Promotion, rowmotion, rotation, and webs

Jessica Striker

joint works with Kevin Dilks, Rebecca Patrias, Oliver Pechenik, and Nathan Williams

North Dakota State University

June 7, 2022

Catalan objects

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Theorem
$2 \times d$ standard Young tableaux are counted by the d th
Catalan number: $C_{d}=\frac{1}{d+1}\binom{2 d}{d}=\frac{(2 d)!}{(d+1)!d!}$

The Catalan numbers for $d=0,1,2, \ldots, 10$ are:
$1,1,2,5,14,42,132,429,1430,4862,16796$

Catalan objects

(() ()) ((())) ()
$\begin{array}{rrrrrrrrrrrrrr}1 & 1 & -1 & 1 & -1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 & 1 & -1\end{array}$

Catalan object bijections

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Catalan object bijections

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Catalan object bijections

1	2	4	7	8	9	13
3	5	6	10	11	12	14

Promotion via jeu de taquin

1	2	3	4	7
5	6	8	9	10

Promotion via jeu de taquin

	2	3	4	7
5	6	8	9	10

Promotion via jeu de taquin

2		3	4	7
5	6	8	9	10

Promotion via jeu de taquin

2	3		4	7
5	6	8	9	10

Promotion via jeu de taquin

2	3	4		7
5	6	8	9	10

Promotion via jeu de taquin

2	3	4	7	
5	6	8	9	10

Promotion via jeu de taquin

2	3	4	7	10
5	6	8	9	

Promotion via jeu de taquin

2	3	4	7	10
5	6	8	9	11

Promotion via jeu de taquin

1	2	3	6	9
4	5	7	8	10

Promotion via Bender-Knuth involutions

1	2	3	4	7
5	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	4	7
5	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	4	7
5	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	4	7
5	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	4	7
5	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	5	7
4	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	5	7
4	6	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	6	7
4	5	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	6	7
4	5	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	6	7
4	5	8	9	10

Promotion via Bender-Knuth involutions

1	2	3	6	8
4	5	7	9	10

Promotion via Bender-Knuth involutions

1	2	3	6	8
4	5	7	9	10

Promotion via Bender-Knuth involutions

1	2	3	6	9
4	5	7	8	10

Promotion via Bender-Knuth involutions

1	2	3	6	9
4	5	7	8	10

Promotion via Bender-Knuth involutions

1	2	3	6	9
4	5	7	8	10

Promotion and rotation of noncrossing matchings

Theorem (D. White)
There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and rotation on non-crossing matchings of $n=2 d$. So promotion has order n (and exhibits cyclic sieving).

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	4	7
5	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	4	7
5	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	4	7
5	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	4	7
5	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	4	7
5	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	5	7
4	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	5	7
4	6	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	7
4	5	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	7
4	5	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	7
4	5	8	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	8
4	5	7	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	8
4	5	7	9	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	9
4	5	7	8	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	9
4	5	7	8	10

Promotion and toggling

Proposition (Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and toggling left to right on order ideals of the triangular poset $\Phi^{+}\left(A_{d-1}\right)$.

1	2	3	6	9
4	5	7	8	10

Rowmotion

An order ideal

Rowmotion

Find the minimal elements of P not in the order ideal.

Rowmotion

Use them to generate a new order ideal.

Promotion and rowmotion are conjugate actions
Cameron and Fon-der-Flaass identified the toggle group and showed:

Theorem (Cameron-Fon-der-Flaass 1995)

Rowmotion can also be computed by toggling from top to bottom.

Theorem (Williams-S. 2012)

In any ranked poset, there is an equivariant bijection between order ideals under rowmotion and toggle-promotion (toggle left to right).

Theorem (Dilks-Pechenik-S. 2017)
In any poset with an n-dim lattice projection, there is an equivariant bijection between the order ideals under rowmotion and 2^{n} toggle-promotions (toggle by hyperplanes in a given direction).

In an equivariant bijection the orbit structure is preserved.

Promotion, rowmotion, and rotation

Corollary (Armstrong-Stump-Thomas 2013, Williams-S. 2012)

There is an equivariant bijection between promotion on $2 \times d$ standard Young tableaux and rowmotion on order ideals of $\Phi^{+}\left(A_{d-1}\right)$. So rowmotion has order $n=2 d$ and exhibits cyclic sieving.

Web basis of noncrossing matchings

Theorem (Theory of $S L_{2}$ webs)
A basis for the Specht module $S^{(d, d)}$ is given by those products of matrix minors corresponding to noncrossing matchings ($S L_{2}$ webs) of $n=2 d$. The long cycle $(12 \cdots n)$ acts by rotation of diagrams.

1	2	3	4	7
5	6	8	9	10

$\left.$| x_{1} | x_{10} |
| :--- | :--- |
| y_{1} | y_{10} |\(\left|\left|\begin{array}{ll}x_{2} \& x_{9}

y_{2} \& y_{9}\end{array}\right|\right|\)| x_{3} | x_{6} |
| :--- | :--- |
| y_{3} | y_{6} |\(\left|\left|\begin{array}{ll}x_{4} \& x_{5}

y_{4} \& y_{5}\end{array}\right|\right|\)| x_{7} | x_{8} |
| :--- | :--- |
| y_{7} | y_{8} | \right\rvert\,

Other instances where promotion \leftrightarrow rowmotion

Later in this talk:

- Increasing tableaux \longleftrightarrow Order ideals of $[a] \times[b] \times[c]$ (joint work with Dilks and Pechenik)
Not in this talk:
- Increasing labelings of $P \longleftrightarrow$ Order ideals of $\Gamma(P)$ (joint work with Dilks and Vorland)
- P-strict labelings $\longleftrightarrow \Gamma(P)$-partitions
(two papers joint with Bernstein and Vorland)
- Semistandard Young tableaux \longleftrightarrow Gelfand-Tsetlin patterns
- Flagged tableaux of staircase shape \longleftrightarrow Rectangular P-partitions
- Symplectic tableaux of staircase shape \longleftrightarrow Triangular flagged P-partitions

Other instances where promotion \leftrightarrow web rotation

- Promotion on $3 \times d$ standard Young tableaux \leftrightarrow rotation of $S L_{3}$ webs with $n=3 d$ boundary vertices of one color (Petersen-Pylyavskyy-Rhoades 2009)

1	3	5	9
2	6	7	11
4	8	10	12

Other instances where promotion \leftrightarrow web rotation

- Promotion on $3 \times d$ standard Young tableaux \leftrightarrow rotation of $S L_{3}$ webs with $n=3 d$ boundary vertices of one color (Petersen-Pylyavskyy-Rhoades 2009)

1	3	5	9
2	6	7	11
4	8	10	12

Open questions: \rightarrow Rowmotion?

Other instances where promotion \leftrightarrow web rotation

- Promotion on $3 \times d$ standard Young tableaux \leftrightarrow rotation of $S L_{3}$ webs with $n=3 d$ boundary vertices of one color (Petersen-Pylyavskyy-Rhoades 2009)

1	3	5	9
2	6	7	11
4	8	10	12

Open questions: \rightarrow Rowmotion?
\rightarrow Web basis for $S L_{m}$? Standard Young tableaux of shape d^{m} index a basis for the Specht module $S^{d^{m}}$ and have promotion order $n=m d$ (Haiman 1992) and cyclic sieving (Rhoades 2010), but no one knows a web basis. (There are non-diagrammatic bases that respect the S_{n} action.)

Other instances where promotion \leftrightarrow web rotation

- Promotion on 'rectangular' generalized oscillating tableaux of 3 rows \leftrightarrow rotation of $S L_{3}$ webs where boundary vertices may be of both colors (Rebecca Patrias 2019)

Other instances where promotion \leftrightarrow web rotation

- Promotion on $d \times 2$ standard Young tableaux \leftrightarrow rotation of $S L_{d}$ webs with $n=2 d$ boundary vertices of one color (Chris Fraser 2022+)

Other instances where promotion \leftrightarrow diagram rotation

- Promotion on $4 \times d$ standard Young tableaux \leftrightarrow rotation of equivalence classes of $S L_{4}$ web-like diagrams with $n=4 d$ boundary vertices (joint work in progress with Christian Gaetz, Oliver Pechenik, Stephan Pfannerer, and Joshua Swanson)

1	4	5	6	15
2	8	10	11	17
3	9	13	14	19
7	12	16	18	20

Increasing tableaux

1	2	3	5	6	9	10
3	4	6	7	8	10	11

Theorem (Pechenik 2014)

$2 \times d$ packed increasing tableaux are counted by the d th small Schröder number.

The small Schöder numbers for $d=0,1,2, \ldots, 9$ are:
$1,1,3,11,45,197,903,4279,20793,103049$

K-promotion on increasing tableaux by K-jeu de taquin

1	3	7
3	6	8

K-promotion on increasing tableaux by K-jeu de taquin

K-promotion on increasing tableaux by K-Bender-Knuth involutions

K-promotion and rotation of noncrossing partitions

Theorem (O. Pechenik 2014 (packed case))
There is an equivariant bijection between K-promotion on $2 \times d$ increasing tableaux with entries at most $2 d+m-2$ and rotation on non-crossing partitions of $2 d+m-2$ into $d-1$ non-singleton parts. So K-promotion has order $2 d+m-2$ and exhibits the CSP.

Rowmotion and rotation of noncrossing partitions

Theorem (Williams-S. '12, Cameron-Fon-der-Flaass '95, Rush-Shi '13)
There is an equivariant bijection between rowmotion on order ideals of $\mathrm{a} \times \mathrm{b} \times 2$ and rotation on noncrossing partitions of $\mathrm{a}+\mathrm{b}+1$ into $b+1$ blocks. So rowmotion has order $a+b+1$ and exhibits the CSP.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)

There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

1	2	4
4	5	6

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)
There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)
There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

1	3	4
4	5	6

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)

There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)

There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

1	3	4
3	5	6

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)

There is an equivariant bijection between K-promotion on [a] $\times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)

There is an equivariant bijection between K-promotion on [a] $\times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)
There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)
There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and toggling

Theorem (K. Dilks, O. Pechenik, S. 2017)
There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and toggling back to front on $[\mathrm{a}] \times[\mathrm{b}] \times[\mathrm{c}]$.

K-promotion and rowmotion

Theorem (K. Dilks, O. Pechenik, S. 2017)
There is an equivariant bijection between K-promotion on $[a] \times[b]$ increasing tableaux with entries at most $a+b+c-1$ and rowmotion on $[a] \times[b] \times[c]$.

A bijection with pennant shaped standard Young tableaux

A bijection with pennant shaped standard Young tableaux

A bijection with pennant shaped standard Young tableaux

A bijection with pennant shaped standard Young tableaux

Web basis of noncrossing partitions

Theorem (Rhoades 2017, Kim-Rhoades 2022, Patrias-Pechenik-S. 2022+)
Noncrossing partitions of $n=2 d+m-2$ into d parts with no singletons index a basis for the Specht module $S^{\left(d, d, 1^{m-2}\right)}$. The long cycle $(12 \cdots n)$ acts by rotation of diagrams.

In our new proof of this theorem, we define an explicit polynomial for each noncrossing partition and show this is a basis.

Web invariant polynomials

Given a set partition π, how do we define its polynomial $[\pi]$?
Our polynomial will be a signed sum over jellyfish tableaux.

$$
\pi=\{\{2,3,6,10\},\{5,7,8,9\},\{1,4\}\}
$$

2	5	1
3	7	4
6		
	8	
10		
	9	

$$
\left|\begin{array}{llll}
x_{12} & x_{13} & x_{16} & x_{110} \\
x_{22} & x_{23} & x_{26} & x_{210} \\
x_{32} & x_{33} & x_{36} & x_{310} \\
x_{52} & x_{53} & x_{56} & x_{510}
\end{array}\right|\left|\begin{array}{llll}
x_{15} & x_{17} & x_{18} & x_{19} \\
x_{25} & x_{27} & x_{28} & x_{29} \\
x_{45} & x_{47} & x_{48} & x_{49} \\
x_{65} & x_{67} & x_{68} & x_{69}
\end{array}\right|\left|\begin{array}{ll}
x_{11} & x_{14} \\
x_{21} & x_{24}
\end{array}\right|
$$

$$
(-1)^{\operatorname{inv}(T)} J(T)=(-1)^{7} M_{1,2,3,5}^{2,3,6,10} \cdot M_{1,2,4,6}^{5,7,8,9} \cdot M_{1,2}^{1,4}
$$

Web invariant polynomials

Suppose $\pi=\{\{2,3,6,10\},\{5,7,8,9\},\{1,4\}\}$. Then $\mathcal{J}(\pi)$ is:

2	5	1	2	5	1	2	5	1	2	5	1	2	5	1	2	5	1
3	7	4	3	7	4	3	7	4	3	7	4	3	7	4	3	7	4
6	8		6			6				8			8			8	
10				8			8		6			6				9	
			10				9		10				9		6		
				9		10				9		10			10		
		$[\pi]=\sum_{T \in \mathcal{J}(\pi)}(-1)^{\operatorname{inv} T} \mathrm{~J}(T)=\sum_{T \in \mathcal{J}(\pi)} \operatorname{sgn}(T) \mathrm{J}(T)$															
		$=M_{1,2,3,4}^{2,3,6,10} \cdot M_{1,2,5,6}^{5,7,8,9} \cdot M_{1,2}^{1,4}-M_{1,2,3,5}^{2,3,6,10} \cdot M_{1,2,4,6}^{5,7,8,9} \cdot M_{1,2}^{1,4}$															
		$+M_{1,2,3,6}^{2,3,6,10} \cdot M_{1,2,4,5}^{5,7,8,9} \cdot M_{1,2}^{1,4}+M_{1,2,4,5}^{2,3,6,10} \cdot M_{1,2,3,6}^{5,7,8,9} \cdot M_{1,2}^{1,4}$															
		$-M_{1,2,4,6}^{2,3,6,10} \cdot M_{1,2,3,5}^{5,7,8,9} \cdot M_{1,2}^{1,4}+M_{1,2,5,6}^{2,3,6,10} \cdot M_{1,2,3,4}^{5,7,8,9} \cdot M_{1,2}^{1,4} .$															

Proof that this is a basis

A polynomial relation for changing block sizes:

$$
\begin{aligned}
& {[\{A \cup B, I \cup J\}]+[\{A \cup I, B \cup J\}]+[\{A \cup J, B \cup I\}] } \\
&=[\{A, B \cup I \cup J\}]+[\{A \cup I \cup J, B\}]
\end{aligned}
$$

This specializes to an uncrossing rule:

- R. Patrias, O. Pechenik, J. Striker, A web basis of invariant polynomials from noncrossing partitions, arxiv:2112.05781.
- J. Striker, Dynamical algebraic combinatorics: promotion, rowmotion, and resonance, Notices of the AMS, 64 (2017), no. 6, 543-549.
- K. Dilks, O. Pechenik, and J. Striker, Resonance in orbits of plane partitions and increasing tableaux, J. Combin. Series A, 148 (2017) 244-274.
- J. Striker and N. Williams, Promotion and rowmotion, Eur. J. Combin. 33 (2012), no. 8, 1919-1942.

