that the manufacturer has just

added a new filling machine to increase the plant’s capacity. The process engineer wants

to compare the new machine with an old one. Here the population of interest is the cans

filled in the future by both machines. She decides to do this by sampling some filled cans

from each machine and accurately measuring the amount of liquid  in each can. This is

an observational study.

How exactly should the sample be chosen? The machines may drift over time (i.e. the

average of the  values or the variability in the  values may vary systematically up or

down over time) so we should select cans over time from each machine. We have to decide

how many, over what time period, and when to collect the cans from each machine.

Example 1.2.3 A clinical trial in medicine

In studies of the treatment of disease, it is common to compare alternative treatments

in experiments called clinical trials. Consider, for example, a population of persons who are

at high risk of a stroke. Some years ago it was established in clinical trials that small daily

doses of aspirin (which acts as a blood thinner) could lower the risk of stroke. This was done

by giving some high risk subjects daily doses of aspirin (call this Treatment 1) and others

a daily dose of a placebo (an inactive compound) given in the same form as the aspirin

(call this Treatment 2). The two treatment groups were then followed for a period of time,

and the number of strokes in each group was observed. Note that this is an experiment

because the researchers decided which subjects in the sample received Treatment 1 and

which subjects received Treatment 2.

This sounds like a simple plan to implement but there are several important points.
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For example, patients should be assigned to receive Treatment 1 or Treatment 2 in some

random fashion to avoid unconscious bias (e.g. doctors might otherwise tend to put persons

at higher risk of stroke in the aspirin group) and to balance other factors (e.g. age, sex,

severity of condition) across the two groups. It is also best not to let the patients or

their doctors know which treatment they are receiving. Many other questions must also be

addressed. For example, what variates should we measure other than the occurrence of a

stroke? What should we do about patients who are forced to drop out of the study because

of adverse side effects? Is it possible that the aspirin treatment works for certain types of

patients but not others? How long should the study go on? How many persons should be

included?

As an example of a statistical setting where the data are not obtained by a survey,

experiment, or even an observational study, consider the following.

Example 1.2.4 Direct marketing campaigns

With products or services such as credit cards it is common to conduct direct marketing

campaigns in which large numbers of individuals are contacted by mail and invited to

acquire a product or service. Such individuals are usually picked from a much larger number

of persons on whom the company has information. For example, in a credit card marketing

campaign a company might have data on several million persons, pertaining to demographic

(e.g. sex, age, place of residence), financial (e.g. salary, other credit cards held, spending

patterns) and other variates. Based on the data, the company wishes to select persons whom

it considers have a good chance of responding positively to the mail-out. The challenge is

to use data from previous mail campaigns, along with the current data, to achieve as high

a response rate as possible.

1.3 Data Summaries

In the previous section, we noted that we collect data (consisting of measurements on

variates       of interest for units in the sample) when we study a population or process.

We cannot answer the questions of interest without summarizing the data. Summaries are

especially important when we report the conclusions of the study. Summaries must be

clear and informative for the questions of interest and, since they are summaries, we need

to make sure that they are not misleading.

The basic set-up is as follows. Suppose that data on a variate  is collected for  units

in a population or process. By convention, we label the units as 1 2      and denote their

respective -value as 1 2     . We might also collect data on a second variate  for

each unit, and we would denote the values as 1 2     . We refer to  as the sample

size and to {1 2     }, {1 2     } or {(1 1) (2 2)    ( )} as data sets.
Most real data sets contain the values for many variates.

There are two classes of summaries: graphical and numerical. First we describe some
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simple numerical summaries.

Numerical Summaries

Some common numerical summaries, useful for describing features of a single measured

variate in a data set, are:

• the average (also called the sample average): ̄ = 1


P
=1



• the (sample) variance: 2 = 1
−1

P
=1

( − ̄)2

• the (sample) standard deviation:  =
√
2

• the (sample) percentiles and (sample) quantiles: the th quantile (also called the

100th percentile) is a value, call it (), such that a fraction  of the  values in

the data set are less than or equal to (). The values (05), (025) and (075) are

called the median, the lower quartile, and the upper quartile respectively. Depending

on the size of the data set, quantiles are not uniquely defined for all values of . For

example, what is the median of the values {1 2 3 4 5 6}? What is the lower quartile?
There are different conventions for defining quantiles in these cases; if the sample size

is large, the differences in the quantiles from the various definitions are small.

We can easily understand what the average, quantiles and percentiles tell us about the

variate values in a data set. The variance and standard deviation measure the variability

or spread of the variate values in a data set. We prefer the standard deviation because

it has the same scale as the original variate. Another way to measure variability is to

find the difference between a low and high quantile, for example the interquartile range

(075)− (025).

Example 1.3.1 Comparison of Body Mass Index

In a longitudinal study (i.e. the people in the sample were followed over time) of obesity

in New Zealand, a sample of 150 men and 150 women were selected from workers aged 18

to 60. Many variates were measured for each subject (unit), including their height (m)

and weight (kg) at the start of the study. Their initial Body Mass Index (BMI) was also

calculated. BMI is used to measure obesity or severely low weight. It is defined as follows:

 =
weight()

height()2

There is some variation in what different guidelines refer to as “overweight”, “underweight”,

etc. We present one such classification in Table 1.3.1
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Table 1.3.1 BMI Obesity Classification

Underweight BMI  185

Normal 185 ≤ BMI  250

Overweight 250 ≤ BMI  300

Moderately Obese 300 ≤ BMI  350

Severely Obese 350 ≤ BMI

The data are stored in the file ch1example131.txt available on the course web page. For

statistical analysis of the data, it is convenient to record the data in row-column format.

Here are the first few rows of the file

Table 1.3.4 First Rows of the File ch1example131.txt

subject sex height weight BMI

1 M 176 6381 206

2 M 177 8960 286

3 M 191 8865 243

4 M 180 7484 231

The first row of the file gives the variate names, in this case subject number, sex

(M=male or F=female), height, weight and BMI. Each subsequent row gives the vari-

ate values for a particular subject. See Appendix 2: Data for a listing of the file. We use

the software package  (see Section 1.6 and Appendix 1) to get the following numerical

summaries of the BMI variate for each sex.

Table 1.3.2 Summary of BMI by Sex

sex First Quartile Median Average Third Quartile Sample Standard Deviation

Female 234 268 269 297 460

Male 247 267 271 291 356

From Table 1.3.2, we see that there are only small differences in any of the summary

measures except for the standard deviation which is substantially larger for females. In

other words, there is more variation in the BMI for females than for males in this sample.

We can also construct a relative frequency table that gives the proportion of subjects

that fall within each obesity class by sex.

Table 1.3.3 BMI Relative Frequency Table by Sex

Males Females

Underweight 001 002

Normal 028 033

Overweight 050 042

Moderately Obese 019 017

Severely Obese 002 006
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From Table 1.3.3, we see that the reason for the larger standard deviation for females

is that there is a greater proportion of females in the extreme classes.

Graphical Summaries

We consider several types of plots for a data set {1 2     } of numerical values.

Histograms

Consider measurements {1 2     } on a variate . Partition the range of  into 
non-overlapping intervals  = [−1 )  = 1 2      and then calculate for  = 1     

 = number of values from {1     } that are in I .

The  are called the observed frequencies for 1     ; note that
P

=1

 = . A

histogram is a graph in which a rectangle is placed above each interval; the height of the

rectangle for  is chosen so that the area of the rectangle is proportional to  . Two main

types of histogram are used. The second is preferred.

(a) a “standard" histogram where the intervals  are of equal length. The height of the

rectangle is the frequency  . This type of histogram is similar to a bar chart.

(b) a “relative frequency” histogram, where the  may or may not be of equal length.

The height of the rectangle for  is chosen so that its area equals , the relative

frequency for  . We use density as the label for the vertical axis. Note that in this

case the sum of the areas of the rectangles in the histogram is equal to one.

We can make the two types of histograms visually comparable by using the same in-

tervals and the same scaling on both axes. If the sample sizes in two groups differ, it is

important to use relative frequencies and standardized scales for the axes. To construct a

histogram, we have to choose the number and location of the intervals. The intervals are

typically selected in such a way that each interval contains at least one -value from the

sample (that is, each  ≥ 1). We can use software packages to produce histograms (see
Section 1.6) and they will either automatically select the intervals for a given data set or

allow the user to specify them.

Example 1.3.1 continued

In Figure 1.1, we see relative frequency histograms for BMI by sex. We often say that

histograms show the distribution of the data, in this case for males and females. Here the

shape of the two distributions is similar, each resembling a Gaussian distribution.

Example 1.3.2

A histogram can have many different shapes. Figure 1.2 shows a histogram of the lifetimes
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Figure 1.1: Histograms of BMI by sex

(in terms of number of thousand km driven) for the front brake pads on 200 new mid-size

cars of the same type. The data are available in the file ch1example132.txt available on

the course web page and are listed in Appendix 2. Notice that the distribution has a very

different shape compared to the BMI histograms. The brake pad lifetimes have a long

right tail. The high degree of variability in lifetimes is due to the wide variety of driving

conditions which different cars are exposed to, as well as to variability in how soon car

owners decide to replace their brake pads.

Cumulative frequency plots

Another way to portray the values of a variate {1 2     } is to determine the proportion
of values in the set which are smaller than any given value. This is called the empirical

cumulative distribution function or more concisely the empirical c.d.f.

̂ () =
number of values in {1 2  } which are ≤ 


 (1.1)

To construct ̂ (), it is convenient to first order the ’s ( = 1     ) to give the

ordered values (1) ≤ (2) ≤    ≤ (). Then, we note that ̂ () is a step function with a

jump at each of the ordered observed values (1) (2)     (). If (1) (2)     () are all

different values, then ̂ (()) =  and the jumps are all of size 1. Between the observed

variate values, the empirical cumulative distribution function is constant.

Example 1.3.4 Suppose that  = 4 and the -values (ordered for convenience) are

{15 22 34 50}. Then
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Figure 1.2: Histogram of Brake Pad Lifetimes

̂ () =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0   15

025 15 ≤   22

050 22 ≤   34

075 34 ≤   50

100  ≥ 50

Example 1.3.1 continued

Figure 1.3 shows the empirical cumulative distribution function for male and female heights

overlaid on the same plot.The plot of the empirical cumulative distribution function does

not show the shape of the distribution as clearly does the histogram. However, it shows

us the proportion of -values in any given interval; the proportion in the interval ( ] is

just ̂ ()− ̂ (). In addition, this plot allows us to determine the th quantile or 100th

percentile (the left-most value on the horizontal axis  where ̂ () = , and in particular

the median ( the left-most value  on the horizontal axis where ̂ () = 05). For example,

we see from Figure 1.3 that the median height for females is about 160m and for males

about 173m.

Box plots

In many situations, we want to compare the values of a variate for two or more groups,

as in Example 1.3.1 where we compared BMI values and heights for males versus females.

Especially when the number of groups is large (or the sample sizes within groups are small),

side-by-side box plots are a convenient way to display the data. Box plots are also called

box and whisker plots.

The box plot is (usually) displayed vertically.The center line in each box corresponds to
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Figure 1.3: Empirical c.d.f. of height by sex

the median and the lower and upper sides of the box correspond to the lower quartile (025)

and the upper quartile (075). The so-called whiskers extend down and up from the box to

a horizontal line. The lower line is placed at the smallest variate value that is larger than the

lower quartile minus 15 times the interquartile range, i.e. (025)−15×[(075)− (025)].

Similarly the upper line is placed at the largest variate value that is smaller than the upper

quartile plus 15 times the interquartile range, i.e. (075) + 15× [(075)− (025)]. Any

values beyond the whiskers (often called outliers) are plotted as open circles.
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Figure 1.4: Boxplots of Weight by Sex

Figure 1.4 is side-by-side boxplots of male and female weights from Example 1.3.1. We
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can see for this sample that males are generally heavier than females but that the spread

of the two distributions is about the same.

All of the numerical and graphical summaries discussed to this point deal with a single

variate. We are often interested in relationships between two variates. A scatterplot can

be used to demonstrate this relationship.

Scatterplots

Suppose we have data on two or more variates for each unit in the sample. For example,

we might have the heights  and weights  for a sample of individuals. The data can then

be represented as  pairs, {( )  = 1     } where  and  are the height and weight
of the th person in the sample.

When we have two such variables, a useful plot is a scatterplot, an − plot of the points
( )  = 1     . The scatterplot shows whether  and  tend to be related in some

way. Figure 1.5 is a scatterplot (with different symbols for males and females) of weight

versus height for the data in Example 1.3.1. As expected, we see that there is a tendency

for weight to increase as height increases for both sexes. What might be surprising is the

variation in weights for heights that are close in value.
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Figure 1.5: Scatterplot of Weight vs Height by Gender

1.4 Probability Distributions and Statistical Models

Probability models are used to describe processes such as the daily closing value of a stock

or the occurrence and size of claims over time in a portfolio of insurance policies. With

populations, we use a probability model to describe the selection of the units and the

measurement of the variates. The model depends on the distribution of variate values in
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the population (i.e. the population histogram) and the selection procedure. We exploit

this connection when we want to estimate attributes of the population and quantify the

uncertainty in our conclusions. We use the models in several ways:

• questions are often formulated in terms of parameters of the model

• the variate values vary so random variables can describe this variation

• empirical studies usually lead to inferences that involve some degree of uncertainty,
and probability is used to quantify this uncertainty

• procedures for making decisions are often formulated in terms of models

• models allow us to characterize processes and to simulate them via computer experi-

ments

Example 1.4.1 A Binomial Distribution

Consider again the survey of smoking habits of teenagers described in Example 1.2.1.

To select a sample of 500 units (teenagers living in Ontario), suppose we had a list of most

of the units in the population. Getting such a list would be expensive and time consuming

so the actual selection procedure is likely to be very different. We select a sample of 500

units from the list at random and count the number of smokers in the sample. We model

this selection process using a Binomial random variable  with probability function (p.f.)

 ( = ; ) =

µ
500



¶
(1− )500− for  = 0 1     500

Here the parameter  represents the unknown proportion of smokers in the population,

one attribute of interest in the study.

Example 1.4.2 An Exponential Distribution

In Example 1.3.2, we examined the lifetime (in 1000 km) of a sample of 200 front brake

pads taken from the population of all cars of a particular model produced in a given time

period. We can model the lifetime of a single brake pad by a continuous random variable

 with Exponential probability density function (p.d.f.)

(; ) =
1


− for   0

Here the parameter   0 represents the mean lifetime of the brake pads in the popu-

lation since, in the model, the expected value of  is

 ( ) =

Z ∞

0

(; ) = 

To model the sampling procedure, we let 1     200 be 200 independent copies of  . We

can use the model to estimate  and other attributes of interest such as the proportion of
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brake pads that fail in the first 100 000 km of use. In terms of the model, we can represent

this proportion by

 ( ≤ 100; ) =
Z 100

0

(; ) = 1− −100

If we model the selection of a data set (1     ) as the realization of  independent

copies of a random variable  as in the above brake pad example, we can draw strong

parallels between summaries of the data set described in Section 1.3 and properties of the

corresponding probability model  . For example,

• the average ̄ corresponds to , the expected value of 

• the sample median corresponds to the solution  of the equation  () = 05 where

 () =  ( ≤ ) is the cumulative distribution function of  .

• the sample standard deviation corresponds to , the standard deviation of  , where
2 = [( − )2]

• the histogram (with the y-axis on the density scale) corresponds to the probability

density function of 

Example 1.4.2 Gaussian Distributions

Earlier, we described an experiment where the goal was to see if there is a relationship

between a measure of operating performance  of a computer chip and ambient temperature

. In the experiment, there were four groups of 10 chips and each group operated at a

different temperature  = 10 20 30 40. The data are (1 1)     (40 40). A model for

1     40 should depend on the temperatures  and one possibility is to let 1  40 be

independent random variables with  having the Gaussian distribution (0 + 1 ),

 = 1     40. In this model, the mean of  is a linear function of the temperature .

The parameter  allows for variation in performace among chips operating at the same

temperature. We will consider such models based on Gaussian random variables in Chapter

6.

1.5 Data Analysis and Statistical Inference

Whether we are collecting data to increase our knowledge or to serve as a basis for making

decisions, proper analysis of the data is crucial. We distinguish between two broad aspects

of the analysis and interpretation of data. The first is what we refer to as descriptive

statistics. This is the portrayal of the data, or parts of it, in numerical and graphical ways

so as to show features of interest. (On a historical note, the word “statistics” in its original

usage referred to numbers generated from data; today the word is used both in this sense

and to denote the discipline of Statistics.) We have considered a few methods of descriptive

statistics in Section 1.3. The terms data mining and knowledge discovery in data bases
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(KDD) refer to exploratory data analysis where the emphasis is on descriptive statistics.

This is often carried out on very large data bases. The goal, often vaguely specified, is to

find interesting patterns and relationships

A second aspect of a statistical analysis of data is what we refer to as statistical inference.

That is, we use the data obtained in the study of a process or population to draw general

conclusions about the process or population itself. This is a form of inductive inference, in

which we reason from the specific (the observed data on a sample of units) to the general

(the target population or process). This may be contrasted with deductive inference (as

in logic and mathematics) in which we use general results (e.g. axioms) to prove specific

things (e.g. theorems).

This course introduces some basic methods of statistical inference. Three main types of

problems will be discussed, loosely referred to as estimation problems, prediction problems

and hypothesis testing problems. In the first type, the problem is to estimate one or more

attributes of a process or population. For example, we may wish to estimate the proportion

of Ontario residents aged 14 - 20 who smoke, or to estimate the distribution of survival

times for certain types of AIDS patients. Another type of estimation problem is that of

“fitting” or selecting a probability model for a process.

In prediction problems, we use the data to predict a future value for a process variate

or a unit to be selected from the population. For example, based on the results of a clinical

trial such as Example 1.2.3, we may wish to predict how much an individual’s blood pressure

would drop for a given dosage of a new drug. Or, given the past performance of a stock

and other data, to predict the value of the stock at some point in the future.

Hypothesis testing problems involve using the data to assess the truth of some question

or hypothesis. For example, we may hypothesize that in the 14-20 age group a higher

proportion of females than males smoke, or that the use of a new treatment will increase

the average survival time of AIDS patients by at least 50 percent.

Statistical analysis involves the use of both descriptive statistics and formal methods of

estimation, prediction and hypothesis testing. As brief illustrations, we return to the first

two examples of section 1.2.

Example 1.5.1 A smoking behaviour survey

Suppose in Example 1.5.1, we sampled 250 males and 250 females aged 14-20 as de-

scribed in Example 1.4.1. Here we focus only on the sex of each person in the sample, and

whether or not they smoked. The data are summarized in a two-way frequency table such

as the following:

Smokers Non-smokers Total

Female 82 168 250

Male 71 179 250

Total 153 347 500
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Suppose we are interested in the question “Is the smoking rate among teenage girls

higher than the rate among teenage boys?” From the data, we see that the proportion

of girls who smoke is 82250 = 328% and the corresponding proportion for males is

71250 = 284%. In the sample, the smoking rate for females is higher. But what can

we say about the whole population? To proceed, we formulate the hypothesis that there is

no difference in the population rates. Then assuming the hypothesis is true, we construct

two Binomial models as in Example 1.4.1 each with a common parameter . We can esti-

mate  using the combined data so that ̂ = 153500 = 306%. Then using the model and

the estimate, we calculate the probability of such a large difference in the observed rates.

In this case, we would see such a large difference about 20% of the time (if we selected

samples over and over and the hypothesis is true) so there is no evidence of a difference

in smoking rates. We examine the logic and details of such a formal procedure in Chapter 5.

Example 1.5.2 A can filler study

Recall Example 1.2.2 where the purpose of the study was to compare the performance

of the two machines in the future. Suppose that every hour, one can is selected from the

new machine and one can from the old machine over a period of 40 hours. You can find

measurements of the amounts of liquid in the cans in the file ch1example152.txt and also

listed in Appendix 1. The variates (column headings) are hour, machine (new = 1, old = 2)

and volume (ml). We display the first few rows of the file below. The complete file is listed

in the Appendix.

Hour Machine Volume

1 1 3578

1 2 3587

2 1 3566

2 2 3585

3 1 3571

3 2 3579

First we examine if the behaviour of the two machines is stable over time. In Figure

1.6, we show a run chart of the volumes over time for each machine. There is no indication

of a systematic pattern for either machine so we have some confidence that the data can

be used to predict the performance of the machines in the near future.

The average and standard deviation for the new machine are 3568 and 054 ml respec-

tively and, for the old machine, are 3575 and 080. In Figure 1.7 we show side-by-side his-

tograms of the volumes. Since the histograms are “bell-shaped”, we also overlaid Gaussian

probability density functions with the mean equal to the average and standard deviation

equal to the sample standard deviation.

None of the 80 cans had volume less than the required 355ml. However, we examined

only 40 cans per machine. We can use the Gaussian models to estimate the long term
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Figure 1.6: Run Charts of Volume by Machine
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proportion of cans that fall below the required volume. For the new machine, we find

that if  ∼ (3568 053) then  ( ≤ 355) = 00003 so about 3 in 10 000 cans will be

underfilled. The corresponding rate for the old machine is about 9 in 10 000 cans. These

estimates are subject to a high degree of uncertainty because they are based on a small

sample and we have no way to test that the models are appropriate so far into the tails of

the distribution.

We can also see that the new machine is superior because of its smaller average, which

translates into less overfill (and hence less cost to the manufacturer). It is possible to adjust

the average of the new machine to a lower value because of its smaller standard deviation.

1.6 Statistical Software

Software is essential for data manipulation and analysis. It is also used to deal with numer-

ical calculations, to produce graphics, and to simulate probability models. There are many

statistical software systems; some of the most comprehensive and popular are SAS, S-Plus,

SPSS, Strata, Systat Minitab and R. Spreadsheet software such a s EXCEL is also useful.

In this course we use the  software system. It is an open source package that has

extensive statistical capabilities and very good graphics procedures. The R home page is

www.r-project.org where a free download is available for most common operating systems.

Some of the basics of  are described in the Appendix at the end of this chapter. We use

 for several purposes: to manipulate and graph data, to fit and check statistical models,

to estimate attributes or test hypotheses, to simulate data from probability models. All of

the calculation and plots in this chapter were made with .

1.7 Appendix 1: Using 

Lots of help is available in . You can use a search engine to find the answer to most

questions. For example, if you search for “ tutorial”, you will find a number of excellent

introductions to  that explain how to carry out the above list of tasks. Within , you

can find help for a specific function using the command help(function name) but it is often

easier to look externally using a search engine.

Here we show how to use  on a Windows machine. You should have  open as you

read this material so you can play along.

Some R Basics

 is command-line driven. For example, if you want to define a quantity  , use the

assignment function  − (i.e.  followed by −).

  −15
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or, (a slight complication)

  −(1 3 5)
so  is a column vector with elements 1 3 5.

A few general comments

• If you want to change , you can up-arrow to return to the assignment and make the
change you want, followed by a carriage return.

• If you are doing something more complicated, you can type the code in Notepad or
some other text editor (Word is not advised!) and cut and paste the code into .

• You can save your session and, if you choose, it will be restored the next time you
open .

• You can add comments by entering # with the comment following on the same line.

Vectors

Vectors can consist of numbers or other symbols; we will consider only numbers here.

Vectors are defined using the function  (). For example,

  −(1 3 5 7 9)
defines a vector of length 5 with the elements given. You can display the vector by typing

 and carriage return. Vectors and other objects possess certain attributes. For example,

typing

()

will give the length of the vector .

You can cut and paste comma- delimited strings of data into the function  (). This is

one way to enter data into . See below to learn how you can read a file into .

Arithmetic

 can be used as a calculator. Enter the calculation after the prompt  and hit return as

shown below.

> 7+3

[1] 10

> 7*3

[1] 21

> 7/3

[1] 2.333333

> 2^3

[1] 8

You can save the result of the calculation by assigning it to a variable such as y<-7+3
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Some Functions

There are many functions in . Most operate on vectors in a transparent way, as do

arithmetic operations. (For example, if  and  are vectors then  +  adds the vectors

element-wise; if  and  are different lengths,  may do surprizing things! Some examples,

with comments, follow.

> x<- c(1,3,5,7,9) # Define a vector x

> x # Display x

[1] 1 3 5 7 9

> y<- seq(1,2,.25) #A useful function for defining a vector whose

elements are an arithmetic progression

> y

[1] 1.00 1.25 1.50 1.75 2.00

> y[2] # Display the second element of vector y

[1] 1.25

> y[c(2,3)] # Display the vector consisting of the second and

third elements of vector y.

[1] 1.25 1.50

> mean(x) #Computes the average of the elements of vector x

[1] 5

> summary(x) # A useful function which summarizes features of

a vector x

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 3 5 5 7 9

> sd(x) # Computes the (sample) standard deviation of the elements of x

[1] 10

> exp(1) # The exponential function

[1] 2.718282

> exp(y)

[1] 2.718282 3.490343 4.481689 5.754603 7.389056

> round(exp(y),2) # round(y,n) rounds the elements of vector y to

n decimals

[1] 2.72 3.49 4.48 5.75 7.39

> x+2*y

[1] 3.0 5.5 8.0 10.5 13.0

As we have seen we often want to compare summary statistics of variate values by group

(such as sex). We can use the () function. For example,

> y<-rnorm(100) # y is a vector of length 100 with entries generated at

# random from G(0,1)

> x<-c(rep(1,50),rep(2,50)) # x is a vector of length 100 with 50 1s
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# followed by 50 2s.

> by(y,x, summary) # generates a summary for the elements of y for each

#value of the grouping variable x

We can replace the function summary() by most other simple functions.

Graphs

Note that in , a graphics window opens automatically when a graphical function is used. A

useful way to create several plots in the same window is the function () so, for example,

following the command

par(mfrow=c(2,2))

the next 4 plots will be placed in a 2× 2 array within the same window.
There are various plotting and graphical functions. Three useful ones are

plot(y~x) # Gives a scatterplot of y versus x; thus x and y must

be vectors of the same length.

hist(y) # Creates a frequency histogram based on the values in

the vector y. To get a relative frequency histogram

(areas of rectangles sum to one) use hist(x,prob=T).

boxplot(y~x) #Creates side-by-side boxplots of the values of y

# for each value of x.

You can control the axes of plots (especially useful when you are making comparisons) by

including  = ( ) and  = ( ) as arguments separated by commas within

the plotting function. Also you can label the axes by including  = “”

and = “”. A title can be added using  = “”. There are

many other options. Check out the Html help “An Introduction to ” for more information

on plotting.

To save a graph, you can copy and paste into a Word document for example or alternately

use the “Save as” menu to create a file in one of several formats.

Probability Distributions

There are functions which compute values of probability functions or probability density

functions, cumulative distribution functions, and quantiles for various distributions. It is

also possible to generate random samples from these distributions. Some examples follow

for the Gaussian distribution. For other distributions, type () or

check the “Introduction to ” in the Html help menu.

> y<- rnorm(10,25,5) # Generate 10 random values from the Gaussian
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# distribution G(25,5) and store the values in the vector y.

> y # Display the values

[1] 22.50815 26.35255 27.49452 22.36308 21.88811 26.06676 18.16831 30.37838

[9] 24.73396 27.26640

> pnorm(1,0,1) # Compute P(Y<=1) for a G(0,1) random variable.

[1] 0.8413447

> qnorm(.95,0,1) # Find the .95 quantile (95th percentile) for G(0,1).

[1] 1.644854

>dnorm(2,1,3) # calculates the probability density function at y=2 for Y~G(1,3)

[1] 0.1257944

Reading data from a file

 stores and retrieves data from the current working directory. You can use the command

getwd()

to determine the current working directory. To change the working directory, look in

the File menu for “” and browse until you reach your choice. There are many

ways to read data into . The files we used in Chapter 1 are in .txt format with the

variate labels in the first row separated by spaces and the corresponding variate values in

subsequent rows. We created the files from EXCEL by saving as text files. To read such

files, first be sure the file is in your working directory. Then use the commands

a<-read.table(’filename.txt’,header=T) #enclose the filename in single quotes

attach(a)

The “header=T” tells  that the variate names are in the first row of the data file. The

object  is called a data frame in  and the variate names are of the form “ : 1” where

1 is the name of the first column in the file. The  function () allows you to drop

the  : from the variate names.

Writing data to a file.

You can cut and paste output generated by  in the sessions window although the format

is usually messed up. This approach works best for Figures. You can write an  vector or

other object to a text file through

write(y,file="filename")

To see more about the write function use help(write).
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Example 1.5.2 Two Filling Machines

Here we list the data in Appendix 2: Data of these notes. Here is the code used in Example

1.5.2. In the file ch1example152.txt, there are three columns labelled hour, machine and

volume. The data are

hour machine volume hour machine volume

1 1 3578 21 1 3565

1 2 3587 21 2 3573

2 1 3566 22 1 3569

. . . . . .

And here is the  code we used.

# read data

a<-read.table(’ch1example152.txt’,header=T)

attach(a)

# calculate summary statistics and standard deviation by machine

by(volume,machine,summary)

by(volume,machine,sd)

# separate the volumes by machine into separate vectors v1 and v2

v1<-volume[seq(1,79,2)] # picks out machine 1 values

v2<-volume[seq(2,80,2)] # picks out machine 2 values

h<-1:40

# plot run charts by machine, one above of the other, type=’l’joins the points on the

plots

par(mfrow=c(2,1)) # creates two plotting areas, one above the other

plot(v1~h,xlab=’Hour’,ylab=’volume’,main=’NewMachine’, ylim=c(355,360),type=’l’)

plot(v2~h,xlab=’Hour’,ylab=’volume’,main=’Old Machine’, ylim=c(355,360),type=’l’)

# plot side by side histograms, overlay gaussian densities for each machine

par(mfrow=c(1,2)) #creates two plotting areas side by side

br<-seq(355,360,0.5) # defines interval endpoints for the histograms

hist(v1,br,freq=F,xlab=’volume’,ylab=’density’,main=’New Machine’)

w1<-356.8+0.538*seq(-3,3,.01) # values where the gaussian density is located

dd1<-dnorm(w1,356.8,0.53)
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points(w1,dd1,type=’l’)

hist(v2,br,freq=F, xlab=’volume’,ylab=’density’,main=’Old Machine’)

w2<-357.5+0.799*seq(-3,3,.01)

dd2<-dnorm(w2,357.5,0.8)

points(w2,dd2,type=’l’)

1.8 Problems

1. The average and the sample median are two different ways to describe the location

or the center of a data set (1 2     ). In this exercise we look at some of their

properties. Let ̄ be the average and  be the median of the data set.

(a) Suppose we change the location and scale of the data so that  =  +  for

every  = 1   where  and  are constants with  6= 0. How do the average
and sample median change?

(b) Suppose we tranform the data by squaring so that  = 
2,  = 1     . How

are the average and sample median of 1      related to ̄ and ?

(c) Consider the quantities  =  − ̄,  = 1     . Show that
P
=1

 = 0. Is it true

that
P
=1

( −) = 0?

(d) Suppose we include an extra observation 0 to the data set and define (0) to

be the average of the augmented data set. Express (0) in terms of ̄ and 0.

What happens to the average as 0 gets large (or small)?

(e) Repeat the previous question for the sample median. Hint: Let (1)  () be

the original data set with the observations arranged in increasing order.

(f) Use the above results to explain why the sample median income of a country

might be a more appropriate summary than the average income.

(g) Consider the function  () =
P
=1

( − )2. Show that  () is minimized when

 = ̄.

(h) Consider the function  () =
P
=1

| − |. Show that  () is minimized when

 = . Hint: Calculate the derivative of  () when   (1), (1)    (2)

and so on. The minimum occurs where the derivative changes sign.

2. The sample standard deviation and the interquartile range are two different mea-

sures of the variability of a data set (1 2     ). Recall that the sample standard

deviation is

 =

vuut 1

− 1
X
=1

( − ̄)2 (1.2)
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(a) Suppose we change the location and scale of the data so that  =  +  for

every  = 1      where  and  are constants and  6= 0. How do the sample
standard deviation and interquartile range change?

(b) Show that
P
=1

( − ̄)2 =
P
=1

2 − (̄)2.

(c) Suppose we include an extra observation 0 to the data set. Use the result in

(b) to write the sample standard deviation of the augmented data set in terms

of 0 and the original sample standard deviation. What happens when 0 gets

large (or small)?

(d) How does the interquartile range change as 0 gets large?

3. Mass production of complicated assemblies such as automobiles depend on our ability

to manufacture the components to very tight specifications. The component manu-

facturer tracks performance by measuring a sample of parts and compaing the mea-

surements to the specification. Suppose the specification for the diameter of a piston

is a nominal value ±10 microns (10−6). The data below (also available in the file
ch1exercise3.txt) are the diameters of 50 pistons collected from the more than 10,000

pistons produced in one day. (The measurements are the diameters minus the nominal

value in microns)

33 70 −04 −10 05 −73 −25 27 18 07

−06 00 54 −02 57 66 −39 06 34 −08
89 47 28 51 −27 26 −04 −23 86 −34
12 21 58 −09 18 85 20 43 −128 35

66 −29 26 72 87 25 79 46 −07 38

(a) Plot a histogram of the data. Is the process producing pistons within the speci-

fications.

(b) Calculate the average ̄ and the sample median of the diameters in the sample.

(c) Calculate the sample standard deviation  and the interquartile range.

(d) Such data are often summarized using a single performance index called 

defined as

 = max

µ
 − ̄

3

̄ − 

3

¶
where () = (−10 10) are the lower and upper specification limits. Calculate
 for these data.

(e) Explain why high values of  (i.e. greater than 1) are desirable.

(f) Suppose we fit a Gaussian model to the data with mean and standard deviation

equal to the corresponding sample quantities, that is, with  = ̄ and  = . Use

the fitted model to estimate the proportion of diameters (in the process) that

are out of specification.
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4. In the above exercise, we saw how to estimate the performance measure  based on

a sample of 50 pistons, a very small proportion of one day’s production. To get an idea

of how reliable this estimate is, we can model the process output by a Gaussian random

variable  with mean and standard deviation equal to the corresponding sample

quantites. Then we can use  to generate another 50 observations and recalculate

. We do this many times. Here is some  code. Make sure you replace XX with

the appropriate values. average- XX Replace XX by the observed average from the

above question sd- XX Replace XX with the observed standard deviation temp-

rep(0,1000) creates a vector of length 1000 to hold the  values that we generate for

(i in 1:1000) starts a loop y-rnorm(50, average, sd) generates 50 new observations

using the model with the appropriate mean and sd avg-mean(y);s-sd(y) calculates

the average and sd of the data ppk-min((10-avg)/(3*s),(avg+10)/(3*s)) calculates

 temp[i]-ppk stores the value of  and loops for 1000 iterations hist(temp)

makes a histogram of the  values mean(temp) calculates the average  value

sd(temp) calculates the standard deviation of the  values

(a) Based on the analysis, how reliable is the estimate produced by the initial sample

(b) Repeat the above exercise but this time use a sample of 300 pistons. Has the

reliability of the estimate increased? Why?

5. The data below show the lengths (in cm) of 20 male and female coyotes captured in

Nova Scotia. The data are available in the file ch1exercise5.txt

Females

930 970 920 1016 930 845 1025 978 910 980 935 917

902 915 800 864 914 835 880 710 813 885 865 900

840 895 840 850 870 880 865 960 870 935 935 900

850 970 860 737

Males

970 950 960 910 950 845 880 960 960 870 950 1000

1010 960 930 925 950 985 880 813 914 889 864 1016

838 1041 889 920 910 900 850 935 780 1005 1030 910

1050 860 955 865 905 800 800

(a) Plot relative frequency histograms of the lengths for females and males using .

Make sure the scales and bins are the same.

(b) Compute the sample average ̄ and sample standard deviation  for the female

and male coyotes separately. Assuming  = ̄ and  = , plot the probability

density function for Gaussian distributions ( ) over top of the histograms

for the females and males. (Based on Table 2.3.2 in Wild and Seber 1999)
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MODEL FITTING, MAXIMUM

LIKELIHOOD ESTIMATION,

AND MODEL CHECKING

2.1 Statistical Models and Probability Distributions

A statistical model is a mathematical model that incorporates probability1 in some way.

As described in Chapter 1, our interest here is in studying variability and uncertainty

in populations and processes and drawing inferences where warranted in the presence of

this uncertainty. This will be done by considering random variables that represent char-

acteristics of the units or individuals in the population or process, and by studying the

probability distributions of these random variables. It is very important to be clear about

what the “target” population or process is, and exactly how the variables being consid-

ered are defined and measured. Chapter 3 discusses these issues. You have already seen

some examples in Chapter 1, and have been reminded of material on random variables and

probability distributions which you have seen in a previous course on probability.

A preliminary step in probability and statistics is the choice of a probability model to

suit a given application. The choice of a model is usually driven by some combination of

the following three factors:

1. Background knowledge or assumptions about the population or process which lead to

certain distributions.

2. Past experience with data sets from the population or process, which has shown that

certain distributions are suitable.

3. Current data set, against which models can be assessed.

In probability theory, there is a large emphasis on factor 1 above, and there are many

“families” of probability distributions that describe certain types of situations. For example,

1The material in this section is largely a review of material you have seen in a previous probability course.

This material is available in the STAT 230 Notes which are posted on the course website.

29



30MODEL FITTING, MAXIMUMLIKELIHOODESTIMATION, ANDMODEL CHECKING

the Binomial distribution was derived as a model for outcomes in repeated independent

trials with two possible outcomes on each trial while the Poisson distribution was derived

as a model for the random occurrence of events in time or space. The Gaussian or Normal

distribution, on the other hand, is often used to represent the distributions of continuous

measurements such as the heights or weights of individuals. This choice is based largely on

past experience that such models are suitable and on mathematical convenience.

In choosing a model we usually consider families of probability distributions. To be

specific let us suppose that for some discrete random variable  we consider a family whose

probability function depends on the parameter  (which may be a vector of values):

 ( = ; ) = (; ) for  ∈ 

where  is a countable (i.e. discrete) set of real numbers, the range of the random variable

 . In order to apply the model to a specific problem we require a value for ; the selection

of a value based on the data (let us call it ̂) is often referred to as “fitting” the model or

as “estimating” the value of . The next section decribes a method for doing this.

Most applications require a sequence of steps in the formulation (the word “specifica-

tion” is also used) of a model. In particular, we often start with some family of models in

mind, but find after examining the data set and fitting the model that it is unsuitable in cer-

tain respects. (Methods for checking the suitability of a model will be discussed in Section

2.4.) We then try other models, and perhaps look at more data, in order to work towards

a satisfactory model. This is usually an iterative process, which is sometimes represented

by diagrams such as:

Collect and examine data set

↓
Propose a (revised?) model

↓ ↑
Fit model → Check model

↓
Draw conclusions

Statistics devotes considerable effort to the steps of this process. However, in this course

we will focus on settings in which the models are not too complicated, so that model for-

mulation problems are minimized. There are several distributions that you should review

before continuing since they will appear frequently in these notes. See the Stat 230 Notes

available on the course webpage. You should also consult the Table of Distributions at the

end of these notes for a condensed table of properties of these distributions uncluding their

moment generating functions and their moments.
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Binomial Distribution

The discrete random variable (r.v.)  has a Binomial distribution if its probability

function is of the form

 ( = ; ) = (; ) =

µ




¶
(1− )− for  = 0 1      (2.2)

where  is a parameter with 0    1. For convenience we write  ∼ Binomial( ).

Recall that ( ) =  and  ( ) = (1− ).

Poisson Distribution

The discrete random variable  has a Poisson distribution if its probability function is

of the form

(; ) =
−

!
for  = 0 1 2   

where  is a parameter with   0. We write  ∼ Poisson(). Recall that ( ) =  and

 ( ) = .

Exponential Distribution

The continuous random variable  has an Exponential distribution if its probability

density function is of the form

(; ) =
1


− for   0

where  is parameter with   0. We write  ∼ Exponential(). Recall that ( ) =  and

 ( ) = 2.

Gaussian (Normal) Distribution

The continuous random variable  has a Gaussian (also called a Normal) distribution

if its probability density function is of the form

(; ) =
1√
2

exp

"
−1
2

µ
 − 



¶2#
for −∞   ∞

where  and  are parameters, with −∞    ∞ and   0. Recall that ( ) = 

 ( ) = 2 and the standard deviation of  is ( ) = . We write either  ∼ ( )

or  ∼ ( 2). Note that in the former case, ( ), the second parameter is the

standard deviation  whereas in the latter, ( 2), we specify the variance 2 for the pa-

rameter. Most software syntax including  requires that you input the standard deviation

for the parameter. As seen in examples in Chapter 1, the Gaussian distribution provides

a suitable model for the distribution of measurements on characteristics like the size or

weight of individuals in certain populations, but is also used in many other settings. It is

particularly useful in finance where it is the most common model for asset prices, exchange
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rates, interest rates, etc.

Multinomial Distribution

The Multinomial distribution is a multivariate distribution in which the discrete random

variable’s 1      ( ≥ 2) have the joint probability function

 (1 = 1      = ;θ) = (1     ;θ)

=
!

1!2!    !

1
1 

2
2 




where each , for  = 1     , is an integer between 0 and , and satisfying the condition
P
=1

 = . The elements of the parameter vector θ = (1 2     ) satisfy 0   

1 for  = 1     , and
P
=1

 = 1. This distribution is a generalization of the Binomial

distribution. It arises when there are repeated independent trials, where each trial has 

possible outcomes (call them outcomes 1     ), and the probability outcome  occurs is

. If ,  = 1      is the number of times that outcome  occurs in a sequence of 

independent trials, then (1     ) have the joint probability function above. We write

(1     ) ∼ Multinomial(;θ)
Since

P
=1

 =  we can rewrite (1     ;θ) using only −1 variables, say 1     −1
by replacing  with  − 1 −    − −1. We see that the Multinomial distribution with
 = 2 is just the Binomial distribution, where the two possible outcomes are  (Success)

and  (Failure).

We will also consider models that include explanatory variables, or covariates. For

example, suppose that the response variable  is the weight (in kg) of a randomly selected

female in the age range 16-25, in some population. A person’s weight is related to their

height, so we might want to study this relationship. A way to do this is to consider females

with a given height  (say in meters), and to propose that the distribution of  , given  is

Gaussian, (+  ). That is, we are proposing that the average (expected) weight of a

female depends linearly on her height  and we write this as

( |) = + 

Such models are considered in Chapters 6-8.

We now turn to the problem of fitting a model. This requires estimating or assigning

numerical values to the parameters in the model (for example,  and  in the Gaussian

model or  in an Exponential model).
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2.2 Estimation of Parameters (Model Fitting)

Suppose a probability distribution that serves as a model for some random process depends

on an unknown parameter  (possibly a vector). In order to use the model we have to

“estimate” or specify a value for . To do this we usually rely on some data set that has

been collected for the random variable in question. It is important that a data set be

collected carefully, and we consider this issue in Chapter 3. For example, suppose that the

random variable  represents the weight of a randomly chosen female in some population,

and that we consider a Gaussian model,  ∼  ( ). Since ( ) = , we might decide to

randomly select, say, 10 females from the population, measure their weights 1 2     10,

and use the average,

̂ = ̄ =
1

10

10X
=1

 (2.3)

to estimate . This seems sensible (why?) and similar ideas can be developed for other

parameters; in particular, note that  must also be estimated, and you might think about

how you could use 1     10 to do this. (Hint: what does  or 2 represent in the

Gaussian model?). Note that although we are estimating the parameter  we did not write

 = 1
10

10P
=1

. We introduced a special notation ̂. This serves a dual purpose, both to

remind you that 1
10

10P
=1

 is not exactly equal to the unknown value of the parameter ,

but also to indicate that ̂ is a quantity derived from the data ,  = 1 2     10 and is

therefore a random quantity. A different draw of the sample ,  = 1 2     10 will result

in a different value for ̂

Instead of ad hoc approaches to estimation as in (2.3), it is desirable to have a general

method for estimating parameters. The method of maximum likelihood is a very general

method, which we now describe.

Let the discrete (vector) random variable Y represent potential data that will be used

to estimate , and let y represent the actual observed data that are obtained in a specific

application. Note that to apply the method of maximum likelihood, we must know (or make

assumptions about) how the data y were collected. It is usually assumed here that the

data set consists of measurements on a random sample of population units. The likelihood

function for  is then defined as

 () =  (;y) =  (Y = y; ) for  ∈ Ω

where the parameter space Ω is the set of possible values for . Note that the likelihood

function is a function of the parameter  and the given data y. For convenience we usually

write just  (). Also, the likelihood function is the probability that we observe at random

the observation y considered as a function of the parameter . Obviously values of the

parameter that make our observation y more probable would seem more credible or likely

than those that make it less probable. Therefore values of  for which () is large are more
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consistent with the observed data y. The value ̂ that maximizes () for given data y is

called the maximum likelihood estimate 2 (m.l. estimate) of . This seems like a “sensible”

approach, and it turns out to have very good properties.

Example 2.2.1 (a public opinion poll)3.

We are surrounded by polls. They guide the policies of our political leaders, the prod-

ucts that are developed by manufacturers, and increasingly the content of the media. For

example the poll4 in Figure 2.2 was conducted by Harris/Decima company under contract

Figure 2.2: The CAUT Bulletin

of the CAUT (Canadian Association of University Teachers). This is a semi-annual poll on

Post-Secondary Education and Canadian Public Opinion. The poll above was conducted

2We will often distinguish between the random variable, the maximum likelihood estimator, which is the

function of the data in general, and its numerical value for the data at hand, referred to as the maximum

likelihood estimate.
3See the corresponding video "harris decima poll and introduction to likelihoods" at www.watstat.ca
4http://www.caut.ca/uploads/Decima_Fall_2010.pdf
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in November 2010. Harris/Decima uses a telephone poll of 2000 “representative” adults.

Twenty-six percent of respondents agreed and 48% disagreed with the following statement:

“University and college teachers earn too much”.

Figure 2.3: Results of the Harris/Decima poll. The two bars are from polls conducted Nov. 9,

2010 and Nov 10, 2010 respectively.

Harris/Decima declared their result to be accurate within ±22 percent, 19 times out of
20 (the margin of error for regional, demographic or other subgroups is larger). What does

this mean and how were these estimates and intervals obtained? Suppose that the random

variable  represents the number of individuals who, in a randomly selected group of 

persons, agreed with the statement. It is assumed that  is closely modelled by a Binomial

distribution:

 ( = ; ) = (; ) =

µ




¶
(1− )− for  = 0 1  

where  represents the fraction of the entire population that agree. In this case, if we select

a random sample of  persons and obtain their views we haveY =  , and the observed data

is y =  = 520, the number out of 2000 who were polled that agreed with the statement.

Thus the likelihood function is given by

() =

µ




¶
(1− )− for 0    1 (2.4)

or for this example µ
2000

520

¶
520(1− )2000−520 for 0    1 (2.5)

It is easy to see that (24) is maximized by the value ̂ = . (You should show this.) For

this example the value of this maximum likelihood estimate is 5202000 or 26%. This is

also easily seen from a graph of the likelihood function (2.5) given in Figure 2.4. From

the graph it can also be seen that the interval suggested by the pollsters, 26 ± 22% or

[238 282] is a reasonable interval for the parameter  since it seems to contain most of
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Figure 2.4: Likelihood function for the Harris/Decima poll and corresponding interval

estimate for 

the values of  with large values of the likelihood (). We will return to the construction

of such interval estimates later.

Example 2.2.2

Suppose that the random variable  represents the number of persons infected with the

human immunodeficiency virus (HIV) in a randomly selected group of  persons. Again

assume that  is modelled by a Binomial distribution:

 ( = ; ) = (; ) =

µ




¶
(1− )− for  = 0 1     

where  represents the fraction of the population that are infected. In this case, if we select

a random sample of  persons and test them for HIV, we have Y =  , and y =  as the

observed number infected. Thus

() =

µ




¶
(1− )− for 0    1 (2.6)

and again () is maximized by the value ̂ = .

Note that the likelihood function’s basic properties, for example, where its maximum

occurs and its shape, are not affected if we multiply () by a constant. Indeed it is not

the absolute value of the likelihood function that is important but the relative values at

two different values of the parameter, e.g. (1)(2) You might think of this ratio as

how much more or less consistent the data is with the parameter 1 versus 2. The ratio

(1)(2) is also unaffected if we multiply () by a constant. In view of this we might
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define the likelihood as  (Y = y; ) or any constant multiple of it, so, for example, we

could drop the term
¡



¢
in (2.6) and define () = (1−)−. This function and (2.6) are

maximized by the same value ̂ =  and have the same shape. Indeed we might rescale

the likelihood function by dividing through by its maximum value (̂) so that the new

function has a maximum value equal to one. This rescaled version is called the relative

likelihood function

() =
()

(̂)
for  ∈ Ω

It is also convenient to define the log likelihood function,

() = log() for  ∈ Ω

Note that ̂ also maximizes (). (Why?) Because functions are often (but not always!)

maximized by setting their derivatives equal to zero5, we can usually obtain ̂ by solving

the equation



= 0

For example, from () = (1− )− we get () =  log() + (− ) log(1− ) and




=




− − 

1− 


Solving  = 0 gives ̂ = .

In many applications the data set Y are assumed to consist of a random sample

1      from some process or population, where each  has the probability function

(or probability density function) (; ),  ∈ Ω. In this case y = (1     ) and

() =
Q
=1

(; ) for  ∈ Ω

(You should recall from probability that if 1      are independent random variables then

their joint probability function is the product of their individual probability functions.)

In addition, if for estimating  we have two data sets y1 and y2 from two independent

studies, then since the corresponding random variables Y1 and Y2 are independent we have

 (Y1 = y1Y2 = y2; ) =  (Y1 = y1; )×  (Y2 = y2; )

and we obtain the “combined” likelihood function () based on y1 and y2 together as

() = 1()× 2() for  ∈ Ω

where () =  (Y = y ; )  = 1 2

5Can you think of an example of a continuous function () defined on the interval [0 1] for which the

maximum max0≤≤1 () is NOT found by setting  0() = 0?
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Likelihood for Continuous Distributions.

Recall that we defined likelihoods for discrete random variables as the probability of

the observed values, or

 () =  (;y) =  (Y = y; ) for  ∈ Ω

For continuous distributions,  (Y = y; ) is unsuitable as a definition of the likelihood

since it is always zero. However in the continuous case, we define likelihood similarly

but with the probability function  (Y = y; ) replaced by the joint probability density

function evaluated at the observed values. For independent observations   = 1 2  

from the same probability density function (; ), the joint probability density function of

(1 2  ) is
Q
=1

(; )

Consequently this is used in this context for the likelihood function. For  independent ob-

servations 1 2   from a continuous probability density function (; ), the likelihood

function is defined as

 () =  (;y) =
Q
=1

(; ) for  ∈ Ω (2.7)

Example 2.2.3

Suppose that the random variable  represents the lifetime of a randomly selected light

bulb in a large population of bulbs, and that  follows an Exponential distribution with

probability density function

(; ) =
1


− for   0

where   0. If a random sample of light bulbs is tested and the lifetimes 1      are

observed, then the likelihood function for  is, from (2.7),

() =
Q
=1

µ
1


−

¶
=
1


exp

µ
−

P
=1



¶


Thus

() = − log  − 1


X
=1



and solving  = 0, we obtain

̂ =
1



X
=1

 = ̄

A first derivative test easily verifies that ̂ = ̄ maximizes () and so it is the maximum

likelihood estimate of .



2.2. ESTIMATION OF PARAMETERS (MODEL FITTING) 39

Example 2.2.2 revisited.

Sometimes the likelihood function for a given set of data can be constructed in more

than one way. For the random sample of  persons who are tested for HIV, for example,

we could define

 =  (person  tests positive for HIV)

for  = 1     . (Note: () is the indicator function; it equals 1 if  is true and 0 if  is

false.) In this case the probability function for  is Binomial(1; ) with

(; ) = (1− )1− for  = 0 1 and 0    1

and the likelihood function is

() =
Q
=1

(; )

= Σ(1− )−Σ

= (1− )− for 0    1

where  =
P
=1

. This is the same likelihood function as we obtained in Example 2.2.1, if

we use the fact that  =
P
=1

 has a Binomial distribution, Binomial( ).

Example 2.2.4

As an example involving more than one parameter, suppose that the random variable

 has a Gaussian distribution with probability density function

(; ) =
1√
2 

exp

"
−1
2

µ
 − 



¶2#
for −∞   ∞

The random sample 1   then gives, with θ = ( ),

(θ) = ( ) =
Q
=1

(; )

= (2)−2− exp

"
−1
2

X
=1

µ
 − 



¶2#


where −∞   ∞ and   0. Thus

(θ) = ( ) = − log  − 1

22

P
=1

( − )2 − (2) log(2)
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We wish to maximize ( ) with respect to both parameters  and  Solving 6 the two

equations7




=
1

2

P
=1

( − ) = 0




= −


+
1

3

P
=1

( − )2 = 0

simultaneously we find that the maximum likelihood estimate of θ is θ̂ = (̂ ̂), where

̂ =
1



P
=1

 = ̄

̂ =

∙
1



P
=1

( − ̄)2
¸12



In many applications we encounter likelihood functions which cannot be maximized

mathematically and we need to resort to numerical methods. The following example pro-

vides an illustration.

Example 2.2.5

The number of coliform bacteria  in a random sample of water of volume  ml is

assumed to have a Poisson distribution:

 ( = ; ) = (; ) =
()



!
− for  = 0 1    (2.8)

where  is the average number of bacteria per millilitre (ml) of water. There is an inexpen-

sive test which can detect the presence (but not the number) of bacteria in a water sample.

In this case what we do not observe  , but rather the “presence” indicator (  0), or

 =

(
1 if   0

0 if  = 0

Note that from (2.8),

 ( = 1; ) = 1− − = 1−  ( = 0; )

Suppose that  water samples, of volumes 1     , are selected. Let 1      be the

observed values of the presence indicators. The likelihood function is then

() =
Q
=1

 ( = ; )

=
Q
=1

(1− −)(−)1− for   0

6To maximize a function of two variables, set the derivative with respect to each variable equal to zero.

Of course finding values at which the derivatives are zero does not prove this is a maximum. Showing it is

a maximum is another exercise in calculus.
7 In case you have not met partial derivatives, the notation 


means we are taking the derivative with

respect to  while holding the other parameter  constant. Similarly 

is the derivative with respect 

while holding  constant.
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and the log likelihood function is

() =
P
=1

[ log(1− −)− (1− )] for   0

We cannot maximize () mathematically by solving  = 0, so we will use numerical

methods. Suppose for example that  = 40 samples gave data as follows:

 (ml) 8 4 2 1

no. of samples 10 10 10 10

no. with  = 1 10 8 7 3

This gives

() = 10 log(1− −8) + 8 log(1− −4) + 7 log(1− −2)

+ 3 log(1− −)− 21 for   0

Either by maximizing () numerically for   0, or by solving  = 0 numerically, we

find the maximum likelihood estimate of  to be ̂ = 0478. A simple way to maximize ()

is to plot it, as shown in Figure 2.5; the maximum likelihood estimate can then be found

by inspection or, for more accuracy, by iteration using Newton’s method8.

A few remarks about numerical methods are in order. Aside from a few simple models,

it is not possible to maximize likelihood functions explicitly. However, software exists which

implements powerful numerical methods which can easily maximize (or minimize) functions

of one or more variables. Multi-purpose optimizers can be found in many software pack-

ages; in  the function nlm() is powerful and easy to use. In addition, statistical software

packages contain special functions for fitting and analyzing a large number of statistical

models. The  package MASS (which can be accessed by the command library (MASS))

has a function fitdistr that will fit many common models.
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Figure 2.5: The log likelihood function () for Example 2.2.5

8You should recall this from your calculus course



42MODEL FITTING, MAXIMUMLIKELIHOODESTIMATION, ANDMODEL CHECKING

2.3 Likelihood Functions For Multinomial Models

Multinomial models are used in many statistical applications. From Section 2.1, the

Multinomial probability function is

(1     ;θ) =
!

1!    !

Q
=1



 for  = 0 1   where

P
=1

 = 

If the ’s are to be estimated from data involving  “trials”, of which  resulted in outcome

  = 1     , then it seems obvious that

̂ =  for  = 1     

would be a sensible estimate. This can also be shown to be the maximum likelihood esti-

mate for θ = (1     ).
9

Example 2.3.1

Each person is one of four blood types, labelled A, B, AB and O. (Which type a person

is has important consequences, for example in determining to whom they can donate a

blood transfusion.) Let 1 2 3 4 be the fraction of a population that has types A, B,

AB, O, respectively. Now suppose that in a random sample of 400 persons whose blood was

tested, the numbers who were types 1 to 4 were 1 = 172 2 = 38 3 = 14 and 4 = 176

(note that 1 + 2 + 3 + 4 = 400).

Let the random variables 1 2 3 4 represent the number of type A, B, AB, O

persons we might get in a random sample of size  = 400. Then 1 2 3 4 follow a

Multinomial(400; 1 2 3 4). The maximum likelihood estimates from the observed data

are therefore

̂1 =
172

400
= 043 ̂2 =

38

400
= 0095 ̂3 =

14

400
= 0035 ̂4 =

176

400
= 044

(As a check, note that
4P

=1

̂ = 1). These give estimates of the population fractions 1 2

3 4. (Note: studies involving much larger numbers of people put the values of the ’s

for Caucasians at close to 1 = 0448 2 = 0083 3 = 0034 4 = 0436)

In some problems the Multinomial parameters 1      may be functions of fewer than

 − 1 parameters. The following is an example.

Example 2.3.2

9The log likelihood can be taken as (dropping the !(1!    !) term for convenience) () =

=1

 log  This is a little tricky to maximize because the ’s satisfy a linear constraint,


 = 1.

The Lagrange multiplier method (Calculus III) for constrained optimization allows us to find the solution

̂ =  ,  = 1     .
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Another way of classifying a person’s blood is through their “M-N” type. Each person

is one of three types, labelled MM, MN and NN and we can let 1 2 3 be the fraction of

the population that is each of the three types. According to a model in genetics, the ’s

can be expressed in terms of a single parameter  for human populations:

1 = 2 2 = 2(1− ) 3 = (1− )2

where  is a parameter with 0    1. In this case we would estimate  from a random

sample of size  giving 1 2 and 3 persons of types MM, MN and NN by using the

likelihood function

() =
!

1!2!3!

1
1 

2
2 

3
3

=
!

1!2!3!
[2]1 [2(1− )]2 [(1− )2]3

= 21+2(1− )2+23 for 0    1 where  =
!

1!2!3!
22 

Example 2.4.2 in the next section considers some data for this setting.

2.4 Checking Models

The models used in this course are probability distributions for random variables that

represent variates in a population or process. A typical model has probability density

function (; ) if the variate  is continuous, or probability function (; ) if  is discrete,

where  is (possibly) a vector of parameter values. If a family of models is to be used for some

purpose then it is important to check that the model adequately represents the variability

in  . This can be done by comparing the model with random samples 1      of -values

from the population or process.

The probability model is supposed to represent the relative frequency of sets of -values

in large samples, so a fundamental check is to compare model probabilities and relative

frequencies for a sample. Recall the definition of a histogram in Section 1.3 and let the

range of  be partitioned into intervals  = [−1 )  = 1     . From our model

(; ) we can compute the values

̂ =  (−1 ≤    ; ̂) for  = 1     

If the model is suitable, these values should be “close” to the observed relative frequencies

 =  in the sample. (Recall that  is the number of -values in the sample that are in

the interval ). This method of comparison works for either discrete or continuous random

variables. An example of each type follows.
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Example 2.4.1

Suppose that an Exponential model for a positive-valued continuous random variable

 has been proposed, with probability density function

() = 001−001 for   0 (2.9)

and that a random sample of size  = 20 has given the following values 1     20 (rounded

to the nearest integer):

10 32 15 26 157 99 109 88 39 118

61 104 77 144 338 72 180 63 155 140

For illustration purposes, let us partition [0∞), the range of  , into four intervals [0 30),
[30 70), [70 140),[140∞). The probabilities ̂ ,  = 1     4 from the model (2.9) are given
by

̂ =

Z 

−1
001−001 = −001−1 − −001

and we find ̂1 = 0261 ̂2 = 0244 ̂3 = 0250 ̂4 = 0247 (the numbers add to 1002

and not 10 because of round-off error). The relative frequencies  = 20 from the

random sample are 1 = 015 2 = 025 3 = 030 4 = 030. These agree fairly well with

the model-based values ̂ , but we might wonder about the first interval. We discuss how

“close” we can expect the agreement to be following the next example. With a sample of

this small a size, the difference between 1 and ̂1 represented here does not suggest that

the model is inadequate.

This example is an artificial numerical illustration. In practice we usually want to check

a family of models for which one or more parameter values is unknown. When parameter

values are unknown we first estimate them using maximum likelihood, and then check the

resulting model. The following example illustrates this procedure.

Example 2.4.2

In Example 2.3.2 we considered a model from genetics in which the probability a person

is blood type MM, MN or NN is 1 = 2 2 = 2(1 − ) 3 = (1 − )2, respectively.

Suppose a random sample of 100 individuals gave 17 of type MM, 46 of type MN, and 37

of type NN.

The relative frequencies from the sample are 1 = 017 2 = 046 3 = 037, where we

use the obvious “intervals” 1 = {person is MM} 2 = {person is MN} 3 = {person is
NN}. (If we wish, we could also define the random variable  to be 1, 2, 3 according to

whether a person is MM, MN or NN.) Since  is unknown, we must estimate it before we

can check the family of models given above. From Example 2.3.2, the likelihood function

for  from the observed data (ignoring the constant ) is

() = [2]17[(1− )]46[(1− )2]37 for 0    1
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Collecting terms, we find

() = log() = 80 log+ 120 log(1− )

and  = 0 gives the maximum likelihood estimate ̂ = 040. The model-based proba-

bilities for 1 2 3 are thus

̂1 = ̂2 = 016 ̂2 = 2̂(1− ̂) = 048 ̂3 = (1− ̂)2 = 036

and these agree quite closely with 1 = 017 2 = 046 3 = 037. On this basis the model

seems satisfactory.

The method above suffers from some arbitrariness in how the  ’s are defined and

in what constitutes “close” agreement between the model-based probabilities ̂ and the

relative frequencies  = . Some theory that provides a formal comparison will be given

later in Chapter 7, but for now we will just rely on the following simple guideline. If we

consider the random variables  ,  = 1      corresponding to the observed frequencies 

then (1     ) have a Multinomial(; 1     ) distribution, where  is the “true” value

of  (−1 ≤   ) in the population. In addition, any single  has a Binomial( )

distribution. This means we can assess how variable either  or  =  is likely to be, in

a random sample. From the Central Limit Theorem, if  is large enough, the distribution

of  is approximately normal, (  (1− )). It follows that



µ
 − 196

q
(1− ) ≤  ≤  + 196

q
(1− )

¶
≈ 095

and thus (dividing by  and rearranging)



Ã
−196

r
(1− )


≤  −  ≤ 196

r
(1− )



!
≈ 095 (2.10)

where  = . This allows us to get a rough idea for what constitutes a large discrepancy

between an observed relative frequency  and a true probability  . For example when

 = 20 and  is about 025, as in Example 2.4.1, we get from (2.10) that

 (−019 ≤  −  ≤ 019) ≈ 095

so it is quite common for  to differ from  by up to 019. The discrepancy between

1 = 015 and 1 = 0261 in Example 2.4.1 is consequently not unusual and does not

suggest the model is inadequate.

For larger sample sizes,  will tend to be closer to the true value  . For example, with

 = 100 and  = 05, (2.10) gives

 (−010 ≤  −  ≤ 010) ≈ 095
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Thus in Example 2.4.2, there is no indication that the model is inadequate. (We are as-

suming here that the model-based values ̂ are like the true probabilities as far as (2.10)

is concerned. This is not quite correct but (2.10) will still serve as a rough guide. We are

also ignoring the fact that we have picked the largest difference between  and ̂ , as the

Binomial distribution is not quite correct either. Chapter 7 shows how to develop checks

of the model that get around these points.)

Graphical Checks

A graph that compares relative frequencies and model-based probabilities provides a

nice picture of the “fit” of the model to the data. Two plots that are widely used are based

on histograms and the empirical cumulative distribution function ̂ () which were both

discussed in Chapter 1.

The histogram plot for a continuous random variable  is as follows. Plot a relative

frequency histogram of the random sample 1      and superimpose on this a plot of the

probability density function (; ) for the proposed model. The area under the probability

density function between values −1 and  equals  (−1 ≤   ) so this should agree

well with the area of the rectangle over [−1 ). The plots in Figure 1.7 for the can-filling
data in Chapter 1 are of this type.

For a discrete random variable  we plot a probability histogram for the probability

distribution (; ) and superimpose a relative frequency histogram for the data, using the

same intervals  in each case.

A second graphical procedure is to plot the empirical cumulative distribution function

̂ () and then to superimpose on this a plot of the model-based cumulative distribution

function,  ( ≤ ; ) =  (; ). If the model is suitable, the two curves should not be too

far apart. An illustration is given in the next example.

Example 2.4.3

For the data on female heights in Chapter 1 and using the results from Example 2.2.4

we obtain ̂ = 162 ̂ = 00637 as the maximum likelihood estimates of  and . Figure

2.6 shows (a) a relative frequency histogram for these data with the (162 00637) proba-

bility density function superimposed and (b) a plot of the empirical cumulative distribution

function with the (162 00637) cumulative distribution function superimposed. The two

types of plots give complementary but consistent pictures. An advantage of the distribu-

tion function comparison is that the exact heights in the sample are used, whereas in the

histogram - probability density function plot the data are grouped into intervals to form

the histogram. However, the histogram and probability density function show the distri-

bution of heights more clearly. Neither plot suggests strongly that the Gaussian model is

unsatisfactory. Both plots were created using .
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Figure 2.6: Model and Data Comparisons for Female Heights

2.5 Problems

1. In modelling the number of transactions of a certain type received by a central com-

puter for a company with many on-line terminals the Poisson distribution can be used.

If the transactions arrive at random at the rate of  per minute then the probability

of  transactions in a time interval of length  minutes is

 ( = ; ) =  (; ) =
()

!
− for  = 0 1    and   0

(a) The numbers of transactions received in 10 separate one minute intervals were

8, 3, 2, 4, 5, 3, 6, 5, 4, 1. Write down the likelihood function for  and find the

maximum likelihood estimate ̂.

(b) Estimate the probability that during a two-minute interval, no transactions ar-

rive.

(c) Use the  function rpois() with the value  = 41 to simulate the number of

transactions received in 100 one minute intervals. Calculate the sample mean

and variance; are they approximately the same? (Note that ( ) =  ( ) = 

for the Poisson model.)

2. Consider the following two experiments whose purpose was to estimate , the fraction

of a large population with blood type B.

Experiment 1: Individuals were selected at random until 10 with blood type B were found. The

total number of people examined was 100.
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Experiment 2: One hundred individuals were selected at random and it was found that 10 of

them have blood type B.

(a) Find the probability of the observed results (as a function of ) for the two

experiments. Thus obtain the likelihood function for  for each experiment and

show that they are proportional. Show the maximum likelihood estimate ̂ is

the same in each case. What is the maximum likelihood estimate of ?

(b) Suppose  people came to a blood donor clinic. Assuming  = 010, how large

should  be to ensure that the probability of getting 10 or more B- type donors

is at least 090? (The  functions gbinom() or pbinom() can help here.)

3. Consider Example 2.3.2 on M-N blood types. If a random sample of  individuals

gives 1 2 and 3 persons of types MM, MN, and NN respectively, find the maxi-

mum likelihood estimate ̂ in the model in terms of 1 2 3.

4. Suppose that in a population of twins, males () and females ( ) are equally likely

to occur and that the probability that a pair of twins is identical is . If twins are

not identical, their sexes are independent.

(a) Show that

 () =  ( ) =
1 + 

4

 ( ) =
1− 

2

(b) Suppose that  pairs of twins are randomly selected; it is found that 1 are ,

2 are  , and 3 are  , but it is not known whether each set is identical or

fraternal. Use these data to find the maximum likelihood estimate ̂ of . What

does this give if  = 50 with 1 = 16, 2 = 16, 3 = 18?

(c) Does the model appear to fit the data well?

5. Estimation from capture-recapture studies.

In order to estimate the number of animals,  , in a wild habitat the capture-recapture

method is often used. In this scheme  animals are caught, tagged, and then released.

Later on  animals are caught and the number  of these that have tags are noted.

The idea is to use this information to estimate  .

(a) Show that under suitable assumptions

 ( = ) =

¡



¢¡
−
−

¢¡



¢
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(b) For observed ,  and  find the value ̂ that maximizes the probability in

part (a). Does this ever differ much from the intuitive estimate ̃ = ?

(Hint: The likelihood () depends on the discrete parameter  , and a good

way to find where () is maximized over {1 2 3   } is to examine the ratios
( + 1)())

(c) When might the model in part (a) be unsatisfactory?

6. The following model has been proposed for the distribution of the number of offspring

 in a family, for a large population of families:

 ( = ;) =   = 1 2   

 ( = 0;) = 1−2
1−

Here  is an unknown parameter with 0    1
2
.

(a) Suppose that  families are selected at random and that  is the number of

families with  children (0 + 1 +    = ). Determine the maximum likelihood

estimate of .

(b) Consider a different type of sampling wherein a single child is selected at random

and the size of family the child comes from is determined. Let  represent the

number of children in the family. Show that

 ( = ;) =  for  = 1 2   

and determine .

(c) Suppose that the type of sampling in part (b) was used and that with  = 33

the following data were obtained:

: 1 2 3 4

: 22 7 3 1

Determine the maximum likelihood estimate of . Also estimate the probability

a couple has no children.

(d) Suppose the sample in (c) was incorrectly assumed to have arisen from the sam-

pling plan in (a). What would ̂ be found to be? This problem shows that the

way the data have been collected can affect the model for the response variable.

7. Radioactive particles are emitted randomly over time from a source at an average rate

of  per second. In  time periods of varying lengths 1 2      (seconds), the num-

bers of particles emitted (as determined by an automatic counter) were 1 2     

respectively.
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(a) Determine an estimate of  from these data. What assumptions have you made

to do this?

(b) Suppose that instead of knowing the ’s, we know only whether or not there

was one or more particles emitted in each time interval. Making a suitable as-

sumption, give the likelihood function for  based on these data, and describe

how you could find the maximum likelihood estimate of .

8. Censored lifetime data. Consider the Exponential distribution as a model for the

lifetimes of equipment. In experiments, it is often not feasible to run the study long

enough that all the pieces of equipment fail. For example, suppose that  pieces of

equipment are each tested for a maximum of  hours ( is called a “censoring time”)

. The observed data are then as follows:

•  (where 0 ≤  ≤ ) pieces fail, at times 1     .

• −  pieces are still working after time .

(a) If  has an Exponential() distribution, show that

 (  ; ) = − for   0

(b) Determine the likelihood function for  based on the observed data described

above. Show that the maximum likelihood estimate of  is

̂ =
1



∙
P
=1

 + (− )

¸


(c) What does part (b) give when  = 0? Explain this intuitively.

(d) A standard test for the reliability of electronic components is to subject them

to large fluctuations in temperature inside specially designed ovens. For one

particular type of component, 50 units were tested and  = 5 failed before 400

hours, when the test was terminated, with
5P

=1

 = 450 hours. Find the maxi-

mum likelihood estimate of .

9. Poisson model with a covariate. Let  represent the number of claims in a given

year for a single general insurance policy holder. Each policy holder has a numerical

“risk score”  assigned by the company, based on available information. The risk score

may be used as a covariate (explanatory variable) when modeling the distribution of

 , and it has been found that models of the form

 ( = |) = [()]

!
−() for  = 0 1   

where () = exp(+ ), are useful.
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(a) Suppose that  randomly chosen policy holders with risk scores 1 2     

had 1 2      claims, respectively, in a given year. Determine the likelihood

function for  and  based on these data.

(b) Can ̂ and ̂ be found explicitly?

10. In a large population of males ages 40 - 50, the proportion who are regular smok-

ers is  where 0    1 and the proportion who have hypertension (high blood

pressure) is  where 0    1. If the events  (a person is a smoker) and  (a

person has hypertension) are independent, then for a man picked at random from the

population the probabilities he falls into the four categories  ̄ ̄ ̄̄ are

respectively,  (1− ) (1− ) (1− )(1− ). Explain why this is true.

(a) Suppose that 100 men are selected and the numbers in each of the four categories

are as follows:
Category  ̄ ̄ ̄̄

Frequency 20 15 22 43

Assuming that  and  are independent events, determine the likelihood func-

tion for  and  based on the Multinomial distribution, and find the maximum

likelihood estimates of  and .

(b) Compute the expected frequencies for each of the four categories using the max-

imum likelihood estimates. Do you think the model used is appropriate? Why

might it be inappropriate?

11. The course web page has data on the lifetimes of the right front disc brakes

pads for a specific car model. The lifetimes  are in km driven, and correspond

to the point at which the brake pads in new cars are reduced to a specified

thickness. The data on  = 92 randomly selected cars are contained in the file

brakelife.text.

(a) Assuming a ( ) model for the lifetimes, determine the maximum likeli-

hood estimates of  and  based on the data. How well does the Gaussian

model fit the data?

(b) Another model for such data is given by

 (; ) =
1√
2

exp

"
−1
2

µ
log  − 



¶2#
 for   0

(Note: Show using methods you learned in your course on probability that

if  v ( ) then  = log has the probability density function given
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above.) Using this model determine the maximum likelihood estimates of 

and  based on the data. How well does this model fit the data? Which of

the two models describes the data better?



PLANNING AND

CONDUCTING EMPIRICAL

STUDIES

3.1 Empirical Studies

An empirical study is one which is carried out to learn about a population or process by

collecting data. We have given several examples in the preceding two chapters but we have

not yet considered the details of such studies in any systematic way. It is the object of this

chapter to do that. Well-conducted studies are needed to produce maximal information

within existing cost and time constraints. Conversely, a poorly planned or executed study

can be worthless or even misleading.

It is helpful to think of planning and conducting a study as a set of steps. We describe

below the set of steps to which we assign the acronym PPDAC

• Problem: a clear statement of the study’s objectives, usually involving one or more
questions

• Plan: the procedures used to carry out the study including how we will collect the
data.

• Data: the physical collection of the data, as described in the Plan.

• Analysis: the analysis of the data collected in light of the Problem and the Plan.

• Conclusion: The conclusions that are drawn about the Problem and their limitations.

PPDAC has been designed to emphasize the statistical aspects of empirical studies.

Throughout the course, we will develop each of the five steps in more detail and see many

applications of PPDAC’s use. We identify the steps in the following example.

Example 3.1

The following newspaper article was taken from the Kitchener-Waterloo Record, December

53
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1, 1993. It describes an empirical investigation in the field of medicine. There are thou-

sands of studies in this field every year conducted at very high costs to society and with

critical consequences. These investigations must be well planned and executed so that the

knowledge they produce is useful, reliable and obtained at reasonable cost.

K-W Record, December 1, 1993

Fats raise risk of lung cancer in non-smokers

WASHINGTON (AP) — Add lung

cancer to the growing list of diseases

that seem to be influenced by diets

high in fat. A study by the U.S. Na-

tional Cancer Institute of non-smoking

women in Missouri found that those

who eat diets with 15 percent or more

saturated fat are about six times more

likely to develop lung cancer than those

whose meals have 10 per cent or less of

fat. “We found that as you increase the

amount of saturated fat, you increase

the amount of lung cancer,” Michael

Alavanja, an institute researcher, said

Tuesday. A report on the study is to

be published Friday in the Journal of

the National Cancer Institute. Ear-

lier studies have linked high-fat diets

with cancers of the colon, prostate and

breast. High-fat diets also are

thought to increase the risk of heart

disease. Alavanja said his research

compared the diets of 429 non-smoking

women who had lung cancer with the

diets of 1021 non-smoking women who

did not have lung cancer. The women

all lived in Missouri, were of about

the same age and represented “a typ-

ical American female population.” The

women filled out forms that asked

about their dietary habits. They were

then divided into 5 groups based on the

amount of fat and other nutrients they

consumed. Alavanja said the study

found that those with diets with the

lowest amount of saturated fat and the

highest amount of fruits, vegetables,

beans and peas were the least likely to

develop lung cancer. At the other end

of the scale, 20 per cent of the women

in the study with the

highest consumption of fat and diets

lowest in fruits, vegetables, beans and

peas had about six times more lung

cancer. For a specific type of lung can-

cer, adenocarcinoma, there was an 11-

fold difference between those on lowest-

fat diets and those on the highest-fat di-

ets. Adenocarcinoma is a form of lung

cancer that is less often associated with

smoking. “The leading contributors of

dietary saturated fat were hamburgers,

cheeseburgers, and meat loaf    fol-

lowed by weekly consumption of cheeses

and cheese spreads, hot dogs, ice cream

and sausages,” the study said. Ala-

vanja said that these foods, by them-

selves cannot be considered good or

bad, but that they appear to create a

lung cancer risk with the represent 15

percent or more of the calories in the

diet.

Here are the five steps:

• Problem
Does a high level of dietary saturated fat cause an increased risk of lung cancer in

non-smoking women?

Plan

Find a set of non-smoking women with lung cancer and another set of non-smoking

women without lung cancer. The women are to be comparable in age. Measure the

level of saturated fat in the diet of each individual woman.

Data

Collect dietary fat levels for 429 lung cancer patients and 1021 other women.

Analysis
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Define five categories of dietary fat intake (low to high) and determine the number

of women in the study that fall in each category. Then calculate the proportion of

women in each category that have lung cancer.

Conclusion

The lowest level of fat intake category has the lowest rate of lung cancer and the

highest level of fat intake category has the highest rate of lung cancer. It appears

that increased dietary fat intake increases the risk of lung cancer in non-smoking

women.

Note that in the Problem step, we describe what we are trying to learn or what

questions we want to answer. The Plan step describes how the data are to be measured

and collected. In the Data step, the Plan is executed. The Analysis step corresponds

to what many people think Statistics is all about. We carry out both simple and complex

calculations to process the data into information. Finally, in the Conclusion step, we answer

the questions formulated at the Problem step.

You will learn to use PPDAC in two ways - first to actively formulate, plan and carry

out investigations and second as a framework to critically scrutinize reported empirical

investigations. These reports include articles in the popular press (as in the above example),

scientific papers, govenrment policy statements and various business reports. If you see the

phrase “evidence based decison” or “evidence based management”, look for an empirical

study.

In the rest of this chapter, we discuss the steps of PPDAC in more detail. To do so we

introduce a numer of technical terms. Every subject has its jargon, i.e. words with special

meaning and you need to learn the terms describing the details of PPDAC to be successful

in this course. We have written the new terms in italics where they are defined.

3.2 The Problem

The elements of the Problem address questions starting with “What”

• What conclusions are we trying to draw?

• What group of things or people do we want the conclusions to apply?

• What variates can we define?

• What is(are) the question(s) we are trying to answer?

The first step is to define the units and the target population or target process. In

Chapter 1, we considered a survey of teenagers in Ontario in a specific week to learn about

their smoking behaviour. In this example the units are teenagers in Ontario at the time
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of the survey and the target population is all such teenagers. In another example, we

considered the comparison of two machines with respect to the volume of liquid in cans

being filled. In this example the units are the individual cans. The target population (or

perhaps it is better to call it a process) is all such cans filled now and into the future under

current operating conditions.

Note that the target population is a collection of units. Sometimes we will be vague

in specifying the target population, i.e. “cans filled under current conditions” is not very

clear. What do we mean by current conditions, for example?

We define a variate as a characteristic of every unit. For each teenager (unit) in the

target population, the variate of primary interest is whether or not the teenager smokes.

Other variates of interest defined for each unit might be age and sex. In the can-filling

example, the volume of liquid in each can is a variate. The machine that filled the can is

another variate. A key point to notice is that the values of the variates change from unit

to unit in the population. There are usually many variates associated with each unit. At

this stage, we will be interested in only those that help specify the questions of interest.

We specify the questions in terms of attributes of the target population. An attribute is a

function of the variates over the target population. In the smoking example, one important

attribute is the proportion of teenagers in the target population. In the can-filling example,

we are interested in the average volume and the variability of the volumes for all cans filled

by each machine under current conditions. Possible questions of interest (among others)

are:

“What proportion of teenagers in Ontario smoke?”

“Is the standard deviation of volumes of cans filled by the new machine less than that

of the old machine?”

We can also ask questions about graphical attributes of the target population such as

the population histogram or a scatterplot of one variate versus another over the whole

population.

In most cases, we cannot calculate the attributes of interest directly because we can

only examine a sample of the units in the target population. This may be due to lack of

resources and time, as in the smoking survey or a physical impossibility as in the can-filling

study where we can only look at cans available now and not in the future. Or, in an even

more difficult situation, we may be forced to carry out a clinical trial using mice because it

is unethical to use humans and so we do not examine any units in the target population.

Obviously there will be uncertainty in our answers.

We will later consider a special class of problems that have a causative aspect. These

problems are common and of critical importance. For example, we might ask questions

such as :

“Does taking a low dose of aspirin reduce the risk of heart disease among men over the

age of 50?”

“Does changing from assignments to multiple term tests improve student learning in

STAT 231?”
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“Does compulsory driver training reduce the incidence of accidents among new drivers?”

All of these questions are about causation. Each corresponding Problem has a causative

aspect. We will see in Chapter 8 how we must be exceedingly careful in the Plan and

Analysis of an empirical study in order to answer such causative questions.

It is very important that the Problem step end with clear questions about one or more

attributes of the target population.

3.3 The Plan

The purpose of the Plan step is to decide what units we will examine (the sample), what

data we will collect and how we will do so. The Plan must depend on the output from the

Problem step.

We begin with the terms study units and study population. The study units are those

available to be included in the study. In most cases, the study units are elements of the

target population (as in the teenage smoking survey) but, for example, in many medical

applications, we must use animals as study units when the target population consists of

people. The study population or study process is the set of study units that could possibly

be included in the investigation. In many surveys, the study population is a list of people

defined by their telephone number. The sample is selected by calling a subset of the tele-

phone numbers. Therefore the study population excludes those people without telephones

or with unlisted numbers. In many cases (but not always!) the study population is a subset

of the target population. For example, in the development of new products, we may want

to draw conclusions about a production process in the future but we can only look at units

produced in a laboratory in a pilot process. In this case, the study units are not part of

the target population.

We noted above that the study population is usually not identical to the target popu-

lation. The attributes of interest in the study population may differ from those specified

in the Problem and we call this difference study error. We cannot quantify study error but

must rely on context experts to know, for example, that conclusions from an investigation

using mice will be relevant to the human target population. We can however warn the

context experts of the possibility of such error, especially when the study population is

very different from the target population.

As part of the Plan, we specify the sampling protocol which is the procedure we use to

select a sample of units from the study population. In other words we need to determine

how we will select the sample. In the Chapter 2, we discussed modeling the data and often

claimed that we had a “random sample” so that our model was simple. In practice, it

is exceedingly difficult and expensive to select a random sample of units from the study

population and so other less rigourous methods are used. Often we “take what we can get”.

Even with random sampling, we are looking at only a subset of the units in the study

population and hence the sample attributes may well differ from those in the study pop-

ulation. We call this difference sampling error. Differing sampling protocols are likely to
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produce different sample errors. Also, since we do not know the values of the study popu-

lation attributes, we cannot know the sampling error. However, we can use the model to

get an idea of how large this error might be. These ideas are discussed in Chapter 4.

We also need to determine the sample size, i.e. the number of study units sampled from

the study population. Sample size is usually driven by economics or availability. We will

show in later chapters how we can use the model to help with sample size determination.

We must decide which variates we are going to measure or determine for the units in

the sample. For any attibutes of interest, as defined in the Problem step, we will certainly

measure the corresponding variates for the units in the sample. As we shall see, we may

also decide to measure other variates that can aid the analysis. In the smoking survey,

we will try to determine whether each teenager in the sample smokes or not (this requires

a careful definition) and also many demographic variates such as age and sex so that we

can compare the smoking rate across age groups, sex etc. In experimental studies, the

experimenters assign the value of a variate to each unit in the sample. For example, in a

clinical trial, sampled units can be assigned to the treatment group or the placebo group

by the experimenters.

When the value of a variate is detemined for a given unit, errors are often introduced by

the measurement system which determines the value. The observed value and the “true”

value are usually not identical and we call the unknown difference between the measured

and true value the measurement error. These errors then become part of the analysis. In

practice, we need to ensure that the measurement systems used do not contribute sub-

stantial error to our Conclusions. We may have to study the measurement systems used

separately to ensure that this is so.

Figure 3.2 shows the steps in the Plan and the sources of error

A person using PPDAC for an empirical study should, by the end of the Plan stage,

have a good understanding of the study population, the sampling protocol, the variates

which are to be measured, and the quality of the measurement systems that are intended

for use. In this course you will most often use PPDAC to critically examine the Conclusions

from a study done by someone else. You should examine each step in the Plan (you may

have to ask to see the Plan since many reports omit it) for strengths and weaknesses. You

must alos pay attention to the various types of error that may occur and how they might

impact the conclusions.

3.4 Data

The object of the Data step is to collect the data according to the Plan. Any deviations

from the Plan should be noted. The data must be stored in a way that facilitates the

Analysis.

The previous sections noted the need to define variates clearly and to have satisfactory

methods of measuring them. It is difficult to discuss the Data step except in the context

of specific examples, but we mention a few relevant points.
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Figure 3.2: Steps in the plan

• mistakes can occur in recording or entering data into a data base. For complex

investigations, it is useful to put checks in place to avoid these mistakes. For example,

if a field is missed, the data base should prompt the data entry person to complete

the record if possible.

• in many studies the units must be tracked and measured over a long period of time
(e.g. consider a study examining the ability of aspirin to reduce strokes in which

persons are followed for 3 to 5 years). This requires careful management.

• when data are recorded over time or in different locations, the time and place for each
measurement should be recorded

• there may be departures from the study Plan that arise over time (e.g. persons may

drop out of a long term medical study because of adverse reactions to a treatment; it

may take longer than anticipated to collect the data so the number of units sampled

must be reduced). Departures from the Plan should be recorded since they may have

an important impact on the Analysis and Conclusion

• in some studies the amount of data may be extremely large, so data base design and
management is important.
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3.5 Analysis and Conclusion

In Chapters 1 and 2, we discussed both formal and informal analysis methods. A key step

in formal analyses is the selection of an appropriate model that can describe the data and

how we collected it. We also need to describe the Problem in terms of the model parameters

and properties. You will see many more formal analyses in subsequent chapters.

In the Conclusion step, we answer the questions posed in the Problem. In other words,

the Analysis and Conclusion are directed by the Problem. We also try to quantify (or at

least discuss) potential errors as described in the Plan step.

We end this chapter with a case study that demonstrates the use of PPDAC.

3.6 Case Study

Introduction

This case study is an example of more than one use of PPDAC which demonstrates some

real problems that arise with measurement systems. The documentation given here has

been rewritten from the original report to emphasize the underlying PPDAC framework.

Background

An automatic in-line gauge measures the diameter of a crankshaft journal on 100% of

the 500 parts produced per shift. The measurement system does not involve an operator

directly except for calibration and maintenance. Figure 3.3 shows the diameter in question.

The journal is a “cylindrical” part of the crankshaft. The diameter of the journal must

be defined since the cross-section of the journal is not perfectly round and there may be

taper along the axis of the cylinder. The gauge measures the maximum diameter as the

crankshaft is rotated at a fixed distance from the end of the cylinder.

The specification for the diameter is −10 to +10 units with a target of 0. The mea-
surements are re-scaled automatically by the gauge to make it easier to see deviations from

the target. If the measured diameter is less than −10, the crankshaft is scrapped and a
cost is incurred. If the diameter exceeds +10, the crankshaft can be reworked, again at

considerable cost. Otherwise, the crankshaft is judged acceptable.

Overall Project

A project is planned to reduce scrap/rework by reducing part-to-part variation in the

diameter. A first step involves an investigation of the measurement system itself. There

is some speculation that the measurement system contributes substantially to the overall

process variation and that bias in the measurement system is resulting in the scrapping

and reworking of good parts. To decide if the measurement system is making a substantial

contribution to the overall process variability, we also need a measure of this attribute for
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Figure 3.3: Crankshaft with arrow

the current and future population of crankshafts. Since there are three different attributes

of interest, it is convenient to split the project into three separate applications of PPDAC.

Study 1

In this application of PPDAC, we estimate the properties of the errors produced by the

measurement system. In terms of the model, we will estimate the bias and variability due

to the measurement system. We hope that these estimates can be used to predict the future

performance of the system.

Problem

The target process is all future measurements (note that a unit is the act of taking a

measurement, not the result) made by the gauge on crankshafts to be produced. The

response variate is the measured diameter associated with each unit. The attributes of

interest are the average measurement error and the population standard deviation of these

errors. We can quantify these concepts using a model (see below). A detailed fishbone

diagram for the measurement system is also shown in Figure 3.4. In such a diagram, we list

explanatory variates organized by the major “bones” that might be responsible for variation

in the response variate, here the measured journal diameter. We can use the diagram in

formulating the Plan.

Note that the measurement system includes the gauge itself, the way the part is loaded

into the gauge, who loads the part, the calibration procedure (every two hours, a master

part is put through the gauge and adjustments are made based on the measured diameter
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of the master part; that is “the gauge is zeroed”), and so on.

Figure 3.4: Fishbone diagram

Plan

To determine the properties of the measurement errors we must measure crankshafts with

known diameters. “Known” implies that the diameters were measured by an off-line mea-

surement system that is very reliable. For any measurement system study in which bias is

an issue, there must be a reference measurement system which is known to have negligible

bias and variability which is much smaller than the system under study.

There are many issues in establishing a study process or a study population. For con-

venience, we want to conduct the study quickly using only a few parts. However, this

restriction may lead to study error if the bias and variability of the measurement system

change as other explanatory variates change over time or parts. We guard against this

latter possibility by using three crankshafts with known diameters as part of the definition

of the study process. Since the units are the taking of measurements, we define the study

population as all measurements that can be taken in one day on the three selected crank-

shafts. These crankshafts were selected so that the known diameters were spread out over

the range of diameters normally seen. This will allow us see if the attributes of the system

depend on the size of the diameter being measured. The known diameters which were used

were: −10, 0, and +10 Remember the diameters have been rescaled so that a diameter of
−10 is okay.

No other explanatory variates were measured. To define the sampling protocol, it

was proposed to measure the three crankshafts ten times each in a random order. Each
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measurement involved the loading of the crankshaft into the gauge. Note that this was to

be done quickly to avoid delay of production of the crankshafts. The whole procedure took

only a few minutes.

The preparation for the data collection was very simple. One operator was instructed

to follow the sampling protocol and write down the measured diameters in the order that

they were collected.

Data

The repeated measurements on the three crankshafts are shown below. Note that due to

poor explanation of the sampling protocol, the operator measured each part ten times in

a row and did not use a random ordering. (Unfortunately non-adherence to the sampling

protocol often happens when real data are collected and it is important to consider the

effects of this in the Analysis and Conclusion.)

Crankshaft 1 Crankshaft 2 Crankshaft 3

−10 −8 2 1 9 11

−12 −12 −2 2 8 12

−8 −10 0 1 10 9

−11 −10 1 1 12 10

−12 −10 0 0 10 12

Analysis

A model to describe the repeated measurement of the known diameters is

 =  +   ∼ (0 ) independent (3.2)

where  = 1 to 3 indexes the three crankshafts and  = 1     10 indexes the ten repeated

measurements. The parameter  represents the long term average measurement for crank-

shaft . The random variables  (called the residuals) represent the variability of the

measurement system, while  quantifies this variability. Note that we have assumed, for

simplicity, that the variability  is the same for all three crankshafts in the study.

We can rewrite the model in terms of the random variables  so that  ∼ ( ).

Now we can write the likelihood as in Example 2.2.4 and maximize it with respect to the

four parameters 1, 2, 3, and  (the trick is to solve  = 0,  = 1 2 3 first). Not

surprisingly the maximum likelihood estimates for 1, 2, 3 are the sample averages for

each crankshaft so that

̂ = ̄ =
1

10

X
=1

 for  = 1 2 3
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To examine the assumption that  is the same for all three crankshafts we can calculate

the sample standard deviation for each of the three crankshafts. Let

 =

vuut1

9

10X
=1

( − ̄)
2 for  = 1 2 3

The data can be summarized as:

̄ 

Crankshaft 1 −103 149

Crankshaft 2 06 117

Crankshaft 3 103 142

The estimate of the bias for crankshaft 1 is the difference between the observed average

̄1 and the known diameter value which is equal to −10 for crankshaft 1, that is, the
estimated bias is −103− (−10) = −03. For crankshafts 2 and 3 the estimated biases are
06− 0 = 06 and 103− 10 = 03 respectively so the estimated biases in this study are all
small.

Note that the sample standard deviations 1 2 3 are all about the same size and

our assumption about a common value seems reasonable. (Note: it is possible to test this

assumption more formally.) An estimate of  is given by

 =

r
21 + 22 + 23

3
= 137

Note that this estimate is not the average of the three sample standard deviations but the

square root of the average of the three sample variances. (Why does this estimate make

sense? Is it the maximum likelihood estimate of ?What if the number of measurements

for each crankshaft were not equal?)

Conclusion

The observed biases −03, 06, 03 appear to be small, especially when measured against
the estimate of  and there is no apparent dependence of bias on crankshaft diameter.

To interpret the variability, we can use the model (3.2). Recall that if  v  ( )

then

 ( − 2 ≤  ≤  + 2) = 095

Therefore if we repeatedly measure the same journal diameter, then about 95% of the time

we would expect to see the observations vary by about ±2 (137) = ±274.
There are several limitations to these conclusions. Because we have carried out the

study on one day only and used only three crankshafts, the conclusion may not apply to

all future measurements (study error). The fact that the measurements were taken within

a few minutes on one day might be misleading if something special was happening at that
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time (sampling error). Since the measurements were not taken in random order, another

source of sampling error is the possible drift of the gauge over time.

We could recommend that, if the study were to be repeated, more than three known-

value crankshafts could be used, that the time frame for taking the measurements could be

extended and that more measurements be taken on each crankshaft. Of course, we would

also note that these recommendations would add to the cost and complexity of the study.

We would also insist that the operator be better informed about the Plan.

Study 2

The second study is designed to estimate the overall population standard deviation of the

diameters of current and future crankshafts (the target population). We need to estimate

this attribute to determine what variation is due to the process and what is due to the mea-

surement system. A cause-and-effect or fishbone diagram listing some possible explanatory

variates for the variability in journal diameter is given in Figure 3.5. Note that there are

many explanatory variates other than the measurement system. Variability in the response

variate is induced by changes in the explanatory variates, including those associated with

the measurement system.

Figure 3.5: Fishbone diagram

Plan

The study population is defined as those crankshafts available over the next week, about

7500 parts (500 per shift times 15 shifts). No other explanatory variates were measured.



66 PLANNING AND CONDUCTING EMPIRICAL STUDIES

Initially it was proposed to select a sample of 150 parts over the week (ten from each

shift). However, when it was learned that the gauge software stores the measurements for

the most recent 2000 crankshafts measured, it was decided to select a point in time near

the end of the week and use the 2000 measured values from the gauge memory to be the

sample. One could easily criticize this choice (sampling error), but the data were easily

available and inexpensive.

Data

The individual observed measurements are too numerous to list but a histogram of the data

is shown in Figure 3.6. From this, we can see that the measured diameters vary from −14
to +16.

Figure 3.6: Histogram of 2000 measured values from the gauge memory

Analysis

A model for these data is given by

 = +  ∼ (0 ) independently for  = 1  2000

where  represents the distribution of the measurement of the th diameter,  represents

the study population mean diameter and the residual  represents the variability due to

sampling and the measurement system. We let  quantify this variability. We have not

included a bias term in the model because we assume, based on our results from Study 1,

that the measurement system bias is small. As well we assume that the sampling protocol

does not contribute substantial bias.
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The histogram of the 2000measured diameters shows that there is considerable spread in

the measured diameters. About 42% of the parts require reworking and 18% are scrapped.

The shape of the histogram is approximately symmetrical and centred close to zero. The

sample mean is

̄ =
1

2000

2000X
=1

 = 082

which gives us an estimate of  (the maximum likelihood estimate) and the sample standard

deviation is

 =

vuut 1

1999

2000X
=1

( − ̄)2 = 517

which gives us an estimate of  (not quite the maximum likelihood estimate).

Conclusion

The overall process variation is estimated by . Since the sample contained 2000 parts

measured consecutively, many of the explanatory variates did not have time to change as

they would in the study populations Thus, there is a danger of sampling error producing

an estimate of the variation that is too small.

The variability due to the measurement system, estimated to be 137 in Study 1, is much

less than the overall variability which is estimated to be 517. One way to compare the two

standard deviations  and  is to separate the total variability  into the variability due

to the measurement system  and that due to all other sources. In other words, we are

interested in estimating the variability that would be present if there were no variability

in the measurement system ( = 0). If we assume that the total variability arises from

two independent sources, the measurement system and all other sources, then we have

2 = 2 + 2 or

 =
p
2 − 2

where  quantifies the variability due to all other uncontrollable variates (sampling vari-

ability). An estimate of  is given byp
2 − 2 =

q
(517)2 − (137)2 = 499

Hence, eliminating all of the variability due to the measurement system would produce an

estimated variability of 499 which is a small reduction from 517. The measurement system

seems to be performing well and not contributing substantially to the overall variation.

Study 3: A Brief Description

A limitation of Study 1 was that it was conducted over a very short time period. To address

this concern, a third study was recommended to study the measurement system over a longer

period during normal production use. In Study 3, a master crankshaft of known diameter
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equal to zero was measured every half hour until 30 measurements were collected. The

measurments versus the times of measureurement are plotted in Figure 3.7 using a plot

called a run chart. In the first study the standard deviation was estimated to be 137. In a

sample of observations from a  (0 137) distribution we would expect approximately 95%

of the observations to lie in the interval [0− 2 (137)  0 + 2 (137)] = [−274 274] which is
obviously not true for the data displayed in the run chart. These data have a much larger

variability. This was a shocking result for the people in charge of the process.

Figure 3.7: Scatter plot of diameter versus time

Comments

Study 3 revealed that the measurement system had a serious long term problem. At first,

it was suspected that the cause of the variability was the fact that the gauge was not

calibrated over the course of the study. Study 3 was repeated with a calibration before

each measurement. A pattern similar to that for Study 3 was seen. A detailed examination

of the gauge by a repairperson from the manufacturer revealed that one of the electronic

components was not working properly. This was repaired and Study 3 was repeated. This

study showed variation similar to the variation of the short term study (Study 1) so that

the overall project could continue. When Study 2 was repeated, the overall variation and

the number of scrap and reworked crankshafts was substantially reduced. The project was

considered complete and long term monitoring showed that the scrap rate was reduced to

about 07% which produced an annual savings of more than $100,000.

As well, three similar gauges that were used in the factory were put through the “long

term” test. All were working well.
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Summary

• An important part of any Plan is the choice and assessment of the measurement
system.

• The measurement system may contribute substantial error that can result in poor

decisions (e.g. scrapping good parts, accepting bad parts).

• We represent systematic measurement error by bias in the model. The bias can be
assessed only by measuring units with known values, taken from another reference

measurement system. The bias may be constant or depend on the size of the unit

being measured, the person making the measurements, and so on.

• Variability can be assessed by repeatedly measuring the same unit. The variability
may depend on the unit being measured or any other explanatory variates.

• Both bias and variability may be a function of time. This can be assessed by examining
these attributes over a sufficiently long time span as in Study 3.

3.7 Problems

1. Suppose you wish to study the smoking habits of teenagers and young adults, in order

to understand what personal factors are related to whether, and how much, a person

smokes. Briefly describe the main components of such a study, using the PPDAC

framework. Be specific about the target and study population, the sample, and the

variates you would collect.

2. Suppose you wanted to study the relationship between a person’s “resting” pulse rate

(heart beats per minute) and the amount and type of exercise they get.

(a) List some factors (including exercise) that might affect resting pulse rate. You

may wish to draw a cause and effect (fishbone) diagram to represent potential

causal factors.

(b) Describe briefly how you might study the relationship between pulse rate and

exercise using (i) an observational study, and (ii) an experimental study.

3. A large company uses photocopiers leased from two suppliers A and B. The lease

rates are slightly lower for B’s machines but there is a perception among workers

that they break down and cause disruptions in work flow substantially more often.

Describe briefly how you might design and carry out a study of this issue, with the

ultimate objective being a decision whether to continue the lease with company B.
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What additional factors might affect this decision?

4. For a study like the one in Example 1.3.1, where heights  and weights  of individuals

are to be recorded, discuss sources of variability due to the measurement of  and 

on any individual.



ESTIMATION

4.1 Introduction

Many statistical problems involve the estimation of some quantity or attribute. For ex-

ample: the fraction of North American women age 16-25 who smoke; the 10th, 50th and

90th percentiles of body-mass index (BMI) for Canadian males age 21-35; the probability

a sensor will classify the colour of an item correctly. The statistical approach to estimation

is based on the following idea:

Develop a model for variation in the population or process you are considering, in which

the attribute or quantity you want to estimate is included, and a corresponding model for

data collection.

As we will see, this leads to powerful methods for estimating unknown attributes and,

importantly, for determining the uncertainty in the estimates.

We have already seen in Chapter 2, that attributes can be expressed as parameters 

in a statistical model (probability distribution) and that they can be estimated using the

method of maximum likelihood. Let us consider the following example and make some

important observations.

Example 4.1.1. Suppose we want to estimate attributes associated with BMI for some

population of individuals (e.g. Canadian males age 21-35). If the distribution of BMI values

in the population is well described by a Gaussian model,  ∼ ( ), then by estimating

 and  we can estimate any attribute associated with the BMI distribution. For example,

(i) The average BMI in the population which, in terms of the model, is  = ( ).

(ii) The median BMI in the population which, in terms of the model, is  = ( ) since

the Gaussian distribution is symmetric about its mean.

(iii) For the BMI population, the 01 (population) quantile,  (01) =  − 128, which
satisfies  ( ≤ ) = 01. (To see this, note that  ( ≤ −128) =  ( ≤ −128) =
01, where  = ( − ) ∼ (0 1).)

71
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(iv) The fraction of the population with BMI over 350 given by

 = 1−Φ
µ
350− 



¶
where Φ is the cumulative distribution function for a (0 1) random variable.

Thus, if we collected a random sample of, say, 150 individuals and calculated the

maximum likelihood estimates as ̂ = 271 ̂ = 356 then estimates of the attributes

in (i)-(iv) would be: (i) and (ii) ̂ = 271, (iii) ̂ (01) = ̂− 128̂ = 2254 and (iv)
̂ = 00132.

The preceding example raises several issues.

• Where do we get our probability distribution? What if it is not a good description of
the population or process?

We discussed the first question in Chapters 1 and 2. It is important to check the

adequacy (or “fit”) of the model; some ways of doing this were discussed in Chapter 2

and more will be considered later in the course. If the model used is not satisfactory,

we may not be able to use the estimates based on it. For the lifetimes of brake pads

data introduced in Example 1.3.2 it was not clear that a Gaussian model was suitable.

• The estimation of parameters or population attributes depends on data collected from
the population or process, and the likelihood function is based on the probability of

the observed data. This implies that factors associated with the selection of sample

units or the measurement of variates (e.g. measurement error) must be included in

the model. In the BMI example it has been assumed that BMI was measured without

error for a random sample of units (persons) from the population. Here we typically

assume that the data came from a random sample of population units, but in any

given application we would need to design the data collection plan to ensure this

assumption is valid.

• The estimate ̂ = 271 is an estimate of  the average BMI in the population but

not usually equal to it. How far away from  is ̂ likely to be? If we take a sample of

only  = 50 persons, would we expect the estimate ̂ to be as “good” as ̂ based on

150 persons? (What does “good” mean?)

We focus on the third point in this chapter; we assume that we can deal with the first

two points with ideas introduced in Chapters 1 and 2.

4.2 Estimators and Sampling Distributions

Suppose that some attribute or parameter  is to be estimated. We assume that a random

sample 1      can be drawn from the population or process in question, from which 
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can be estimated. In general terms a point estimate of , denoted as ̂, is some function

of the observed sample 1     ,

̂ = (1     ) (4.2)

For example

̂ = ̄ =
1



X
=1



is a point estimate of . The method of maximum likelihood provides a general method for

obtaining estimates, but other methods exist. For example, if  = ( ) =  is the average

(mean) value of  in the population, then the sample mean ̂ = ̄ is an intuitively sensible

estimate; it is the maximum likelihood estimate of  if  has a  ( ) distribution but

because of the Central Limit Theorem it is a good estimate of  more generally. Thus,

while we will use maximum likelihood estimation a great deal, you should remember that

the discussion below applies to estimates of any type.

The problem facing us is how to determine or quantify the uncertainty in an estimate.

We do this using sampling distributions, which are based on the following idea. If

we select random samples on repeated occasions, then the estimates ̂ obtained from the

different samples will vary. For example, five separate random samples of  = 50 persons

from the same male population described in Example 1.3.1 gave five different estimates

̂ = ̄ of ( ) as:

1723 1743 1734 1752 1736

Estimates vary as we take repeated samples and the distribution of the estimator is called

the sampling distribution.

More precisely, we define this idea as follows. Let the random variables 1     

represent the observations in a random sample, and associate with the estimate ̂ given by

(4.2) a random variable

̃ = (1     )

For example

̃ = ̄ =
1



X
=1



is a random variable. We call ̃ the estimator of  corresponding to ̂. (We will always

use ̂ to denote an estimate, i.e. a numerical value, and ̃ to denote the corresponding

estimator, the random variable.) We can think of ̃ as describing an estimation procedure

or how to process the data to obtain an estimate, and the numerical value ̂ as the value

obtained from this procedure for a particular data set. The distribution of ̃ is called the

sampling distribution of the estimator.

Since ̃ is a function of the random variables 1      we can find its distribution,

at least in principle. Two ways to do this are (i) using mathematics and (ii) by computer
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simulation. Once we know the sampling distribution of an estimator ̃ then we are in the

position to express the uncertainty in an estimate. The following example illustrates how

this is done: we examine the probability that the estimator ̃ is “close” to .

Example 4.1.2

Suppose we want to estimate the mean  = ( ) of a random variable, and that

a Gaussian distribution  ∼ ( ) describes variation in  in the population. Let

1      represent a random sample from the population, and consider the estimator

̃ = ̄ =
1



P
=1



for . Recall that if the distribution of  is ( ) then the distribution of ̄ is Gaussian,

( 
√
). Let us now consider the probability that the random variable |̃ − | is less

than or equal to some specified value ∆. We have

 (|̃− | ≤ ∆) = 
¡
−∆ ≤ ̄ ≤ +∆

¢
= 

µ−∆√


≤  ≤ ∆
√




¶
 (4.3)

where  = (̄ − )(
√
) ∼ (0 1). Clearly, as  increases, the probability (4.3)

approaches one. Furthermore, if we know  (even approximately) then we can find the

probability for any given ∆ and . For example, suppose  represents the height of a male

(in meters) in the population of Example 1.3.1, and that we take∆ = 001. That is, we want

to find the probability that |̃ − | is no more than 001 meters. Assuming  =  = 007

(meters), (4.1.3) gives the following results for sample sizes  = 50 and  = 100:

 = 50:  (|̃− | ≤ 001) =  (−101 ≤  ≤ 101) = 0688
 = 100:  (|̃− | ≤ 001) =  (−143 ≤  ≤ 143) = 0847

This indicates that a large sample is “better” in the sense that the probability is higher

that ̃ will be within 001m of the true (and unknown) average height  in the population.

It also allows us to express the uncertainty in an estimate ̂ = ̄ from an observed sample

1      by indicating the probability that any single random sample will give an estimate

within a certain distance of .

Example 4.1.3

In the preceding example we were able to work out the variability of the estimator

mathematically, using results about Gaussian probability distributions. In some settings

we might not be able to work out the distribution of an estimator mathematically; however,

we could use simulation to study the distribution10. For example, suppose we have a random

sample 1      which we have assumed comes from an Exponential() distribution. The

maximum likelihood estimate of  is ̂ = ̄. (Can you show this?) What is the sampling

10This approach can also be used to study sampling from a finite population of  values, {1     },
where we might not want to use a continuous probability distribution for  .
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Figure 4.2:

distribution for ̃ = ̄ in this case? We can examine the sampling distribution by taking

repeated samples of size , 1     , giving (possibly different) values of ̄ for each sample.

We can investigate the distribution of the random variable ̃ by simulation, as follows:

1. Generate a sample of size ; in  this is done using the statement

 ← rexp( 1)

(Note that in  the parameter is specified as 1.)

2. Compute ̂ = ̄ from the sample; in  this is done using the statement

 ← ()

We then repeat this, say  times. The  values ̄1     ̄ can then be considered as

a sample from the distribution of ̃, and we can study the distribution by plotting a

histogram or other plot of the values.

The histogram above was obtained by drawing  = 10000 samples of size  = 10 from

an Exponential(10) distribution, calculating the values ̄1     ̄10000 and then plotting the

frequency histogram. What do you notice about the distribution particularly with respect

to symmetry? Does the distribution look like a Gaussian distribution?
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The approach illustrated in the preceding example can be used more generally. The

main idea is that, for a given estimator ̃, we need to determine its sampling distribution

in order to be able to compute probabilities of the form  (|̃ − | ≤ ∆) so that we can
quantify the uncertainty of the estimate. We now review some results from probability and

derive a few other results that will be used in estimation.

4.3 Some Distribution Theory

In the probability course you have taken have learned the basic discrete distributions: the

Discrete Uniform, Binomial, Poisson, and Hypergeometric, as well as the simpler continuous

distributions: the Uniform, Exponential and Normal or Gaussian. You should review this

material. You should also review the Gamma function

Γ() =

Z ∞

0

−1− for   0

and its properties.

There are a few new important distributions that will be introduced in this course,

including the Chi-squared distribution and the Student t distribution. The first distribution

we consider arises when we consider the distribution of a scaled verison of the relative

likelihood function over repeated samples.

Suppose  = 2 where  ∼ (0 1). Let Φ represent the cumulative distribution

function of a (0 1) random variable and let  represent the probability density function

of a (0 1) random variable. Then

 ( ≤ ) =  (−√ ≤  ≤ √) = Φ(√)−Φ(−√) for   0

and the probability density function of  is





£
Φ(
√
)−Φ(−√)¤ = £(√) + (−√)¤µ1

2
−12

¶
=

−12√
2

−2 for   0

which is a member of the Chi-squared family of distributions. This result is revisted in

Theorem 4.2.6 using moment generating functions.

The 2 (chi-squared) Distribution

The 2 () distribution is a continuous family of distributions on (0∞) with probability
density function of the form

(; ) =
1

22Γ(2)
(2)−1−2 for   0 (4.4)
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where  is a parameter of the distribution taking values in the set {1 2   }. We write
 ∼ 2(). The parameter  is referred to as the “degrees of freedom” (d.f.) parameter. In

Figure 4.3 you see the characteristic shapes of the Chi-squared probability density functions.

For degrees of freedom  = 2 the density is the Exponential(1) density but for   2 the

probability density function is unimodal with maximum value at  = −2. For large values
of  the probability density function resembles that of a Normal distribution with mean 

and variance 2
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Figure 4.3: Chi-squared probabilities densities with degrees of freedom 1,2,4 and 8.

Problem 8 at the end of the chapter gives some results for the 2 () distribution,

including the fact that its moment generating function is

() = (1− 2)−2 for  
1

2
 (4.5)

and that its mean and variance are () =  and  () = 2. The cumulative distri-

bution function,  (; ), can be given in closed algebraic form for even values of . In 

the functions ( ) and ( ) give the probability density function (; ) and

cumulative distribution function  (; ) for the 2() distribution. A table with selected

values is given at the end of these notes.
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We now state a pair of important results. The first shows that when we add indepen-

dent Chi-squared random variables, the sum also has a Chi-squared distribution, and the

degrees of freedom are added.

Theorem 1 11 Let 1     be independent random variables with  ∼ 2() Then

 =
P
=1

 ∼ 2(
P
=1

).

We have already shown that the Chi-squared distribution arises as the square of a stan-

dard Normal random variable.

Theorem 2 If  ∼ (0 1) then the distribution of  = 2 is 2(1).

Furthermore if we add together the squares of several independent standard Normal

random variables then we are adding independent Chi-squared random variables. The re-

sult can only have Chi-squared distribution.

Corollary 3 :12 If 1      are mutually independent (0 1) random variables and

 =
P
=1

2 then  ∼ 2 ().

Interval Estimation Using Likelihood Functions

The estimates and estimators discussed in Section 4.2 are often referred to as point esti-

mates and point estimators. This is because they consist of a single value or “point”.

The discussion of sampling distributions shows how to address the uncertainty in an esti-

mate, but we nevertheless prefer in most settings to also indicate explicitly the uncertainty

in the estimate. This leads to the concept of an interval estimate13, which takes the form

 ∈ [ (y)   (y)] or  (y) ≤  ≤  (y) 

where  (y) and  (y) are functions of the observed data y. Notice that this provides an

interval with endpoints  and  both of which depend on the data. If we let  (Y) and

11Proof:  has m.g.f. () = (1 − 2)−2. Thus () =

=1

() = (1− 2)
−


=1

2

and this is

the m.g.f. of a 2 distribution with degrees of freedom

=1



12Proof : By the theorem, each 2
 has a 

2 (1) distribution. Theorems 4.2.5 and 4.2.6 then give the

result.
13See the video What is a confidence Interval? at watstat.ca
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 (Y) represent the associated random varibles then [ (Y)   (Y)] is a random interval.

If we were to draw many random samples from the same population and each time we

constructed the interval [ (y)   (y)] how often would the statement  (y) ≤  ≤  (y)

be true? There is a specific probability (hopefully large) that this statement is correct in

general, i.e. that the parameter will fall in this random interval, and this probability is

 [ (Y)     (Y)]. This probability gives an indication how good the rule is by which

the interval estimate was obtained. For example  [ (Y)     (Y)] = 095, means that

95% of the time (i.e. 95% of the different samples we might draw), the parameter falls in the

interval [ (y)   (y)] constructed from the data set y. This means we can be reasonably

safe in assuming, on this occasion, and for this data set, it does so. In general, uncertainty

in an estimate is explicitly stated by giving the interval estimate along with the probability

 ( ∈ [ (Y)   (Y)]).

The likelihood function can also be used to obtain interval estimates for parameters in

a very straightforward way. We do this here for the case in which the probability model

involves only a single scalar parameter . Individual models often have constraints on the

parameters. For example in the Gaussian distribution, the mean can be any real number

−∞    ∞ but the standard deviation must be positive, i.e.   0 Similarly for the

Binomial model the probability of success must lie in the interval [0 1] These constraints

are usually identified by requiring that the parameter falls in some set Ω, called the para-

meter space. As mentioned in Chapter 2 we often rescale the likelihood function to have

a maximum value of one to obtain the relative likelihood function.

Definition 4 Suppose  is scalar and that some observed data (say a random sample

1     ) have given a likelihood function (). The relative likelihood function ()

is then defined as

() =
()

(̂)
for  ∈ Ω

where ̂ is the maximum likelihood estimate (obtained by maximizing ()) and Ω is the

parameter space. Note that

0 ≤ () ≤ 1 for all  ∈ Ω

Definition 5 A 100% likelihood interval14 for  is the set { : () ≥ }.

Actually, { : () ≥ } is not necessarily an interval unless () is unimodal, but this
is the case for all models that we consider here. The motivation for this approach is that

the values of  that give larger values of () (and hence ()) are the most plausible in

14or a ”” likelihood interval
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the light of the data. The main challenge is to decide what  to choose; we show later

that choosing  ∈ [010 015] is often useful. If you return to the likelihood function for
the Harris/Decima poll in Figure 2.4, the interval that the pollsters provided, i.e. 26± 22
percent, looks like it was constructed such that the values of the likelihood at the endpoints

is around 110 of its maximum value so  is between 010 and 015.

Example 4.3.1 Polls

Suppose  is the proportion of people in a large population who have a specific character-

istic. If  persons are randomly selected and  is the number who have the characteristic,

then  ∼ Binomial( ) is a reasonable model and the observed data  gives the likelihood
function

() =

µ




¶
(1− )− for 0    1

Maximizing () we find ̂ =  and

() =
(1− )−

̂

(1− ̂)−

for 0    1

Figure 4.4 shows the relative likelihood functions () for two polls:

Poll 1 :  = 200  = 80

Poll 2 :  = 1000  = 400

In each case ̂ = 040, but the relative likelihood function is more “concentrated” around ̂

for the larger poll (Poll 2). The 10% likelihood intervals also reflect this:

Poll 1 : () ≥ 01 for 033 ≤  ≤ 047
Poll 2 : () ≥ 01 for 037 ≤  ≤ 043

The graph also shows the log relative likelihood function,

() = log() = ()− (̂) for  ∈ Ω

where () = log() is the log likelihood function. It is often convenient to compute ()

instead of () and to compute a 100% likelihood interval using the fact that () ≥  if

() ≥ log . While both plots are unimodal and have idential locations of the maximum,
they differ in terms of the shape. The plot of the relative likelihood function resembles a

normal probability density function in shape while that of the log relative likelihood resem-

bles a quadratic function of .

Likelihood intervals have desirable properties. One is that they become narrower as the

sample size increases, thus indicating that larger samples contain more information about

. They are also easy to obtain, since all we really have to do is plot () or () = log().
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Figure 4.4: Relative Likelihood and log Relative Likelihood Functions for a Bi-

nomial Parameter

This approach can also be extended to deal with vector parameters, in which case (θ) ≤ 

gives likelihood “regions” for θ.

The one apparent shortcoming of likelihood intervals so far is that we do not know how

probable it is that a given interval will contain the true parameter value. As a result we

also do not have a basis for the choice of . Sometimes it is argued that values like  = 010

or  = 005 make sense because they rule out parameter values for which the probability

of the observed data is less than 110 or 120 of the probability when  = ̂. However, a

more satisfying approach is to apply the sampling distribution ideas in Section 4.1 to the

interval estimates, as discussed at the start of this section. This leads to the concept of

confidence intervals, which we describe next.

4.4 Confidence Intervals for a Parameter

In general, a likelihood interval or any other interval estimate for  based on observed

data y takes the form [(y) (y)]. Suppose we assume that the model chosen is correct

and 0 is the true (unknown) value of the parameter. It is not certain that the statement
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0 ∈ [(y) (y)] is true. To quantify the uncertainty in the interval estimate we look
at an important property of the correponding interval estimator [(Y) (Y)] called the

coverage probability which is defined as follows.

Definition 6 The value

(0) =  [(Y) ≤ 0 ≤ (Y)] (4.6)

is called the coverage probability for the interval estimator [(Y) (Y)].

A few words are in order about the meaning of the probability in (4.6). The parameter

0 is an unknown constant associated with the population, but it is a fixed constant, NOT

a random variable and therefore does not have a distribution. The statement (4.6) can be

interpreted in the following way. Suppose we were about to draw a random sample of the

same size from the same population and the true value of the parameter was 0. Suppose

also that we knew that we would construct an interval of the form [(y) (y)] once we

had collected the data. Then the probability that 0 will be contained in this new interval

is (0)
15.

How then does (0) assist in the evaluation of interval estimates? In practice, we try

to find intervals for which (0) is fairly close to 1 (values 090, 095 and 099 are often

used) while keeping the interval fairly narrow. Such interval estimates are called confidence

intervals.

Definition 7 A 100% confidence interval16 for a parameter is an interval estimate

[(y) (y)] for which

 [(Y) ≤ 0 ≤ (Y)] =  (4.7)

where  is called the confidence coefficient.

If  = 095, for example, then (4.7) indicates that 95% of the samples Y that we would

draw from this model result in an interval [(Y) (Y)] which includes the parameter 0

(and of course 5% do not). This gives us some confidence that for a particular sample, such

as the one at hand, the true value of the parameter is contained in the interval.

To show that confidence intervals exist, and that the confidence coefficient can some-

times not depend on the unknown parameter 0, we consider the following simple example.

Example 4.4.1

15When we use the observed data  () and () are numerical values not random variables. We do not

know whether or not () ≤ 0 ≤ ().  [() ≤ 0 ≤ ()] makes no more sense than  (1 ≤ 0 ≤ 3)
since () 0 () are all numerical values: there is no random variable to which the probability statement

can refer.
16See the video at www.watstat.com called ”what is a confidence interval”
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Suppose 1      is a random sample from a(0 1) distribution. That is, 0 = ()

is unknown but  () = 1 is known. Consider the intervalh
 − 196−12  + 196−12

i
where  = 1



P
=1

 is the sample mean. Since  ∼ (0 1
√
), then


¡
 − 196√ ≤ 0 ≤  + 196

√

¢

= 
£−196 ≤ √ ¡ − 0

¢ ≤ 196¤
=  (−196 ≤  ≤ 196)
= 095

where  ∼ (0 1). Thus the interval [̄ − 196√ ̄ + 196√] is a 95% confidence inter-
val for the unknown mean. This is an example in which the confidence coefficient does not

depend on the unknown parameter, an extremely desirable feature of an interval estimator.

We repeat the very important interpretation of a 100% confidence interval (since so

many people get the interpretation incorrect!): If the procedure is used repeatedly then in

a fraction  of cases the constructed intervals will contain the true value of the unknown

parameter. If in Example 4.4.1 a particular sample of size  = 16 had observed mean

̄ = 104, then the observed 95% confidence interval would be [̄ − 1964 ̄ + 1964],
or [991 1089]. We cannot say that the probability that 0 ∈ [991 1089] is 095, but we
have a high degree of confidence (95%) that the interval [991 1089] contains 0.

Confidence intervals become narrower as the size of the sample on which they are based

increases. For example, note the effect of  in Example 4.4.1. The width of the confidence

interval is 2(196)
√
 which decreases as  increases. We noted this earlier for likelihood

intervals, and we show a bit later that likelihood intervals are a type of confidence interval.

Recall that the coverage probability for the interval in the above example did not de-

pend on the unknown parameter, a highly desirable property because we’d like to know

the coverage probability while not knowing the value of the unknown parameter. We next

consider a general method for finding confidence intervals which have this property.

Pivotal Quantities and Confidence Intervals

Definition 8 A pivotal quantity  = (Y; ) is a function of the data Y and the un-

known parameter  such that the distribution of the random variable  is fully known. That

is, probability statements such as  ( ≥ ) and  ( ≤ ) depend on  and  but not  or

any other unknown information.
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The motivation for this definition is the following. Suppose we can begin with a

statement such as  [ ≤ (Y; ) ≤ ] = 095 where (Y; ) is a pivotal quantity whose

distribution is completely known. Suppose also that we can re-express the inequality

 ≤ (Y; ) ≤  in the form (Y) ≤  ≤ (Y) for some functions  and  Then since

095 =  [ ≤ (Y; ) ≤ ] =  [(Y) ≤  ≤ (Y)] 

the confidence coefficient for the confidence interval [ (y)   (y)] is equal to 095 which

does not depend on the unknown parameter . [ (y)   (y)] is a confidence interval for 

with confidence coefficient equal to 095, a value which does not depend on the parameter

. The confidence coefficient does depend on  and , but these are determined by the

known distribution of (Y; ).

Example 4.4.2

Suppose Y = (1     ) is a random sample from the ( 0) distribution where

 () =  is unknown but  () = 0 is known. Since

 =  (Y;) =
 − 

0
√

∼ (0 1)

and (0 1) is a completely known distribution,  is a pivotal quantity. (For simplicity we

just write  instead of 0 for the unknown true value which is to be estimated.) To obtain a

95% confidence interval for  we need to find values  and  such that  ( ≤  ≤ ) = 095.

Now

095 = 

µ
 ≤  − 

0
√

≤ 

¶
= 

¡
 − 0

√
 ≤  ≤  − 0

√

¢


so that

̄ − 0
√
 ≤  ≤ ̄ − 0

√
 or

£
̄ − 0

√
 ̄ − 0

√

¤

is a 95% confidence interval for  based on the observed data y =(1     ). Note that

there are infinitely many pairs ( ) giving  ( ≤  ≤ ) = 095. A common choice for the

standard normal is to pick points symmetric about zero,  = −196,  = 196; this gives

the interval [̄ − 1960
√
 ̄ + 1960

√
] or ̄ ± 1960

√
 which turns out to be the

narrowest possible 95% confidence interval. The interval [̄ − 1960
√
 ̄ + 1960

√
]

is often referred to as a “two-sided” confidence interval. Note also that this interval takes

the form

point estimate± × standard deviation of the estimator.

Many “two-sided” confidence intervals in this course will take this form.

Another choice for  and  would be  = −∞,  = 1645, which gives the interval

[̄ − 16450
√
∞). The interval [̄ − 16450

√
∞) is usually referred to as a “one-

sided” confidence interval. This type of interval is useful when we are interested in deter-

mining a lower bound on the value of .
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It turns out that for most distributions it is not possible to find “exact” pivotal quanti-

ties or confidence intervals for  whose coverage probabilities do not depend somewhat on

the true value of . However, in general we can find quantities  = (1   ) such

that as →∞, the distribution of  ceases to depend on  or other unknown information.

We then say that  is asymptotically pivotal, and in practice we treat  as a pivotal

quantity for sufficiently large values of ; more accurately, we call  an approximate

pivotal quantity.

Example 4.4.3. Polls

Consider Example 4.3.1 discussed earlier, where  ∼ Binomial( ). From the Central

Limit Theorem we know that for large , 1 = ( − )[(1− )]12 has approximately

a (0 1) distribution. It can also be shown that the distribution of

 =  ( ; ) =
 − 

[̃(1− ̃)]12

where ̃ = , is also close to (0 1) for large . Thus  can be used as an approximate

pivotal quantity to get confidence intervals for . For example,

095 ≈  (−196 ≤  ≤ 196)

= 

⎛⎝̃ − 196
"
̃(1− ̃)



#12
≤  ≤ ̃ + 196

"
̃(1− ̃)



#12⎞⎠ 

Thus

̂ ± 196
"
̂(1− ̂)



#12
(4.8)

gives an approximate 95% confidence interval for  where ̂ =  and  is the observed

data . As a numerical example, suppose we observed  = 100,  = 18 in a poll. Then (4.8)

becomes 018± 196 [018(082)100]12 or 0115 ≤  ≤ 0255 or [0115 0255].

Remark: It is important to understand that confidence intervals may vary quite a lot

when we take repeated samples. For example, in Example 4.4.3, ten samples of size  = 100

which were simulated for a population where  = 025 gave the following approximate 95%

confidence intervals for :

[020 038] [014 031] [023 042] [022 041] [018 036]

[014 031] [010 026] [021 040] [015 033] [019 037]

For larger samples (larger ), the confidence intervals are narrower and will have better

agreement. For example, try generating a few samples of size  = 1000 and compare the

confidence intervals for .
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Likelihood-Based Confidence Intervals

Likelihood intervals are approximate confidence intervals and sometimes they are exact

confidence intervals. Recall the relative likelihood () = ()(̂) and define the quantity

Λ = Λ () = −2 log() = 2(̃)− 2()

where ̃ is the maximum likelihood estimator. Then Λ, which is a random variable, is called

the likelihood ratio statistic. The following result can be proved:

Proposition 9 If () is based on Y = (1     ), a random sample of size , and if

 is the true value of the scalar parameter, then (under mild mathematical conditions) the

distribution of Λ converges to 2(1) as →∞.

This means that Λ can be used as an approximate pivotal quantity in order to get

confidence intervals for . Because highly plausible values of  are ones for which () is

close to one (i.e. Λ is close to zero), we obtain approximate 100% confidence intervals for

 by working from the probability  ( ≤ ) =  where  v 2 (1). Since

 =  ( ≤ ) ≈  (Λ ≤ )

an approximate 100% confidence intervals for  is obtained by finding all  values such

that 2(̂)− 2() ≤  where ̂ is the maximum likelihood estimate, i.e.n
 : 2(̂)− 2() ≤ 

o
=
n
 :  () ≥ −2

o
is an approximate 100% confidence interval for . Usually this interval must be found

numerically.

Example 4.4.4

Consider the Binomial model in Examples 4.3.1 and 4.4.3. The likelihood ratio statistic

(show it!) is

Λ () = 2̃ log(̃) + 2(1− ̃) log

Ã
1− ̃

1− 

!

where ̃ =  is the maximum likelihood estimator of . To get an approximate 95%

confidence interval for  we note that  ( ≤ 3841) = 095 where  v 2 (1). To find the

approximate confidence interval we need to find all  values satisfying

2̂ log(̂) + 2(1− ̂) log

Ã
1− ̂

1− 

!
≤ 3841
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where ̂ = . This must be done numerically, and depends on the observed data . For

example, suppose that for  = 100, we observe  = 40 so that ̂ = 040. Let () be the

observed value of the random variable Λ () for these data so that

() = 80 log(04) + 120 log

µ
06

1− 

¶


Figure 4.5 shows a plot of () and the horizontal line  = 3841 from which the approximate

95% confidence interval can be determined. Solving () ≤ 3841, we obtain 0307 ≤  ≤
0496 or [0307 0496] is the approximate 95% confidence interval.

We could also use the approximate 95% confidence interval (4.8) from Example 4.4.3

for this situation. It gives the interval is 0304 ≤  ≤ 0496 or [0304 0496]. The two con-
fidence intervals differ slightly (they are both based on approximations) but are extremely

close.
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Figure 4.5: Likelihood Ratio Statistic for Binomial Parameter

We can now see that a likelihood interval is also a confidence interval. We first note

that the 100% likelihood interval defined by {;() ≥ } is equivalent ton
 :  () = 2(̂)− 2() ≤ 2 log 

o


The confidence coefficient for this interval is  [Λ() ≤ −2 log ] which can be approximated
by

 [Λ() ≤ −2 log ] ≈  ( ≤ −2 log )
where  v 2 (1). If we take  = 01 then since

 [Λ() ≤ −2 log (01)] ≈  [ ≤ −2 log (01)] = 0968
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a 10% likelihood interval is an approximate 968% confidence interval.

Conversely since  ( ≤ 3841) = 095 this implies that the set of valuesn
 :  () = 2(̂)− 2() ≤ 3841

o
= { : () ≥ 0147}

represents an approximate 95% confidence interval. Therefore an approximate 95% confi-

dence interval for  is given by a 147% likelihood interval. What likelihood intervals would

correspond to approximate 90% and 99% confidence intervals?

4.4.3 Choosing a Sample Size

We have seen in examples in this chapter that confidence intervals for a parameter tend to

get narrower as the sample size  increases. When designing a study we often decide how

large a sample to collect on the basis of (i) how narrow we would like confidence intervals

to be, and (ii) how much we can afford to spend (it costs time and money to collect data).

The following example illustrates the procedure.

Example 4.4.5 Estimation of a Binomial Probability

Suppose we want to estimate the probability  from a Binomial experiment in which the

response variable  has a Binomial( ) distribution. We will use the approximate pivotal

quantity

 =
 − 

[̃(1− ̃]12

introduced in Example 4.4.3 which has approximately the (0 1) distribution. This will

be used to obtain confidence intervals for . (Using the likelihood ratio statistic leads to a

more difficult derivation and in any case, for large , confidence intervals constructed using

the likelihood ratio statistic are very close to those based on .) Here is a criterion that is

widely used for choosing the size of : Choose  large enough so that the width of a 95%

confidence interval for  is no wider than 2 (003)  Let us see why this is used and where it

leads. From Example 4.4.3, we know that (see (4.4.2))

̂ ± 196
h
̂(1− ̂)

i12
is an approximate 095 confidence interval for  and the width of this interval is

2 (196)
h
̂(1− ̂)

i12


To make this confidence interval narrower that 2 (003) (or even narrower, say 2 (0025)),

we need  large enough so that

196
h
̂(1− ̂)

i12
≤ 003

or

 ≥
µ
196

003

¶2
̂(1− ̂)
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Of course don’t know what ̂ is because we have not taken a sample, but we note that the

worst case scenario occurs when ̂ = 05. So to be conservative, we find  such that

 ≥
µ
196

003

¶2
(05)2 ≈ 10671

Thus, choosing  = 1068 (or larger) will result in an approximate 95% confidence interval

of the form ̂ ± , where  ≤ 003. If you look or listen carefully when polling results are
announced, you’ll often hear words like “this poll is accurate to within 3 percentage points

19 times out of 20.” What this really means is that the estimator ̃ (which is usually given

in percentile form) approximately satisfies  (|̃ − | ≤ 003) = 095, or equivalently, that

the actual estimate ̂ is the centre of an approximate 95% confidence interval ̂ ± , for

which  = 003. In practice, many polls are based on 1050− 1100 people, giving “accuracy
to within 3 percent” (with probability 095). Of course, one needs to be able to afford to

collect a sample of this size. If we were satisfied with an accuracy of 5 percent, then we’d

only need  = 480 (show this). In many situations this might not be sufficiently accurate

for the purpose of the study, however.

Exercise: Show that to ensure that width of the approximate 95% confidence interval

is 2 (002) or smaller, you need  = 2401 What should  be to make a 99% confidence

interval less than 2 (002) or less?

Remark: Very large Binomial polls ( ≥ 2000) are not done very often. Although we can
in theory estimate  very precisely with an extremely large poll, there are two problems:

1. It is difficult to pick a sample that is truly random, so  ∼ Binomial( ) is only an
approximation

2. In many settings the value of  fluctuates over time. A poll is at best a snapshot at

one point in time.

As a result, the “real” accuracy of a poll cannot generally be made arbitrarily high.

Sample sizes can be similarly determined so as to give confidence intervals of some de-

sired length in other settings. We consider this topic again in Chapter 6. Many of the tools

of this section can also be extended to the muli-parameter17 setting but we will not discuss

this further here.

17

Models With Two or More Parameters. When there is a vector  = (1     ) of unknown

parameters, we may want to get interval estimates for individual parameters  ,  = 1      or for functions

 = (1     ). For example, with a Gaussian ( ) model we might want to estimate  and . In some

problems there are pivotal quantities which are functions of the data and (only) the parameter of interest.

We will use such quantities in Chapter 6, where we consider estimation and testing for Gaussian models.
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4.5 A Case Study: Testing Reliability of Computer Power

Supplies

Components of electronic products often must be very reliable, that is, they must perform

over long periods of time without failing. Consequently, manufacturers who supply com-

ponents to a company that produces, e.g. personal computers, must satisfy the company

that their components are reliable.

Demonstrating that a component is highly reliable is difficult because if the component is

used under ”normal” conditions it will usually take a very long time to fail. It is generally

not feasible for a manufacturer to carry out tests on components that last for years (or

even months, in most cases) and therefore they use what are called accelerated life tests.

These involve placing high levels of stress on the components so that they fail in much less

than the normal time. If a model relating the level of stress to the lifetime of the component

is known then such experiments can be used to estimate lifetime at normal stress levels for

the population from which the experimental units are taken.

We consider below some life test experiments on power supplies for personal comput-

ers, with ambient temperature being the stress factor. As the temperature increases, the

lifetimes of components tend to decrease and at a temperature of around 70◦ Celsius the
average lifetimes tend to be of the order of 100 hours. The normal usage temperature

is around 20◦ C. The data in Table 4.5.1 show the lifetimes (i.e. times to failure)  of

components tests at each of 40◦, 50◦, 60◦ and 70◦ C. The experiment was terminated after
600 hours and for temperatures 40◦, 50◦ and 60◦ some of the 25 components being tested
had still not failed. Such observations are called censored observations: we only know

in each case that the lifetime in question was over 600 hours. In Table 4.5.1 the asterisks

denote the censored observations. Note the data have been organized so that the lifetimes

are listed first followed by the cenored times.

It is known from past experience that, at each temperature level, lifetimes are ap-

proximately Exponentially distributed; let us therefore suppose that at temperature 

( = 40 50 60 70), component lifetimes  have an Exponential distribution with probabil-

ity density function

(; ) =
1


−() for  ≥ 0

where ( ) =  is the mean lifetime of components subjected to temperature .

We begin by determining the likelihood function for the experiment at  = 40◦. The

There also exist approximate pivotal quantities based on the likelihood function and maximum likelihood

estimates. These are mainly developed in more advanced followup courses to this one, but we will briefly

consider this approach later in the notes.

It is also possible to construct confidence regions for two or more parameters. For example, suppose a

model has two parameters 1 2 and a likelihood function (1 2) based on observed data. Then we can

define the relative likelihood function (1 2) = (1 2)(̂1 ̂2) as in the scalar case. The set of pairs

(1 2) which satisfy (1 2) ≥  is then called a 100p% likelihood region for (1 2). The concept of

confidence intervals can similarly be extended to confidence regions.
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data are 1     25 where we note that 23 = 600 24 = 600 25 = 600 are censored

observations. We assume these data arise from an Exponential() distribution where we

have let  = 40 for the moment for convenience. The contribution to the likelihood function

for an observed lifetime  we know is simply

(;) = (1) exp (−) 

For the censored observations we only know that the lifetime is greater than 600. Since

 ( ;) =  (  600;) =

Z ∞

600

1


− = −600

the contribution to the likelihood function of each censored observation is −600. Therefore
the likelihood function for  based on the data 1     25 is

() =

∙
22Q
=1

1


−

¸ ∙
25Q

=23

−
¸
= − exp (−)

where  = 22 = the number of uncensored obervations and  =
25P
=1

 = sum of all lifetimes

and censored times

Question 1 Show that the maximum likelihood estimate of  is given by ̂ =  and

thus ̂40 = .

Question 2 Assuming that the exponential model is correct, the likelihood function for

  = 40 50 60 70 can be obtained using the method above and is given by

() = ()
− exp (−)

where  = number of uncensored observations at temperature  and  = sum of all lifetimes

and censored times at temperature .

Find the maximum likelihood estimates of ̂  = 40 50 60 70. Graph the relative

likelihood functions for 40 and 70 on the same graph and comment on any qualitative

differences.

Question 3 Graph the empirical cumulative distribution function discussed in Chapter 1

for  = 40. Note that, due to the censoring, the empirical cumulative distribution function

̂ () is constant and equal to one for  ≥ 600. On the same plot graph the cumulative
distribution function for an Exponential(̂40). What would you conclude about the fit of

the Exponential model for  = 40? Repeat this exercise for  = 50. What happens if you

use this technique to check the Exponential model for  = 60 and 70?
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Questions 4. Engineers use a model (called the Arrhenius model) that relates the mean

lifetime of a component to the ambient temperature. The model states that

 = exp

µ
+



+ 2732

¶
(4.9)

where  is the temperature in degrees Celsius and  and  are parameters. Plot the points³
log ̂ (+ 2732)− 1

´
for  = 40 50 60 70. If the model is correct why should these

points lie roughly along a straight line? Do they?

Using the graph give rough point estimates of  and . Extrapolate the line or use your

estimates of  and  to estimate 20, the mean lifetime at  = 20
◦ C which is the normal

operating temperature.

Question 5 Question 4 indicates how to obtain a rough point estimate of

20 = exp

µ
+



20 + 2732

¶


Suppose we wanted to find the maximum likelihood estimate of 20. This would require

the maximum likelihood estimates of  and  which requires the joint likelihood function

of  and . Explain why this likelihood is given by

 ( ) =
70Q

=40

()
− exp (−)

where  is given by (4.9). (Note that the product is only over  = 40 50 60 70.) Outline

how you might attempt to get an interval estimate for 20 based on the likelihood function

for  and . If you obtained an interval estimate for 20, would you have any concerns

about indicating to the engineers what mean lifetime could be expected at 20◦C? (Explain.)

Question 6 Engineers and statisticians have to design reliability tests like the one just

discussed, and considerations such as the following are often used:

Suppose that the mean lifetime at 20◦C is supposed to be about 90,000 hours and that
at 70◦C you know from past experience that its about 100 hours. If the model (4.9) holds,

determine what  and  should be approximately and thus what  is roughly equal to at

40◦, 50◦ and 60◦C. How might you use this information in deciding how long a period of time
to run the life test? In particular, give the approximate expected number of uncensored

lifetimes from an experiment that was terminated after 600 hours.
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Table 4.5.1 Lifetimes (in hours) from an accelerated life test experiment in

PC power supplies

Temperature

70◦C 60◦C 50◦C 40◦C
2 1 55 78

5 20 139 211

9 40 206 297

10 47 263 556

10 56 347 600∗

11 58 402 600∗

64 63 410 600∗

66 88 563 600∗

69 92 600∗ 600∗

70 103 600∗ 600∗

71 108 600∗ 600∗

73 125 600∗ 600∗

75 155 600∗ 600∗

77 177 600∗ 600∗

97 209 600∗ 600∗

103 224 600∗ 600∗

115 295 600∗ 600∗

130 298 600∗ 600∗

131 352 600∗ 600∗

134 392 600∗ 600∗

145 441 600∗ 600∗

181 489 600∗ 600∗

242 600∗ 600∗ 600∗

263 600∗ 600∗ 600∗

283 600∗ 600∗ 600∗

Notes: Lifetimes are given in ascending order; asterisks(∗) denote censored observations.

4.6 Problems

1. Consider the data on heights of adult males and females from Chapter 1. (The data

are on the course web page.)

(a) Assuming that for each sex the heights  in the population from which the sam-

ples were drawn is adequately represented by  ∼ ( ), obtain the maximum

likelihood estimates ̂ and ̂ in each case.

(b) Give the maximum likelihood estimates for  (01) and  (09), the 10th and

90th percentiles of the height distribution for males and for females.
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(c) Give the maximum likelihood estimate for the probability  (  183) for males

and females (i.e. the fraction of the population over 183 m, or 6 ft).

(d) A simpler estimate of  (  183) that doesn’t use the Gaussian model is

number of person in sample with   183



where here  = 150. Obtain these estimates for males and for females. Can

you think of any advantages for this estimate over the one in part (c)? Can you

think of any disadvantages?

(e) Suggest and try a method of estimating the 10th and 90th percentile of the

height distribution that is similar to that in part (d).

2. When we measure a quantity we are in effect estimating the true value of the quantity;

measurements of the same variate on different occasions are usually not equal. A

chemist has two ways of measuring a particular quantity; one has more random error

than the other. For method I, measurements 12    follow a normal distribution

with mean  and variance 21, whereas for method II, measurements 1 2   , have

a normal distribution with mean  and variance 22.

(a) Suppose that the chemist has  measurements 1     of a quantity by

method I and  measurements, 1      by method II. Assuming that 21
and 22 are known, write down the combined likelihood function for , and show

that

̃ =
1̄ + 2̄

1 + 2

where 1 = 21 and 2 = 22. Why does this estimator make sense?

(b) Suppose that 1 = 1, 2 = 05 and  =  = 10. How would you rationalize

to a non-statistician why you were using the estimate (̄+ 4̄) 5 instead of

(̄+ ̄) 2?

(c) Determine the standard deviation of ̃ and of (̄ + ̄ )2 under the conditions

of part (b). Why is ̃ a better estimator?

3. Suppose that a fraction  of a large population of persons over 18 years of age never

drink alcohol. In order to estimate , a random sample of  persons is to be selected

and the number  who do not drink determined; the maximum likelihood estimate of

 is then ̂ = . We want our estimate ̂ to have a high probability of being close

to , and want to know how large  should be to achieve this.Consider the random

variable  and estimator ̃ = .
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(a) Describe how you could work out the probability that −003 ≤ ̃ −  ≤ 003, if
you knew the values of  and .

(b) Suppose that  = 040. Using an approximation determine how large  should

be in order to ensure


³
−003 ≤ ̃ −  ≤ 003

´
= 095

4. Let  and  be integers. Suppose that blood samples for × people are to be tested

to obtain information about , the fraction of the population infected with a certain

virus. In order to save time and money, pooled testing is used: samples are mixed

together  at a time to give a total of  pooled samples. A pooled sample will test

negative if all  individuals in that sample are not infected.

(a) Give an expression for the probability that  out of  samples will be negative, if

the  people are a random sample from the population. State any assumptions

you make.

(b) Obtain a general expression for the maximum likelihood estimate ̂ in terms of

,  and .

(c) Suppose  = 100,  = 10 and  = 89. Give the maximum likelihood estimate ̂,

the relative likelihood function, and find a 10% likelihood interval for .

(d) Discuss (or do it) how you would select an “optimal” value of  to use for pooled

testing, if your objective was not to estimate  but to identify persons who are

infected, with the smallest number of tests. Assume that you know the value

of  and the procedure would be to test all  persons individually each time a

pooled sample was positive. (Hint: Suppose a large number  of persons must

be tested, and find the expected number of tests needed.)

(a) For the data in Problem 4 of Chapter 2, plot the relative likelihood function

() and determine a 10% likelihood interval. Is  very accurately determined?

(b) Suppose that we can find out whether each pair of twins is identical or not, and

that it is determined that of 50 pairs, 17 were identical. Obtain the likelihood

function and maximum likelihood estimate of  in this case. Plot the relative

likelihood function on the same graph as the one in (a), and compare the accuracy

of estimation in the two cases.

5. Company A leased photocopiers to the federal government, but at the end of their

recent contract the government declined to renew the arrangement and decided to

lease from a new vendor, Company B. One of the main reasons for this decision was

a perception that the reliability of Company A’s machines was poor.
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(a) Over the preceding year the monthly numbers of failures requiring a service call

from Company A were

16 14 25 19 23 12

22 28 19 15 18 29

Assuming that the number of service calls needed in a one month period has

a Poisson distribution with mean , obtain and graph the relative likelihood

function () based on the data above.

(b) In the first year using Company B’s photocopiers, the monthly numbers of service

calls were
13 7 12 9 15 17

10 13 8 10 12 14

Under the same assumption as in part (a), obtain () for these data and graph

it on the same graph as used in (a). Do you think the government’s decision was

a good one, as far as the reliability of the machines is concerned?

(c) Use the likelihood ratio statistic Λ() as an approximate pivotal quantity to

obtain an approximate 95% confidence intervals for  for each company.

(d) What conditions would need to be satisfied to make the assumptions and analysis

in (a) to (c) valid? What approximations are involved?

6. The lifetime  (in days) of a particular type of lightbulb is assumed to have a distri-

bution with probability density function

(; ) =
32−

2
for   0 and   0

(a) Suppose 1 2      is a random sample from this distribution. Show that the

likelihood function for  is equal to

× 3 exp

µ
−

P
=1



¶
for   0

where  is constant with respect to .

(b) Find the maximum likelihood estimate ̂ and the relative likelihood function

().

(c) If  = 20 and
20P
=1

 = 996, graph () and determine the 10% likelihood interval

for . What is the approximate confidence level associated with this interval?

(d) Suppose we wish to estimate the mean lifetime of a lightbulb. Show ( ) = 3.

(Recall that
∞R
0

−1− = Γ() = ( − 1)! for  = 1 2 · · · ). Find a 95%
confidence interval for the mean.
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(e) The probability  that a lightbulb lasts less than 50 days is

 =  () =  ( ≤ 50; ) = 1− −50[12502 + 50 + 1]

(Can you show this?) Thus ̂ = (̂) = 0580 and we can find a 95% confidence

interval for  from a confidence interval for . In the data referred to in part

(c), the number of lightbulbs which lasted less than 50 days was 11 (out of 20).

Using a Binomial model, we can also obtain a 95% confidence interval for  (see

Examples 4.4.3 and 4.4.4). Find both intervals. What are the pros and cons of

the second interval over the first one?

7. The 2 (Chi-squared) distribution. Suppose  ∼ 2 () with probability density

function given by

(; ) =
1

22Γ(2)
(2)−1−2 for   0

(a) Show that this probability density function integrates to one for any  ∈ {1 2    }.
(b) Show that the moment generating function of  is given by

() = 
¡
 
¢
= (1− 2)−2 for  

1

2

and use this to show that ( ) =  and  ( ) = 2.

(c) Plot the probability density function for  = 5,  = 10 and  = 25 on the same

graph. What do you notice?

8. In an early study concerning survival time for patients diagnosed with Acquired Im-

mune Deficiency Syndrome (AIDS), the survival times (i.e. times between diagnosis

of AIDS and death) of 30 male patients were such that
30P
=1

 = 11 400 days. It is

known that survival times were approximately Exponentially distributed with mean

 days.

(a) Write down the likelihood function for  and obtain the likelihood ratio statistic.

Use this to obtain an approximate 90% confidence interval for .

(b) Show that  =  ln 2 is the median survival time. Give a approximate 90%

confidence interval for .

9. Let  have an Exponential distribution with probability density function

(; ) =
1


− for   0

where   0.
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(a) Show that  = 2 has a 2(2) distribution. (Hint: compare the probability

density function of  with (4.4).

(b) If 1     is a random sample from the Exponential distribution above, prove

that

 = 2
P
=1

 ∼ 2 (2) 

(You may use results in Section 4.2.)  is therefore a pivotal quantity, and can

be used to get confidence intervals for .

(c) Refer to Problem 9. Using the fact that

 (4319 ≤ ≤ 7908) = 090

where  ∼ 2 (60) obtain a 90% confidence interval for  based on  . Compare

this with the interval found in 9(a). Which interval is preferred here? (Why?)

10. Two hundred adults are chosen at random from a population and each is asked

whether information about abortions should be included in high school public health

sessions. Suppose that 70% say they should.

(a) Obtain a 95% confidence interval for the proportion  of the population who

support abortion information being included.

(b) Suppose you found out that the 200 persons interviewed consisted of 50 married

couples and 100 other persons. The 50 couples were randomly selected, as were

the other 100 persons. Discuss the validity (or non-validity) of the analysis in

(a).

11. Consider the height data discussed in Problem 1 above. If heights  are ( ) and

̃ = ̄ and ̃2 =
P
=1

( − ̃)2 are the maximum likelihood estimators based on a

sample of size  then it can be shown that when  is large, the random variable

 =

√
(̄ − )

̃

has approximately a (0 1) distribution and so  is an approximate pivotal quantity.

Use  to obtain approximate 99% confidence intervals for  for males and for females.

12. In the U.S.A. the prevalence of HIV (Human Immunodeficiency Virus) infections

in the population of child-bearing women has been estimated by doing blood tests

(anonymized) on all women giving birth in a hospital. One study tested 29 000

women and found that 64 were HIV positive (had the virus). Give an approximate

99% confidence interval for , the fraction of the population that is HIV positive.

State any concerns you have about the accuracy of this estimate.
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13. 18 A sequence of random variables {} is said to converge in probability to the
constant  if for all   0,

lim
→∞{| − | ≥ } = 0

We denote this by writing 
→ .

(a) If {} and {} are two sequences of random variables with 
→ 1 and


→ 2, show that  + 

→ 1 + 2 and 
→ 12.

(b) Let12 · · · be independent and identically distributed random variables with
probability density function (; ). A point estimator ̃ based on a random

sample 1     is said to be consistent for  if ̃
→  as →∞.

(i) Let 1     be independent and identically distributed Uniform(0 )

random variables. Show that ̃ = max (1    ) is consistent for .

(ii) Let  ∼ Binomial( ). Show that ̃ =  is consistent for .

14. 19 Refer to the definition of consistency in Problem 14(b). Difficulties can arise when

the number of parameters increases with the amount of data. Suppose that two

independent measurements of blood sugar are taken on each of  individuals and

consider the model

12 ∼ ( 
2) for  = 1 · · ·  

where 1 and 2 are the independent measurements. The variance 2 is to be

estimated, but the ’s are also unknown.

(a) Find the maximum likelihood estimator ̃2 and show that it is not consistent.

(To do this you have to find the maximum likelihood estimators for 1     
as well as for 2.)

(b) Suggest an alternative way to estimate 2 by considering the differences  =

1 −2.

(c) What does  represent physically if the measurements are taken very close to-

gether in time?

15. 20 Proof of Central Limit Theorem (Special Case) Suppose 1 2    are in-

dependent random variables with () =   () = 2 and that they have the

same distribution, whose moment generating function exists.

18Challenge problem: optional
19Challenge problem: optional
20Challenge problem: optional
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(a) Show that ( − ) has moment generating function of the form (1 + 2

2
+

terms in 3 4   ) and thus that (−)
√
 has moment generating function

of the form
h
1 + 2

2
+ 0()

i
, where 0() signifies a remainder term  with the

property that → 0 as →∞.
(b) Let

 =
P
=1

( − )


√


=

√
(̄ − )



and note that its moment generating function is of the form
h
1 + 2

2
+ 0()

i
.

Show that as  → ∞ this approaches the limit 
22, which is the moment

generating function for (0 1). (Hint: For any real number a, (1 + ) → 

as →∞.)



TESTS OF HYPOTHESES

5.1 Introduction

What can it mean to test a hypothesis in the light of observed data or information? A

statement has been formulated such as “I have extrasensory perception” or “This drug

that I developed reduces pain better than those currently available” and an experiment is

conducted to determine how credible the statement is in light of the observed data. How

do we measure credibility? If there are two alternatives: “I have ESP” and “I do not have

ESP” should they both be considered a priori as equally plausible? If I correctly guess the

outcome on 53 of 100 tosses of a fair coin, would you conclude that my gift is real since I

was correct more than 50% of the time? If I develop a treatment for pain in my basement

laboratory using a mixture of seaweed and tofu, would you treat the claims “this product

is superior to aspirin” and “this product is no better than aspirin” symmetrically?

When studying tests of hypotheses it is helpful to draw an analogy with the criminal

court system in many places in the world, where the two hypotheses “the defendant is

innocent” and “the defendant is guilty” are not treated symmetrically. In these courts,

the court assumes a priori the first hypothesis, “the defendant is innocent”, and then the

prosecution attempts to find sufficient evidence to show that this hypothesis of innocence

is not plausible. There is no requirement that the defendant be proved innocent. We may

simply conclude at the end of the proceedings that there was insufficient evidence for a

finding of guilty and the defendant is then exonerated. Of course there are also two types

of errors that this system can (and inevitably does) make; convict an innocent defendant or

fail to convict a guilty defendant. The two hypotheses are usually not given equal weight a

priori because these two errors have very different consequences.

Statistical tests of hypotheses are analogous to this legal example. We often begin by

specifying a single “default” hypothesis (“the defendant is innocent” in the legal context)

and then check whether the data collected is unlikely under this hypothesis, and so the

hypothesis is less credible. This default hypothesis is often referred to as the “null” hy-

pothesis, denoted by 0 (“null” is used because it often means a new treatment has no

effect). Of course, there is an alternative, not always specified, because in many cases it is

simply that 0 is not true.

We will outline the logic of tests of hypotheses in the first example, the claim that I have

ESP. In an effort to prove or disprove this claim, an unbiased observer (my spouse) tosses

101
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a fair coin 100 times and before each toss I guess the outcome of the toss. We count  , the

number of correct guesses which we can assume has a Binomial distribution with  = 100.

The probability that I guess the outcome correctly on a given toss is an unknown parameter

. If I have no unusual ESP capacity at all, then we would assume  = 05, whereas if I

have some form of ESP, either a positive attraction or an aversion to the correct answer,

then we expect  6= 05. We begin by asking the following questions in this context:

1. Which of the two possibilities,  = 05 or  6= 05, should be assigned to 0, the null

hypothesis?

2. What sort of values of observed value of  are highly inconsistent with 0 and what

sort of values are compatible with 0?

3. What observed values of  would lead to accepting 0 and what observed values

would lead to rejecting 0?

In answer to 1, hopefully you observed that these two hypotheses ESP and NO ESP are

not equally credible and decided that the null hypothesis should be 0 :  = 05 or 0 : I

do not have ESP.

To answer 2 we note that clearly observed values of  that are very small (e.g. 0− 10)
or very large (e.g. 90 − 100) would lead us to to believe that 0 may be false, whereas

values near 50 are perfectly consistent with 0. This leads naturally to the concept of a

test statistic (also called a discrepancy measure) which is some function of the data

 = (Y) that is constructed to measure the degree of “agreement” between the data

Y and the hypothesis 0. It is conventional to define  so that  = 0 represents the

best possible agreement between the data and 0, and so that the larger  is, the poorer

the agreement. Methods of constructing test statistics will be described later, but in this

example, it seems natural to use ( ) = | − 50|.
Question 3 could be resolved easily if we could specify a threshold value for , or

equivalently some function of . In the given example, the observed value of  was  = 52

and so the observed value of  is  = 2. One might ask what is the probability, when 0

is true, that the discrepancy measure results in a value less than . Equivalently, what is

the probability, assuming 0 is true, that the discrepancy measure is greater than or equal

to ? In other words we want to determine  ( ≥ ) assuming that 0 is true. We can

compute this easily in the our given example. If 0 is true then  ∼ Binomial( 05) and

 ( ≥ ) =  (| − 50|  |52− 50|) =  (| − 50|  2)
= 1−  (49 ≤  ≤ 51)

= 1−
µ
100

49

¶
(05)100 −

µ
100

50

¶
(05)100 −

µ
100

51

¶
(05)100

≈ 076435
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How can we interpret this value in terms of the test of 0? Roughly 76% of claimants

similarly tested for ESP, who have no abilities at all but simply randomly guess, will

perform as well or better ( i.e. result in at least as large a value of  as the observed value

of 2) as I did. This does not prove I do not have ESP but it does indicate we have failed

to find any evidence in these data to support rejecting 0. There is evidently no evidence

against 0 in the observed value  = 2, and this was indicated by the high probability

that, when 0 is true, we obtain at least this much measured disagreement with 0. This

probability, 076453 in this example, is called the observed significance level or the −
of a test.

We now proceed to a more formal treatment of hypothesis tests. Two types of hypothe-

ses that a statistician or scientist might be called upon to test in the light of observed data

are:

(1) assuming a family of distributions, say having probability density function (y; )

for the data Y, that the parameter  has some specified value 0; we denote this as

0 :  = 0.

(2) that a random variable  has a specified probability distribution, say with probability

density function 0(); we denote this as 0 :  ∼ 0().

The above test of ESP is an example of the first of these. For the second, you might

question whether a “default” hypothesis should be that a random variable follows a specific

distribution such as the normal distribution and certainly this is not appropriate unless we

have very good reasons, practical or theoretical, for this assumption.

A statistical test of hypothesis proceeds as follows: First, assume that the hypothesis

0 will be tested using some random data Y. We then adopt a discrepancy measure (Y)

for which, normally, large values of  are less consistent with 0 Let  =  (y) be the

corresponding observed value of . To test 0, we now calculate the observed p-value

(also called the observed significance level), defined as

−  =  ( ≥ ;0) (5.2)

where the notation “;0” means “assuming 0 is true”. If the p-value is close to zero then

we are inclined to doubt that 0 is true, because if it is true the probability of getting

agreement as poor or worse than that observed is small. This makes the alternative

explanation, 0 is false, more appealing. In other words, we must accept that one of the

following two statements is correct:

(a) 0 is true but by chance and we have observed Y that indicates poor agreement with

0, or

(b) 0 is false.
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The p-value indicates how small that chance is in (a) above. If it is large, there is

no evidence for (b). If it is less than about 005, we usually interpret that as providing

moderately strong evidence against 0 in light of the observed data. If it is very small,

for example 0001, this is taken as very strong evidence against 0 in light of the observed

data.

Example 5.1.1 Testing a binomial probability

Suppose that it is suspected that a 6-sided die has been “doctored” so that the number one

turns up more often than if the die were fair. Let  =  (die turns up one) on a single toss

and consider the hypothesis 0 :  = 16. To test 0, we toss the die  times and observe

the number of times  that a one occurs. Then Y =  and a reasonable test statistic

would then be either 1 = | −6| or (if we wanted to focus on the possibility that  was
bigger than 16),  = max(( − 6) 0).

Suppose that  = 180 tosses gave  = 44. Using  = max(( − 6) 0), we get

 = max((44− 1806) 0) = 14 and

−  =  ( ≥ 14;0)

=  ( ≥ 44;  = 16)

=

180X
=44

µ
180



¶µ
1

6

¶ µ
5

6

¶180−
= 0005

which provides strong evidence against 0, and suggests that  is bigger than 16.

Example 5.1.2 Suppose that in the experiment in Example 5.1.1 we observed  = 35

ones in  = 180 tosses. Now the p-value is

−  =  ( ≥ 35;  = 16)

=

180X
=35

µ
180



¶µ
1

6

¶ µ
5

6

¶180−
= 0183

and this probability is not especially small. Indeed almost one die in five, though fair,

would show this level of discrepancy with 0. We conclude that there is no strong evidence

against 0 in light of the observed data. Note that we do not claim that 0 is true, only

that there is no evidence in light of the data that it is not true.

Similarly in the legal example, if we do not find evidence against 0 : “defendant is inno-

cent”, this does not mean we have proven he or she is innocent, only that, for the given

data, the amount of evidence against 0 was insufficient to conclude otherwise.

Example 5.1.3. Testing for bias in a measurement system

Two cheap scales  and  for measuring weight are tested by taking 10 weighings of a one

kg weight on each of the scales. The measurements on  and  are
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 : 1026 0998 1017 1045 0978 1004 1018 0965 1010 1000

 : 1011 0966 0965 0999 0988 0987 0956 0969 0980 0988

Let  represent a single measurement on one of the scales, and let  represent the

average measurement ( ) in repeated weighings of a single 1 kg weight. If an experiment

involving  weighings is conducted then a sensible test of 0 :  = 1 could be based on the

test statistic

 = | − 1|

where  = 1


P
=1

. Since  ∼ ( 
√
), where  = ( ) and 2 =  ( ), we can

compute the p-value (at least approximately) using a Gaussian distribution. Since we don’t

know 2 we will estimate it by the sample variance 2 in the calculations below. Of course

if we substitute an estimate of the variance in place of the true variance this may (does!)

make a difference to the distribution of the test statistic, and this is a refinement of this

test that we will deal with in Section 6.2, but for the present, to keep things simple, let us

pretend that our true variance is identical to the estimated one.

The samples from scales  and  above give us

 : ̄ = 10061  = 00230  = 00061

 : ̄ = 09810  = 00170  = 00190

The p-value for  is (pretending  =  = 00230)

−  =  ( ≥ 00061;  = 1)
=  (| − 1| ≥ 00061)

= 

µ¯̄̄̄
 − 1

00230
√
10

¯̄̄̄
≥ 00061

00230
√
10

¶
=  (|| ≥ 0839) where  ∼ (0 1)

= 0401

and thus there is no evidence of bias (that is, no evidence that 0 :  = 1 is false) for scale

.

For scale B, however, we get, (again pretending pretending  =  = 00170)

−  = 

µ¯̄̄̄
 − 1

00170
√
10

¯̄̄̄
≥ 00190

00170
√
10

¶
=  (|| ≥ 3534)
= 00004

and thus there is very strong evidence against 0 :  = 1, suggesting strongly that scale 

is biased.

Finally, note that just because there is strong evidence against0 for scale , the degree

of bias in its measurements is not necessarily large enough to be of practical concern. In
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fact, we can get an approximate 95% confidence interval for  = ( ) for scale  by using

the approximate pivotal quantity

 =
 − 


√
10

is approximately (0 1)

In section 6.2 we will find the exact distribution of −

√
10
but for the present we will

be satisfied using the Gaussian approximation. Since for a standard Gaussian random

variable   (−196 ≤  ≤ 196) = 095, we get the approximate 95% confidence interval

̄ ± 196√10, or 0981 ± 0011, or 0970 ≤  ≤ 0992. Evidently scale  consistently

understates the weight but the bias in measuring the 1 kg weight is likely fairly small

(about 1% − 3%). It is important to keep in mind in general that although we might be
able to find evidence against a given hypothesis, this does not mean that the differences

found are of practical significance. For example a patient person willing to toss a particular

coin one million times can almost certainly find evidence against 0 :  (heads) =
1
2
. This

does not mean that in a game involving a few dozens or hundreds of tosses that 0 is not a

tenable and useful approximation. Similarly, if we collect large amounts of financial data,

it is quite easy to find evidence against the hypothesis that stock or stock index returns are

normally distributed. Nevertheless for small amounts of data and for the pricing of options,

such an assumption is usually made and considered useful.

The approach to testing hypothesis described above is very general and straightforward,

but a few points should be stressed:

1. If the p-value is small (close to 0) then the test indicates strong evidence against 0

in light of the observed data; this is often termed “statistically significant” evidence

against 0. Rough rules of thumb are that  −   005 provides moderately

strong evidence against 0 and that −   001 provides strong evidence.

2. If the p-value is not small, we do not conclude that 0 is true: we simply say there is

no evidence against 0. The reason for this “hedging” is that in most settings a

hypothesis may never be strictly “true”. (For example, one might argue when testing

0 :  = 16 in Example 5.1.1 that no real die ever has a probability of exactly 16

for side 1.) Hypotheses can be “disproved” (with a small degree of possible error) but

not proved.

3. Just because there is strong evidence (“highly statistically significant” evidence)

against a hypothesis 0, there is no implication about how “wrong” 0 is. For

example in Example 5.3.1 there was strong evidence that scale  was biased (that is,

strong evidence against 0 :  = 0), but the relative magnitude (1 − 3%) of the
bias is apparently small. In practice, we try to supplement a significant test with an

interval estimate that indicates the magnitude of the departure from 0. This is how

we check whether a result is “ scientifically” significant as well as statistically

significant.
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4. So far we have not refined the conclusion when we do find strong evidence against the

null hypothesis. Often we have in mind an “alternative” hypothesis. For example if

the standard treatment for pain provides relief in about 50% of cases, and we test, for

patients medicated with an alternative 0 :  (relief) =
1
2
we will obviously wish to

know, if we find strong evidence against 0, in what direction that evidence lies. If

the probability of relief is greater than 1
2
we might consider further tests or adopting

the drug, but if it is less, then the drug will be abandoned for this purpose. We will

try and adapt to this type of problem with our choice of discrepancy measure .

A drawback with the approach to testing described so far is that we are not told how to

construct the test statistic or discrepancy measure . Often there are “intuitively obvious”

statistics that can be used; this is the case in most examples in this section. However, In

the next section we show how to use the likelihood function to construct a test statistic in

more complicated situations where it is not always easy to come up with an intuitive test

statistic.

A final point is that once we have specified a test statistic , we need to be able to

compute the p-value (5.1.1) for the observed data. Calculating probabilities involving 

brings us back to distribution theory: in most cases the exact probability (5.1.1) is hard

to determine mathematically, and we must either use an approximation or use computer

simulation. Fortunately, for the tests in the next section we can use approximations based

on 2 distributions.

5.2 Likelihood Ratios and Testing Statistical Hypotheses

Likelihood Ratios and Testing a Hypothesis for a Single Parameter

In Chapter 2 we used likelihood functions to gauge the plausibility of parameter values in

the light of the obverved data. It should seem natural, then, to base a test of hypothesis on

a likelihood or, in comparing the plausibility of two values, a ratio of the likelihoods. Let

us suppose, for example, that we are engaged in an argument over the value of a parameter

 in a given model (we agree on the model but disagree on the parameter value). I claim

that the parameter value is 0 whereas you claim it is 1. Having some data at hand, it

would seem reasonable to attempt to settle this argument using the ratio of the likelihood

at these two values, i.e.

(0)(1) (5.3)

As usual we define the likelihood function () =  (; ) = (; ) where (; ) is the

probability density function or probability function of the random variable  representing

the data and  is the observed value of the data. Let us now consider testing the plausibility

of my hypothesized value 0 against an unpecified alternative. In this case it is natural to

replace 1 in (5.3) by the value which appears most plausible given the data, i.e. its
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maximum likelihood estimate ̂ for which

(̂) = max
∈Ω

()

The resulting likelihood ratio we recognise as the value of the relative likelihood function

at 0

(0) = (0)(̂)

If (0) is close to one, then 0 is plausible in the light of the observed data, but if (0) is

very small and close to 0, then 0 is not plausible in the light of the observed data and this

suggests evidence against 0. Therefore the corresponding random variable, (0)(̃),
21 appears to be a natural statistic for testing 0 :  = 0. This only leaves determining

the distribution of (0)(̃) under 0 so we can determine p-values. Equivalently, we

usually work instead with a simple function of (0)(̃) since it leads to a well-known

distribution, the chi-squared distribution. We use the likelihood ratio statistic which was

introduced in Chapter 4:

Λ = Λ (0) = −2 log
h
(0)(̃)

i
= 2(̃)− 2(0) (5.4)

We choose this particular function because, when 0 :  = 0 is true, Λ has a approxi-

mately a chi-squared distribution with 1 degree of freedom. Note that small values of (0)

correspond to large observed values of Λ (0) and therefore large observed value of Λ (0)

indicate evidence against the hypothesis 0 :  = 0. To determine the p-value we first

calculate the observed value of Λ (0), denoted by  and given by

 =  (0) = −2 log
h
(0)(̂)

i
= 2(̂)− 2(0)

where ̂ is the maximum likelihood estimate of  based on the observed data. The approx-

imate p-value is then

−  ≈  [   (0)] (5.5)

where  ∼ 2 (1).

Let us summarize the contruction of a test from the likelihood function. Let the random

variable (or vector of random variables)Y represent data generated from a distribution with

probability function or probability density function (; ) which depends on the scalar

parameter . Let Ω be the parameter space (set of possible values) for . Consider a

hypothesis of the form

0 :  = 0

where 0 is a single point (hence of dimension 0). We can test 0 using as our test

statistic the likelihood ratio test statistic Λ, defined by (5.4). Then large observed

21Recall that  () =  (;y) is a function of the observed data y and therefore replacing y by the

corresponding random variable Y means that  (;Y) is a random variable. Therefore the random variable

(0)(̃) = (0;Y)(̃;Y) is a function of Y in several places including ̃ =  (Y).
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values of Λ correspond to a disagreement between the hypothesis 0 and the data and so

provide evidence against 0. Moreover it can be shown that Λ has approximately a 
2 (1)

distribution so the p-value is obtained from (5.5). The theory behind the approximation is

based on a result which shows that under 0, the distribution of Λ appraoches 
2 (1) as

the size of the data set becomes large.

General Case: Multidimensional parameter 

Let the data Y represent data generated from a distribution with probability or probability

density function  (y; ) which depends on the -dimensional parameter θ. Let Ω be the

parameter space (set of possible values) for θ.

Consider a hypothesis of the form

0 : θ ∈ Ω0
where Ω0 ⊂ Ω and Ω0 is of dimension   . For example0 might specify particular values

for − of the components of θ but leave the remaining parameters alone. The dimensions
of Ω and Ω0 refer to the minimum number of parameters (or “coordinates”) needed to

specify points in them. Again we test 0 using as our test statistic the likelihood ratio

test statistic Λ, defined as follows. Let θ̂ denote the maximum likelihood estimate of θ

over Ω so that, as before,

(θ̂) = max
∈Ω

(θ)

Similary we let θ̂0 denote the maximum likelihood estimate of θ over Ω0 (i.e. we maximize

the likelihood with the parameter θ contrained to lie in the set Ω0 ⊂ Ω) so that
(θ̂0) = max

∈Ω0
(θ)

Now consider the corresponding statistic (random variable)

Λ = 2(θ̃)− 2(θ̃0) = −2 log
"
(θ̃0)

(θ̃)

#
(5.6)

and let

 = 2(θ̂)− 2(θ̂0) = −2 log
"
(θ̂0)

(θ̂)

#
denote an observed value of Λ. If the observed value  is very small then there is evidence

against 0 (again you should determine why this is true). In this case it can be shown

that under 0, the distribution of Λ approximately 2 ( − ) as the size of the data set

becomes large. Again, large values of  indicate evidence against 0 so the p-value is

given approximately by

−  =  (Λ ≥ ; 0) ≈  ( ≥ ) (5.7)

where  ∼ 2 ( − ).
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Some Examples

The likelihood ratio test covers a great many different types of examples, but we only

provide a few here.

Example 5.2.1. Lifetimes of light bulbs; A single parameter exponential model.

Test 0 :  = 0 (a given value) based on a random sample 1  . Thus Ω = { :   0},
Ω0 = {0};  = 1,  = 0 and

() =
Q
=1

(; ) for   0

The variability in lifetimes of light bulbs (in hours, say, of operation before failure) is

often well described by an Exponential distribution with probability density function

(; ) =
1


− for   0

where  = ( )  0 is the average (mean) lifetime. Here Ω = { :   0} is the set of
possible values for the parameter  since mean lifetimes must be positive. A manufacturer

claims that the mean life of a particular brand of bulbs is 2000 hours. We can examine that

claim by testing the hypothesis

0 :  = 2000

assuming that the Exponential model applies.

Suppose for illustration that a random sample of  = 20 light bulbs was tested over a

long period and that the total of the lifetimes 1     20 was observed to be
20P
=1

 = 38 524

hours. (It turns out that for the test below we need only the value of
20P
=1

 and not the

individual lifetimes 1     20 so we haven’t bothered to list them. They would be needed,

however to check that the exponential model was satisfactory.) Let us carry out a likelihood

ratio test of 0. The likelihood function based on a random sample 1      is

() =
Q
=1

(; ) =
Q
=1

1


− =

1


exp

µ
−

P
=1



¶
for   0

Note that in terms of our general theory the parameter space of  is Ω = { :   0} and
the parameter space under 0 is the single point Ω = {2000}22. We use the likelihood
ratio statistic Λ of (5.4) as our test statistic . To evaluate this we first write down the

log likelihood function (noting that  = 20 and
P


= 120 = 38524)

() = −20 log  − 38524


for   0

Next, we obtain ̂ by maximizing (): this gives

̂ =
38524

20
= 19262 hours.

22The dimensions of Ω and Ω0 are 1 and 0, respectively.



5.2. LIKELIHOOD RATIOS AND TESTING STATISTICAL HYPOTHESES 111

Now we can compute the observed value of Λ from (5.4) as

 = 2(̂)− 2(2000)
= −40 log(̂2000)− 77048

̂
+
77048

2000

= 0028

The final computational step is to compute the p-value, which we do using the 2 approx-

imation (5.5). This gives

−  =  (Λ ≥ 0028) assuming 0 is true

≈  ( ≥ 0028) where  ∼ 2 (1)

= 087

The p-value is not close to zero so we conclude that there is no evidence against 0 and

no evidence against the manufacturer’s claim that  is 2000 hours. Although the maximum

likelihood estimate ̂ was under 2000 hours (19262) it was not sufficiently under to give

evidence against 0 :  = 2000.

Example 5.2.2 Comparison of two parameters: two Poisson means. In problem

6 of Chapter 4 some data were given on the numbers of failures per month for each of two

companies’ photocopiers. To a good approximation we can assume that in a given month

the number of failures  follows a Poisson distribution with probability function

(;) =  ( = ) = −


!
for  = 0 1 2   

where  = ( ) is the mean number of failures per month. (This ignores that the number

of days that the copiers are used varies a little across months. Adjustments could be made

to the analysis to deal with this.) Denote the value of  for Company ’s copiers as  and

the value for Company ’s as . Let us test the hypothesis that the two photocopiers

have the same mean number of failures

0 :  = 

Essentially we have data from two Poisson distributions with possibly different parameters.

For convenience let (1     ) denote the observations for Company ’s photocopier which

are assumed to be a random sample from the model

 ( = ;) =
 exp (−)

!
for  = 0 1    and   0

Similarly let (1     ) denote the observations for Company ’s photocopier which are

assumed to be a random sample from the model

 ( = ;) =


 exp (−)

!
for  = 0 1    and   0
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independently of the observations for Company ’s photocopier. In this case the parameter

vector is the two dimensional vector θ = ( ) and Ω = {( ) :   0   0}.
The note that the dimension of Ω is  = 2. Since the null hypothesis specifies that the

two parameters  and  are equal but does not otherwise specify their values, we have

Ω0 = {( ) :   0} which is a space of dimension  = 1.

To construct the likelihood ratio test of 0 :  =  we need the likelihood function

for the parameter vector θ = ( ). We first note that the likelihood function for 
only based on the data (1     ) is

1 () =
Q
=1

(;) =
Q
=1

 exp (−)
!

for   0

and the likelihood function for  only based on (1     ) is

2 () =
Q
=1

(;) =
Q
=1



 exp (−)

 !
for   0

Since the data from  and  are independent, the likelihood function for θ = ( ) is

obtained as a product of the individual likelihoods

(θ) = ( ) = 1 ()× 2 ()

=
Q
=1

 exp (−)
!

Q
=1



 exp (−)

 !

= × exp (− −)

P
=1



 

P
=1



 for ( ) ∈ Ω

and the log likelihood function for θ = ( ) is

(θ) = − − +

µ
P
=1



¶
log +

Ã
P
=1



!
log + log  (5.8)

where

 =

µ
Q
=1

1

!

¶Ã
Q
=1

1

 !

!
does not depend on θ.

The number of failures in twelve consecutive months for company A and company B’s

copiers are given below; there were the same number of copiers from each company in use

so  =  = 12

Company A: 16 14 25 19 23 12 22 28 19 15 18 29

Company B: 13 7 12 9 15 17 10 13 8 10 12 14
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We note that
12P
=1

 = 240 and
12P
=1

 = 140. The log likelihood function is

(θ) = ( ) = −12 + 240 log − 12 + 140 log + log  for ( ) ∈ Ω

The values of  and  which maximize ( ) are obtained by solving the two equa-

tions23



= 0




= 0

which gives two equations in two unknowns:

−12 + 240


= 0

−12 + 140


= 0

The maximum likelihood estimates of  and  (unconstrained) are ̂ = 24012 = 200

and ̂ = 14012 = 11667. That is, θ̂ = (200 11667)

To determine

(θ̂0) = max
∈Ω0

(θ)

we need to find the constrained maximum likelihood estimate θ̂0, which is the value of θ =

( ) which maximizes ( ) under the constraint  = . To do this we merely

let  =  =  in (5.8) to obtain

( ) = −12+ 240 log− 12+ 140 log
= −24+ 380 log for   0

Solving ( ) = 0, we find ̂ = 38024 = 15833(= ̂ = ̂); that is, θ̂0 =

(15833 15833)

The next step is to compute to observed value of the likelihood ratio statistic, which

from (5.6) is

 = 2(θ̂)− 2(θ̂0)
= 2(200 11667)− 2(15833 15833)
= 2 (68292− 66960)
= 2664

Finally, we compute the approximate p-value for the test, which by (5.7) is

 (Λ ≥ 2664; 0 is true)

≈  ( ≥ 2664) where  ∼ 2 (1)

= 025× 10−7
23 think of this as maximizing over each parameter with the other parameter fixed.
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Our conclusion is that there is very strong evidence against the hypothesis0 :  = ;

these data, through the lens of a likelihood ratio test, indicate that Company ’s copiers

have a lower rate of failure than Company ’s copiers.

Note that we could also follow up this conclusion by giving a confidence interval for the

mean difference  − ; this would indicate the magnitude of the difference in the two

failure rates. (The maximum likelihood estimates ̂ = 200 average failures per month

and ̂ = 1167 failures per month differ a lot, but we could also give confidence intervals

in order to express the uncertainty in such estimates.)

Example 5.2.3 Likelihood ratio tests of hypotheses for the Gaussian distribution:

Suppose  ∼ ( ) with probability density function

(; ) =
1√
2

exp

"
−1
2

µ
 − 



¶2#
for −∞   ∞

Let us begin with the (rather unrealistic) assumption that the standard deviation  has a

known value and so the only unknown parameter is . In this case the likelihood function

for a sample 1 2   from this distribution is

() =
Q
=1

(; ) =
Q
=1

1√
2

exp

"
−1
2

µ
 − 



¶2#
for   0

and the log likelihood function is

() = − 1

22

P
=1

( − )2 + 

where

 = log
h
(2)−2 −

i
does not depend on . In order to maximize the log likelihood with respect to , we need

only minimize the quantity
P
=1

( − )2

and differentiating this with respect to  and setting the derivative equal to 0 gives

−2
P
=1

( − ) = 0

Solving this for  gives the maximum likelihood estimate ̂ = ̄ and

̃ = ̄ =
1



P
=1



the correponding maximum likelihood estimator of . Note that the log likelihood can be

written as

() = − 1

22

P
=1

( − )2 + 

=
1

22

∙
P
=1

( − ̄)2 + (̄ − )2
¸
+ 
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where we have used the algebraic identity24

P
=1

( − )2 =
P
=1

( − ̄)2 + (̄ − )2

To test the hypothesis 0 :  = 0 we use the likelihood ratio statistic

Λ = 2(̃)− 2(0)

=
1

2

P
=1

( − 0)
2 − 1

2

P
=1

( − ̃)2

=
1

2

∙
P
=1

( − ̄ )2 + (̄ − 0)
2 −

P
=1

( − ̃)2 − (̄ − ̃)2
¸

(5.9)

=
1

2
(̄ − 0)

2 since ̃ = ̄

=

µ
̄ − 0

√


¶2
 (5.10)

The purpose for writing the likelihood ratio statistic in the form (5.10) is to draw attention

to the fact that it is the square of the standard normal random variable
̄−0

√

and is

therefore has exactly a chi-squared distribution with degrees of freedom equal to 1. Of

course it is not clear in general that the likelihood ratio test statistic has an approximate

2(1) distribution, but in this special case, the distribution of Λ is clearly 2(1) (not only

asymptotically but for any value of ) from a basic property of this distribution.

We now proceed to a more interesting and more practical example for the normal distrib-

ution, which involves testing a hypothesis for one of the parameters when both are unknown.

Consider for example a test of 0 :  = 0 based on a random sample 1 2  . In this

case the unconstrained parameter space is Ω = {( ) : −∞    ∞   0}, obviously
a 2-dimensional space, but under the constraint imposed by 0, the parameter must lie in

the space Ω0 = {( 0)−∞    ∞} a space of dimension 1. Thus  = 2, and  = 1.

The likelihood function is

(θ) = ( ) =
Q
=1

(; ) =
Q
=1

1√
2


−1
2


−


2

and the log likelihood function is

( ) = − log()− 1

22

P
=1

( − )2 + 

where

 = log
h
(2)−2

i
24You should be able to verify the identity


=1

( − )2 =

=1

( − ̄)2 + (̄ − )2 for any value of 
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does not depend on  or . The maximum likelihood estimators of ( ) in the uncon-

strained case are

̃ = ̄

̃2 =
1



P
=1

( − ̄ )2

Under the constraint imposed by 0 :  = 0 the maximum likelihood estimator of the

parameter  is also ̄ so the likelihood ratio statistic is

Λ = 2(̄  ̃)− 2(̄  0)

= −2 log(̃)− 1

̃2

P
=1

( − ̄ )2 + 2 log(0) +
1

20

P
=1

( − ̄ )2

= 2 log(0̃) +

µ
1

20
− 1

̃2

¶
̃2

= 

∙
log(20̃

2) +

µ
̃2

20
− 1
¶¸



This is not as obviously a chi-squared random variable as in the last case but it is, as one

might expect, a function25 of the ratio of the maximum likelihood estimator of the variance

divided by the value of 2 under 0. In fact the value of Λ increases as the quantity ̃
220

gets further away from 1 in either direction. The test proceeds by obtaining the observed

value of Λ:

 = 

∙
log(20̂

2) +

µ
̂2

20
− 1
¶¸

and then obtaining and interpreting the p-value

 (  )

where  v 2 (1).

Example: Testing for multinomial probabilities. Consider a random vectorY =(1  )

with Multinomial probability function:

(1  ; 1  ) =
!

1! · · · !
1
1 

2
2 · · ·  for 0 ≤  ≤  where

P
=1

 = 

Suppose we wish to test a hypothesis of the form: 0 :  = (α) where the probabili-

ties (α) are all functions of an unknown parameter (possibly vector) α with dimension

dim() =   − 1. Thus, the parameter in the unconstrained model is θ = (1  )
and the parameter space Ω = {(1  ) : 0 ≤  ≤ 1 where

P
=1

 = 1} has dimension

25() = − 1− log()
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− 1 and in the constrained model Ω0 = {(1(α)  (α)) : for all α} has dimension  .

The likelihood ratio statistic is constructed from the likelihood function:

(θ) = (1  ;θ)

Wewill give more specific examples of the Multinomial in Chapter 6. We conclude with some

short remarks about the relationship between tests of hypothesis and interval estimation.

5.3 Hypothesis Testing and Interval Estimation

Hypothesis tests for hypotheses of the form 0 :  = 0, where  is a scalar parameter, are

very closely related to interval estimates for . For likelihood ratio tests the connection is

immediately obvious, because the likelihood ratio statistic is

Λ = 2(̃)− 2(0)

is used for both tests and confidence intervals. For a test of 0 :  = 0, the p-value is

approximately given by

−  =  [ ≥ (0)] (5.11)

where (0) = 2(̂) − 2(0) and  v 2 (1). We write (0) to remind ourselves that

we are testing 0 :  = 0. On the other hand, to get an approximate 100% confidence

interval for  we find by all values of  such that

(0) = 2(̂)− 2(0) ≤  (5.12)

where  ( ≤ ) =  or  (  ) = 1− and v 2 (1). For example for an approximate

95% confidence interval we use  = 384.

We now see the following by comparing (5.11) and (5.12): The parameter value 0 is

inside an approximate 100% confidence interval given by (5.12) if and only if for the test

of 0 :  = 0 we have by (5.11) that the −  is greater than or equal to 1− .

For example, 0 is inside the approximate 95% confidence interval if and only if the

p-value for 0 :  = 0 satisfies −  ≥ 005. To see this note that

−  ≥ 005
if and only if  [ ≥ (0)] ≥ 005

if and only if (0) ≤ 384
if and only if 0 is inside the approximate 95% confidence interval.

The connection between tests and confidence intervals can also be made when other test

statistics beside the likelihood ratio statistic are used. If  is a test statistic for testing

0 :  = 0 then we can obtain a 95% confidence interval for  by finding all values 0 such

that −  ≥ 005.
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5.4 Problems

1. The accident rate over a certain stretch of highway was about  = 10 per year for a

period of several years. In the most recent year, however, the number of accidents was

25. We want to know whether this many accidents is very probable if  = 10; if not,

we might conclude that the accident rate has increased for some reason. Investigate

this question by assuming that the number of accidents in the current year follows a

Poisson distribution with mean  and then testing 0 :  = 10. Use the test statistic

 = max(0  − 10) where  represents the number of accidents in the most recent

year.

2. Refer back to Problem 1 in Chapter 1. Frame this problem as a hypothesis test.

What test statistic is being used? What are the significance levels from the data in

parts (b) and (c)?

3. The R function () generates pseudo random Uniform(0 1) random variables.

The command  ← () will produce a vector of  values 1 · · ·  .

(a) Give a test statistic which could be used to test that the ’s ( = 1 · · ·  ) are
consistent with a random sample from Uniform(0 1).

(b) Generate 1000 ’s and carry out the test in (a).

4. A company that produces power systems for personal computers has to demonstrate

a high degree of reliability for its systems. Because the systems are very reliable

under normal use conditions, it is customary to ‘stress’ the systems by running them

at a considerably higher temperature than they would normally encounter, and to

measure the time until the system fails. According to a contract with one personal

computer manufacturer, the average time to failure for systems run at 70◦C should
be no less than 1 000 hours.

From one production lot, 20 power systems were put on test and observed until failure

at 70◦. The 20 failure times 1     20 were (in hours):

3742 5440 11139 5094 12443

5519 8532 33912 2970 631

2502 6781 3796 18189 11911

1628 10601 15014 3322 23820

Note:
20P
=1

 = 18 6986. Failure times  are known to be approximately Exponential

with mean .
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(a) Use a likelihood ratio test to test the hypothesis that  = 1000 hours. Is there

any evidence that the company’s power systems do not meet the contracted

standard?

(b) If you were a personal computer manufacturer using these power systems, would

you like the company to perform any other statistical analyses besides testing

0 :  = 1000? Why?

5. In the Wintario lottery draw, six digit numbers were produced by six machines that

operate independently and which each simulate a random selection from the digits

0 1     9. Of 736 numbers drawn over a period from 1980-82, the following frequen-

cies were observed for position 1 in the six digit numbers:

Digit (): 0 1 2 3 4 5 6 7 8 9 Total

Frequency (): 70 75 63 59 81 92 75 100 63 58 736

Consider the 736 draws as trials in a Multinomial experiment and let  =  (digit

 is drawn on any trial),  = 0 1    9. If the machines operate in a truly ‘random’

fashion, then we should have  = 01  = 0 1     9.

(a) Test this hypothesis using a likelihood ratio test. What do you conclude?

(b) The data above were for digits in the first position of the six digit Wintario num-

bers. Suppose you were told that similar likelihood ratio tests had in fact been

carried out for each of the six positions, and that position 1 had been singled

out for presentation above because it gave the largest observed value of the like-

lihood ratio statistic Λ. What would you now do to test the hypothesis  = 01

 = 0 1 2     9? (Hint: You need to consider  (largest of 6 independent Λ’s is

≥ ).)

6. Testing a genetic model. Recall the model for the M-N blood types of people,

discussed in Examples 2.3.2 and 2.5.2. In a study involving a random sample of 

persons the numbers 1 2 3 (1 + 2 + 3 = ) who have blood types MM, MN

and NN respectively has a Multinomial distribution with joint probability function

(1 2 3) =
!

1! 2! 3!

1
1 

2
2 

3
3 for  = 0 1    ;

3P
=1

 = 

and since 1 + 2 + 3 = 1 the parameter space Ω = {(1 2 3) :  ≥ 0
3P

=1

 = 1}
has dimension 2. The genetic model discussed earlier specified that 1 2 3 can be

expressed in terms of only a single parameter  0    1, as follows:

1 = 2 2 = 2(1− ) 3 = (1− )2 (5.13)
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Consider (5.13) as the hypothesis 0 to be tested. In this case, the dimension of

the parameter space for (1 2 3) under 0 is 1, and the general methodology of

likelihood ratio tests can be applied. This gives a test of the adequacy of the genetic

model.

Suppose that a sample with  = 100 persons gave observed values 1 = 18

2 = 50 3 = 32 Test the hypothesis (5.13) and state your conclusion.

7. Likelihood ratio test for a Gaussian mean. Suppose that a random variable

 has a ( ) distribution and that we want to test the hypothesis 0 :  = 0,

where 0 is some specified number. The value of  is unknown.

(a) Construct the likelihood ratio statistic Λ for this hypothesis. (Note that the

parameter space is Ω = {θ = ( ) : −∞   ∞   0}.) Assume that a

random sample 1      is available.

(b) Show that Λ can be expressed as a function of  =
√
(̄ − 0), where

2 =
1

− 1
P
=1

( − ̄ )2

is the sample variance and ̄ is the sample mean. Note: you will want to use

the identity
P
=1

( − 0)
2 =

X
=1

( − ̄ )2 + (̄ − 0)
2

8. The Poisson model is often used to compare rates of occurrence for certain types of

events in different geographic regions. For example, consider  regions with popula-

tions 1      and let  ,  = 1     be the annual expected number of events

per person for region . By assuming that the number of events  for region  in a

given -year period has a Poisson distribution with mean , we can estimate and

compare the  ’s or test that they are equal.

(a) Under what conditions might the stated Poisson model be reasonable?

(b) Suppose you observe values 1      for a given -year period. Describe how

to test the hypothesis that 1 = 2 =    =  .

(c) The data below show the numbers of children  born with “birth defects” for 5

regions over a given five year period, along with the total numbers of births 

for each region. Test the hypothesis that the five rates of birth defects are equal.

 : 2025 1116 3210 1687 2840

 : 27 18 41 29 31



GAUSSIAN RESPONSE

MODELS

6.1 Introduction

A “response” variable  is one whose distribution has parameters which depend on the

value of other variables. We have already seen many examples of such forms of dependence

in the data in these notes such as heights and body-mass index measurements of people.

Many problems involve explanatory variables  (which may be a vector) that are related

to a response  which is often assumed to have a Normal or Gaussian distribution, and

we will call these models Gaussian response models. These are by far the most common

models in applications of statistics.

For many of the models we have studied in these notes, we assumed that we had a

random sample 1 2  , i.e. independent random variables from the same Gaussian

distribution ( ). A Gaussian response model generalizes this to permit the parame-

ters of the Gaussian distribution for  to depend on some other vector x of covariates

(explanatory variables which we measure). In other words we will usually assume that

 ∼  ( (x)  ) for  = 1      independently

where  (x) is some function of the covariate x. Notice that the assumed model is such

that the mean of  depends on the covariate x corresponding to the response  but the

standard deviation  does not depend on x; it is the same for all values of . While this last

assumption is not essential, it does make the models easier to analyze so we will generally

use it here.

So the difference between various Gaussian response models is in the choice of covariates

and the function  (x). Often x consists of a vector of covariates and it is natural and simple

to assume that  (x) is a linear function of the components of this vector. The choice of

 (x) is guided by past information and on current data from the population or process in

question.

Here are some examples of settings where Gaussian response models can be used.

Example 6.1.1 The soft drink bottle filling process of Example 1.4.2 involved two ma-

chines (Old and New). For a given machine it is reasonable to represent the distribution for

121
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the amount of liquid  deposited in a single bottle by a Gaussian distribution:  ∼ ( ).

In this case we can think of the machines as being like a covariate, with  and  differing

for the two machines. We could write

 ∼ ( ) for observations from the old machine

 ∼ (  ) for observations from the new machine.

In this case there is no formula relating  and  to the machines; they are simply different.

Notice that an important feature of a machine is the variability of its production so we

have, in this case, permitted the two variance parameters to be different.

Example 6.1.2 Price versus Size of Commercial Buildings 26

Ontario property taxes are based on “market value”, which is determined by comparing a

property to the price of those which have recently been sold. The value of a property is

separated into components for land and for buildings. Here we deal with the value of the

buildings only but a similar analysis could be conducted for the value of the property.

A manufacturing company was appealing the assessed market value of its property,

which included a large building. Sales records were collected on the 30 largest buildings

sold in the previous three years in the area. The data are given in Table 6.1.1 and plotted

in Figure 6.2 in a scatter plot, which is a plot of the points ( ). They include the

size of the building  (in 2105) and the selling price  (in $ per 2). The purpose of

the analysis is to determine whether and to what extent we can determine the value of a

property from the single variable  so that we know whether the assessed value appears to

be too high. The building in question was 447× 105 2, with an assessed market value of

$75 per 2.

Table 6.1.1 Size and Price of 30 Buildings

Size Price Size Price Size Price

326 2262 086 5328 038 6364

308 2337 080 5634 038 6579

303 2485 077 5780 038 5973

229 3604 073 5973 038 6115

183 4152 060 6173 038 6704

165 4588 048 6244 034 6606

114 5099 046 6164 026 6238

111 5258 045 6209 024 6725

111 5237 041 6243 023 6735

100 5347 040 6417 020 6118

The scatter plot shows that price () is roughly inversely proportional to size () but

there is obviously variability in the price of buildings having the same area (size). In this

26This reference can be found in earlier course notes for Oldford and MacKay, STAT 231 Ch. 16
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case we might consider a model where the price of a building of size  is represented by a

random variable , with

 ∼ (0 + 1 ) for  = 1      independently

where 0 and 1 are parameters. Again we assumed a common standard deviation  for

the observations.

0.5 1.0 1.5 2.0 2.5 3.0
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Figure 6.2: Scatter Plot of Size vs. Price for 30 Buildings

Example 6.1.3 Strength of Steel Bolts. The “breaking strength" of steel bolts is

measured by subjecting a bolt to an increasing (lateral) force and determining the force

at which the bolt breaks. This force is called the breaking strength; it depends on the

diameter of the bolt and the material the bolt is composed of. There is variability in

breaking strengths: Two bolts of the same dimension and material will generally break at

different forces. Understanding the distribution of breaking strengths is very important in

construction and other areas.

The data below show the breaking strengths () of six steel bolts at each of five different

bolt diameters (). The data are plotted in Figure 6.3
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Diameter  010 020 030 040 050

162 171 186 214 245

Breaking 173 178 186 207 242

Strength 170 179 190 211 233

166 186 195 218 236

174 170 196 217 238

172 184 200 207 231

The scatter plot gives a clear picture of the relationship between  and . A reasonable

model for the breaking strength  of a randomly selected bolt of diameter  would appear

to be  ∼ (() ). The variability in  values appears to be about the same for bolts of

different diameters which again provides some justification for assuming  to be constant.

It is not obvious what the best choice for () would be; the relationship looks slightly

nonlinear so we might try a quadratic function

() = 0 + 1+ 2
2

or some other nonlinear function. The parameters are the constants 0 1 2 which are

unknown and to be estimated from the data.
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Figure 6.3: Scatter Plot of Diameter vs. Strength for Steel Bolts.

Definition 2 A Gaussian response model is one for which the distribution of the re-

sponse variable  , given the associated vector of covariates x = (1 2  ) for an
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individual unit, is of the form

 ∼ ( (x)  (x)) (6.2)

where here we allow the more general case in which the standard deviation can depend on

the covariates as well.

If observations are made on  randomly selected units we often write this as

 ∼  ((x) (x)) for  = 1      independently

In most examples here, we will use models where (x) =  is constant and (x) is a linear

function of the covariates. These models are called Gaussian linear models and can be

written

 ∼  ((x) ) for  = 1      independently (6.3)

with (x) = 0 +
P

=1

 

where x = (1 2     ) is the vector of covariates associated with unit  and 0 1     
are unknown parameters. These models are also referred to as linear regression27 mod-

els, and the  ’s are called the regression coefficients.

Remark: Sometimes the model (6.3) is written a little differently as

 = (x) + where  ∼ (0 )

This splits  into a deterministic component, (x) and a random component, .

The model (6.3) describes many situations well. The following are some illustrations.

1.  ∼ ( ), where  is the height of a random female, corresponds  (x) = 0 = ,

 = 1 2  .

2. The model in Example 6.1.2 had (x) = () = 0 + 1 where  is the size of

the th building,  = 1 2  .

3. The bolt strength model in Example 6.1.3 had (x) = () = 0 + 1 + 2
2


where  is the diameter of the th bolt,  = 1 2  ..

We know consider estimation and testing procedures for these Gaussian response models.

We begin with models that have no covariates so that the observations are all from the same

Gaussian distribution.

27The term “regression” is used because it was introduced in the 19th century in connection with these

models, but we will not explain why it was used here. It is called “linear” because it is linear in the

parameters .
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6.2 Inference for a single sample from a Gaussian Distribu-

tion

Suppose that  ∼ ( ) models a response variable  in some population or process.

A random sample 1      is selected, and we want to estimate the model parameters

and possibly to test hypotheses about them. We have already seen in Section 2.2 that the

maximum likelihood estimators of  and 2 are

̃ = ̄ =
1



P
=1

 and ̃2 =
1



P
=1

( − ̄ )2

A closely related point estimator of 2 is the sample variance28,

2 =
1

− 1
P
=1

( − ̄ )2

whch differs from ̃2 only by the choice of denominator. Indeed if  is large there is

very little difference between 2 and ̃2. We now consider interval estimation and tests of

hyptheses for  and .

6.2.1 Confidence Intervals and Tests for  and 

If  were known then, as discussed in Chapter 4,

 =
̄ − 


√

∼ (0 1)

would be a pivotal quantity and could be used to get confidence intervals for . However, 

is generally unknown. Fortunately it turns out that if we simply replace  with either the

maximum likelihood estimator ̃ or the sample variance  in , then we still have a pivotal

quantity which we will denote as  . We will write  in terms of  since the formulas below

look a little simpler in this case, so  is defined as

 =
̄ − 


√


(6.4)

Since unlike , is a random variable in (6.4) the distribution of  is not exactly the

(0 1). It turns out that its distribution is what is known as a Student t (or just “”)

distribution. We will digress briefly to present this distribution and show how it arises.

Student  Distribution.

28The sample variance has the advantage that it is “unbiased” i.e. that (2) = 2. To see this

note that (2) = 1
−1



=1

( − ̄ )2

= 1

−1



=1

( − ̄ )2

= 1

−1



=1

( − )2 − (̄ − )2

=

1
−1


2 − 2


= 2
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Figure 6.4: p.d.f.’s of the  (2) distribution ( dotted red ) and the  (0 1) distribution (solid

blue)

The Student  distribution29 ( distribution for short) has probability density function

(; ) =  × (1 + 2


)−(+1)2 for −∞   ∞ and  = 1 2   

The parameter  is called the degrees of freedom. The constant  is

 =
Γ
¡
+1
2

¢
√
Γ(

2
)

We write  ∼  () to denote that the random variable  has a Student  distribution with

 degrees of freedom.

In Figure 6.4 the probability density function (; ) for  = 2 is plotted together

with the  (0 1) probability density function.Obviously the Student  probability density

function is similar to that of the  (0 1) distribution in several respects: it is symmetric

29This distribution arises when we consider independent random variables  ∼ (0 1) and  ∼ 2 ()

and then define the new random variable  = 

()12
 Then  has a student - distribution with 

degrees if freedom. In this case

(i)  = ̄−

√

∼ (0 1)

(ii)  =
(−1)2

2
∼ 2 (− 1)

(iii) ̄ and 2 ( and therefore ) are independent.

We will not prove these results here.
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about the origin, it is unimodal, and indeed for large degrees of freedom , the graph

of the probability density function (; ) is indistinguishable from that of the  (0 1)

probability density function. The primary difference, for small degrees of freedom such as

the one plotted, is in the tails of the density. The Student  density has larger “tails” or

more area in the extreme left and right tails, which means it is more prone to large or small

values than is the standard normal. Problem 1 at the end of this chapter considers some

properties of (; ).

Probabilities for the  distribution are available from tables or computer software. In

, the cumulative distribution function  (; ) =  ( ≤ ; ) where  ∼  () is obtained

using pt(x,k). For example, pt(1.5,10) gives  ( ≤ 15; 10) = 0918.
There is one fundamental reason that the  distribution is an essential tool of any

statistician, and it is that in the Gaussian case, (6.4) has a  distribution.

Theorem 3 Suppose 1      is a random sample from a common Gaussian distribution

 ∼ ( ) having sample mean ̄ and sample variance 2. Then the statistic (6.4) has

the  distribution with  = − 1 degrees of freedom.

Confidence Intervals for 

Since  = ̄−

√

has a  distribution with  − 1 degrees of freedom which is a completely

known distribution,  is a pivotal quantity and we can use it to construct a 100% confidence

interval for . First we obtain constants 1 and 2 such that  (1 ≤  ≤ 2) =  using 

tables or , and then we solve the inequality

1 ≤ ̄ − 


√

≤ 2 (6.5)

for the only unknown, . (Note that if we attempted to use the Gaussian distributed random

variable ̄−

√

to build a confidence interval we would have two unknowns in the inequality

since both  and  are unknown.) Solving (6.5) we obtain the 100% confidence interval

for  as

̄ − 2
√
 ≤  ≤ ̄ − 1

√


and this is justified since


¡
̄ − 2

√
 ≤  ≤ ̄ − 1

√

¢
= 

As usual the method used to construct this interval implies that 100% of the confidence

intervals constructed from samples drawn from this population contain the true value of .

Notice that since the  distribution is symmetric about zero, we can choose −1 = 2 = .

The 100% confidence interval (usually referred to as a “two-sided” interval) is then

̄ ± 

µ
√


¶
(6.6)
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where  (  ) = 2 and  ∼  (− 1). We note that this interval is of the form

̄ − 
√
 ≤  ≤ ̄ − 

√
 or

estimate ± × estimated standard deviation of estimator.

Recall that a confidence interval for  in the case of a ( ) population when  is known

has a similar form:

estimate ± × standard deviation of estimator

except that the standard deviation of the estimator is known in this case and the value of

 is taken from a (0 1) distribution rather than the  distribution.

Example 6.2.1 Scores  for an IQ test administered to ten year olds in a very large

population have close to a ( ) distribution. A random sample of 10 children in a

particular large inner city school obtained test scores as follows:

103 115 97 101 100 108 111 91 119 101

We wish to estimate the parameter  for this school based on these data. We obtain

confidence intervals for the average IQ test score  in the population by using the pivotal

quantity

 =
 − 


√
10
∼  (9) 

Since  (−2262 ≤  ≤ 2262) = 095 for  ∼  (9), a 95% confidence interval for  is

̄ ± 2262√10. For the given data ̄ = 1046 and  = 857, so the confidence interval is

1046± 613, or 9847 ≤  ≤ 11073 or [9847 11073].

Behaviour as →∞: As  increases, confidence intervals behave in a largely predictable
fashion. First the estimated standard deviation gets closer to the true standard deviation

30 Second as the degrees of freedom increase, the  distribution approaches the Gaussian

so that the quantiles of the  distribution approach that of the (0 1) distribution. For

example, if in Example 6.2.1 we knew that  = 857 then we would use the 95% confidence

interval ̄±196 (857) √ instead of ̄±2262 (857) √ with  = 10. In general for large
, the width of the confidence interval gets narrower as  increases (but at the rate 1

√
)

so the confidence intervals shrink to include only the point ̄.

Sample size required for a given width of Confidence Interval. If we have a

rough idea what the value of  is, we can determine the value of  needed to make a 95%

confidence interval a given length. This is used in deciding how large a sample to take in a

study. A 95% confidence interval using the normal quantiles takes the form ̄ ± 196√
30 this will be justified shortly
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so if we have a rough idea of the value of  and if we wish a confidence interval of the form

̄ ±  (the width of the confidence interval is then 2), we should choose

196
√

≈ 

or  ≈
µ
196



¶2


We would normally choose  a little larger than this formula gives to accommodate the

fact that we used normal quantiles rather than the quantiles of the  distribution which are

larger in value.

Hypothesis Tests for 

For a normally distribued population, we may wish to test a hypothesis 0 :  = 0, where

0 is some specified value. To do this we can use the test statistic

 =
|̄ − 0|

√


(6.7)

We then obtain a p-value from the  distribution as follows. Let

 =
|̄ − 0|

√


(6.8)

be the value of  observed in a sample with mean ̄ and standard deviation , then

−  =  ( ≥ ;0 is true)

=  (| | ≥ )

= 1−  (− ≤  ≤ ) where  ∼  (− 1)  (6.9)

Example 6.2.2 For the setting in Example 6.2.1, test 0 :  = 110. From (6.8), the

observed value of  is

 =
|1046− 110|
857

√
10

= 199

and by (6.9) the p-value is

−  =  (| | ≥ 199)
= 1−  (−199 ≤  ≤ 199) where  ∼  (9)

= 0078

Based on the observed data there is no strong evidence against 0 :  = 110. (Such tests

are sometimes used to compare IQ test scores for a sub-population (e.g. students in one

school district) with a known mean  for a “reference” population.)
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Remark: The likelihood ratio statistic could also be used for testing 0 :  = 0 or

constructing a confidence interval for , but the methods above are a little simpler. In fact,

it can be shown that the likelihood ratio statistic for 0 is a one-to-one function of | ̄−
√

|;

see Problem 2 at the end of this Chapter.

Remark: The function t.test in  will give confidence intervals and test hypotheses

about ; for a data set  use t.test(y).

Confidence Intervals and Tests for 

Suppose that we have a sample 1 2   of independent random varaibles each from

the same ( ) distribution. We have seen that there are two closely related estimators

for the population variance, ̃2 and the sample variance 2. Suppose we use 2 to build

a confidence interval for the parameter 2. Such a construction depends on the following

result, which we will not prove.

Theorem 4 Suppose 1 2   are independent random variables with common ( )

distribution and suppose 2 is the sample variance. Then

(− 1)2
2

=
1

2

P
=1

( − ̄ )2 (6.10)

has a chi-squared distribution with − 1 degrees of freedom.

While we will not prove this result, we should at least try to explain the puzzling number

of degrees of freedom −1, which on the surface seems wrong since
P
=1

(− ̄ )2 is the sum
of  squared normal random variables. Is this in direct contradiction to Theorem xxx? It

is in fact true that each ( − ̄ ) is a normally distributed random variable, but not in

general standard normally distributed and more importantly not independent! It is easy

to see that they are not independent since
P
=1

( − ̄ ) = 0 implies that the last value can

be determined using the sum of the first − 1 terms:

 − ̄ = −
−1P
=1

( − ̄ )

Although there are  terms ( − ̄ )  = 1 2   in the summand for 2 there are really

only −1 that are free (i.e. linearly independent); the last is determined by the first − 1.
This is an intuitive explanation for the  − 1 degrees of freedom both of the chi-squared

and of the  distribution. In both cases, the degrees of freedom are inherited from 2 and

are related to the dimension of the subspace inhabited by the terms in the sum for 2, i.e.

 − ̄   = 1  

We will now show how we can use the above theorem to construct a 100% confidence

interval for the parameter 2 or . First note that (− 1)22 is a pivotal quantity since
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its distribution is completely known. Using chi-squared tables or  we can find constants

1 and 2 such that

 (1 ≤  ≤ 2) = 

where  ∼ 2 (− 1). The confidence interval is then obtained by solving the inequality

1 ≤ (− 1)
2

2
≤ 2

for the parameter 2 where 2 is the observed sample variance. We obtain

(− 1)2
2

≤ 2 ≤ (− 1)
2

1
 (6.11)

Of course we can also solve (6.11) for the parameter  to obtains
(− 1) 2

2
≤  ≤

s
(− 1) 2

1
(6.12)

so a 100% confidence interval for  is

∙q
(−1)2

2


q
(−1)2

1

¸
. For such “two-sided” confi-

dence intervals we usually choose 1 and 2 such that

 ( ≤ 1) =  (  2) =


2

where  ∼ 2 (− 1). This choice of 1 2 is not unique but traditional for two-sided
intervals. Note that these two-sided confidence intervals are not symmetric about the

estimate of .

In some applications we are interested in an upper bound on  (because small  is

“good” in some sense); then we take 2 =∞ and find 1 such that  ( ≤ 1) =  so that

a “one-sided” 100% confidence interval for  is
h
0 

q
−1
1

i
.

Example 6.2.3. A manufacturing process produces wafer-shaped pieces of optical glass

for lenses. Pieces must be very close to 25 mm thick, and only a small amount of variability

around this can be tolerated. If  represents the thickness of a randomly selected piece

of glass then, to a close approximation,  ∼ ( ). Periodically, random samples of

 = 15 pieces of glass are selected and the values of  and  are estimated to see if they

are consistent with  = 25 and with  being under 002 mm. On one such occasion the

observed data were

̄ = 25009 and
15P
=1

( − ̄)2 = (14) 2 = 0002347

To obtain a 95% confidence interval for , we use the pivotal quantity

(− 1)2
2

=
1

2

P
=1

( − ̄ )2 ∼ 2 (− 1)
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with  = 15. From chi-squared tables or  we obtain

 ( ≤ 563) = 0025 =  (  2612)

where  ∼ 2 (14) so that

095 = 

µ
563 ≤ (− 1)

2

2
≤ 2612

¶
= 

µ
(− 1)2
2612

≤ 2 ≤ (− 1)
2

563

¶


Substituting 1 = 563 2 = 2612 and (14) 
2 = 0002347 into (6.12) we obtainr

0002347

2612
≤  ≤

r
0002347

563

so that a 95% confidence interval for  is given by 00095 ≤  ≤ 00204 or [00095 00204].
It seems plausible that  ≤ 002, though the right endpoint of the 95% confidence interval

is very slightly over 002. Using  (657 ≤   ∞) = 095 we can obtain a one-sided 95%
confidence interval for  which is given by  ≤ 00189 and in this case 002 is not in the
interval. Why are they different? Both cover the true value of the parameter  for 95% of

all samples so they have the same confidence coefficient but the one-sided interval, since it

allows smaller (as small as zero) values on the left end of the interval, it can achieve the

same coverage with a smaller right end-point. If our primary concern was for values of 

being too large, i.e. for an upper bound for the interval, then the one-sided interval is the

one that should be used for this purpose.

Hypothesis Tests for . We have discussed constructing confidence intervals for the

parameter  for a Gaussian population but we may also wish to test a hypthesis that this

parameter takes a specific value; 0 :  = 0. One approach is to use a likelihood ratio

statistic, as described in Chapter 4. It can be shown (see Problem 2) that the likelihood

ratio statistic Λ is a function of  = (− 1)220 and in fact

Λ =  −  log

µ




¶
−  (6.13)

This is not a one-to-one function of  but Λ is zero when  =  and Λ is large when

 is much bigger than or much less than one (i.e. when 220 is much bigger than

one or much less than one). Since  has a chi-squared distribution with  − 1 degrees of
freedom when 0 is true, we can use  as the test statistic for testing 0 :  = 0 and

compute exact p-values instead of using the chi-squared approximation for the distribution

of Λ discussed in Chapter 4.

If we use the test statistic  = ( − 1)220 for testing 0 :  = 0 then it is clear

that large values of  and small values of  provide evidence against 0. Now  has a

chi-squared distribution when 0 is true and the chi-squared distribution is not symmetric

which makes the determination of “large” and “small” values somewhat problematic. The

following simpler calculation approximates the p-value:
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1. Let  = (− 1)220 denote the observed value of  from the data.

2. If   − 1 compute the p-value as

−  = 2 ( ≥ )

where  ∼ 2 (− 1).
If   − 1 compute the p-value as

−  = 2 ( ≤ )

where  ∼ 2 (− 1).

Example 6.2.4 For the manufacturing process in Example 6.2.3, test the hypothesis

0 :  = 0008 (0008 is the desired or target value of  the manufacturer would like to

achieve).

Note that since the value  = 0008 is outside the two-sided 95% confidence interval for

 in Example 6.2.3, the p-value for a test of0 based on the test statistic Λ (or equivalently,

 = ( − 1)220) will be less than 005. To find the p-value, we follow the procedure

above:

1.  = (− 1)220 = (14) 2 (0008)2 = 0002347 (0008)2 = 3667

2. The p-value is

−  = 2 ( ≥ ) = 2 ( ≥ 3667) = 00017

where  ∼ 2 (14).

This indicates very strong evidence against 0 and, since the observed value of  =p
000234714 = 00129 is greater than 0008, the data suggests that  is bigger than 0008.

6.3 General Gaussian Response Models

We now consider general models of the form (6.3):  ∼ ( ) with (x) =
P

=1



for independent units  = 1 2     . For convenience we define the  ×  (where   )

matrix  of covariate values:

 = () for  = 1   and  = 1 2  (6.3.1)

We assume that the values  are non-random quantities which we observe. We now

summarize some results about the maximum likelihood estimators of the parameters β =

(1     )
 and . (Note that to facilitate the matrix proof below we have taken 0 = 0
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in (6.3). The estimator of 0 can be obtained from the result below by letting 1 = 1 for

 = 1      and 0 = 1.)

Maximum Likelihood Estimators of β = (1  )
 and of 

Theorem 5 The maximum likelihood estimators β = (1  )
 and  are, with Y×1 =

(1  )
 

β̃ = ()−1Y (6.3.2)

and ̃2 =
1



P
=1

( − ̃)
2 where ̃ =

P
=1

̃ (6.3.3)

Proof. The likelihood function is

(β ) =
Q
=1

1√
2

exp

"
−1
2

µ
 − 



¶2#
where  =

P
=1



and the log-likelihood is

(β ) = log(β )

= − log  − 1

22

P
=1

( − )
2 

Note that if we take the derivative with respect to a particular  and set this derivative

equal to 0 we obtain,




(β ) =

1

22

P
=1

( − )



= 0

or
P
=1

( − ) = 0 for each  = 1 2  

In terms of the matrix  and the vector y =(1  )
we can rewrite this system of

equations more compactly as

 (y −β)= 0 or

y = β

Assuming that the × matrix  has an inverse we can solve these equations to obtain

the maximum likelihood estimate of β, in matrix notation as

β̂ = ()−1y

with corrresponding maximum likelihood estimator

eβ = ()−1Y
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In order to find the maximum likelihood estimator of , we take the derivative with respect

to  and set the derivative equal to zero,




(β ) =





∙
− log  − 1

22

P
=1

( − )
2

¸
= 0

or

−

+
1

3

P
=1

( − )
2 = 0

from which we obtain the maximum likelihood estimate of 2 as

̂2 =
1



P
=1

( − ̂)
2

where

̂ =
P

=1

̂

The corresponding maximum likelihood estimator ̃ is

̃2 =
1



P
=1

( − ̃)
2

where

̃ =
P

=1

̃ 

Recall that when we estimated the variance for a single sample from the Gaussian

distribution we considered a minor adjustment to the denominator and with this in mind

we also define an estimator of the variance 2 similar to the maximum likelihood estimator:

2 =
1

− 

X
=1

( − ̃)
2 =



− 
̃231

Theorem 6 1. The estimators ̃ are all normally distributed random variables with

expected value  and with variance given by the 
0 diagonal element of the matrix

2()−1  = 1 2  

2. The random variable
̃2

2
=
(− )2

2
(6.3.4)

has a chi-squared distribution with −  degrees of freedom.

3.  is independent of (̃1  ̃)

31 It is clear why we needed to assume    Otherwise −  ≤ 0 and we have no “degrees of freedom”

left for estimating the variance.
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Proof. The estimator ̃ can be written using (6.3.2) as a linear combination of the normal

random variables 

̃ =
P
=1



where the matrix  = ()× = ()−1 . Note that  = ()−1 equals

the identity matrix . Because ̃ is a linear combination of independent normal random

variables , it follows that ̃ is normally distributed. Moreover

(̃) =
P
=1

()

=
P
=1

 where  =
P
=1



=
P
=1



Note that  =
P
=1

 is the ’th component of the vector β which implies that (̃)

is the ’th component of the vector β. But since  is the identity matrix, this is

the ’th component of the vector β or   Thus (̃) =  for all . The calculation of

the variance is similar.

 (̃) =
P
=1

2 ()

= 2
P
=1

2

and an easy matrix calculation will show, since  = ()−1 that
P
=1

2 is the ’th

diagonal element of the matrix ()−1. We will not attempt to prove part (3) here,
which is usually proved in a subsequent statistics course.

Remark: The maximum likelihood estimate ̂ is also a least squares (LS) estimate

of  in that it is obtained by taking the sum of squared vertical distances between the

observations  and the corresponding fitted values  and then adjusting the values of

the estimated  until this sum is minimized. Least squares is a method of estimation in

linear models that predates maximum likelihood. Problem 16 describes the method of least

squares method.

Remark 7 32From the above theorem we can obtain confidence intervals and test hypothe-

ses for the regression coefficients using the pivotal

̃ − 


√


(6.3.5)

32

Recall: if  ∼ (0 1) and  ∼ 2() then the random variable  = 

 has a () distribution.

Put  =
̃−

√


and  =
(−)2

2
and  = −  to obtain this result.
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which has a  distribution with − degrees of freedom. Here  is the ’th diagonal element
of the matrix

¡


¢−1
.

Confidence intervals for   Exactly as we constructed confidence intervals for the pa-

rameter  for observations from the ( ) distribution, we can use this result to construct

confidence intervals for the parameter  . For example for a 95% confidence interval, we

begin by using the  distribution with  −  degrees of freedom to find a constant  such

that

 (−    ) = 095 where  ∼  (− ) 

We then obtain the confidence interval by solving the inequality

− ≤ ̂ − 


√

≤ 

to obtain

̂ − 
√
 ≤  ≤ ̂ + 

√


where

2 =
1

− 

P
=1

( − ̂)
2 and ̂ =

P
=1

̂ 

Thus a 95% confidence interval for  ish
̂ − 

√
  ̂ + 

√


i
which takes the familiar form

estimate ± × estimated standard deviation of estimator.

We will now consider a number of special cases of these Gaussian response models that

are most comonly applied. The first, we have already seen, but it provides a simple example

to validate the more general formulae.

Single Gaussian distribution. Here,  ∼ ( )  = 1  , i.e.,  (x) =  and

x = 1 = 1 for all  = 1 2    = 1 we use the parameter  instead of β =(1). Notice

that in this case ×1 = (1 1  1) . This model was discussed in detail in Section 6.2.

The pivotal quantity (6.3.5) becomes

̃1 − 1

√
1

=
̃− 


√


since ()−1 = 1. This pivotal quantity has the  distribution with  −  =  − 1.
You can also verify using (6.3.4) that

(− 1)2
2
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has a chi-squared (− 1) distribution, as determined in Section 6.2.

Comparing Two Gaussian Distributions (1 ) and (2 ). Suppose we have

two independent samples from Gaussian distributions, of sample size 1 2 respectively,

11 12  11 are obtained from (1 )

and 21 22  22 are obtained from (2 )

Notice that we have assumed that both populations have the same variance 2. We use

double subscripts for the  ’s here, the first index to indicate the population from which

the sample was drawn, the second to indicate which draw from that population. We could

easily conform with the notation of (6.3) by stacking these two sets of observations in a

vector of  = 1 + 2 observations:

(11 12  11  21 22  22)


and obtain the conclusions below as a special case of the linear model. Below we derive the

estimates from the likelihood directly.

The likelihood function for 1, 2,  is

(1 2 ) =
2Q

=1

Q
=1

1√
2

exp

"
−1
2

µ
 − 



¶2#
Maximization of the likelihood function gives the maximum likelihood estimators:

̃1 =
1

1

1P
=1

1 = ̄1

̃2 =
1

2

2P
=1

2 = ̄2

and ̃2 =
1

1 + 2

2P
=1

P
=1

( − ̃)
2

Note that the estimator of the variance 2 (sometimes referred to as the pooled estimator

of variance) adjusted for the degrees of freedom is

2 =
1

1 + 2 − 2
2P

=1

( − 1)2

=
1 + 2

1 + 2 − 2 ̃
2

where

2 =
1

 − 1
P
=1

( − ̄)
2  = 1 2

are the sample variances obtained from the individual samples. You should observe that

the overall estimator of variance 2 can be written as a weighted average of the estimators

2 . In fact

2 =
1

2
1 + 2

2
2

1 + 2
(6.3.6)
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where the weights are  =  − 1. Although you could substitute weights other than
 − 1 in (6.3.6)33, when you pool various estimators in order to obtain one that is better
than any of those being pooled, you should do so with weights that relate to a measure of

precision of the estimators. For sample variances, the number of degrees of freedom is such

an indicator.

Confidence intervals for the difference between two expected values.To determine

whether the two populations differ and by how much we will need to generate confidence

intervals for the difference 1 − 2. First note that the maximum likelihood estimator of

this difference is  1 −  2 and it has expected value

( 1 −  2) = 1 − 2

and variance

 ( 1 −  2) =  ( 1) +  ( 2) =
2

1
+

2

2
= 2

µ
1

1
+
1

2

¶


It naturally follows that an estimator of  from the pooled data is



r
1

1
+
1

2

and that this has 1 − 1 + 2 − 1 = 1 + 2 − 2 degrees of freedom. This provides at least
an intuitive justification for the following:

Proposition 8 The random variable

( 1 −  2)− (1 − 2)


q

1
1
+ 1

2

has a  distribution with 1 + 2 − 2 degrees of freedom. Similarly the random variable

(1 + 2 − 2)2
2

=
1

2

2P
=1

P
=1

( − ̄)
2

has a chi-squared distribution with 1 + 2 − 2 degrees of freedom.

Confidence intervals or tests for 1 − 2 and  can be obtained by using these pivotal

quantities exactly as in Section 6.2 for a single distribution.

Example 6.3.1. In an experiment to assess the durability of two types of white paint

used on asphalt highways, 12 lines (each 4 inches wide) of each paint were laid across a

heavily traveled section of highway, in random order. After a period of time, reflectometer

33you would most likely be tempted to use 1 = 2 = 12
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readings were taken for each line of paint; the higher the readings the greater the reflectivity

and the visibility of the paint. The measurements of reflectivity were as follows:

Paint A 125 117 99 96 103 96 94 113 87 115 106 97

Paint B 94 116 97 104 69 73 84 72 70 82 127 92

The objectives of the experiment are to test whether the average reflectivities for paints A

and B are the same, and if there is evidence of a difference, to obtain a confidence interval

for their difference. (In many problems where two attributes are to be compared we start

by testing the hypothesis that they are equal, even if we feel there may be a difference. If

there is no statistical evidence of a difference then we stop there.)

To do this it is assumed that, to a close approximation, the reflectivity measurements 1

 = 1     12 for paint A are independent (1 1) random variables, and independently

the measurements 2  = 1     12 for paint B are independent (2 2) random variables.

We can test  : 1 − 2 = 0 and get confidence intervals for 1 − 2 by using the pivotal

quantity

 1 −  2 − (1 − 2)



q
1
12
+ 1

12

(6.3.7)

which in this case has a  distribution with 12 + 12− 2 = 22 degrees of freedom. We have
assumed34 that the two population variances are identical, 1 = 2 = , with  estimated

by

2 =
1

22

∙
12P
=1

(1 − ̄1)
2 +

12P
=1

(2 − ̄2)
2

¸


To test 0 : 1 − 2 = 0 we use the test statistic

 =

¯̄
 1 −  2 − 0

¯̄


q
1
12
+ 1

12

=

¯̄
 1 −  2

¯̄


q
1
12
+ 1

12

From the data above we find

1 = 12 ̄1 = 104
12P
=1

(1 − ̄1)
2 = 1408 21 = 12800

2 = 12 ̄2 = 90
12P
=1

(2 − ̄2)
2 = 3864 22 = 35127

This gives ̂1− ̂2 = ̄1− ̄2 = 14 and 
2
 = 23964. The observed value of the test statistic

is

 =
|̄1 − ̄2|



q
1
12
+ 1

12

=
14q

23964
¡
1
6

¢ = 222
34 if it were easy to do without this assumption, or the sample variances differed by a lot, we would not

make it, but without assuming the variances are the same, the problem is a little more complicated. See

below.
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with

−  =  (| | ≥ 222) = 0038
where  ∼  (22). There is fairly strong evidence based on the data against 0 : 1 = 2.

Since ̄1  ̄2, the indication is that paint A keeps its visibility better. A 95% confidence

interval for 1 − 2 based on (6.3.7) is obtained using

095 =  (−2074 ≤  ≤ 2074)

= 

⎛⎝−2074 ≤  1 −  2 − (1 − 2)



q
1
12
+ 1
12

≤ 2074)
⎞⎠

= 

Ã
−2074

r
2

12
≤ 1 − 2 ≤ 2074

r
2

12

!


This gives the 95% confidence interval for 1 − 2 as

̂1 − ̂2 ± 2074
r
2

12
or 009 ≤ 1 − 2 ≤ 271

This suggests that although the difference in reflectivity (and durability) of the paint is

statistically significant, the size of the difference is not really large relative to the sizes of

1 and 2. (Look at ̂1 = ̄1 = 1408 and ̂2 = ̄2 = 90. The relative differences are of the

order of 10%).

The procedures above assume that the two Gaussian distributions have the same stan-

dard deviations. Sometimes this isn’t a reasonable assumption (it can be tested using a

likelihood ratio test, but we will not do this here) and we must assume that  ∼ (1 1)

and 2 ∼ (2 2). In this case there is no exact pivotal quantity with which to get a

confidence interval for the difference in means 1 − 2. However the random variable

̄1 − ̄2 − (1 − 2)q
21
1
+

22
2

(6.3.8)

has approximately a standard Gaussian distribution, especially if 1 2 are large.

To illustrate its use, consider Example 6.3.1, where we had 21 = 12800 and 
2
2 = 35127.

These appear quite different but they are in squared units and 1 2 are small; the standard

deviations 1 = 113 and 2 = 197 do not provide evidence against the hypothesis that

1 = 2 if a likelihood ratio test is carried out. Nevertheless, let us use (6.3.8) to obtain a

95% confidence interval for 1 − 2. This resulting approximate 95% confidence interval is

̄1 − ̄2 ± 196
s

21
1
+

22
2

(6.3.9)

For the given data this equals 14 ± 124, or 016 ≤ 1 − 2 ≤ 264 which is not much

different than the interval obtained assuming the two Gaussian distributions have the same
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standard deviations.

Example 6.3.2 Scholastic Achievement Test Scores

Tests that are designed to “measure” the achievement of students are often given in various

subjects. Educators and parents often compare results for different schools or districts. We

consider here the scores on a mathematics test given to Canadian students in the 5th grade.

Summary statistics (sample sizes, means, and standard deviations) of the scores  for the

students in two small school districts in Ontario are as follows:

District 1: 1 = 278 ̄1 = 602 1 = 1016

District 2: 2 = 345 ̄2 = 581 2 = 902

The average score is somewhat higher in district 1, but is this difference statistically

significant? We will give a confidence interval for the difference in average scores in a model

representing this setting. This is done by thinking of the students in each district as a ran-

dom sample from a conceptual large population of “similar” students writing “similar” tests.

Assuming that in a given district the scores  have a ( ) distribution, we can test that

1, the mean score in district 1 is the same as 2,2 

2. (Achievement tests are usually designed so that the scores are approximately Gaussian,

so this is a sensible procedure.)

If we use (6.3.9) to construct an approximate 95% confidence interval for 1 − 2 we

obtain

602− 581± 196
s
(1016)2

278
+
(902)2

345
= 21± (196)(0779) or 057 ≤ 1 − 2 ≤ 163

Since 1 − 2 = 0 is outside the aproximate 95% confidence interval (can you show that it

is also outside the approximate 99% confidence interval?) we can conclude there is fairly

strong evidence against the hypothesis that 1 = 2, suggesting that 1  2.

We should not rely only on a comparison of their means. It is always a good idea to

look carefully at the data and the distributions suggested for the two groups. Figure 6.5

shows a box plot of the two samples; this type of plot was mentioned in Section 1.3. It

shows both the median value and other summary statistics of each sample: the upper and

lower quartiles (i.e. 25th and 75th percentiles) and the smallest and largest values. Figure

6.5 was obtained using the  function ().

Note that the distributions of marks for districts 1 and 2 are actually quite similar. The

median (and mean) is a little higher for district 1 and because the sample sizes are so large,

this gives a “statistically significant” difference in a test of 0 : 1 = 2. However, it would

be a mistake35 to conclude that the actual difference in the two distributions is very large.

Unfortunately, “significant” tests like this are often used to make claims about one group

35We assume independence of the sample. How likely is it that marks in a class are independent of one

another and no more alike than marks between two classes or two different years?



144 GAUSSIAN RESPONSE MODELS

being “superior” to another.

Remark: The R function t.test will carry out the test above and will give confidence

intervals for 1−2. This can be done with the command t.test(y1,y2,var.equal=T), where
1 and 2 are the data vectors from 1 and 2.

40
50

60
70

80
90

District A District B

Figure 6.5: Box Plot of Math Test Scores for Two School Districts.

6.4 Inference for Paired Data

Although this and the next section are also special cases of the general Gaussian model of

Section 6.3, the procedures are sufficiently important that they warrant seperate sections.

Often experimental studies designed to compare means are conducted with pairs of

units, where the responses within a pair are not independent. The following examples

illustrate this.

Example 6.4.1 Heights of Males vs Females

In a study in England, the heights of 1401 (brother, sister) pairs of adults were determined.

One objective of the study was to compare the heights of adult males and females; another

was to examine the relationship between the heights of male and female siblings.36

Let 1 and 2 be the heights of the male and female, respectively, in the ’th (brother,

36ask yourself "if I had (another?) brother/sister, how tall would they grow to?"
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sister) pair ( = 1 2     1401). Assuming that the pairs are sampled randomly from the

population, we can use them to estimate

1 = (1) and 2 = (2)

and the difference 1−2. However, the heights of related persons are not independent, so

to estimate 1−2 the method in the preceding section should not be used; it requires that
we have independent random samples of males and females. In fact, the primary reason

for collecting these data was to consider the joint distribution of 1 2 and to examine

their relationship. A clear picture of the relationship is obtained by plotting the points

(1 2) in a scatter plot.

Example 6.4.2 Comparing Car Fuels

In a study to compare “standard" gasoline with gas containing an additive designed to

improve mileage (i.e. reduce fuel consumption), the following experiment was conducted:

Fifty cars of a variety of makes and engine sizes were chosen. Each car was driven in

a standard way on a test track for 1000 km, with the standard fuel (S) and also with the

enhanced fuel (E). The order in which the S and E fuels was used was randomized for each

car (you can think of a coin being tossed for each car, with fuel S being used first if a Head

occurred) and the same driver was used for both fuels in a given car. Drivers were different

across the 50 cars.

Suppose we let 1 and 2 be the amount of fuel consumed (in litres) for the ’th

car with the S and E fuels, respectively. We want to estimate (1 − 2). The fuel

consumptions 1 2 for the i’th car are related, because factors such as size, weight and

engine size (and perhaps the driver) affect consumption. As in the preceding example

it would not be appropriate to treat the 1’s ( = 1     50) and 2’s ( = 1     50)

as two independent samples from larger populations. The observations have been paired

deliberately to eliminate some factors (like driver/ car size) which might otherwise effect

the conclusion. Note that in this example it may not be of much interest to consider (1)

and (2) separately, since there is only a single observation on each car type for either

fuel.

Two types of Gaussian models are used to represent settings involving paired data. The

first involves what is called a Bivariate Normal distribution for (1 2), and it could be

used in Example 6.4.1. This is a continuous bivariate model for which each component has

a Normal distributions and the components may be dependent. We will not describe this

model here (it is studied in third year courses), except to note one fundamental property:

If (1 2) has a Bivariate Normal distribution then the difference between the two is also

Normally distributed;

1 − 2 ∼ (1 − 2 
2) (6.3.10)

where 2 =  (1) +  (2)− 2(1 1). Thus, if we are interested in estimating
or testing 1 − 2, we can do this by considering the within-pair differences  = 1 − 2

and using the methods for a single Gaussian model in Section 6.2.
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The second Gaussian model used with paired data assumes

1 ∼ (1 +  
2
1) and 2 ∼ (2 +  

2
2) are independent,

where the ’s are unknown constants. Here it is assumed that 1 and 2 are indepen-

dent random variables, and the ’s represent factors specific to the different pairs so that

some pairs can have larger (smaller) expected values than others. This model also gives a

Gaussian distribution like (6.3.10), since

(1 − 2) = 1 − 2 (note that the ’s cancel)

 (1 − 2) = 21 + 22

This model seems relevant for Example 6.4.2, where  refers to the ’th car type.

Thus, whenever we encounter paired data in which the variation in variables 1 and

2 is adequately modeled by Gaussian distributions, we will make inferences about 1−2
by working with the model (6.3.10).

Example 6.4.1 revisited. The data on 1401 (brother, sister) pairs gave differences

 = 1 − 2,  = 1     1401 for which the sample mean and variance were

̄ = 4895 inches and 2 =
1

1400

1401P
=1

( − ̄)2 = 65480 (inches)2 

Using the pivotal quantity
̄ − 


√


which has a  (1400) distribution, a two-sided 95% confidence interval for  = () is given

by ̄ ± 196√ where  = 1401. (Note that  (1400) is indistinguishable from (0 1).)

This gives the 95% confidence interval 4895± 0134 inches or 476 ≤  ≤ 503 inches.

Remark: The method above assumes that the (brother, sister) pairs are a random sample

from the population of families with a living adult brother and sister. The question arises

as to whether () also represents the difference in the average heights of all adult males

and all adult females (call them 01 and 02) in the population. Presumably 01 = 1 (i.e.

the average height of all adult males equals the average height of all adult males who also

have an adult sister) and similarly 02 = 2, so () does represent this difference. This is

true provided that the males in the sibling pairs are randomly sampled from the population

of all adult males, and similarly the females, but it might be worth checking.

Recall our earlier Example 2.4.1 involving the difference in the average heights of males

and females in New Zealand. This gave the estimate ̂ = ̄1 − ̄2 = 6872 − 6410 = 462
inches, which is a little less than the difference in the example above. This is likely due to

the fact that we are considering two distinct populations, but it should be noted that the
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New Zealand data are not paired.

Pairing as an Experimental Design Choice

In settings where the population can be arranged in pairs, the estimation of a difference

in means, 1 − 2, can often be made more precise (shorter confidence intervals) by using

pairing in the study. The condition for this is that the association (or correlation) between

1 and 2 be positive. This is the case in both Examples 6.4.1 and 6.4.2, so the pairing

in these studies is a good idea.

To illustrate this further, in Example 6.4.1 the height measurement on the 1401 males

gave ̄1 = 69720 and 21 = 73861 and those on the females gave ̄2 = 64825 and 22 =

67832. If the males and females were two independent samples (this is not quite right

because the heights for the brother-sister combinations are not independent, but the sample

means and variances are close to what we would get if we did have completely independent

samples), then we could use (6.3.9) to construct an approximate 95% confidence interval

for 1 − 2. For the given data we obtain

69720− 64825± 196
r
73861

1401
+
67832

1401
or 470 ≤ 1 − 2 ≤ 509

We note that it is slightly wider than the 95% confidence interval 476 ≤  ≤ 503 obtained
using the pairings.

To see why the pairing is helpful in estimating the mean difference 1−2, suppose that
1 ∼ (1 

2
1) and 2 ∼ (2 

2
2), but that 1 and 2 are not necessarily independent

( = 1 2     ). The estimator of 1 − 2 is

̄1 − ̄2

and we have that (̄1 − ̄2) = 1 − 2 and

 (̄1 − ̄2) =  (̄1) +  (̄2)− 2(̄1 ̄2)

=
21

+

22

− 212




where 12 = (1 2). If 12  0, then  (̄1 − ̄2) is smaller than when 12 = 0

(i.e. when 1 and 2 are independent). We would expect that the covariance between the

heights of siblings in the same family to be positively correlated since they share parents.

Therefore if we can collect a sample of pairs (1 2), this is better than two independent

random samples (one of 1’s and one of 2’s) for estimating 1 − 2. Note on the other

hand that if 12  0, then pairing is a bad idea since it increases the value of  (̄1− ̄2).
The following example involves an experimental study with pairing.

Example 6.4.3. Fibre in Diet and Cholesterol Level37

In a study 20 subjects, volunteers from workers in a Boston hospital with ordinary choles-

terol levels, were given a low-fibre diet for 6 weeks and a high-fibre diet for another 6 week

37 from the old Stat 231 notes of MacKay and Oldford
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period. The order in which the two diets were given was randomized for each subject (per-

son), and there was a two-week gap between the two 6 week periods, in which no dietary

fibre supplements were given. A primary objective of the study was to see if cholesterol

levels are lower with the high-fibre diet.

Details of the study are given in the New England Journal of Medicine, volume

322 (January 18, 1990), pages 147-152. Here we will simply present the data from the study

and estimate the effect of the amount of dietary fibre.

Table 6.4.1 shows the cholesterol levels  (in mmol per liter) for each subject, measured

at the end of each 6 week period. We let the random variables 1 2 represent the

cholesterol levels for subject  on the high fibre and low fibre diets, respectively. We’ll also

assume that the differences are represented by the model

 = 1 − 2 ∼ (1 − 2 ) for  = 1     20

The differences  are also shown in Table 6.4.1, and from them we calculate the sample

mean and standard deviation

̄ = −0020 and  = 0411

Since  ( ≤ 2093) = 1 − 0025 = 0975 where  ∼  (19), a 95% confidence interval for

1 − 2 given by (6.6) is

̄ ± 2093
µ

√


¶
= −0020± 2093

µ
0411√
20

¶
= −0020± 0192

or

−0212 ≤ 1 − 2 ≤ 0172
This confidence interval includes 1−2 = 0, and there is clearly no evidence that the high
fibre diet gives a lower cholesterol level at least in the time frame represented in this study.

Remark: The results here can be obtained using the  function t.test.

Exercise: Compute the p-value for the test of hypothesis 0 : 1 − 2 = 0, using the

test statistic (6.7).
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Table 6.4.1. Cholesterol Levels on Two Diets
Subject 1(High F) 2(Low F)  Subject 1(High F) 2(Low F) 

1 555 542 013 11 444 443 001

2 291 285 006 12 522 527 −005
3 477 425 052 13 422 361 061

4 563 543 020 14 429 465 −036
5 358 438 −080 15 403 433 −030
6 511 505 006 16 455 461 −006
7 429 444 −015 17 456 445 011

8 340 336 004 18 467 495 −028
9 418 438 −020 19 355 441 −086
10 541 455 086 20 444 438 006

Final Remarks: When you see data from a comparative study (i.e. one whose objec-

tive is to compare two distributions, often through their means), you have to determine

whether it involves paired data or not. Of course, a sample of 1’s and 2’s cannot be

from a paired study unless there are equal numbers of each, but if there are equal numbers

the study might be either “paired” or “unpaired”. Note also that there is a subtle differ-

ence in the study populations in paired and unpaired studies. In the former it is pairs of

individual units that form the population where as in the latter there are (conceptually at

least) separate individual units for 1 and 2 measurements.

6.5 Linear Regression Models

Many studies involve covariates x, as described in Sections 6.1 and 6.3. In this section

we consider simpler settings where there is a single covariate or -variable. We start by

summarizing results from Sections 6.1 and 6.3. Consider the model with independent ’s

such that

 ∼ ( ()  ) where  () = +  (6.3.11)

This is of the form (6.3) with (0 1) replaced by ( ).

We can use the general results of Section 6.3 or just maximize the likelihood

(  ) =
Q
=1

1√
2

exp

∙
− 1

22
( − − )

2

¸
directly to get the maximum likelihood estimators. The maximum likelihood estimators

are:

̃ =



 (6.3.12)

̃ = ̄ − ̃̄ (6.3.13)

̃2 =
1



P
=1

( − ̃− ̃)
2 =

1


( − ̃)
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where

 =
P
=1

( − ̄)2 =
P
=1

( − ̄)

 =
P
=1

( − ̄)( − ̄ ) =
P
=1

( − ̄)

 =
P
=1

( − ̄ )2

The alternate expressions for 
38 and 

39 are easy to obtain. As usual we will use,

instead of ̃2, the version of the variance estimator

2 =
1

− 2
P
=1

( − ̃− ̃)
2 =

1

− 2( − ̃)

Notice that we can rewrite the expression for ̃ as

̃ =



=

P
=1

( − ̄)




to make it clear that ̃ is a linear combination of the normal random variables  and is

therefore normally distributed with easily obtained expected value and variance. In fact

(̃) =
P
=1

( − ̄)


()

=
P
=1

( − ̄)


(+ )

= 
P
=1

( − ̄)


 since

P
=1

( − ̄)


 = 0

= 



= 

Similarly

 (̃) =
P
=1

( − ̄)2

2
 ()

=
1

2

P
=1

( − ̄)22

=


2
2

=
2



38 since


=1( − ̄)( − ̄) =


=1( − ̄) −


=1( − ̄)̄ and


=1( − ̄)̄ = 0
39 since



=1( − ̄)( − ̄ ) =


=1( − ̄) −


=1( − ̄)̄ and


=1( − ̄)̄ = 0
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Remark: In regression models we often “redefine” a covariate  as 
0
 =  − , where 

is a constant value that makes
P
=1

0 close to zero. (Often we take  = ̄, which makes
P
=1

0

exactly zero.) The reasons for doing this are that it reduces round-off errors in calculations,

and that it makes the parameter  more interpretable. Note that  does not change if we

“centre”  this way, because

( |) = +  = + (0 + ) = (+ ) + 0

Thus, the intercept  changes if we redefine , but not . In the examples here we have

kept the given definition of , for simplicity.

Confidence Intervals for  These are important because  represents the increase in

the expected value of  , i.e. in

( |) = + 

resulting from an increase of one unit in the value of . As well, if  = 0 then  has no

effect on  (within this model). We have seen that ̃ is Gaussian with expected value 

and with variance 2, i.e.

̃ ∼ 

µ


√


¶
(6.3.14)

and combining this with the fact that

(− 2)2
2

∼ 2(− 2) (6.3.15)

and that ̃ and 2 are independent, we can argue as before that the random variable

̃ − 


√


(6.3.16)

has a  distribution with − 2 degrees of freedom. This can be used as a pivotal quantity
to get confidence intervals for , or to test hypotheses about .

Note also that (6.3.15) can be used to get confidence intervals or tests for , but these

are usually of less interest than inference about  or the other quantities below.

Confidence Intervals for () = + 

We are often interested in estimating the quantity () = + for a specified value of .

We can obtain a pivotal quantity for doing this.

The maximum likelihood estimator of () obtains by replacing the unknown values

  by their maximum likelihood estimators,

̃() = ̃+ ̃ = ̄ + ̃(− ̄)
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since ̃ = ̄ − ̃̄. Thus () is a linear function of Gaussian random variables (because ̄

and ̃ are Gaussian random variables) and so must also have a Gaussian distribution. Its

mean and variance are

[̃()] = (̄ ) + (− ̄)(̃)

=
1



P
=1

() + (− ̄)

=
1



P
=1

(+ ) + (− ̄)

= + ̄+ (− ̄)

= + 

= ()

and

  [̃()] =
P
=1

∙
1


+
(− ̄)( − ̄)



¸2
 ()

= 2
P
=1

∙
1

2
+
2



(− ̄)( − ̄)


+
(− ̄)2( − ̄)2

2

¸
= 2

∙
1


+
(− ̄)2



¸


Thus

̃() ∼ 

⎛⎝() 

s
1


+
(− ̄)2



⎞⎠
and it then follows that

̃()− ()



q
1

+

(−̄)2


(6.3.17)

is a pivotal quantity with a  distribution on − 2 degrees of freedom. This can be used as
a pivotal quantity to get confidence intervals for (). The corresponding 95% confidence

interval is

̂()± 

s
1


+
(− ̄)2


(6.3.18)

where  (−    ) = 095 and 2 is our estimate of 
2 given by

2 =
1

− 2
P
=1

( − ̂− ̂)
2 =

1

− 2( − ̂)

where  and  are replaced by their observed values.
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Remark: Note that since  = (0) a 95% confidence interval for , is given by (6.3.18)

with  = 0 which gives

̂± 

s
1


+
(̄)2


(6.3.19)

In fact one can see from (6.3.19) that if ̄ is large in magnitude (which means the average

 is large), then the confidence interval for  will be very wide. This would be disturbing

if the value  = 0 is a value of interest, but often it is not. In the following example it refers

to a building of area  = 0, which is nonsensical!

Remark: The results of the analyses below can be obtained using the  function ,

with the command ( ∼ ). We give the detailed results below to illustrate how the

calculations are made. In , summary(lm(y∼x)) gives a lot of useful output.

Example 6.5.1 Price vs Size of Commercial Buildings

Example 6.1.2 gave data on the selling price per square meter () and area () of commercial

buildings. Figure 6.1.1 suggested that a linear regression model of the form ( |) = +

would be reasonable. For the given data  = 30 ̄ = 0954 ̄ = 5490 and  = 22945

 = −331668  = 489 46262 so we find

̂ =



=
−331668
22945

= −1445

̂ = ̄ − ̂̄ = 5490− (−1445) (0954) = 6869
2 =

1

− 2( − ̂) =
1

28
[48946262− (−1445) (−331668)]) = 36437

and  = 1909

Note that ̂ is negative: the larger size buildings tend to sell for less per square meter. (The

estimate ̂ = −1445 indicates a drop in average price of $14450 per square meter for each
increase of one unit in ; remember ’s units are 2(105)). The line  = ̂ + ̂ is often

called the fitted regression line for  on . If we plot the fitted line on the same graph

as the scatter plot of points ( ) as in Figure (6.6), we see the fitted line passes close to

the points.

A confidence interval for  is not of major interest in the setting here, where the data

were called on to indicate a fair assessment value for a large building with  = 447. One

way to address this is to estimate () when  = 447. We get the maximum likelihood

estimate for (447) as

̂(447) = ̂+ ̂(447) = $4094

which we note is much below the assessed value of $75 per square meter. However, one

can object that there is uncertainty in this estimate, and that it would be better to give a

confidence interval for (447). Using (6.3.18) and the fact that  (−2048 ≤  ≤ 2048) =
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Figure 6.6:

095 for  ∼  (28) we get a 95% confidence interval for (447) as

̂(447)± 2048
s
1

30
+
(447− ̄)2



or $4094± $2654, or $1440 ≤ (447) ≤ $6750. Thus the assessed value of $75 is outside
this range.

However (playing lawyer for the Assessor), we could raise another objection: we are

considering a single building but we have constructed a confidence interval for the average

of all buildings of size  = 447(×105)2. The constructed confidence interval is for a point

on the line, not a point  generated by adding to +(447) the random error  ∼  (0 )

which has a non-neglible variance. This suggests that what we should do is predict the 

value for a building with  = 447, instead of estimating (447). We will temporarily leave

the example in order to develop a method to do this.

Prediction Intervals for Y

Suppose we want to estimate or predict the  value for a random unit, not part of the

sample, which has a specific value  for its covariate. We can get a pivotal quantity that

can be used to give a prediction interval (or interval “estimate”) for  , as follows.

Note that  ∼ (() ) from (6.3.11) or alternatively we can write

 = () + where  ∼ (0 )
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is independent of 1     . For a point estimator of  it is natural to use the maximum

likelihood estimator ̃() of (). We have derived its distribution as

̃() ∼ 

⎛⎝() 

s
1


+
(− ̄)2



⎞⎠ 

Moreover the error in the point estimator of  is given by

 − ̃() =  − () + ()− ̃() = + [()− ̃()] 

Since,  is independent of ̃() (it is not connected to the existing sample), this is the

sum of independent Normally distributed random variables and is consequently Nomally

distributed. Moreover,

 ( − ̃()) =  (+ (()− ̃())) = () +()−(̃()) = 0

For the variance, since  and ̃() are independent,

  [ − ̃()] =  ( ) +   [̃()]

= 2 + 2
∙
1


+
(− ̄)2



¸
= 2

∙
1 +

1


+
(− ̄)2



¸


Thus

 − ̃() ∼ 

Ã
0 

∙
1 +

1


+
(− ̄)2



¸12!


To generate a prediction interval for  , we will use the corresponding pivotal quantity

 − ̃()



q
1 + 1


+
(−̄)2


(6.3.20)

which has a  distribution with − 2 degrees of freedom. To get interval estimates for  ,
say having confidence coefficient 095, we choose  such that since

095 =  (− ≤  ≤ ) where  ∼  (− 2)

= 

⎛⎝̃()− 

s
1 +

1


+
(− ̄)2


≤  ≤ ̃() + 

s
1 +

1


+
(− ̄)2



⎞⎠
The interval

̂()− 

s
1 +

1


+
(− ̄)2


≤  ≤ ̂() + 

s
1 +

1


+
(− ̄)2


(6.3.21)



156 GAUSSIAN RESPONSE MODELS

is usually called 100% prediction interval instead of a confidence interval, since  is not

a parameter but a “future” observation.

Example 6.5.1 Revisited

Let us obtain a 95% prediction interval for  when  = 447. Using (6.3.21) and the fact

that  (−2048 ≤  ≤ 2048) = 095 when  ∼  (28) we obtain

̃(447)± 2048
r
1 +

1

30
+
(447− ̄)2

22945

or −630 ≤  ≤ 8820 (dollars per square meter). The lower limit is negative, which is
nonsensical. This happened because we were using a Gaussian model (Gaussian random

variables  can be positive or negative) in a setting where the price  must be positive.

Nonetheless, the Gaussian model fits the data reasonably well. We might just truncate the

prediction interval and take it to be 0 ≤  ≤ $8820.
Now we find that the assessed value of $75 is inside this interval! On this basis its hard

to say that the assessed value is unfair (though it is towards the high end of the prediction

interval). Note also that the value  = 447 of interest is well outside the interval of ob-

served  values which was [020 326]) in the data set of 30 buildings; look again at Figure

(6.6). Thus any conclusions we reach are based on an assumption that the linear model

 ( |) = + applies beyond  = 326 at least as far as  = 447. This may or may not

be true, but we have no way to check it with the data we have. Note also that is a slight

suggestion in Figure (6.6) that  ( ) may be smaller for larger  values. There is not

sufficient data to check this either. We mention these points because an important com-

panion to every statistical analysis is a qualification of the conclusions based on a careful

examination of the applicability of the assumptions underlying the analysis.

Remark: Note from (6.3.18) and (6.3.21) that the confidence intervals for () and pre-

diction interval for  are wider the further away  is from ̄. Thus, as we move further

away from the “middle” of the ’s in the data, we get wider and wider intervals for ()

and  .

Example 6.5.2 Strength of Steel Bolts

Recall the data given in Example 6.1.3, where  represented the breaking strength of a

randomly selected steel bolt and  was the bolt’s diameter. A scatterplot of points ( )

for 30 bolts suggested a nonlinear relationship between  and . A bolt’s strength might be

expected to be proportional to its cross-sectional area, which is proportional to 2. Figure

6.7 shows a plot of points (2  ) which looks quite linear. Because of this let us assign a

new variable name to 2, say 1 = 2. We then fit a linear model

 ∼ (+ 1 ) where 1 = 2
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to the data. We find (you should check these for yourself)

̂ = 1667 ̂ = 2838  = 00515  = 02244

The fitted regression line  = ̂+ ̂1 is shown on the scatter plot in Figure 6.7; the model

appears to fit well.
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Figure 6.7: Scatter Plot of Bolt Diameter Squared vs. Strength

More as a numerical illustration, let us get a confidence interval for , which represents

the increase in average strength (1) from increasing 1 = 2 by one unit. Using the

pivotal quantity (6.3.16) and the fact that  (−2048 ≤  ≤ 2048) = 095 for  ∼  (28),

we obtain the 95% confidence interval for  as

̂ ± 2048 √


 or 2838± 0223

A 95% confidence interval for the value of  is therefore[2605 3051].

Exercise: This model could be used to predict the breaking strength of a new bolt of given

diameter . Find a 95% prediction interval for a new bolt of diameter  = 035.
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Summary of distributions for Simple Linear Regression
model

Random variable Distribution Mean (or parameter) Standard Deviation

̃ =



Gaussian  
h
1



i12
̃−


√


 df = − 2 -

̃ =  − ̃ ̄ Gaussian  
h
1

+ ̄2



i12
̃() Gaussian () = +  

h
1

+

(−̄)2


i12
̃()−()




1

+
(−̄)2


 df = − 2 -

 − ̃() Gaussian 0 
h
1 + 1


+

(−̄)2


i12
−̃()




1+ 1


+
(−̄)2


 df = − 2 -

(−2)2
2

Chi squared df = − 2 -

6.6 Model Checking

There are two main components in Gaussian linear response models:

(i) the assumption that  (given any covariates ) is Gaussian with constant standard

deviation .

(ii) the assumption that  () = () is a linear combination of observed covariates

with unknown coefficients.

Models should always be checked, and in this case there are several ways to do this.

Some of these are based on what we term “residuals” of the fitted model: the residuals

are the values

̂ =  − ̂ for  = 1     

For example, if  ∼ (+;) then the residuals are ̂ = − ̂− ̂. The  function

lm produces these values as part of its output.

If  ∼ ( ) then  =  −  ∼ (0 ). The idea behind the ̂’s is that they can

be thought of as “observed” ’s. This isn’t exactly correct since we are using ̂ instead

of  in ̂, but if the model is correct, then the ̂’s should behave roughly like a random

sample from the distribution (0 ). They do have some features that make it easy to

identify if your parameter estimates are incorrect. Recall that the maximum likelihood

estimate of  is ̂ = ̄ − ̂̄ which implies that ̄ − ̂− ̂̄ = 0 or

0 = ̄ − ̂− ̂̄ =
1



P
=1

³
 − ̂− ̂

´
=
1



P
=1

̂
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so that the average of the residuals is alway zero. Indeed the equation defining the

maximum likelihood estimate ̂ imposes another linear constraint that the residuals must

always satisfy. You can think of this as forcing the last two residuals to be functions of the

first − 2 residuals which explains why in simple linear regression 2 which obtains from

the residual sum of squares
P
=1

̂2 has − 2 degrees of freedom.
Plots of residuals can be used as a model check. For example, we can

(1) Plot points ( ̂)  = 1     . If the model is satisfactory these should lie more or

less horizontally within a band around the line ̂ = 0

(2) Plot points (̂ ̂)  = 1     . If the model is satisfactory we should get the same

type of pattern as for (1).

Departures from the “expected” pattern in (1) and (2) may suggest problems with the

model. For example, if in (2) we see that the variability in the ̂’s is bigger for larger values

of ̂, this suggests that  () =  () is not constant, but may be larger when ()

is larger.

Figure 6.8 shows a couple of such patterns; the left hand plot suggests non-constant

variance whereas the right hand plot suggests that the function  = () is not correctly

specified. Reading these plots is something of an art and we should try not to read too

much into plots based on a small number of points.

In problems with only one  covariate, a plot of ̂() superimposed on the scatterplot of

the data (as in Figure 6.7) shows pretty clearly how well the model fits. The residual plots

described are however, very useful when there are two or more covariates in the model.

When there are no covariates in the model, as in Section 6.2, plots (1) and (2) are

undefined. In this case the only assumption is that  ∼ ( ). We can still define

residuals, either as

̂∗ =  − ̂ or ̂∗ =
 − ̂

̂


where ̂ = ̄ and ̂ (we could alternatively use ) is the maximum likelihood estimate of .

One way to check the model is to treat the ̂∗ ’s (which are called standardized residuals)
as a random sample of values ( − ). Since  − ) ∼ (0 1) under our assumed

model, we could plot the empirical cumulative distribution function from ̂∗   = 1     
and superimpose on it the (0 1) cumulative distribution function. The two curves should

agree well if the Gaussian model is satisfactory. This plot can also be used when there are

covariates, by defining the standardized residuals

̂∗ =
̂

̂
=

 − ̂
̂

for  = 1     

We can also use the ̂∗ ’s in place of the ̂’s in plots (1) and (2) above; in fact that is what
we did in Figure 6.8. When the ̂∗ ’s are used the patterns in the plot are unchanged but
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Figure 6.8: Examples of Patterns in Residual Plots

the ̂∗ values tend to lie in the range (−3 3). (Why is this?)

Example 6.6.1 Residuals for the Steel Bolts Example. Let us define residuals

̂ =  − ̂− ̂ for  = 1     30

for the model fitted in Example 6.5.3. Figure 6.9 shows a plot of the points (1 ̂); no

deviation from the expected pattern is observed. This is of course also evident from Figure

6.7.

A further check on the Gaussian distribution is shown in Figure 6.10. Here we have

plotted the empirical distribution function based on the standardized residuals

̂∗ =
 − ̂− ̂1

̂
for  = 1     30

On the same graph is the (0 1) cumulative distribution function. There is reasonably

good agreement between the two curves.
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Figure 6.9: Residual Plot for Bolt Strength Model

6.7 Problems

1. Student’s  Distribution

Suppose that  and  are independent variates with

 ∼ (0 1) and  ∼ 2 () 

Consider the random variable

 ≡ p




Its distribution is called the  (Student’s) distribution with  degrees of freedom, and

we write  ∼  (). It can be shown by change of variables that  has probability

density function

(; ) = 

µ
1 +

2



¶−+1
2

for −∞   ∞ and  = 1 2   

where  is a normalizing constant such that the total area under the probability

density function is one:

 = Γ

µ
 + 1

2

¶

√
Γ

µ


2

¶


The probability density function is symmetric about the origin, and is similar in

shape to the probability density function of (0 1) random variable but has more

probability in the tails. It can be shown that (; ) tends to the (0 1) probability

density function as  →∞.
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Figure 6.10: Empirical Distribution Function of Standard Residuals and (0 1)
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(a) Plot the probability density function for  = 1 and  = 5

(b) Find values   such that

 (− ≤  ≤ ) = 098 and  ( ≥ ) = 095 where  ∼  (15)

(c) Show that (; ) is unimodal for all .

(d) Show that as  → ∞  (; ) → 1√
2
exp

¡−1
2
2,
¢
probability density function

of the (0 1) distribution.

(Note: To do this you will need to use the fact that  → 1
√
2 as  →∞; this

is from a property of gamma functions.)

2. Suppose that 1      are independent ( ) observations.

(a) Show that the likelihood ratio statistic for testing a value of  is given by (assume

 is unknown)

Λ() =  log
³
1 +  2

−1
´

where  =
√
( − ) and  is the sample standard deviation.

(b) Show that the likelihood ratio statistic for testing a value of  is a function of

 =
(− 1)2

2
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3. The following data are instrumental measurements of level of dioxin (in parts per

billion) in 20 samples of a “standard” water solution known to contain 45 ppb dioxin.

441 460 466 413 448 478 445 451 429 445

425 415 396 420 458 489 466 429 470 437

(a) Assuming that the measurements are independent and ( ), obtain a 95%

confidence interval for  and test the hypothesis that  = 45.

(b) Obtain a 95% confidence interval for . Of what interest is this scientifically?

4. A new method gave the following ten measurements of the specific gravity of mercury:

13696 13699 13683 13692 13705

13695 13697 13688 13690 13707

Assume these to be independent observations from ( ).

(a) An old method produced measurements with standard deviation  = 002. Test

the hypothesis that the new method has the same standard deviation as the old.

(b) A physical chemistry handbook lists the specific gravity of mercury as 1375.

Are the data consistent with this value?

(c) Obtain 95% confidence intervals for  and .

5. Sixteen packages are randomly selected from the production of a detergent packaging

machine. Their weights (in grams) are as follows:

287 293 295 295 297 298 299 300

300 302 302 303 306 307 308 311

(a) Assuming that the weights are independent ( ) random variables, obtain

95% confidence intervals for  and .

(b) Let ̄ = 1


P
=1

 and 
2 = 1

−1
P
=1

¡
 − ̄

¢2
be the mean and variance in a sam-

ple of size , and let  represent the weight of a future, independent, randomly

selected package. Show that  − ̄ ∼ 
¡
0 2

¡
1 + 1



¢¢
and thus

 =
 − ̄



q
1 + 1



∼  (− 1) 

For the data above, use this as a pivotal to obtain a 95% prediction interval for  .
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6. A manufacturer wishes to determine the mean breaking strength (force)  of a type

of string to “within a pound”, which we interpret as requiring that the 95% confi-

dence interval for a  should have length at most 2 pounds. If breaking strength 

of strings tested are ( ) and if 10 preliminary tests gave
10P
=1

( − ̄)2 = 80, how

many additional measurements would you advise the manufacturer to take?

7. To compare the mathematical abilities of incoming first year students in Mathemat-

ics and Engineering, 30 Math students and 30 Engineering students were selected

randomly from their first year classes and given a mathematics aptitude test. A sum-

mary of the resulting marks  (for the math students) and  (for the engineering

students),  = 1     30, is as follows:

Math students:  = 30 ̄ = 120
30P
=1

( − ̄)2 = 3050

Engineering students:  = 30 ̄ = 114
30P
=1

( − ̄)2 = 2937

Obtain a 95% confidence interval for the difference in mean scores for first year Math

and Engineering students, and test the hypothesis that the difference is zero.

8. A study was done to compare the durability of diesel engine bearings made of two

different compounds. Ten bearings of each type were tested. The following table gives

the “times” until failure (in units of millions of cycles):

Type I Type II

303 319

553 426

560 447

930 453

992 467

1251 469

1295 1278

1521 679

1604 937

1684 1275

(a) Assuming that  , the number of million cycles to failure, has a normal distrib-

ution with the same variance for each type of bearing, obtain a 90% confidence

interval for the difference in the means 1 and 2 of the two distributions.

(b) Test the hypothesis that 1 = 2.
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(c) It has been suggested that log failure times are approximately normally dis-

tributed, but not failure times. Assuming that the log ’s for the two types

of bearing are normally distributed with the same variance, test the hypothesis

that the two distributions have the same mean. How does the answer compare

with that in part (b)?

(d) How might you check whether  or log  is closer to normally distributed?

(e) Give a plot of the data which could be used to describe the data and your analysis.

9. Fourteen welded girders were cyclically stressed at 1900 pounds per square inch and

the numbers of cycles to failure were observed. The sample mean and variance of the

log failure “times” were ̄ = 14564 and 2 = 00914. Similar tests on four additional

girders with repaired welds gave ̄ = 14291 and 2 = 00422. Log failure times are

assumed to be independent with a ( ) distribution.

(a) Test the hypothesis that the variance of  is the same for repaired welds as for

the normal welds.

(b) Assuming equal variances, obtain a 90% confidence interval for the difference in

mean log failure time.

(c) Note that 1 − 2 in part (b) is also the difference in median log failure times.

Obtain a 90% confidence interval for the ratio

median lifetime (cycles) for repaired welds

median lifetime (cycles) for normal welds

10. Let 1      be a random sample from (1 1) and 1     be a random sam-

ple from (2 2). Obtain the likelihood ratio statistic for testing the hypothesis

1 = 2 and show that it is a function of  = 21
2
2 , where 

2
1 and 

2
2 are the sample

variances from the  and  samples.

11. Readings produced by a set of scales are independent and normally distributed about

the true weight of the item being measured. A study is carried out to assess whether

the standard deviation of the measurements varies according to the weight of the

item.

(a) Ten weighings of a 10 kg. weight yielded ̄ = 10004 and  = 0013 as the

sample mean and standard deviation. Ten weighings of a 40 kg. weight yielded

̄ = 39989 and  = 0034. Is there any evidence of a difference in the standard

deviations for the measurements of the two weights?
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(b) Suppose you had a further set of weighings of a 20 kg. item. How could you

study the question of interest further?

12. An experiment was conducted to compare gas mileages of cars using a synthetic oil

and a conventional oil. Eight cars were chosen as representative of the cars in general

use. Each car was run twice under as similar conditions as possible (same drivers,

routes, etc.), once with the synthetic oil and once with the conventional oil, the order

of use of the two oils being randomized. The average gas mileages were as follows:

Car 1 2 3 4 5 6 7 8

Synthetic oil 212 214 159 370 121 211 245 357

Conventional oil 180 206 142 378 106 185 259 347

(a) Obtain a 95% confidence interval for the difference in mean gas mileage, and

state the assumptions on which your analysis depends.

(b) Repeat (a) if the natural pairing of the data is (improperly) ignored.

(c) Why is it better to take pairs of measurements on eight cars rather than taking

only one measurement on each of 16 cars?

13. Consider the data in Problem 8 of Chapter 1 on the lengths of male and female

coyotes.

(a) Fit separate Gaussian models for the lengths of males and females. Estimate the

difference in mean lengths for the two sexes.

(b) Estimate  (1  2) (give the maximum likelihood estimate), where 1 is the

length of a randomly selected female and 2 is the length of a randomly selected

male. Can you suggest how you might get a confidence interval?

(c) Give separate confidence intervals for the average length of males and females.

14. Comparing sorting algorithms. Suppose you want to compare two algorithms A

and B that will sort a set of number into an increasing sequence. (The  function

sort(x)) will, for example, sort the elements of the numeric vector .)

To compare the speed of algorithms A and B, you decide to “present” A and B

with random permutations of  numbers, for several values of . Explain exactly how

you would set up such a study, and discuss what pairing would mean in this context.

15. Sorting algorithms continued. Two sort algorithms as in the preceding question

were each run on (the same) 20 sets of numbers (there were 500 numbers in each set).
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Times to sort the sets of two numbers are shown below.

Set: 1 2 3 4 5 6 7 8 9 10

A: 385 281 647 759 458 547 472 356 322 558

B: 266 298 535 643 428 506 436 391 328 519

Set: 11 12 13 14 15 16 17 18 19 20

A: 458 546 331 433 426 629 504 508 508 347

B: 405 478 377 381 317 602 484 481 434 348

(a) Plot the data so as to illustrate its main features.

(b) Estimate (give a confidence interval) for the difference in the average time to

sort with algorithms A and B, assuming a Gaussian model applies.

(c) Suppose you are asked to estimate the probability that A will sort a randomly

selected list fast than B. Give a point estimate of this probability.

(d) Another way to estimate the probability  in part (b) is just to notice that of

the 20 sets of numbers in the study, A sorted faster on 15. Indicate how you

could also get a confidence interval for  using this approach. (It is also possible

to get a confidence interval using the Gaussian model.)

16. Least squares estimation. Suppose you have a model where the mean of the

response variable  given the covariates x has the form

 = (|x) = (x;β) (6.3.22)

where β is a vector of unknown parameters. Then the least squares (LS) estimate

of β based on data (x )  = 1      is the value that minimizes the objective

function

(β) =

X
=1

[ − (x;β)]
2

Show that the LS estimate of β is the same as the maximum likelihood estimate of

β in the Gaussian model  ∼ ( ), when  is of the form (6.3.22).

17. To assess the effect of a low dose of alcohol on reaction time, a sample of 24 student

volunteers took part in a study. Twelve of the students (randomly chosen from the 24)

were given a fixed dose of alcohol (adjusted for body weight) and the other twelve got

a nonalcoholic drink which looked and tasted the same as the alcoholic drink. Each

student was then tested using software that flashes a coloured rectangle randomly

placed on a screen; the student has to move the cursor into the rectangle and double
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click the mouse. As soon as the double click occurs, the process is repeated, up to a

total of 20 times. The response variate is the total reaction time (i.e. time to complete

the experiment) over the 20 trials.

The data on the times are shown below for the 24 students.

“Alcohol” Group: 133 155 143 135 117 135 117 180 168

119 096 146 ̄ = 1370  = 0235

“Non-Alcohol” Group: 168 130 185 164 162 169 157 182 141

178 140 143 ̄ = 1599  = 0180

Analyze the data with the objective of seeing when there is any evidence that the

dose of alcohol increases reaction time. Justify any models that you use.

18. There are often both expensive (and highly accurate) and cheaper (and less accurate)

ways of measuring concentrations of various substances (e.g. glucose in human blood,

salt in a can of soup). The table below gives the actual concentration  (determined

by an expensive but very accurate procedure) and the measured concentration 

obtained by a cheap procedure, for each of 10 units.

 : 401 812 1253 1590 2024 2481 3092 3726 3894 4015

 : 370 780 1240 1600 1990 2490 3080 3720 3840 3940

(a) Fit a Gaussian linear regression model for  given  to the data and obtain

95% confidence intervals for the slope  and standard deviation . Use a plot to

check the adequacy of the model.

(b) Describe briefly how you would characterize the cheap measurement process’s

accuracy to a lay person.

(c) Assuming that the units being measured have true concentrations in the range

0−40, do you think that the cheap method tends to produce a value that is lower
than the true concentration? Support your answer with an argument based on

the data.

19. The following data, collected by Dr. Joseph Hooker in the Himalaya mountains,

relates atmospheric pressure to the boiling point of water. Theory suggests that a
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graph of log pressure versus boiling point should give a straight line.

Temp (◦F) Pres (in. Hg) Temp (◦F) Pres (in. Hg)

2108 29211 1895 18869

2102 28559 1888 18356

2084 27972 1885 18507

2025 24697 1857 17267

2006 23726 1860 17221

2001 23369 1856 17062

1995 23030 1841 16959

1970 21892 1846 16881

1964 21928 1841 16817

1963 21654 1832 16385

1956 21605 1824 16235

1934 20480 1819 16106

1936 20212 1819 15928

1914 19758 1810 15919

1911 19490 1806 15376

1906 19386

(a) Prepare a scatterplot of  = log(Pressure) versus  = Temperature. Do the same

for  = Pressure versus . Which is better described by a linear model? Does

this confirm the theory’s model?

(b) Fit a normal linear regression model for  = log(Pressure) versus . Are there

any obvious difficulties with the model?

(c) Obtain a 95% confidence interval for the atmospheric pressure if the boiling point

of water is 195◦ .

(a) For the steel bolt experiment in Examples 6.1.3 and 6.5.2, use a Gaussian model

to

(i) estimate the average breaking strength of bolts of diameter 035

(ii) estimate (predict) the breaking strength of a single bolt of diameter 035

Give interval estimates in each case.

(b) Suppose that a bolt of diameter 035 is exposed to a large force  that could

potentially break it. In structural reliability and safety calculations,  is treated

as a random variable and if  represents the breaking strength of the bolt (or

some other part of a structure), then the probability of a “failure” of the bolt is

 (   ). Give a point estimate of this value if  ∼ (160 010), where 

and  are independent.
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20. Optimal Prediction. In many settings we want to use covariates x to predict

a future value  . (For example, we use economic factors x to predict the price 

of a commodity a month from now.) The value  is random, but suppose we know

(x) = ( |x) and (x)2 =  ( |x).

(a) Predictions take the form ̂ = (x), where (·) is our “prediction” function.
Show that the minimum achievable value of (̂ −  )2 is minimized by choosing

(x) = (x).

(b) Show that the minimum achievable value of (̂ −  )2, that is, its value when

(x) = (x) is (x)2.

This shows that if we can determine or estimate (x), then “optimal” prediction

(in terms of Euclidean distance) is possible. Part (b) shows that we should try

to find covariates  for which (x)2 =  ( |x) is as small as possible.
(c) What happens when ()2 is close to zero? (Explain this in ordinary English.)

21. Sometimes we want one-sided confidence intervals of the form (1     ) ≤  or

(1     ) ≥  which are obtained by taking 1 = −∞ and 2 =∞, respectively,
in (6.5). For “two-sided” intervals based on the normal or the  distribution, we

usually pick 1 = −2 so that the interval is symmetrical about ̄. Show that for the
 distribution, the choice 1 = −2 provides the shortest 100% confidence interval.



TESTS AND INFERENCE

PROBLEMS BASED ON

MULTINOMIAL MODELS

7.1 Introduction

Many important hypothesis testing problems can be addressed using multinomial models.

An example was given in Chapter 5, whose general ideas we will use here. To start, recall

the setting in Chapter 5, Section 2, where data were assumed to arise from a multinomial

distribution with probability function

(1  ; 1  ) =
!

1! · · · !
1
1 · · ·  (6.3.2)

where 0 ≤  ≤  and
P
=1

 = . The multinomial probabilities  satisfy 0 ≤  ≤ 1 and
P
=1

 = 1, and we define θ = (1  ). Suppose now that we wish to test the hypothesis

that the probabilities are related in some way, for example that they are all functions of a

lower dimensional parameter α

0 :  = (α) for  = 1  (6.3.3)

where dim(α) =   − 1.
The likelihood function based on (6.3.2) is proportional to

(θ) =
Q
=1



  (6.3.4)

Let Ω be the parameter space for θ. It was shown earlier that (θ) is maximized over Ω

(of dimension − 1) by the vector θ̂ with ̂ = ,  = 1 . A likelihood ratio test

of the hypothesis (6.3.3) is based on the likelihood ratio statistic

Λ = 2(θ̃)− 2(θ̃0) = −2 log
(
(θ̃0)

(θ̃)

)
 (6.3.5)
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where θ̃0 maximizes (θ) under the hypothesis (6.3.3), which restricts θ to lie in a space

Ω0 ⊂ Ω of dimension . (note that Ω0 is the space of all (1(α) 2(α)  (α)) as α

varies over its possible values.) If 0 is true (that is, if θ really lies in Ω0) and  is large

the distribution of Λ is approximately 2 (− 1− ). This enables us to compute p-values

from observed data by using the approximation

 (Λ ≥ ;0) ≈  ( ≥ ) where  ∼ 2 (− 1− ) (6.3.6)

and

 = 2(θ̂)− 2(θ̂0)

is the observed value of Λ. This approximation is very accurate when  is large and none

of the  ’s is too small; when the observed expected frequencies under 0 all exceed five it

is accurate enough for testing purposes.

The test statistic (6.3.5) can be written in a simple form. Let θ̃0 = (1(̃)  (̃))

denote the maximum likelihood estimator of θ under the hypothesis (6.3.3). Then, by

(6.3.5), we get

Λ = 2(θ̃)− 2(θ̃0)

= 2

X
=1

 log
h
̃(̃)

i


Noting that ̃ =  and defining “expected frequencies” under 0 as

 = (̃) for  = 1 

we can rewrite Λ as

Λ = 2
P
=1

 log() (6.3.7)

An alternative test statistic that was developed historically before Λ is the “Pearson”

statistic

 =

X
=1

( −)
2


 (6.3.8)

This has similar properties to Λ; for example, their observed values both equal zero when

 =  = (̂) for all  = 1  and are larger when  ’s and  ’s differ greatly. It

turns out that, like Λ, the statistic  also has a limiting 2 (− 1− ) distribution when

0 is true.

The remainder of this chapter consists of the application of the general methods above

to some important testing problems.
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7.2 Goodness of Fit Tests

Recall from Section 2.4 that one way to check the fit of a probability distribution is by

comparing the relative frequencies  with the estimates ̂ from the distributional model.

This is equivalent to comparing the observed frequencies  and the expected frequencies

 = ̂ . In Section 2.4 this comparison was informal, with only a rough guideline for how

closely the  ’s and  ’s should agree.

It is possible to test the correctness of a parametric model by using an implied multino-

mial model. We illustrate this through two examples.

Example 7.2.1. Recall Example 2.4.2, where people in a population are classified

as being one of three blood types MM, MN, NN. The proportions of the population that

are these three types are 1, 2, 3 respectively, with 1 + 2 + 3 = 1. Genetic theory

indicates, however, that the  ’s can be expressed in terms of a single parameter , as

1 = 2 2 = 2(1− ) 3 = (1− )2 (7.2.1)

Data collected on 100 persons gave 1 = 17, 2 = 46, 3 = 37, and we can use this to test

the hypothesis0 that (7.2.1) is correct. (Note that (1 2 3) ∼Multinomial(; 1 2 3)
with  = 100.) The likelihood ratio test statistic is given by (6.3.7), but we have to find ̃

and then the  ’s. The likelihood function under (7.2.1) is

1() = (1() 2() 3())

= (2)17[2(1− )]46[(1− )2]37

= 80(1− )120

where  is a constant. We easily find that ̂ = 040. The observed expected frequencies

under (7.2.1) are therefore 1 = 100̂
2 = 16, 2 = 100[2̂(1− ̂)] = 48, 3 = 100[(1− ̂)2] =

36. Clearly these are close to the observed frequencies 1, 2, 3. The observed value of the

likelihood ratio statistic (6.3.7) is

2
3P

=1

 log() = 2 [17 log (1716) + 46 log (4648) + 37 log (3736)] = 017

and the p-value is

−  =  (Λ ≥ 017;0) ≈  ( ≥ 017) = 068 where  ∼ 2 (1)

so there is no evidence against the model (7.2.1).

The observed values of the Pearson statistic (6.3.8) and the likelihood ratio statistic Λ

are usually close when  is large. In this case we find that the observed value of (6.3.8) for

these data is also 017.
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Example 7.2.2. Continuous distributions can also be tested by grouping the data into

intervals and then using the multinomial model. Example 2.4.1 previously did this in an

informal way for an Exponential distribution. For example, suppose that  is thought to

have an Exponential distribution with probability density function

(;) =
1


− for   0 (7.2.2)

Suppose a random sample 1  100 is collected and the objective is to test the hypothesis

0 that (7.2.2) is correct. To do this we partition the range of  into intervals  = 1 ,

and count the number of observations  that fall into each interval. Under (7.2.2), the

probability that an observation lies in the ’th interval  = (  ) is

() =

Z 



(;) for  = 1  (7.2.3)

and if  is the number of observations (’s) that lie in  , then 1   follow aMultinomial

(; 1()     ()) distribution with  = 100. Thus we can test (7.2.2) by testing that

(7.2.3) is true.

Consider the following data, which have been divided into  = 7 intervals:

Interval 0− 100 100− 200 200− 300 300− 400 400− 600 600− 800  800

 29 22 12 10 10 9 8

 276 200 144 105 131 69 76

We have also shown expected frequencies  , calculated as follows. The distribution of

(1  7) is multinomial with probabilities given by (7.2.3) when the model (7.2.2) is

correct. In particular,

1() =

Z 100

0

1


− = 1− −100

and so on. Expressions for 2  7 are 2() = −100−−200, 3() = −200−−300,
4() = −300 − −400, 5() = −400 − −600, 6() = −600 − −800, 7() =
−800. The likelihood function from 1  7 based on model (7.2.2) is then

1() =
7Q

=1

[()]
 

It is possible to maximize 1() mathematically. (Hint: rewrite 1() in terms of the

parameter  = −100 and find ̃ first; then ̃ = −100 ln ̃.) This gives ̂ = 3103 and

the expected frequencies  = 100(̂) given in the table are then obtained.

The observed value of the likelihood ratio statistic (6.3.7) is

2
7P

=1

 log() = 2 [29 log (19276) + · · ·+ 8 log (876)] = 191
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and the p-value is

−  =  (Λ ≥ 191;0) ≈  ( ≥ 191) = 086 where  ∼ 2 (5)

so there is no evidence against the model (7.2.2). Note that the reason the 2 degrees of

freedom are 5 is because − 1 = 6 and  = dim() = 1.

The goodness of fit test just given has some arbitrary elements, since we could have

used different intervals and a different number of intervals. Theory and guidelines as to

how best to choose the intervals can be developed, but we won’t consider this here. Rough

guidelines for our purposes are to chose 4 − 10 intervals, so that the observed expected
frequencies under 0 are at least 5.

7.3 Two-Way Tables and Testing for Independence of Two

Variables

Often we want to assess whether two factors or variates appear to be related. One tool for

doing this is to test the hypothesis that the factors are independent (and thus statistically

unrelated). We will consider this in the case where both variates are discrete, and take on

a fairly small number of possible values. This turns out to cover a great many important

settings.

Two types of studies give rise to data that can be used to test independence, and in

both cases the data can be arranged as frequencies in a two-way table. These tables are

sometimes called “contingency” tables in the statistics literature. We will consider the two

types of studies in turn.

Cross-Classification of a Random Sample of Individuals

Suppose that individuals or items in a population can be classified according to each of two

factors  and . For , an individual can be any of mutually exclusive types 1 2  

and for  an individual can be any of  mutually exclusive types 1 2  , where  ≥ 2
and  ≥ 2.

If a random sample of  individuals is selected, let  denote the number that have

-type  and -type  . Let  be the probability a randomly selected individual is

combined type ( ). Note that

P
=1

P
=1

 =  and
P
=1

P
=1

 = 1

and that the  ×  frequencies (11 12  ) follow a Multinomial distribution with

 =  classes.

To test independence of the  and  classifications, we consider the hypothesis

0 :  =  for  = 1  ;  = 1   (7.2.4)
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where 0    1, 0    1,
P
=1

 = 1,
P

=1

 = 1. Note that  =  (an individual

is -type ) and  =  (an individual is -type ), and that (7.2.4) is the standard

definition for independent events:  ( ∩) =  () ().

We recognize that testing (7.3.1) falls into the general framework of Section 7.1, where

 = ,  =  − 1, and the dimension of the parameter space under (7.2.4) is  =

(− 1)+ (− 1) = + − 2. All that needs to be done in order to use the statistics (6.3.7)
or (6.3.8) to test 0 given by (7.3.1) is to obtain the m.l.e.’s ̃, ̃ under model (7.3.1),

and then the expected frequencies  . Under (7.2.4), the likelihood function for the  ’s is

proportional to 2

1(αβ) =

Y
=1

Y
=1

[(αβ)]


=

Y
=1

Y
=1

()
 

It is easy to maximize (αβ) = log(αβ) subject to the linear constraints
P
=1

 = 1,

P
=1

 = 1. This gives the maximum likelihood estimates

̂ =
+


 ̂ =

+


and  = ̂̂ =

++


 (7.2.5)

where + =
P

=1

 and + =
P
=1

 . The observed value of the likelihood ratio statistic

(7.1.6) for testing the hypothesis (7.2.4) is then

 = 2
P
=1

P
=1

 log()

The p-value is computed as

 (Λ ≥ ;0) ≈  ( ≥ ) where  ∼ 2 ((− 1)(− 1))

The 2 degrees of freedom (− 1)(− 1) come from − 1−  = (− 1)− (+ − 2) =
(− 1)(− 1).

Example 7.3.1. Human blood is classified according to several systems. Two are the

OAB system and the Rh system. In the former a person is one of four types O, A, B, AB

and in the latter a person is Rh+ or Rh−. A random sample of 300 persons produced the

observed frequencies in the following table. Expected frequencies, computed below, are in

brackets after each observed frequency.
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O A B AB Total

Rh+ 82(773) 89(944) 54(496) 19(228) 244

Rh− 13(177) 27(216) 7(114) 9(52) 56

Total 95 116 61 28 300

It is of interest to see whether these two classification systems are genetically independent.

The row and column totals in the table are also shown, since they are the values + and

+ needed to compute the  ’s in (7.3.3). In this case we can think of the Rh types as the

A-type classification and the OAB types as the B-type classification in the general theory

above. Thus  = 2,  = 4 and the 2 degrees of freedom are (− 1)(− 1) = 3.
To carry out the test that a person’s Rh and OAB blood types are statistically inde-

pendent, we merely need to compute the  ’s by (7.2.5). This gives, for example,

11 =
(244)(95)

300
= 773 12 =

244(116)

300
= 944

and, similarly, 13 = 496, 14 = 228, 21 = 177, 22 = 216, 23 = 114, 24 = 52.

It may be noted that + = + and + = + , so it is necessary to compute only

( − 1)( − 1)  ’s using (7.2.5); the remainder can be obtained by subtraction from row

and column totals. For example, if we compute 11, 12, 13 here then 21 = 95 − 11,

22 = 116 − 12, and so on. (This is not an advantage with a computer to calculate the

numbers; however, it suggests where the term “degrees of freedom” comes from.)

The observed value of the likelihood ratio test statistic is  = 852, and the p-value

is approximately  ( ≥ 852) = 0036 where  ∼ 2 (3) so there is some degree of

evidence against the hypothesis of independence. Note that by comparing the  ’s and the

 ’s we get some idea about the lack of independence, or relationship, between the two

classifications. We see here that the degree of dependence does not appear large.

Testing Equality of Multinomial Parameters from Two or More Groups

A similar problem arises when individuals in a population can be one of  types 1  ,

but where the population is sub-divided into  groups 1  . In this case, we might

be interested in whether the proportions of individuals of types 1   are the same for

each group. This is essentially the same as the question of independence in the preceding

section: we want to know whether the probability  that a person in population group 

is -type  is the same for all  = 1  . That is,  =  ( |) and we want to know

if this deends on  or not.

Although the framework is superficially the same as the preceding section, the details

are a little different. In particular, the probabilities  satisfy

1 + 2 + · · ·+  = 1 for each  = 1   (7.2.6)

and the hypothesis we are interested in testing is

0 : θ1 = θ2 = · · · = θ (7.2.7)
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where θ = (1 2  ). Furthermore, the data in this case arise by selecting specified

numbers of individuals  from groups  = 1   and so there are actually  multinomial

distributions, Multinomial(; 1  ).

If we denote the observed frequency of -type individuals in the sample from the ’th

group as  (where 1 + · · · +  = ), then it can be shown that the likelihood ratio

statistic for testing (??) is exactly the same as (7.2.5), where now the expected frequencies

 are given by

 = 

³+


´
for  = 1  ;  = 1   (7.2.8)

where  = 1 + · · · + . Since  = + the expected frequencies have exactly the same

form as in the preceding section, when we lay out the data in a two-way table with  rows

and  columns.

Example 7.3.2. The study in Example 7.3.1 could have been conducted differently, by

selecting a fixed number of Rh+ persons and a fixed number of Rh− persons, and then
determining their OAB blood type. Then the proper framework would be to test that the

probabilities for the four types O, A, B, AB were the same for Rh+ and for Rh− persons,
and so the methods of the present section apply. This study gives exactly the same testing

procedure as one where the numbers of Rh+ and Rh− persons in the sample are random,
as discussed.

Example 7.3.3. In a randomized clinical trial to assess the effectiveness of a small daily

dose of aspirin in preventing strokes among high-risk persons, a group of patients were

randomly assigned to get either aspirin or a placebo. They were then followed for three

years, and it was determined for each person whether they had a stroke during that period

or not. The data were as follows (expected frequencies are also given in brackets).

Stroke No Stroke Total

Aspirin Group 64(756) 176(1644) 240

Placebo Group 86(744) 150(1616) 236

Total 150 326 476

We can think of the persons receiving Aspirin and those receiving Placebo as two groups,

and test the hypothesis

0 : 11 = 21

where 11 =  (Stroke) for a person in the aspirin group and 21 =  (Stroke) for a person

in the Placebo group. The expected frequencies under 0 : 11 = 21 are

 =
(+)(+)

476
for  = 1 2
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This gives the values shown in the table. The observed value of the likelihood ratio statistic

is

2
2P

=1

2P
=1

 log() = 525

and the p-value is

−  ≈  ( ≥ 525) = 0022 where  ∼ 2 (1)

so there is fairly strong evidence against 0. A look at the  ’s and the  ’s indicates

that persons receiving aspirin have had fewer strokes than expected under 0, suggesting

that 11  21.

This test can be followed up with estimates for 11 and 21. Because each row of the

table follows a binomial distribution, we have

̂11 =
11

1
=
64

240
= 0267 and ̂21 =

21

2
=
86

236
= 0364

We can also give confidence intervals for 11 and 21; approximate 95% confidence intervals

based on earlier methods are 0211 ≤ 11 ≤ 0323 and 0303 ≤ 21 ≤ 0425. Confidence
intervals for the difference in proportions 11−21 can also be obtained from the approximate
(0 1) pivotal quantity

(̂11 − ̂21)− (11 − 21)q
̂11(1− ̂11)1 + ̂21(1− ̂21)2



Remark: This and other tests involving binomial probabilities and contingency tables

can be carried out using the  function prop.test.

7.4 Problems

1. To investigate the effectiveness of a rust-proofing procedure, 50 cars that had been

rust-proofed and 50 cars that had not were examined for rust five years after pur-

chase. For each car it was noted whether rust was present (actually defined as having

moderate or heavy rust) or absent (light or no rust). The data are as follows:

Cars Cars Not

Rust-Proofed Rust Proofed

Rust present 14 28

Rust absent 36 22

50 50

(a) Test the hypothesis that the probability of rust occurring is the same for the

rust-proofed cars as for those not rust-proofed. What do you conclude?
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(b) Do you have any concerns about inferring that the rust-proofing prevents rust?

How might a better study be designed?

2. Two hundred volunteers participated in an experiment to examine the effectiveness

of vitamin C in preventing colds. One hundred were selected at random to receive

daily doses of vitamin C and the others received a placebo. (None of the volunteers

knew which group they were in.) During the study period, 20 of those taking vita-

min C and 30 of those receiving the placebo caught colds. Test the hypothesis that

the probability of catching a cold during the study period was the same for each group.

3. Mass-produced items are packed in cartons of 12 as they come off an assembly line.

The items from 250 cartons are inspected for defects, with the following results:

Number defective: 0 1 2 3 4 5 ≥ 6
Frequency observed: 103 80 31 19 11 5 1

Test the hypothesis that the number of defective items  in a single carton has a

Binomial(12 ) distribution. Why might the binomial not be a suitable model?

4. The numbers of service interruptions in a communications system over 200 separate

weekdays is summarized in the following frequency table:

Number of interruptions: 0 1 2 3 4 ≥ 5
Frequency observed: 64 71 42 18 4 1

Test whether a Poisson model for the number of interruptions  on a single day is

consistent with these data.

5. The table below records data on 292 litters of mice classified according to litter size

and number of females in the litter.

Number of females

0 1 2 3 4 Total number of litters

1 8 12 20

Litter 2 23 44 13 80

Size 3 10 25 48 13 96

4 5 30 34 22 5 96
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(a) For litters of size  ( = 1 2 3 4) assume that the number of females in a

litter follows of size  has Binomial distribution with parameters  and  =

 (female). Test the binomial model separately for each of the litter sizes  =

2  = 3 and  = 4. (Why is it of scientific interest to do this?)

(b) Assuming that the Binomial model is appropriate for each litter size, test the

hypothesis that 1 = 2 = 3 = 4.

6. A long sequence of digits (0 1     9) produced by a pseudo random number generator

was examined. There were 51 zeros in the sequence, and for each successive pair of

zeros, the number of (non-zero) digits between them was counted. The results were

as follows:

1 1 6 8 10 22 12 15 0 0

2 26 1 20 4 2 0 10 4 19

2 3 0 5 2 8 1 6 14 2

2 2 21 4 3 0 0 7 2 4

4 7 16 18 2 13 22 7 3 5

Give an appropriate probability model for the number of digits between two succes-

sive zeros, if the pseudo random number generator is truly producing digits for which

 (any digit = ) = 01( = 0 1     9), independent of any other digit. Construct a

frequency table and test the goodness of fit of your model.

7. 1398 school children with tonsils present were classified according to tonsil size and

absence or presence of the carrier for streptococcus pyogenes. The results were as

follows:
Normal Enlarged Much enlarged

Carrier present 19 29 24

Carrier absent 497 560 269

Is there evidence of an association between the two classifications?

8. The following data on heights of 210 married couples were presented by Yule in 1900.

Tall wife Medium wife Short wife

Tall husband 18 28 19

Medium husband 20 51 28

Short husband 12 25 9

Test the hypothesis that the heights of husbands and wives are independent.
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9. In the following table, 64 sets of triplets are classified according to the age of their

mother at their birth and their sex distribution:

3 boys 2 boys 2 girls 3 girls Total

Mother under 30 5 8 9 7 29

Mother over 30 6 10 13 6 35

Total 11 18 22 13 64

(a) Is there any evidence of an association between the sex distribution and the age

of the mother?

(b) Suppose that the probability of a male birth is 0.5, and that the sexes of triplets

are determined independently. Find the probability that there are  boys in a

set of triples ( = 0 1 2 3), and test whether the column totals are consistent

with this distribution.

10. A study was undertaken to determine whether there is an association between the

birth weights of infants and the smoking habits of their parents. Out of 50 infants of

above average weight, 9 had parents who both smoked, 6 had mothers who smoked

but fathers who did not, 12 had fathers who smoked but mothers who did not, and

23 had parents of whom neither smoked. The corresponding results for 50 infants of

below average weight were 21, 10, 6, and 13, respectively.

(a) Test whether these results are consistent with the hypothesis that birth weight

is independent of parental smoking habits.

(b) Are these data consistent with the hypothesis that, given the smoking habits of

the mother, the smoking habits of the father are not related to birth weight?



CAUSE AND EFFECT

8.1 Introduction

As mentioned in Chapters 1 and 3, many studies are carried out with causal objectives in

mind. That is, we would like to be able to establish or investigate a possible cause and

effect relationship between variables  and  .

We use the word “causes" often; for example we might say that “gravity causes dropped

objects to fall to the ground", or that “smoking causes lung cancer". The concept of

causation (as in “ causes  ") is nevertheless hard to define. One reason is that the

“strengths" of causal relationships vary a lot. For example, on earth gravity may always

lead to a dropped object falling to the ground; however, not everyone who smokes gets lung

cancer.

Idealized definitions of causation are often of the following form. Let  be a response

variate associated with units in a population or process, and let  be an explanatory variate

associated with some factor that may affect . Then, if all other factors that affect 

are held constant, let us change  (or observe different values of ) and see if 

changes. If it does we say that  has a causal effect on .

In fact, this definition is not broad enough, because in many settings a change in  may

only lead to a change in  in some probabilistic sense. For example, giving an individual

person at risk of stroke a small daily dose of aspirin instead of a placebo may not necessarily

lower their risk. (Not everyone is helped by this medication.) However, on average the effect

is to lower the risk of stroke. One way to measure this is by looking at the probability a

randomly selected person has a stroke (say within 3 years) if they are given aspirin versus

if they are not.

Therefore, a better idealized definition of causation is to say that changing  should

result in a change in some attribute of the random variable  (for example, its mean or

some probability such as  (  0)). Thus we revise the definition above to say:

If all other factors that affect  are held constant, let us change  (or observe

different values of ) and see if some specified attribute of  changes. If it does

we say  has a causal effect on  .

These definitions are unfortunately unusable in most settings since we cannot hold all

other factors that affect  constant; often we don’t even know what all the factors are.

However, the definition serves as a useful ideal for how we should carry out studies in order

183
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to show that a causal relationship exists. What we do is try to design our studies so that

alternative (to the variate ) explanations of what causes changes in attributes of  can

be ruled out, leaving  as the causal agent. This is much easier to do in experimental

studies, where explanatory variables may be controlled, than in observational studies. The

following are brief examples.

Example 8.1.1. Recall Example 6.1.3 concerning the (breaking) strength  of a steel

bolt and the diameter  of the bolt. It is clear that bolts with larger diameters tend to have

higher strength, and it seems clear on physical and theoretical grounds that increasing the

diameter “causes" an increase in strength. This can be investigated in experimental studies

like that in Example 6.1.3, when random samples of bolts of different diameters are tested,

and their strengths  determined.

Clearly, the value of  does not determine  exactly (different bolts with the same

diameter don’t have the same strength), but we can consider attributes such as the average

value of . In the experiment we can hold other factors more or less constant (e.g. the

ambient temperature, the way the force is applied; the metallurgical properties of the bolts)

so we feel that the observed larger average values of  for bolts of larger diameter  is due

to a causal relationship.

Note that even here we have to depart slightly from the idealized definition of cause

and effect. In particular, a bolt cannot have its diameter  changed, so that we can see

if  changes. All we can do is consider two bolts that are as similar as possible, and are

subject to the same explanatory variables (aside from diameter). This difficulty arises in

many experimental studies.

Example 8.1.2. Suppose that data had been collected on 10 000 persons ages 40-80

who had smoked for at least 20 years, and 10 000 persons in the same age range who had

not. There is roughly the same distribution of ages in the two groups. The (hypothetical)

data concerning the numbers with lung cancer are as follows:

Lung Cancer No Lung Cancer Total

Smokers 500 9500 10 000

Non-Smokers 100 9900 10 000

There are many more lung cancer cases among the smokers, but without further in-

formation or assumptions we cannot conclude that a causal relationship (smoking causes

lung cancer) exists. Alternative explanations might explain some or all of the observed

difference. (This is an observational study and other possible explanatory variables are not

controlled.) For example, family history is an important factor in many cancers; maybe

smoking is also related to family history. Moreover, smoking tends to be connected with

other factors such as diet and alcohol consumption; these may explain some of the effect

seen.
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The last example exemplifies that association (statistical dependence) between

two variables  and  does not imply that a causal relationship exists. Suppose

for example that we observe a positive correlation between  and  ; higher values of 

tend to go with higher values of  in a unit. Then there are at least three “explanations":

(i)  causes  (meaning  has a causative effect on  ),(ii)  causes , and (iii) some

other factor(s)  cause both  and  .

We’ll now consider the question of cause and effect in experimental and observational

studies in a little more detail.

8.2 Experimental Studies

Suppose we want to investigate whether a variate  has a causal effect on a response variate

 . In an experimental setting we can control the values of  that a unit “sees". In addition,

we can use one or both of the following devices for ruling out alternative explanations for

any observed changes in  that might be caused by :

(i) Hold other possible explanatory variables fixed.

(ii) Use randomization to control for other variables.

These devices are mostly simply explained via examples.

Example 8.2.1 Blood thinning and the risk of stroke

Suppose 500 persons that are at high risk of stroke have agreed to take part in a clinical

trial to assess whether aspirin lowers the risk of stroke. These persons are representative

of a population of high risk individuals. The study is conducted by giving some persons

aspirin and some a placebo, then comparing the two groups in terms of the number of

strokes observed.

Other factors such as age, sex, weight, existence of high blood pressure, and diet also

may affect the risk of stroke. These variables obviously vary substantially across persons and

cannot be held constant or otherwise controlled. However, such studies use randomization

in the following way: among the study subjects, who gets aspirin and who gets a placebo

is determined by a random mechanism. For example, we might flip a coin (or draw a

random number from {0 1}), with one outcome (say Heads) indicating a person is to be
given aspirin, and the other indicating they get the placebo.

The effect of this randomization is to balance the other possible explanatory variables

in the two “treatment” groups (aspirin and placebo). Thus, if at the end of the study we

observe that 20% of the placebo subjects have had a stroke but only 9% of the aspirin

subjects have, then we can attribute the difference to the causative effect of the aspirin.

Here’s how we rule out alternative explanations: suppose you claim that its not the aspirin

but dietary factors and blood pressure that cause this observed effect. I respond that the

randomization procedure has lead to those factors being balanced in the two treatment
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groups. That is, the aspirin group and the placebo group both have similar variations in

dietary and blood pressure values across the subjects in the group. Thus, a difference in

the two groups should not be due to these factors.

Example 8.2.2. Driving speed and fuel consumption

It is thought that fuel consumption in automobiles is greater at speeds in excess of 100

km per hour. (Some years ago during oil shortages, many U.S. states reduced speed limits

on freeways because of this.) A study is planned that will focus on freeway-type driving,

because fuel consumption is also affected by the amount of stopping and starting in town

driving, in addition to other factors.

In this case a decision was made to carry out an experimental study at a special paved

track owned by a car company. Obviously a lot of factors besides speed affect fuel con-

sumption: for example, the type of car and engine, tire condition, fuel grade and the driver.

As a result, these factors were controlled in the study by balancing them across different

driving speeds. An experimental plan of the following type was employed.

• 84 cars of eight different types were used; each car was used for 8 test drives.

• the cars were each driven twice for 600 km on the track at each of four speeds:

80,100,120 and 140 km/hr.

• 8 drivers were involved, each driving each of the 8 cars for one test, and each driving
two tests at each of the four speeds.

• the cars had similar initial mileages and were carefully checked and serviced so as to
make them as comparable as possible; they used comparable fuels.

• the drivers were instructed to drive steadily for the 600 km. Each was allowed a 30
minute rest stop after 300 km.

• the order in which each driver did his or her 8 test drives was randomized. The track
was large enough that all 8 drivers could be on it at the same time. (The tests were

conducted over 8 days.)

The response variate was the amount of fuel consumed for each test drive. Obviously

in the analysis we must deal with the fact that the cars differ in size and engine type, and

their fuel consumption will depend on that as well as on driving speed. A simple approach

would be to add the fuel amounts consumed for the 16 test drives at each speed, and to

compare them (other methods are also possible). Then, for example, we might find that

the average consumption (across the 8 cars) at 80, 100, 120 and 140 km/hr were 43.0,44.1,

45.8 and 47.2 liters, respectively. Statistical methods of testing and estimation could then

be used to test or estimate the differences in average fuel consumption at each of the four
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speeds. (Can you think of a way to do this?)

Exercise: Suppose that statistical tests demonstrated a significant difference in consump-

tion across the four driving speeds, with lower speeds giving lower consumption. What (if

any) qualifications would you have about concluding there is a causal relationship?

8.3 Observational Studies

In observational studies there are often unmeasured factors that affect the response  . If

these factors are also related to the explanatory variable  whose (potential) causal effect

we are trying to assess, then we cannot easily make any inferences about causation. For

this reason, we try in observational studies to measure other important factors besides .

For example, Problem 1 at the end of Chapter 7 discusses an observational study on

whether rust-proofing prevents rust. It is clear that an unmeasured factor is the care a car

owner takes in looking after a vehicle; this could quite likely be related to whether a person

opts to have their car rust-proofed.

The following example shows how we must take note of measured factors that affect  .

Example 8.3.1 Suppose that over a five year period, the applications and admissions to

graduate studies in Engineering and Arts faculties in a university are as follows:

No. Applied No. Admitted % Admitted

Engineering 1000 600 60% Men

200 150 75% Women

Arts 1000 400 40% Men

1800 800 44% Women

Total 2000 1000 50% Men

2000 950 475% Women

We want to see if females have a lower probability of admission than males. If we looked

only at the totals for Engineering plus Arts, then it would appear that the probability a

male applicant is admitted is a little higher than the probability for a female applicant.

However, if we look separately at Arts and Engineering, we see the probability for females

being admitted appears higher in each case! The reason for the reverse direction in the

totals is that Engineering has a higher admission rate than Arts, but the fraction of women

applying to Engineering is much lower than for Arts.

In cause and effect language, we would say that the faculty one applies to (i.e. Engi-

neering or Arts) is a causative factor with respect to probability of admission. Furthermore,

it is related to the sex (male or female) of an applicant, so we cannot ignore it in trying to
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see if sex is also a causative factor.

Remark: The feature illustrated in the example above is sometimes called Simpson’s

Paradox. In probabilistic terms, it says that for events 1 2 and 1     , we can

have

 (|1)   (|2) for each  = 1     

but have

 (|1)   (|2)

(Note that  (|1) =
P
=1

 (|1) (|1) and similarly for  (|2), so they depend
on what  (|1) and  (|2) are.) In the example above we can take 1 = {person
is female}, 2 = {person is male}, 1 = {person applies to Engineering}, 2 = {person
applies to Arts}, and  = {person is admitted}.
Exercise: Write down estimated probabilities for the various events based on Example

8.3.1, and so illustrate Simpson’s paradox.

Epidemiologists (specialists in the study of disease) have developed guidelines or criteria

which should be met in order to argue that a causal association exists between a risk factor

 and a disease (represented by a response variable  = (person has the disease), for

example). These include

• the need to account for other possible risk factors and to demonstrate that  and 

are consistently related when these factors vary.

• the demonstration that association between  and  holds in different types of settings

• the existence of a plausible scientific explanation

Similar criteria apply to other areas.

8.4 Example

In the early seventies, the Coronary Drug Research Group implemented a large medical

trial40 in order to evaluate an experimental drug, clofibrate, for its effect on the risk of

heart attacks in middle-aged people with heart trouble. Clofibrate operates by reducing

the cholesterol level in the blood and thereby potentially reducing the risk of heart disease.

Study I: An Experimental Plan

Problem:

40The Coronary Drug Research Group, New England Journal of Medicine (1980), pg. 1038.
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Measurement Material Personnel

Environment Methods

follow−up time

follow−up method

definition of heart attack

doctor

weather
location

work environment
home environment

dose

drug

frequency of drug

when taken

dose

method of administration

stress
mental health
diet
personality type
gender

exercise
smoking status

drinking status
medications
family history
physical traits

personal history

age

Fatal Heart Attack

Figure 8.2: Fishbone diagram for Chlofibrate example

• Investigate the effect of clofibrate on the risk of fatal heart attack for patients with a
history of a previous heart attack.

The target population consists of all individuals with a previous non-fatal heart attack

who are at risk for a subsequent heart attack. The response of interest is the occurence/non-

occurrence of a fatal heart attack. This is primarily a causative problem in that the investi-

gators are interested in determining whether the prescription of clofibrate causes a reduction

in the risk of subsequent heart attack. The fishbone diagram (Figure 8.2) indicates a broad

variety of factors affecting the occurrence (or not) of a heart attack.

Plan:

The study population consists of men aged 30 to 64 who had a previous heart attack not

more than three months prior to initial contact. The sample consists of subjects from the

study population who were contacted by participating physicians, asked to participate in

the study, and provided informed consent. (All patients eligible to participate had to sign a

consent form to participate in the study. The consent form usually describes current state

of knowledge regarding the best available relevant treatments, the potential advantages and

disadvantages of the new treatment, and the overall purpose of the study.)

The following treatment protocol was developed:

• Randomly assign eligible men to either clofibrate or placebo treatment groups. (This
is an attempt to make the clofibrate and placebo groups alike with respect to most ex-

planatory variates other than the focal explanatory variate. See the fishbone diagram

above.)

• Administer treatments in identical capsules in a double-blinded fashion. (In this con-
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text, double-blind means that neither the patient nor the individual administering the

treatment knows if it is clofibrate or placebo; only the person heading the investiga-

tion knows. This is to avoid differential reporting rates from physicians enthusiastic

about the new drug - a form of measurement error.)

• Follow patients for 5 years and record the occurrence of any fatal heart attacks expe-
rienced in either treatment group.

Determination of whether a fatality was attributable to a heart attack or not is based

on electro-cardiograms and physical examinations by physicians.

Data:

• 1,103 patients were assigned to clofibrate and 2,789 were assigned to the placebo
group.

• 221 of the patients in the clofibrate group died and 586 of the patients in the placebo
group died.

Analysis:

• The proportion of patients in the two groups having subsequent fatal heart attacks
(clofibrate: 2211103 = 020 and placebo: 5862789 = 021) are comparable.

Conclusions:

• Clofibrate does not reduce mortality due to heart attacks in high risk patients.
This conclusion has several limitations. For example, study error has been introduced

by restricting the study population to male subjects alone. While clofibrate might be

discarded as a beneficial treatment for the target population, there is no information in

this study regarding its effects on female patients at risk for secondary heart attacks.

Study II: An Observational Plan

Supplementary analyses indicate that one reason that clofibrate did not appear to save

lives might be because the patients in the clofibrate group did not take their medicine. It

was therefore of interest to investigate the potential benefit of clofibrate for patients who

adhered to their medication program.

Subjects who took more than 80% of their prescribed treatment were called “adherers”

to the protocol.

Problem:
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• Investigate the occurence of fatal heart attacks in the group of patients assigned to
clofibrate who were adherers.

• The remaining parts of the problem stage are as before.

Plan:

• Compare the occurrence of heart attacks in patients assigned to clofibrate who main-
tained the designated treatment schedule with the patients assigned to clofibrate who

abandoned their assigned treatment schedule.

• Note that this is a further reduction of the study population.

Data:

• In the clofibrate group, 708 patients were adherers and 357 were non-adherers. The
remaining 38 patients could not be classified as adherers or non-adherers and so were

excluded from this analysis. Of the 708 adherers, 106 had a fatal heart attack during

the five years of follow up. Of the 357 non-adherers, 88 had a fatal heart attack during

the five years of follow up.

Analysis:

• The proportion of adherers sufferring from subsequent heart attack is given by 106708 =
015 while this proportion for the non-adherers is 88357 = 025.

Conclusions:

• It would appear that clofibrate does reduce mortality due to heart attack for high
risk patients if properly administered.

However, great care must be taken in interpreting the above results since they are

based on an observational plan. While the data were collected based on an exper-

imental plan, only the treatment was controlled. The comparison of the mortality

rates between the adherers and non-adherers is based on an explanatory variate (ad-

herence) that was not controlled in the original experiment. The investigators did not

decide who would adhere to the protocol and who would not; the subjects decided

themselves.

Now the possibility of confounding is substantial. Perhaps, adherers are more health

conscious and exercised more or ate a healthier diet. Detailed measurements of these

variates are needed to control for them and reduce the possibility of confounding.
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8.5 Problems

1. In an Ontario study, 50267 live births were classified according to the baby’s weight

(less than or greater than 2.5 kg.) and according to the mother’s smoking habits (non-

smoker, 1-20 cigarettes per day, or more than 20 cigarettes per day). The results were

as follows:
No. of cigarettes 0 1− 20  20

Weight ≤ 25 1322 1186 793

Weight  25 27036 14142 5788

(a) Test the hypothesis that birth weight is independent of the mother’s smoking

habits.

(b) Explain why it is that these results do not prove that birth weights would increase

if mothers stopped smoking during pregnancy. How should a study to obtain

such proof be designed?

(c) A similar, though weaker, association exists between birth weight and the amount

smoked by the father. Explain why this is to be expected even if the father’s

smoking habits are irrelevant.

2. One hundred and fifty Statistics students took part in a study to evaluate computer-

assisted instruction (CAI). Seventy-five received the standard lecture course while

the other 75 received some CAI. All 150 students then wrote the same examination.

Fifteen students in the standard course and 29 of those in the CAI group received a

mark over 80%.

(a) Are these results consistent with the hypothesis that the probability of achieving

a mark over 80% is the same for both groups?

(b) Based on these results, the instructor concluded that CAI increases the chances

of a mark over 80%. How should the study have been carried out in order for

this conclusion to be valid?

3. (a) The following data were collected some years ago in a study of possible sex bias

in graduate admissions at a large university:

Admitted Not admitted

Male applicants 3738 4704

Female applicants 1494 2827

Test the hypothesis that admission status is independent of sex. Do these data

indicate a lower admission rate for females?
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(b) The following table shows the numbers of male and female applicants and the

percentages admitted for the six largest graduate programs in (a):

Men Women

Program Applicants % Admitted Applicants % Admitted

A 825 62 108 82

B 560 63 25 68

C 325 37 593 34

D 417 33 375 35

E 191 28 393 24

F 373 6 341 7

Test the independence of admission status and sex for each program. Do any of

the programs show evidence of a bias against female applicants?

(c) Why is it that the totals in (a) seem to indicate a bias against women, but the

results for individual programs in (b) do not?

4. To assess the (presumed) beneficial effects of rust-proofing cars, a manufacturer ran-

domly selected 200 cars that were sold 5 years earlier and were still used by the original

buyers. One hundred cars were selected from purchases where the rust-proofing op-

tion package was included, and one hundred from purchases where it was not (and

where the buyer did not subsequently get the car rust-proofed by a third party).

The amount of rust on the vehicles was measured on a scale in which the responses

 are assumed roughly Gaussian, as follows:

1. Rust-proofed cars:  ∼ (1 )

2. Non-rust-proofed cars:  ∼ (2 )

Sample means and variances from the two sets of cars were found to be (higher

 means more rust)

1. ̄1 = 117 1 = 21

2. ̄2 = 120 2 = 24

(a) Test the hypothesis that there is no difference in 1 and 2.

(b) The manufacturer was surprised to find that the data did not show a beneficial

effect of rust-proofing. Describe problems with their study and outline how you

might carry out a study designed to demonstrate a causal effect of rust-proofing.



194 CAUSE AND EFFECT

5. In randomized clinical trials that compare two (or more) medical treatments it is

customary not to let either the subject or their physician know which treatment they

have been randomly assigned. (These are referred to as double blind studies.)

Discuss why not doing this might not be a good idea in a causative study (i.e. a

study where you want to assess the causative effect of one or more treatments).

6. Public health researchers want to study whether specifically designed educational

programs about the effects of cigarette smoking have the effect of discouraging people

from smoking. One particular program is delivered to students in grade 9, with

followup in grade 11 to determine each student’ s smoking “history". Briefly discuss

some factors you’d want to consider in designing such a study, and how you might

address them.
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Probabilities for Standard Normal N(0,1) Distribution 

 
The table gives the values of F(x) for 0≥x  

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983  
 



CHI‐SQUARED DISTRIBUTION QUANTILES

df\p 0.005 0.01 0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.975 0.99 0.995
1 0.000 0.000 0.001 0.004 0.016 0.064 0.148 0.275 0.455 0.708 1.074 1.642 2.706 3.842 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 0.446 0.713 1.022 1.386 1.833 2.408 3.219 4.605 5.992 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 1.005 1.424 1.869 2.366 2.946 3.665 4.642 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 1.649 2.195 2.753 3.357 4.045 4.878 5.989 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.146 1.610 2.343 3.000 3.656 4.352 5.132 6.064 7.289 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 3.070 3.828 4.570 5.348 6.211 7.231 8.558 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 3.822 4.671 5.493 6.346 7.283 8.383 9.803 12.017 14.067 16.013 18.475 20.278
8 1.344 1.647 2.180 2.733 3.490 4.594 5.527 6.423 7.344 8.351 9.525 11.030 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 5.380 6.393 7.357 8.343 9.414 10.656 12.242 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 6.179 7.267 8.296 9.342 10.473 11.781 13.442 15.987 18.307 20.483 23.209 25.188
11 2.603 3.054 3.816 4.575 5.578 6.989 8.148 9.237 10.341 11.530 12.899 14.631 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 7.807 9.034 10.182 11.340 12.584 14.011 15.812 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 8.634 9.926 11.129 12.340 13.636 15.119 16.985 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 9.467 10.821 12.078 13.339 14.685 16.222 18.151 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 10.307 11.721 13.030 14.339 15.733 17.322 19.311 22.307 24.996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 11.152 12.624 13.983 15.338 16.780 18.418 20.465 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 12.002 13.531 14.937 16.338 17.824 19.511 21.615 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.391 10.865 12.857 14.440 15.893 17.338 18.868 20.601 22.760 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 13.716 15.352 16.850 18.338 19.910 21.689 23.900 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 14.578 16.266 17.809 19.337 20.951 22.775 25.038 28.412 31.410 34.170 37.566 39.997
25 10.520 11.524 13.120 14.611 16.473 18.940 20.867 22.616 24.337 26.143 28.172 30.675 34.382 37.652 40.646 44.314 46.928
30 13.787 14.953 16.791 18.493 20.599 23.364 25.508 27.442 29.336 31.316 33.530 36.250 40.256 43.773 46.979 50.892 53.672
35 17.192 18.509 20.569 22.465 24.797 27.836 30.178 32.282 34.336 36.475 38.859 41.778 46.059 49.802 53.203 57.342 60.275
40 20.707 22.164 24.433 26.509 29.051 32.345 34.872 37.134 39.335 41.622 44.165 47.269 51.805 55.758 59.342 63.691 66.766
45 24.311 25.901 28.366 30.612 33.350 36.884 39.585 41.995 44.335 46.761 49.452 52.729 57.505 61.656 65.410 69.957 73.166
50 27.991 29.707 32.357 34.764 37.689 41.449 44.313 46.864 49.335 51.892 54.723 58.164 63.167 67.505 71.420 76.154 79.490
60 35.534 37.485 40.482 43.188 46.459 50.641 53.809 56.620 59.335 62.135 65.227 68.972 74.397 79.082 83.298 88.379 91.952
70 43.275 45.442 48.758 51.739 55.329 59.898 63.346 66.396 69.334 72.358 75.689 79.715 85.527 90.531 95.023 100.430 104.210
80 51.172 53.540 57.153 60.391 64.278 69.207 72.915 76.188 79.334 82.566 86.120 90.405 96.578 101.880 106.630 112.330 116.320
90 59.196 61.754 65.647 69.126 73.291 78.558 82.511 85.993 89.334 92.761 96.524 101.050 107.570 113.150 118.140 124.120 128.300

100 67.328 70.065 74.222 77.929 82.358 87.945 92.129 95.808 99.334 102.950 106.910 111.670 118.500 124.340 129.560 135.810 140.170
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Quantiles for a tn distribution with n degrees of freedom

df/p 0.6 0.7 0.8 0.9 0.95 0.975 0.99 0.995 0.9995
1 0.325 0.727 1.38 3.08 6.31 12.7 31.8 63.7 637.
2 0.289 0.617 1.06 1.89 2.92 4.30 6.96 9.92 31.6
3 0.277 0.584 0.978 1.64 2.35 3.18 4.54 5.84 12.9
4 0.271 0.569 0.941 1.53 2.13 2.78 3.75 4.60 8.61
5 0.267 0.559 0.920 1.48 2.02 2.57 3.36 4.03 6.87
6 0.265 0.553 0.906 1.44 1.94 2.45 3.14 3.71 5.96
7 0.263 0.549 0.896 1.41 1.89 2.36 3.00 3.50 5.41
8 0.262 0.546 0.889 1.40 1.86 2.31 2.90 3.36 5.04
9 0.261 0.543 0.883 1.38 1.83 2.26 2.82 3.25 4.78
10 0.260 0.542 0.879 1.37 1.81 2.23 2.76 3.17 4.59
11 0.260 0.540 0.876 1.36 1.80 2.20 2.72 3.11 4.44
12 0.259 0.539 0.873 1.36 1.78 2.18 2.68 3.05 4.32
13 0.259 0.538 0.870 1.35 1.77 2.16 2.65 3.01 4.22
14 0.258 0.537 0.868 1.35 1.76 2.14 2.62 2.98 4.14
15 0.258 0.536 0.866 1.34 1.75 2.13 2.60 2.95 4.07
16 0.258 0.535 0.865 1.34 1.75 2.12 2.58 2.92 4.01
17 0.257 0.534 0.863 1.33 1.74 2.11 2.57 2.90 3.97
18 0.257 0.534 0.862 1.33 1.73 2.10 2.55 2.88 3.92
19 0.257 0.533 0.861 1.33 1.73 2.09 2.54 2.86 3.88
20 0.257 0.533 0.860 1.33 1.72 2.09 2.53 2.85 3.85
21 0.257 0.532 0.859 1.32 1.72 2.08 2.52 2.83 3.82
22 0.256 0.532 0.858 1.32 1.72 2.07 2.51 2.82 3.79
23 0.256 0.532 0.858 1.32 1.71 2.07 2.50 2.81 3.77
24 0.256 0.531 0.857 1.32 1.71 2.06 2.49 2.80 3.75
25 0.256 0.531 0.856 1.32 1.71 2.06 2.49 2.79 3.73
26 0.256 0.531 0.856 1.31 1.71 2.06 2.48 2.78 3.71
27 0.256 0.531 0.855 1.31 1.70 2.05 2.47 2.77 3.69
28 0.256 0.530 0.855 1.31 1.70 2.05 2.47 2.76 3.67
29 0.256 0.530 0.854 1.31 1.70 2.05 2.46 2.76 3.66
30 0.256 0.530 0.854 1.31 1.70 2.04 2.46 2.75 3.65
40 0.255 0.529 0.851 1.30 1.68 2.02 2.42 2.70 3.55
50 0.255 0.528 0.849 1.30 1.68 2.01 2.40 2.68 3.50
100 0.254 0.526 0.845 1.29 1.66 1.98 2.36 2.63 3.39
> 100 0.253 0.525 0.842 1.28 1.65 1.96 2.33 2.58 3.30

Table 8.2: The quantiles of the t-distribution
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APPENDIX. ANSWERS TO

SELECTED PROBLEMS

Chapter 1

1. (b) .032 (c) .003 (.002 using Gaussian approx.)

2. (c) 1 = 489, 2 = 325, 3 = 0151, 4 = 0035

3. (b) .003 and .133 (d) 0 = 1243

4. (a) .933 (b) .020 (c).949 and .117 (d) 4.56

5. (a) .9745

7. (a) () = 1 + 2(− 1)(1− )

(b)  () = 2(− 1)(1− )[1− 2(1− )] + 2(− 2)(1− )(1− 2)2
(c) () = 505,  () = 2475 and  ( ≤ 20)  10−6

Chapter 2

1. (a) 4.1 (b) .000275

2. (a) .10 (b)  = 140

3. (21 + 2)

4. (b) .28

6. (a)
(0+3 )−[(0+3 )2−8 2]12

4
where  =

P


(b)  = (1− )2

(c) ̂ = 0195; ̂ ( = 0) = 758

(d) ̂ = 5

7. ̂ =
P


P
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9. (a) ̂ = 35 ̂ = 42

(b) 14.7, 20.3, 27.3 and 37.7

Chapter 4

1. (a) ̂ = 1744, ̂ = 00664(M) ̂ = 1618,̂ = 00636 (F)

(b) 1.659 and 1.829 (M) 1.536 and 1.670 (F)

(c) .098 (M) and .0004 (F)

(d) 11/50=.073 (M) 0(F)

2. (c) 0.1414 and 0.1768, respectively

3. (b)  = 1024

7. (b) ̂ = 1− ()1 (c) ̂ = 00116; interval approximately (.0056,.0207)

8. (a) 0 ≤  ≤ 548 (b) .10 likelihood interval is now 0209 ≤  ≤ 490

10. (a) ̂ = 3
P

 (b) ̂ = 006024; 0450 ≤  ≤ 00785
(c) 95 CI for  is (.0463,.0768) and for  is 39.1 ≤  ≤ 648
(d) CI’s are 408 ≤  ≤ 738 (using model) and 0287 ≤  ≤ 794 (using binomial).

The binomial model involves fewer assumptions but gives a less precise (wider)

interval.

(Note: the 1st CI can be obtained directly from the CI for  in part (c).)

12. (a) ̂ = 380 days; CI is 2855 ≤  ≤ 5213
(b) 1979 ≤  ≤ 3613

13. (b) 2883 ≤  ≤ 5279

14. (a) 637 ≤  ≤ 764

Chapter 5

1.  =  ( ≥ 15) =  ( ≥ 25; = 10) = 0000047

4. (a)  statistic gives Λ0 = 00885 and  = 76.

5. (a) Λ0 = 23605 and  = 0005

(b)  = 1− 9956 = 003 now

6. Λ0 = 0042 and  = 84. There is no evidence against the model.
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9. (c)  statistic gives Λ0 = 373 and  =  (2
(4)
≥ 373) = 44. There is no

evidence that the rates are not equal.

Chapter 6

3. (a) 4328 ≤  ≤ 4553 (b) 182 ≤  ≤ 350

4. (a) 0 = 92022 = 12 and  = 2 (2
(9)
≤ 12) = 00024 so there is strong

evidence against  :  = 002

(b) No: testing  :  = 1375 gives   001

(c) 13690 ≤  ≤ 13700 and 0050 ≤  ≤ 00132

5. (a) 29691 ≤  ≤ 30347; 455 ≤  ≤ 953
(b) 2867 ≤  ≤ 3137

7. 75 ≤  ≤ 1125 where  = 1 − 2

8. (a) 064 ≤ 1 − 2 ≤ 724
(b)  = 005 (c)  = 007

9. (a)  test gives  = 4

(b) −011 ≤ 1 − 2 ≤ 557

12. (a) −023 ≤  ≤ 238 (b) −877 ≤  ≤ 1092

18. (a) ̂ = 09935, ̂ = −00866,  = 02694. Confidence intervals are 0978 ≤  ≤ 1009
and 0182 ≤  ≤ 0516

19. (b) ̂ = 002087, ̂ = −1022,  = 0008389
(c) 95 prediction interval for  (log  ) is 3030 ≤  ≤ 3065 so  for  is 2070 ≤

 ≤ 2143

Chapter 7

1. (a)  statistic gives Λ0 = 817 and Pearson statistic 0 = 805. The  is about

.004 in each case so there is strong evidence against .

2.  statistic gives Λ0 = 570 and Pearson statistic 0 = 564. The  is about

.017 in each case.

5. (a)  statistics for  = 2 3 4 are 1.11, 4.22, 1.36. The ’s are  (2
(1)
≥ 111) =

029,  (2
(2)
≥ 422) = 012 and  (2

(3)
≥ 136) = 71, respectively.

(b)  statistic is 7.54 and  =  (2
(3)
≥ 754) = 0057



206 APPENDIX. ANSWERS TO SELECTED PROBLEMS

7. The  statistic is 7.32 and  =  (2
(2)
≥ 732) = 0026 so there is evidence against

independence and in favour of an association.

8.  statistic is 3.13 and  =  (2
(4)
≥ 313) = 54. There is no evidence against

independence.

9. (a)  statistic gives Λ0 = 057 and  =  (2
(3)
≥ 57) = 090 so there is no

evidence of association.

(b)  statistic gives Λ0 = 544 and  =  (2
(3)
≥ 544) = 014 There is no

evidence against the binomial model.

10. (a) Λ0 = 108 and  =  (2
(3)
≥ 108) = 0013

Chapter 8

1. (a)  statistic is 480.65 so  is almost zero; there is very strong evidence against

independence.

3. (a)  statistic gives Λ0 = 112 and  = 0

(b) Only Program  shows any evidence of non-independence, and that is in the

direction of a lower admission rate for males.



APPENDIX: DATA

Here we list the data for Example 1.5.2. In the file ch1example152.txt, there are three

columns labelled hour, machine and volume. The data are

hour machine volume hour machine volume

1 1 3578 11 1 357

1 2 3587 11 2 3596

2 1 3566 12 1 3571

2 2 3585 12 2 3576

3 1 3571 13 1 3563

3 2 3579 13 2 3581

4 1 3573 14 1 3563

4 2 3582 14 2 3569

5 1 3567 15 1 356

5 2 358 15 2 3564

6 1 3568 16 1 357

6 2 3591 16 2 3575

7 1 357 17 1 3575

7 2 3575 17 2 3572

8 1 356 18 1 3559

8 2 3564 18 2 3571

9 1 3559 19 1 3565

9 2 3579 19 2 3582

10 1 3578 20 1 3558

10 2 3585 20 2 359

207
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21 1 3565 31 1 3577

21 2 3573 31 2 357

22 1 3569 32 1 3563

22 2 3567 32 2 3578

23 1 3575 33 1 3566

23 2 3569 33 2 3575

24 1 3569 34 1 3567

24 2 3571 34 2 3565

25 1 3569 35 1 3568

25 2 3564 35 2 3576

26 1 3564 36 1 3566

26 2 3575 36 2 3572

27 1 3565 37 1 3566

27 2 357 37 2 3576

28 1 3565 38 1 3567

28 2 3581 38 2 3569

29 1 3576 39 1 3568

29 2 3576 39 2 3572

30 1 3575 40 1 3561

30 2 3564 40 2 3564

Example 1.3.1 New Zealand BMI Data
subject gender height weight BMI

1 M 1.76 63.81 20.6

2 M 1.77 89.6 28.6

3 M 1.91 88.65 24.3

4 M 1.8 74.84 23.1

5 M 1.81 97.3 29.7

6 M 1.93 106.9 28.7

7 M 1.79 108.94 34

8 M 1.66 74.68 27.1

9 M 1.66 92.31 33.5

10 M 1.82 92.08 27.8

11 M 1.76 93.86 30.3

12 M 1.79 88.11 27.5

13 M 1.77 80.52 25.7

14 M 1.72 75.14 25.4

15 M 1.73 64.95 21.7

16 M 1.81 89.11 27.2

17 M 1.77 96.49 30.8

18 M 1.56 53.78 22.1
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19 M 1.71 76.61 26.2

20 M 1.8 82.62 25.5

21 M 1.68 80.44 28.5

22 M 1.75 93.1 30.4

23 M 1.81 71.09 21.7

24 M 1.69 71.12 24.9

25 M 1.74 80.84 26.7

26 M 1.73 75.12 25.1

27 M 1.74 96.88 32

28 M 1.8 73.22 22.6

29 M 1.75 81.77 26.7

30 M 1.81 83.87 25.6

31 M 1.72 55.91 18.9

32 M 1.74 68.73 22.7

33 M 1.74 75.39 24.9

34 M 1.78 94.1 29.7

35 M 1.75 80.54 26.3

36 M 1.68 70.84 25.1

37 M 1.78 100.76 31.8

38 M 1.68 51.65 18.3

39 M 1.75 84.83 27.7

40 M 1.71 70.47 24.1

41 M 1.73 112.23 37.5

42 M 1.71 72.23 24.7

43 M 1.87 105.26 30.1

44 M 1.69 69.97 24.5

45 M 1.73 102.36 34.2

46 M 1.71 81.58 27.9

47 M 1.86 80.61 23.3

48 M 1.73 76.62 25.6

49 M 1.64 71.27 26.5

50 M 1.59 60.17 23.8

51 M 1.78 92.2 29.1

52 M 1.73 78.41 26.2

53 M 1.76 90.76 29.3

54 M 1.8 92.34 28.5

55 M 1.71 68.72 23.5

56 M 1.69 76.54 26.8

57 M 1.8 90.72 28

58 M 1.78 70.66 22.3

59 M 1.73 76.32 25.5
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60 M 1.71 88.02 30.1

61 M 1.78 87.76 27.7

62 M 1.74 84.77 28

63 M 1.69 67.4 23.6

64 M 1.82 83.14 25.1

65 M 1.63 69.08 26

66 M 1.74 72.36 23.9

67 M 1.74 69.03 22.8

68 M 1.69 81.68 28.6

69 M 1.79 89.39 27.9

70 M 1.79 75.3 23.5

71 M 1.86 90.3 26.1

72 M 1.7 102.59 35.5

73 M 1.87 94.42 27

74 M 1.65 89.03 32.7

75 M 1.72 78.4 26.5

76 M 1.74 93.55 30.9

77 M 1.69 68.26 23.9

78 M 1.57 53.73 21.8

79 M 1.74 91.13 30.1

80 M 1.8 89.1 27.5

81 M 1.77 87.41 27.9

82 M 1.71 66.38 22.7

83 M 1.78 106.46 33.6

84 M 1.56 66.92 27.5

85 M 1.74 79.93 26.4

86 M 1.79 92.28 28.8

87 M 1.85 79.4 23.2

88 M 1.64 70.2 26.1

89 M 1.83 116.88 34.9

90 M 1.7 78.32 27.1

91 M 1.72 102.66 34.7

92 M 1.72 78.4 26.5

93 M 1.7 83.81 29

94 M 1.64 67.51 25.1

95 M 1.75 69.83 22.8

96 M 1.68 77.62 27.5

97 M 1.71 95.03 32.5

98 M 1.67 74.18 26.6

99 M 1.8 92.99 28.7

100 M 1.77 78.64 25.1
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101 M 1.72 79.29 26.8

102 M 1.66 72.75 26.4

103 M 1.78 83.65 26.4

104 M 1.6 61.44 24

105 M 1.72 65.97 22.3

106 M 1.71 78.37 26.8

107 M 1.79 74.01 23.1

108 M 1.74 69.33 22.9

109 M 1.74 88.1 29.1

110 M 1.78 89.35 28.2

111 M 1.77 90.54 28.9

112 M 1.74 91.43 30.2

113 M 1.84 94.8 28

114 M 1.82 86.12 26

115 M 1.83 75.35 22.5

116 M 1.74 70.85 23.4

117 M 1.74 98.7 32.6

118 M 1.89 104.66 29.3

119 M 1.81 91.08 27.8

120 M 1.64 94.67 35.2

121 M 1.77 80.2 25.6

122 M 1.73 73.92 24.7

123 M 1.82 84.8 25.6

124 M 1.73 90.39 30.2

125 M 1.77 74.25 23.7

126 M 1.82 107.32 32.4

127 M 1.8 80.03 24.7

128 M 1.77 105.58 33.7

129 M 1.8 110.48 34.1

130 M 1.7 93.64 32.4

131 M 1.7 68.49 23.7

132 M 1.77 77.7 24.8

133 M 1.77 97.12 31

134 M 1.62 70.86 27

135 M 1.74 82.96 27.4

136 M 1.68 72.25 25.6

137 M 1.64 73.16 27.2

138 M 1.75 92.49 30.2

139 M 1.66 66.69 24.2

140 M 1.86 106.21 30.7

141 M 1.72 88.75 30
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142 M 1.69 73.97 25.9

143 M 1.72 81.95 27.7

144 M 1.77 82.4 26.3

145 M 1.66 85.42 31

146 M 1.78 76.04 24

147 M 1.82 78.5 23.7

148 M 1.84 98.86 29.2

149 M 1.75 85.44 27.9

150 M 1.75 65.23 21.3

151 F 1.6 59.9 23.4

152 F 1.6 48.38 18.9

153 F 1.51 77.98 34.2

154 F 1.6 54.53 21.3

155 F 1.67 79.2 28.4

156 F 1.55 87.45 36.4

157 F 1.61 53.66 20.7

158 F 1.56 64 26.3

159 F 1.6 67.58 26.4

160 F 1.58 70.65 28.3

161 F 1.56 51.59 21.2

162 F 1.67 56.89 20.4

163 F 1.64 54.6 20.3

164 F 1.67 63.31 22.7

165 F 1.53 52.67 22.5

166 F 1.6 48.64 19

167 F 1.67 69.72 25

168 F 1.79 65.04 20.3

169 F 1.54 67.35 28.4

170 F 1.65 65.34 24

171 F 1.61 80.87 31.2

172 F 1.76 85.8 27.7

173 F 1.52 87.56 37.9

174 F 1.58 59.16 23.7

175 F 1.69 94.82 33.2

176 F 1.57 60.39 24.5

177 F 1.64 63.47 23.6

178 F 1.7 62.13 21.5

179 F 1.6 63.49 24.8

180 F 1.59 64.21 25.4

181 F 1.64 72.89 27.1

182 F 1.57 74.19 30.1
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183 F 1.59 82.67 32.7

184 F 1.53 59.93 25.6

185 F 1.64 79.61 29.6

186 F 1.73 69.14 23.1

187 F 1.57 81.59 33.1

188 F 1.61 63.51 24.5

189 F 1.68 82.13 29.1

190 F 1.57 58.91 23.9

191 F 1.65 70.51 25.9

192 F 1.6 71.42 27.9

193 F 1.62 59.57 22.7

194 F 1.64 57.56 21.4

195 F 1.54 61.9 26.1

196 F 1.58 84.63 33.9

197 F 1.7 66.76 23.1

198 F 1.56 75.68 31.1

199 F 1.68 72.25 25.6

200 F 1.53 56.88 24.3

201 F 1.58 66.9 26.8

202 F 1.59 50.06 19.8

203 F 1.64 69.66 25.9

204 F 1.63 87.15 32.8

205 F 1.66 76.61 27.8

206 F 1.53 62.03 26.5

207 F 1.66 88.73 32.2

208 F 1.65 85.21 31.3

209 F 1.67 81.99 29.4

210 F 1.6 77.82 30.4

211 F 1.71 84.21 28.8

212 F 1.61 69.99 27

213 F 1.65 96.92 35.6

214 F 1.6 77.57 30.3

215 F 1.71 78.37 26.8

216 F 1.58 77.39 31

217 F 1.61 64.28 24.8

218 F 1.59 85.96 34

219 F 1.57 64.58 26.2

220 F 1.64 76.92 28.6

221 F 1.72 71.89 24.3

222 F 1.59 58.9 23.3

223 F 1.64 86.07 32
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224 F 1.64 78 29

225 F 1.58 66.9 26.8

226 F 1.53 61.1 26.1

227 F 1.62 59.05 22.5

228 F 1.62 83.72 31.9

229 F 1.61 76.99 29.7

230 F 1.57 61.62 25

231 F 1.72 107.09 36.2

232 F 1.61 45.36 17.5

233 F 1.67 89.8 32.2

234 F 1.67 77.25 27.7

235 F 1.6 82.94 32.4

236 F 1.66 82.12 29.8

237 F 1.58 74.64 29.9

238 F 1.71 79.54 27.2

239 F 1.64 61.32 22.8

240 F 1.59 60.17 23.8

241 F 1.61 95.91 37

242 F 1.56 62.79 25.8

243 F 1.56 48.19 19.8

244 F 1.54 69.73 29.4

245 F 1.52 89.64 38.8

246 F 1.57 57.68 23.4

247 F 1.67 75.02 26.9

248 F 1.57 40.42 16.4

249 F 1.57 53 21.5

250 F 1.68 101.61 36

251 F 1.72 110.94 37.5

252 F 1.68 65.48 23.2

253 F 1.77 73 23.3

254 F 1.65 71.6 26.3

255 F 1.41 46.72 23.5

256 F 1.54 73.99 31.2

257 F 1.67 79.48 28.5

258 F 1.72 60.06 20.3

259 F 1.72 63.01 21.3

260 F 1.61 81.65 31.5

261 F 1.52 85.95 37.2

262 F 1.61 54.95 21.2

263 F 1.55 78.56 32.7

264 F 1.57 64.58 26.2
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265 F 1.51 76.84 33.7

266 F 1.69 81.11 28.4

267 F 1.69 78.54 27.5

268 F 1.58 72.65 29.1

269 F 1.48 65.49 29.9

270 F 1.66 60.07 21.8

271 F 1.47 61.37 28.4

272 F 1.63 71.2 26.8

273 F 1.71 66.38 22.7

274 F 1.59 70.79 28

275 F 1.56 73.49 30.2

276 F 1.62 70.07 26.7

277 F 1.53 61.57 26.3

278 F 1.7 74.27 25.7

279 F 1.6 45.06 17.6

280 F 1.52 67.93 29.4

281 F 1.61 53.66 20.7

282 F 1.58 64.66 25.9

283 F 1.71 66.67 22.8

284 F 1.58 72.65 29.1

285 F 1.65 79.22 29.1

286 F 1.65 74.32 27.3

287 F 1.7 85.83 29.7

288 F 1.7 67.63 23.4

289 F 1.66 77.98 28.3

290 F 1.67 85.9 30.8

291 F 1.64 67.51 25.1

292 F 1.68 60.96 21.6

293 F 1.54 64.03 27

294 F 1.58 61.41 24.6

295 F 1.68 75.64 26.8

296 F 1.64 64.82 24.1

297 F 1.65 59.62 21.9

298 F 1.66 76.05 27.6

299 F 1.6 61.7 24.1

300 F 1.65 76.5 28.1
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Brakepad Lifetimes (1000km)
324 1254 751 703 188 612 439 505

254 904 618 264 502 597 211 1084

177 448 612 673 182 22 414 281

876 175 739 242 376 192 685 214

547 1104 319 328 381 272 43 403

708 138 145 163 711 623 331 851

74 965 295 543 699 383 145 535

529 26 727 369 595 482 404 109

266 426 425 749 1134 1023 306 702

693 137 296 361 307 363 534 174

913 399 718 443 253 823 315 38

316 401 115 61 101 1009 193 255

311 65 1672 884 393 476 142 1693

22 903 265 80 234 58 83 20

575 664 31 216 312 1363 1082 48

219 269 328 276 1032 92 355 423

231 363 115 09 32 472 188 495

344 40 83 444 106 281 593 445

413 434 178 445 1218 88 451 662

296 271 111 254 461 423 55 242

156 745 187 336 616 535 1051 558




