Canonical triangulation of enriched order polytopes

Akiyoshi Tsuchiya (University of Tokyo)

AlCoVE 2021 an Algebraic Combinatorics Virtual Expedition June 14, 2021

joint work with Soichi Okada (Nagoya University)

This talk is based on

- S. Okada and A. Tsuchiya, Two enriched poset polytopes, arXiv:2003.12271.
- H. Ohsugi and A. Tsuchiya, Enriched chain polytopes, Israel J. Math. 237 (2020), 485–500.
- H. Ohsugi and A. Tsuchiya, Enriched order polytopes and enriched Hibi rings, *Eur. J. Math.* **7** (2021), 48–63.
- 1. Order polytopes
- 2. Enriched order polytopes
- 3. Canonical triangulations of enriched order polytopes
- 4. h-polynomials of canonical triangulations

Order polytopes

Ehrhart polynomial

 $\mathcal{P} \subset \mathbb{R}^d$: a lattice polytope of dimension d (i.e., the convex hull of finitely many points in \mathbb{Z}^d) $m\mathcal{P} = \{m\mathbf{x} : \mathbf{x} \in \mathcal{P}\}$: the mth dilated polytope of \mathcal{P} $L_{\mathcal{P}}(m) := |m\mathcal{P} \cap \mathbb{Z}^d|$: the Ehrhart polynomial of \mathcal{P}

Theorem (Ehrhart)

 $L_{\mathcal{P}}(m)$ is a polynomial in m of degree d. Moreover, the leading coefficient of $L_{\mathcal{P}}(m)$ is equal to the volume of \mathcal{P} ;

Order polytopes

$$(P, <_P)$$
: a poset on $[d] := \{1, \dots, d\}$.

Definition (Stanley)

The order polytope of P is

$$\mathcal{O}_P := \{ \mathbf{x} \in [0, 1]^d : x_i \le x_j \text{ if } i <_P j \}.$$

Proposition (Stanley)

 \mathcal{O}_P is a lattice polytope of dimension d.

Vertices of \mathcal{O}_P

- $(P, <_P)$: a poset on [d].
 - $\circ \ F \subset [d] \text{ is a filter of } P \text{ if for any } x \in F \text{ and } y \in P \text{, it follows that } x <_P y \Rightarrow y \in F.$
- $\mathcal{F}(P)$: the set of filters of P.
 - For $X \subset [d]$, set $\mathbf{e}_X := \sum_{i \in X} \mathbf{e}_i$, where $\mathbf{e}_1, \dots, \mathbf{e}_d$ are the standard basis of \mathbb{R}^d . In particular, $\mathbf{e}_\emptyset = \mathbf{0}$.

Theorem (Stanley)

The set of vertices of \mathcal{O}_P is $\{\mathbf{e}_F : F \in \mathcal{F}(P)\}$.

Example

$$P = \int_{1}^{2} \mathcal{F}(P) = \{\emptyset, \{2\}, \{1, 2\}\}$$

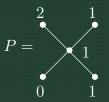
P-partition

 $(P, <_P)$: a naturally labeled poset on [d], i.e., $i <_P j \Rightarrow i < j$.

Definition

A map $f: P \to \mathbb{Z}_{\geq 0}$ is a P-partition if for any $i <_P j$,

$$f(i) \le f(j)$$
.



Remark

 $\mathcal{O}_P = \operatorname{conv}\{(f(1), \dots, f(d)) : f : P$ -partitions with $f(i) \leq 1\}$.

The Ehrhart polynomials of \mathcal{O}_P

$$(P, <_P)$$
: a naturally labeled poset on $[d]$.

Theorem (Stanley)

$$L_{\mathcal{O}_P}(m) = |\{f: P\text{-partitions with } f(i) \leq m\}|.$$

Enriched order polytopes

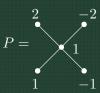
Enriched P-partition

 $(P, <_P)$: a naturally labeled poset on [d].

Definition (Stembridge)

A map $f:P \to \mathbb{Z} \setminus \{0\}$ is an enriched P-parition if for any $i <_P j$,

- $\circ |f(i)| \le |f(j)|;$
- $\circ |f(i)| = |f(j)| \Rightarrow f(j) > 0.$



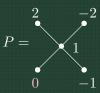
Left enriched P-partition

 $(P, <_P)$: a naturally labeled poset on [d].

Definition (Petersen)

A map $f: P \to \mathbb{Z}$ is a left enriched P-parition if for any $i <_P j$,

- $\circ |f(i)| \le |f(j)|;$
- $\circ |f(i)| = |f(j)| \Rightarrow f(j) \ge 0.$



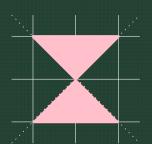
How do we define enriched order polytopes?

Let E be the set of points $\mathbf{x} \in [-1,1]^d$ such that for any $i <_P j$, the following is satisfied:

$$\circ |x_i| \le |x_j|;$$

$$\circ |x_i| = |x_j| \Rightarrow x_j \ge 0.$$

Then E is NOT a convex polytope.



Signed filters

$$(P, <_P)$$
: a poset on $[d]$.

$$\mathcal{F}^{(e)}(P) := \left\{ (F, \varepsilon) \in \mathcal{F}(P) \times \{0, \pm 1\}^d : \varepsilon_i = \begin{cases} \pm 1 & (i \in \min(F)) \\ 1 & (i \in F \setminus \min(F)) \\ 0 & (i \notin F) \end{cases} \right\}$$

Remark

If P is naturally labeled, then

$$\mathcal{F}(P) \stackrel{1:1}{\longleftrightarrow} \{f: P\text{-partition with } f(i) \leq 1\}$$

$$\mathcal{F}^{(e)}(P) \stackrel{1:1}{\longleftrightarrow} \{f : \text{left enriched } P\text{-partition with } |f(i)| \leq 1\}$$

Enriched order polytopes

$$(P, <_P)$$
: a poset on $[d]$.

$$\circ$$
 For $X\subset [d]$ and $arepsilon\in\{0,\pm 1\}^d$, set $\mathbf{e}_X^arepsilon:=\sum_{i\in X}arepsilon_i\mathbf{e}_i.$

Definition (Ohsugi-T)

The enriched order polytope of P is

$$\mathcal{O}_P^{(e)} := \operatorname{conv}\{\mathbf{e}_F^{\varepsilon} : (F, \varepsilon) \in \mathcal{F}^{(e)}(P)\}.$$

Example

$$P = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\mathcal{F}^{(e)}(P) = \left\{ \begin{array}{l} (\emptyset, (0,0)), (\{2\}, (0,1)), (\{2\}, (0,-1)) \\ (\{1,2\}, (1,1)), (\{1,2\}, (-1,1)) \end{array} \right\}$$

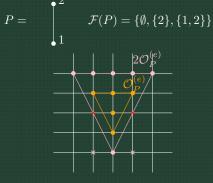
Left enriched P-partitions and lattice points in $m\mathcal{O}_P^{(e)}$

We recall that

$$m\mathcal{O}_P \cap \mathbb{Z}^d = \{(f(1), \dots, f(d)) : f : P\text{-partitions with } f(i) \leq m\}.$$

However, in general,

$$m\mathcal{O}_P^{(e)}\cap \mathbb{Z}^d \neq \{(f(1),\dots,f(d)): f: \text{l.e. } P\text{-partitions with } |f(i)|\leq m\}.$$



Ehrhart polynomial of $\mathcal{O}_P^{(e)}$

 $(P, <_P)$: a naturally labeled poset on [d].

Theorem (Ohsugi-T, Okada-T)

$$L_{\mathcal{O}_{-}^{(e)}}(m) = |\{f: \textit{left enriched P-partitions with } |f(i)| \leq m\}|.$$

Canonical triangulations of enriched order polytopes

Canonical triangulation of order polytopes

 $(P, <_P)$: a poset on $[d] := \{1, \dots, d\}$.

We regard $\mathcal{F}(P)$ as a poset by inclusion.

Theorem (Stanley)

For a chain $C = \{F_1 \supsetneq F_2 \supsetneq \cdots \supsetneq F_k\}$ of $\mathcal{F}(P)$, we put

$$S_C = \operatorname{conv}\{\mathbf{e}_{F_1}, \dots, \mathbf{e}_{F_k}\}.$$

Then the collection $S_P = \{S_C : C \text{ is a chain of } \mathcal{F}(P)\}$ is a unimodular triangulation of \mathcal{O}_P .

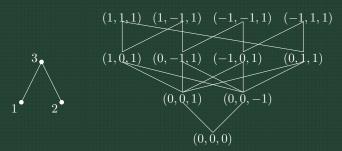
Here a lattice triangulation is unimodular if all maximal faces have the Euclidean volume 1/d!.

Poset structure on $\mathcal{F}^{(e)}(P)$

Definition

For $(F, \epsilon), (G, \delta) \in \mathcal{F}^{(e)}(P)$, we write $(F, \epsilon) > (G, \delta)$ if the following three conditions hold:

- 1. $F \supseteq G$;
- 2. $\epsilon_i \geq \delta_i$ for any $i \in G$;
- 3. If $i \in G$ and i is minimal in F, then $\epsilon_i = \delta_i$.



Canonical triangulation of $\mathcal{O}_P^{(e)}$

Theorem (Okada-T)

For a chain $C = \{(F_1, \epsilon_1) > (F_2, \epsilon_2) \cdots > (F_k, \epsilon_k)\}$ of $\mathcal{F}^{(e)}(P)$, we put

$$S_C^{(e)} = \operatorname{conv}\{\mathbf{e}_{F_1}^{\epsilon_1}, \dots, \mathbf{e}_{F_k}^{\epsilon_k}\}.$$

Then the collection $\mathcal{S}_P^{(e)}=\{S_C^{(e)}: C \text{ is a chain of } \mathcal{F}^{(e)}(P)\}$ is a unimodular triangulation of $\mathcal{O}_P^{(e)}$.

h-polynomials of canonical triangulations

Order complexes

 ${\cal Q}$: a graded poset.

Definition

The order complex $\Delta(Q)$ of Q is the simlicial complex whose faces are chains of Q.

Remark

- $\circ \mathcal{F}^{(e)}(P)$ is a graded poset.
- \circ $\mathcal{S}_{P}^{(e)}$ coincides with $\overline{\Delta(\mathcal{F}^{(e)}(P))}$ as simplicial complexes.
- $\circ \ \Delta(\mathcal{F}^{(e)}(P))$ is flag and balanced.

h-polynomials of simplicial complexes

 Δ : a simplicial complex of dimension d-1 f_i : the number of i-dimensional faces of Δ $f_{-1}:=1$ Define a sequence (h_0,\ldots,h_d) as follows:

$$\sum_{i=0}^{d} f_{i-1}(t-1)^{d-i} = \sum_{i=0}^{d} h_i t^{d-i}.$$

$$h(\Delta,t):=\sum_{i=0}^d h_i t^i$$
: the h-polynomial of Δ

Palindromic polynomials and γ -positivity

$$f(t)=\sum_{i=0}^d a_i t^i\in \mathbb{Z}_{>0}[t]$$
: a palindromic polynomial i.e., $a_i=a_{d-i}$ for any $1\leq i\leq \lfloor d/2 \rfloor$

Then there exists a unique expression

$$f(t) = \sum_{i=0}^{\lfloor d/2 \rfloor} \gamma_i t^i (1+t)^{d-2i}$$

$$\gamma(t):=\sum_{i=0}^{\lfloor d/2\rfloor}\gamma_it^i\in\mathbb{Z}[t]$$
 is called the γ -polynomial of $f(t)$.

(RR) f(t) is real-rooted if all roots of f(t) are real.

(GP) f(t) is γ -positive if $\gamma_i \geq 0$ for all i.

(UN)
$$f(t)$$
 is unimodal if $a_0 \leq \cdots \leq a_k \geq \cdots \geq a_d$ with some k .

In general, (RR) \Rightarrow (GP) \Rightarrow (UN). If f(t) is γ -positive, then

$$f(t)$$
 is real-rooted $\iff \gamma(t)$ is real-rooted

Lemma

The h-polynomial of $\Delta(\mathcal{F}^{(e)}(P))$ is palindromic.

Left peak polynomials

 $(P, <_P)$: a naturally labeled poset on [d].

A permutation $\pi=\pi_1\cdots\pi_d$ is called a linear extension of P if $i<_P j\Rightarrow\pi_i<\pi_j.$

 $\mathcal{L}(P)$: the set of linear extensions of P.

For $\pi \in \mathcal{L}(P)$ with $\pi_0 = 0$, set

$$\operatorname{peak}^{(\ell)}(\pi) := |\{1 \le i \le d - 1 : \pi_{i-1} < \pi_i > \pi_{i+1}\}|.$$

$$W_P^{(\ell)}(t) := \sum_{\pi \in \mathcal{L}(P)} t^{\mathrm{peak}^{(\ell)}(\pi)}$$
 : the left peak polynomial of P .

Theorem (Ohsugi-T, Okada-T, Petersen, Stembridge)

The γ -polynomials of $\Delta(\mathcal{F}^{(e)}(P))$ equals $W_P^{(\ell)}(4t)$.

Alternative proof for the $\gamma\text{-positivity}$

$$P:$$
 a poset on $[d].$ $\mathcal{G}^{(e)}(P):=\mathcal{F}^{(e)}(P)\setminus\{(\emptyset,\mathbf{0})\}.$

Remark

- $\circ \mathcal{G}^{(e)}(P)$ is a graded poset.
- $\circ \ \Delta(\mathcal{G}^{(e)}(P))$ is a triangulation of $\partial \mathcal{O}_P^{(e)}$,
- $\circ h(\Delta(\mathcal{G}^{(e)}(P)), t) = h(\Delta(\mathcal{F}^{(e)}(P)), t).$

Theorem (Karu)

Let Q be a graded poset. If Q is Gorenstein*, namely, $\Delta(Q)$ is a homological sphere, then $h(\Delta(Q),t)$ is γ -positive.