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Permutation Statistics

Def: A permutation statistic is a function f : Sn → R.

I exc(w) = #{1 ≤ i ≤ n : w(i) > i}
I inv(w) = #{1 ≤ i < j ≤ n : w(i) > w(j)}
I des(w) = #{1 ≤ i ≤ n − 1 : w(i) > w(i + 1)}
I maj(w) =

∑
w(i)>w(i+1) i

I cyc(w) = number of cycles in w

Intuition: A statistic f : Sn → R is k-local if f (w) is determined
by the restriction of w to k-element subsets of [n].
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Partial Permutations

A partial permutation on [n] of size k is a bijection S
∼−→ T

between two size k subsets S ,T ⊆ [n].

Sn,k = {all partial permutations on [n] of size k}

Ex: Inside S5,2 we have the “two-line notation”

2 7→ 5, 3 7→ 1 ⇔ (23, 51).

For (I , J) ∈ Sn,k with I = (i1, . . . , ik) and J = (j1, . . . , jk), the
indicator statistic 1I ,J : Sn → R is

1I ,J(w) =

{
1 w(i1) = j1, . . . , w(ik) = jk

0 otherwise



Local Statistics

Def: A permutation statistic f : Sn → R is k-local if there are
constants cI ,J ∈ R such that

f (w) =
∑

(I ,J)∈Sn,k

cI ,J · 1I ,J(w) for all w ∈ Sn.

I exc(w) = #{1 ≤ i ≤ n : w(i) > i} is 1-local.

I inv(w) = #{1 ≤ i < j ≤ n : w(i) > w(j)} is 2-local.

I des(w) = #{1 ≤ i ≤ n − 1 : w(i) > w(i + 1)} is 2-local.

I maj(w) =
∑

w(i)>w(i+1) i is 2-local.

I cyc(w) = number of cycles in w has no nontrivial locality.



Local Statistics: Basic Facts

Def: A permutation statistic f : Sn → R is k-local if there are
constants cI ,J ∈ R such that

f (w) =
∑

(I ,J)∈Sn,k

cI ,J · 1I ,J(w) for all w ∈ Sn.

I The 0-local statistics are constant functions Sn → R.

I Any k-local statistic is also (k + 1)-local.

I Any f : Sn → R is (n − 1)-local.

Idea: The locality of a statistic measures its ‘degree’.



Locality = Degree

Def: A permutation statistic f : Sn → R is k-local if there are
constants cI ,J ∈ R such that

f (w) =
∑

(I ,J)∈Sn,k

cI ,J · 1I ,J(w) for all w ∈ Sn.

I A linear combination of k-local statistics is k-local.

I If f : Sn → R is k-local and g : Sn → R is `-local, then

(f · g)(w) = f (w) · g(w)

is (k + `)-local.



Locality = Degree

Def: A permutation statistic f : Sn → R is k-local if
f =

∑
(I ,J)∈Sn,k

cI ,J · 1I ,J .

Artin-Wedderburn Theorem: We have an isomorphism

Ψ : R[Sn]→
⊕
λ`n

EndR(V λ)

given by Ψ : α 7→ (α : V λ → V λ)λ`n.

Ubiquitous: [Ellis-Friedgut-Pipel, Even-Zohar,
Huang-Guestrin-Guibas, . . . ]

f is k-local ⇔ Ψ(
∑

w∈Sn
f (w) · w) supported on

{λ ` n : λ1 ≥ n − k}.



Characters are Local Statistics

Artin-Wedderburn Theorem: We have an isomorphism

Ψ : R[Sn]→
⊕
λ`n

EndR(V λ)

given by Ψ : α 7→ (α : V λ → V λ)λ`n.

Ubiquitous: A statistic f : Sn → R is k-local if and only if
Ψ(
∑

w∈Sn
f (w) · w) is supported on {λ ` n : λ1 ≥ n − k}.

Cor: Given λ ` n with λ1 ≥ n − k, the irreducible character

χλ : Sn → R

is k-local.



Vanilla Permutation Patterns

Let v = [v(1), . . . , v(k)] ∈ Sk and w = [w(1), . . . ,w(n)] ∈ Sn.

Def: Given S = {i1 < · · · < ik} ⊆ [n], the permutation w matches
the pattern v at S if

[w(i1), . . . ,w(ik)] is order-isomorphic to [v(1), . . . , v(k)].

Define Nv : Sn → R by

Nv (w) := #{S ⊆ [n] : w matches v at S}.

Ex: If v = [2, 1] then inv(w) = Nv (w).



(Bi)Vincular Permutation Patterns

Let v = [v(1), . . . , v(k)] ∈ Sk and w = [w(1), . . . ,w(n)] ∈ Sn.

Def: Given S = {i1 < · · · < ik} ⊆ [n], and subsets A,B ⊆ [k − 1]
the permutation w matches the bivincular pattern (v ,A,B) at S if

I [w(i1), . . . ,w(ik)] is order-isomorphic to [v(1), . . . , v(k)] and

I for all a ∈ A, we have ia+1 = ia + 1 and

I for all b ∈ B, the bth and (b + 1)st smallest elements of
{w(i1), . . . ,w(ik)} are consecutive.

Define Nv ,A,B : Sn → R by

Nv ,A,B(w) := #{S ⊆ [n] : w matches (v ,A,B) at S}.

Ex: If v = [2, 1], A = {1},B = ∅ then des(w) = Nv ,A,B(w).



Weighted (Bi)Vincular Permutation Patterns

Let v = [v(1), . . . , v(k)] ∈ Sk and w = [w(1), . . . ,w(n)] ∈ Sn.

Def: Given subsets A,B ⊆ [k − 1] and polynomials
f , g ∈ R[x1, . . . , xk ] we define

N f ,g
v ,A,B : Sn → R

by the rule

N f ,g
v ,A,B(w) =

∑
S

f (i1, . . . , ik) · g(w(i1), . . . ,w(ik))

where S = {i1 < · · · < ik} ranges over all matches of (v ,A,B) in
w .

Ex: If v = [2, 1], A = {1},B = ∅, f = x1, g = 1 then

maj(w) = N f ,g
v ,A,B(w).



Pattern Counting is Local

Def: If Υ = {(v ,A,B, f , g)} is a family of weighted bivincular
patterns, let NΥ : Sn → R be

NΥ(w) :=
∑

(v ,A,B,f ,g)∈Υ

N f ,g
v ,A,B(w).

Fact: If the largest pattern v in Υ has size k , then NΥ is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle
type Kλ ⊆ Sn.

I “That is pure hell.” – anonymous senior combinatorialist
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Class Functions and Reynolds

A function f : Sn → R is a class function if f (vwv−1) = f (w) for
all v ,w ∈ Sn.

Def: The Reynolds operator R acts on maps f : Sn → R by

Rf (w) =
1

n!

∑
v∈Sn

f (vwv−1).

The map Rf : Sn → R is a class function.

Idea: Rf is the best class function approximation to f .



Pattern Counting and Reynolds

Let Υ be a set of weighted bivincular patterns (v ,A,B, f , g).

I Let k be the largest size |v | of a pattern v with
(v ,A,B, f , g) ∈ Υ.

I Let q be the largest size of |A|+ |B| for (v ,A,B, f , g) ∈ Υ.

I Let p be the largest value of |v | − |A| − |B|+ deg f + deg g
for (v ,A,B, f , g) ∈ Υ.

Let mi (w) = number of i-cycles in w .

Thm: [HR] For any d ≥ 0, the statistic RNd
Υ on Sn is a rational

function in R(n,m1,m2, . . . ,mkd). If deg(n) = 1 and deg(mi ) = i
the rational degree of RNd

Υ is ≤ dp. Also, the statistic

n(n − 1) · · · (n − dq + 1) · RNd
Υ ∈ R[n,m1,m2, . . . ,mkd ]

is a polynomial in n,m1,m2, . . . ,mkd .



Pattern Counting and Reynolds

Thm: [HR] For any d ≥ 0, the statistic RNd
Υ is a rational function

in R(n,m1,m2, . . . ,mkd). If deg(n) = 1 and deg(mi ) = i the
rational degree of RNd

Υ is ≤ dp. Also, the statistic

n(n − 1) · · · (n − dq + 1) · RNd
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is a polynomial in n,m1,m2, . . . ,mkd .

Rmk: Proven in the vanilla case by Gaetz-Ryba (single pattern)
and Gaetz-Pierson (multiple patterns). Proof uses Jones Duality
between Sn and Pr (n) acting on (Cn)⊗r . Unclear how to extend
their methods to vincular or weighted cases.



Proof Idea

Classical Science: Understand atoms ⇒ Understand molecules.

f =
∑

(I ,J)∈Sn,k

cI ,J · 1I ,J

Atoms of k-Local Statistics: 1I ,J for (I , J) ∈ Sn,k .

Rf =
∑

(I ,J)∈Sn,k

cI ,J · R 1I ,J

Atoms of k-Local Class Fcns: R 1I ,J for (I , J) ∈ Sn,k .



Atomic Symmetric Functions

Let chn : Class(Sn)→ Λn be the Frobenius characteristic

chn : f 7→ 1

n!

∑
w∈Sn

f (w) · pλ(w)

where λ(w) ` n is the cycle type of w .

Defn: If (I , J) ∈ Sn,k is a partial permutation, the atomic
symmetric function is

An,I ,J := n! · chn(R 1I ,J).

Q: What is the Schur expansion of An,I ,J?



Characters and Atomic Symmetric Functions

Defn: If (I , J) ∈ Sn,k is a partial permutation, the atomic
symmetric function is An,I ,J := n! · chn(R 1I ,J).

Fact: If [I , J] =
∑

w∈Sn
w(I )=J

w ∈ R[Sn], then

An,I ,J =
∑
λ`n

χλ[I , J] · sλ

where χλ : R[Sn]→ R is the irreducible character.

Q: What is the Schur expansion of An,I ,J?

Useless A: Apply the Murnaghan-Nakayama Rule (n − k)! times.
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Path and Cycle Notation

Partial permutations (I , J) ∈ Sn,k decompose into paths and
cycles.

1

2

3

4 5

6

7

8 9

10

11 1213

14

15

Fact: An,I ,J only depends on the unlabeled graph.



Path and Cycle Notation

Partial permutations (I , J) ∈ Sn,k decompose into paths and
cycles.

Fact: We have a factorization An,I ,J = Apath · Acycle. Also, Acycle

is a power sum.

A15,I ,J = Apath · Acycle = ~p332111 · p211



Path Power Sums

~p332111

Def: For µ ` n, the path power sum ~pµ is the atomic symmetric
function of a graph with paths of sizes µ1, µ2, . . . .



Path Power Sums

Def: For µ ` n, the path power sum ~pµ is the atomic symmetric
function of a graph with paths of sizes µ1, µ2, . . . .

Facts: [HR]

I {~pµ} is a basis for the space of symmetric functions.

I {~pµ} is unitriangular to the power sum basis {pν}.



Classical Murnaghan-Nakayama

An,I ,J = ~pµ · pν

MN Rule: For ν |= n, we have pν =
∑

λ`n χ
λ
ν · sλ where

χλν =
∑

ν-ribbon tableaux T
shape λ

(−1)height(T )
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p3221 = · · ·+ 1 · s431 + · · ·

Q: What about the path power sum ~pµ?



Monotonic Ribbon Tilings

MONOTONIC NOT MONOTONIC

Def: In a monotonic ribbon tiling . . .

I the tails of the ribbons lie in distinct columns,

I the tail depth decreases from left to right, and

I each initial union of ribbons forms a partition.



Path Murnaghan-Nakayama Rule

Thm: [HR] For µ ` n, we have ~pµ =
∑

λ`n ~χ
λ
µ · sλ where

~χλµ = mult(µ)! ·
∑

monotonic tilings τ of λ
ribbons of sizes µ

(−1)height(τ)

where the ribbons are to be added in all possible orders.



Path Murnaghan-Nakayama Rule

+1 +1 +1 +1 +1 +1

−1 −1 −1 −1

−1 +1 +1 +1 +1 +1 −1

~p321 = 6s6 − 4s51 + 2s33 + 2s411 − s321



Atomic Expansion

Thm: [HR] Let (I , J) ∈ Sn,k have path partition µ and cycle
partition ν. Then

An,I ,J = ~pµ · pν =
∑
λ`n
ρ⊆λ

~χρµ · χλ/ρν · sλ

where ~χρµ counts monotonic tilings and χ
λ/ρ
ν counts classical tilings.

I Gives a formula for χλ ([w ·Sr ]+) on coset sums in Sn/Sr .

I Proves polynomiality results for pattern enumeration on
conjugacy classes.

I Has applications to probability.



Quasi-Random Permutations

Defn: [Cooper] A sequence w (n) of permutations in Sn is
quasi-random if for all patterns v we have

Nv (w (n))(n
k

) =
1

k!
+ o(1) as n→∞

where |v | = k .

Thm: [HR] Let µn be a sequence of conjugacy-invariant
probability distributions on Sn and let Σn ∼ µn. If

lim
n→∞

P
(
m1(Σn)

n
= 0

)
= 1

then Σn is quasi-random.



Thanks for listening!!


