Promotion, rowmotion, rotation, and webs

Jessica Striker joint works with Kevin Dilks, Rebecca Patrias, Oliver Pechenik, and Nathan Williams

North Dakota State University

June 7, 2022

Catalan objects

Theorem

 $2 \times d$ standard Young tableaux are counted by the dth Catalan number: $C_d = \frac{1}{d+1} {2d \choose d} = \frac{(2d)!}{(d+1)!d!}$

The Catalan numbers for $d = 0, 1, 2, \dots, 10$ are:

 $1,\ 1,\ 2,\ 5,\ 14,\ 42,\ 132,\ 429,\ 1430,\ 4862,\ 16796$

Catalan objects

(()))((()))() 1 1 -1 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

Catalan object bijections

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Catalan object bijections

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Catalan object bijections

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

June 7, 2022

1	2	3	4	7
5	6	8	9	10

	2	3	4	7
5	6	8	9	10

2		3	4	7
5	6	8	9	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

June 7, 2022

2	3	4		7
5	6	8	9	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

2	3	4	7	
5	6	8	9	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

2	3	4	7	10
5	6	8	9	

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

June 7, 2022

2	3	4	7	10
5	6	8	9	11

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

June 7, 2022

1	2	3	6	9
4	5	7	8	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

1	2	3	4	7
5	6	8	9	10

Jessica Striker (NDSU)

1	2	3	5	7
4	6	8	9	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

1	2	3	5	7
4	6	8	9	10

1	2	3	6	7
4	5	8	9	10

1	2	3	6	7
4	5	8	9	10

1	2	3	6	7
4	5	8	9	10

1	2	3	6	8
4	5	7	9	10

1	2	3	6	8
4	5	7	9	10

1	2	3	6	9
4	5	7	8	10

1	2	3	6	9
4	5	7	8	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and webs

1	2	3	6	9
4	5	7	8	10

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and webs

Promotion and rotation of noncrossing matchings

Theorem (D. White)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and rotation on non-crossing matchings of n = 2d. So promotion has order n (and exhibits cyclic sieving).

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^+(A_{d-1})$.

Proposition (Williams-S. 2012)

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^+(A_{d-1})$.

Jessica Striker (NDSU)

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^+(A_{d-1})$.

Jessica Striker (NDSU)

Proposition (Williams-S. 2012)

Proposition (Williams-S. 2012)

Proposition (Williams-S. 2012)

Rowmotion

An order ideal

Rowmotion

Find the **minimal** elements of *P* not in the order ideal.

Rowmotion

Use them to generate a new order ideal.

Promotion and rowmotion are conjugate actions

Cameron and Fon-der-Flaass identified the toggle group and showed:

Theorem (Cameron-Fon-der-Flaass 1995)

Rowmotion can also be computed by toggling from top to bottom.

Theorem (Williams-S. 2012)

In any ranked poset, there is an equivariant bijection between order ideals under rowmotion and toggle-promotion (toggle left to right).

Theorem (Dilks-Pechenik-S. 2017)

In any poset with an n-dim lattice projection, there is an equivariant bijection between the order ideals under rowmotion and 2ⁿ toggle-promotions (toggle by hyperplanes in a given direction).

In an equivariant bijection the orbit structure is preserved.

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

Promotion, rowmotion, and rotation

Corollary (Armstrong-Stump-Thomas 2013, Williams-S. 2012) There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and rowmotion on order ideals of $\Phi^+(A_{d-1})$. So rowmotion has order n = 2d and exhibits cyclic sieving.

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

June 7, 2022

Web basis of noncrossing matchings

Theorem (Theory of SL_2 webs)

A basis for the Specht module $S^{(d,d)}$ is given by those products of matrix minors corresponding to noncrossing matchings (SL₂ webs) of n = 2d. The long cycle $(12 \cdots n)$ acts by rotation of diagrams.

Jessica Striker (NDSU)

Later in this talk:

• Increasing tableaux \longleftrightarrow Order ideals of $[a] \times [b] \times [c]$ (joint work with Dilks and Pechenik)

Not in this talk:

- Increasing labelings of P ↔ Order ideals of Γ(P) (joint work with Dilks and Vorland)
- P-strict labelings ↔→ Γ(P)-partitions (two papers joint with Bernstein and Vorland)
 - \blacktriangleright Semistandard Young tableaux \longleftrightarrow Gelfand-Tsetlin patterns
 - ► Flagged tableaux of staircase shape ↔ Rectangular *P*-partitions
 - ► Symplectic tableaux of staircase shape ↔ Triangular flagged P-partitions

• • • •

 Promotion on 3 × d standard Young tableaux ↔ rotation of SL₃ webs with n = 3d boundary vertices of one color (Petersen-Pylyavskyy-Rhoades 2009)

 Promotion on 3 × d standard Young tableaux ↔ rotation of SL₃ webs with n = 3d boundary vertices of one color (Petersen-Pylyavskyy-Rhoades 2009)

Open questions: \rightarrow Rowmotion?

 Promotion on 3 × d standard Young tableaux ↔ rotation of SL₃ webs with n = 3d boundary vertices of one color (Petersen-Pylyavskyy-Rhoades 2009)

Open questions: \rightarrow Rowmotion?

 \rightarrow Web basis for SL_m ? Standard Young tableaux of shape d^m index a basis for the Specht module S^{d^m} and have promotion order n = md (Haiman 1992) and cyclic sieving (Rhoades 2010), but no one knows a web basis. (There are non-diagrammatic bases that respect the S_n action.)

 Promotion on 'rectangular' generalized oscillating tableaux of 3 rows ↔ rotation of SL₃ webs where boundary vertices may be of both colors (Rebecca Patrias 2019)

Promotion on d × 2 standard Young tableaux ↔ rotation of SL_d webs with n = 2d boundary vertices of one color (Chris Fraser 2022+)

 Promotion on 4 × d standard Young tableaux ↔ rotation of equivalence classes of SL₄ web-like diagrams with n = 4d boundary vertices (joint work in progress with Christian Gaetz, Oliver Pechenik, Stephan Pfannerer, and Joshua Swanson)

Increasing tableaux

1	2	3	5	6	9	10
3	4	6	7	8	10	11

Theorem (Pechenik 2014)

 $2 \times d$ packed increasing tableaux are counted by the dth small Schröder number.

The small Schöder numbers for d = 0, 1, 2, ..., 9 are:

 $1,\ 1,\ 3,\ 11,\ 45,\ 197,\ 903,\ 4279,\ 20793,\ 103049$

1	3	7
3	6	8

	3	7
3	6	8

3		7
	6	8

3	6	7
6		8

3	6	7
6	8	

2	5	6
5	7	8

1	2	4
4	5	6

1	2	4
4	5	6

1	3	4
4	5	6

1	3	4
3	5	6

K-promotion and rotation of noncrossing partitions

Theorem (O. Pechenik 2014 (packed case))

There is an equivariant bijection between K-promotion on $2 \times d$ increasing tableaux with entries at most 2d + m - 2 and rotation on non-crossing partitions of 2d + m - 2 into d - 1 non-singleton parts. So K-promotion has order 2d + m - 2 and exhibits the CSP.

Rowmotion and rotation of noncrossing partitions

Theorem (Williams-S. '12, Cameron-Fon-der-Flaass '95, Rush-Shi '13) There is an equivariant bijection between rowmotion on order ideals of $a \times b \times 2$ and rotation on noncrossing partitions of a + b + 1 into b + 1 blocks. So rowmotion has order a + b + 1 and exhibits the CSP.

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

Theorem (K. Dilks, O. Pechenik, S. 2017)

K-promotion and rowmotion

Theorem (K. Dilks, O. Pechenik, S. 2017)

A bijection with pennant shaped standard Young tableaux

A bijection with pennant shaped standard Young tableaux

A bijection with pennant shaped standard Young tableaux

A bijection with pennant shaped standard Young tableaux

Web basis of noncrossing partitions

Theorem (Rhoades 2017, Kim-Rhoades 2022, Patrias-Pechenik-S. 2022+) Noncrossing partitions of n = 2d + m - 2 into d parts with no singletons index a basis for the Specht module $S^{(d,d,1^{m-2})}$. The long cycle $(12 \cdots n)$ acts by rotation of diagrams.

In our new proof of this theorem, we define an explicit polynomial for each noncrossing partition and show this is a basis.

Jessica Striker (NDSU)

Promotion, rowmotion, rotation, and web

Web invariant polynomials

Given a set partition π , how do we define its polynomial $[\pi]$? Our polynomial will be a signed sum over *jellyfish tableaux*.

$$\pi = \{\{2, 3, 6, 10\}, \{5, 7, 8, 9\}, \{1, 4\}\}$$

<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₆	<i>x</i> ₁₁₀	<i>x</i> ₁₅	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉		
<i>X</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₆	<i>x</i> ₂₁₀	<i>x</i> ₂₅	<i>x</i> ₂₇	<i>x</i> ₂₈	<i>x</i> ₂₉	<i>x</i> ₁₁	<i>x</i> ₁₄
<i>x</i> ₃₂	<i>X</i> 33	<i>x</i> ₃₆	<i>x</i> ₃₁₀	<i>X</i> 45	X47	<i>X</i> 48	<i>X</i> 49	<i>x</i> ₂₁	<i>x</i> ₂₄
<i>x</i> ₅₂	<i>X</i> 53	<i>x</i> ₅₆	<i>x</i> ₅₁₀	<i>x</i> 65	<i>x</i> ₆₇	<i>x</i> ₆₈	<i>x</i> ₆₉		

$$(-1)^{\text{inv}(\mathcal{T})} J(\mathcal{T}) = (-1)^7 M_{1,2,3,5}^{2,3,6,10} \cdot M_{1,2,4,6}^{5,7,8,9} \cdot M_{1,2}^{1,4}$$

Web invariant polynomials

Suppose $\pi = \{\{2, 3, 6, 10\}, \{5, 7, 8, 9\}, \{1, 4\}\}$. Then $\mathcal{J}(\pi)$ is:

2	5	1	2	5	1	2	5	1	2	5	1	2	5	1	2	5	1
3	7	4	3	7	4	3	7	4	3	7	4	3	7	4	3	7	4
6			6			6				8			8			8	
10				8			8		6		1	6				9	
	8		10				9		10				9		6		I
	9	1		9		10			L	9		10		1	10		

$$\begin{split} [\pi] &= \sum_{T \in \mathcal{J}(\pi)} (-1)^{\text{inv}\,T} \, \mathrm{J}(T) = \sum_{T \in \mathcal{J}(\pi)} \, \text{sgn}(T) \, \mathrm{J}(T) \\ &= M_{1,2,3,4}^{2,3,6,10} \cdot M_{1,2,5,6}^{5,7,8,9} \cdot M_{1,2}^{1,4} - M_{1,2,3,5}^{2,3,6,10} \cdot M_{1,2,4,6}^{5,7,8,9} \cdot M_{1,2}^{1,4} \\ &+ M_{1,2,3,6}^{2,3,6,10} \cdot M_{1,2,4,5}^{5,7,8,9} \cdot M_{1,2}^{1,4} + M_{1,2,4,5}^{2,3,6,10} \cdot M_{1,2,3,6}^{5,7,8,9} \cdot M_{1,2}^{1,4} \\ &- M_{1,2,4,6}^{2,3,6,10} \cdot M_{1,2,3,5}^{5,7,8,9} \cdot M_{1,2}^{1,4} + M_{1,2,5,6}^{2,3,6,10} \cdot M_{1,2,3,4}^{5,7,8,9} \cdot M_{1,2}^{1,4} \end{split}$$

Jessica Striker (NDSU)

Proof that this is a basis

A polynomial relation for changing block sizes:

$[\{A \cup B, I \cup J\}] + [\{A \cup I, B \cup J\}] + [\{A \cup J, B \cup I\}]$ $= [\{A, B \cup I \cup J\}] + [\{A \cup I \cup J, B\}]$

This specializes to an uncrossing rule:

THHNKE

- R. Patrias, O. Pechenik, J. Striker, A web basis of invariant polynomials from noncrossing partitions, arxiv:2112.05781.
- J. Striker, Dynamical algebraic combinatorics: promotion, rowmotion, and resonance, *Notices of the AMS*, **64** (2017), no. 6, 543–549.
- K. Dilks, O. Pechenik, and J. Striker, Resonance in orbits of plane partitions and increasing tableaux, *J. Combin. Series A*, **148** (2017) 244–274.
- J. Striker and N. Williams, Promotion and rowmotion, *Eur. J. Combin.* **33** (2012), no. 8, 1919–1942.