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Permutation Statistics

Def: A permutation statistic is a function f : &, — R.

(w)=#{1<i<n:w(i)>i}
> inv(w) =#{1<i<j<n:w(i)>w()}
(w)=#{1<i<n—-1:w()>w(+1)}
> maj(w) = ZW(;)>W(,‘+1) i

» cyc(w) = number of cycles in w



Permutation Statistics

Def: A permutation statistic is a function f : &, — R.

» exc(w) =#{1<i<n:w(i)>i}
> inv(w) =#{1<i<j<n:w(i)>w()}
> des(w)=#{1<i<n—1:w()>w(+1)}

> maj(w) =3, (i)sw(it1) !
» cyc(w) = number of cycles in w

Intuition: A statistic f : &, — R is k-local if f(w) is determined
by the restriction of w to k-element subsets of [n].



Partial Permutations

A partial permutation on [n] of size k is a bijection S — T
between two size k subsets S, T C [n].

Sp k = {all partial permutations on [n] of size k}

Ex: Inside G5, we have the “two-line notation”
2—53—1 < (23,51).

For (/,J) € 6,,7;( with | = (il, Ceey ik) and J = (jl, . ,jk), the
indicator statistic1; ;: &, =+ R is

1, 4(w) = {1 w(in) =ji, ..., w(ix) = jk

)0 otherwise



Local Statistics

Def: A permutation statistic f : &, — R is k-local if there are
constants ¢; y € R such that

f(W): Z C[,J‘]-/’J(W) for all we S,

(1,1)e6n k
» exc(w) =#{1<i<n: w(i)>i}is 1l-local.
» inv(w) =#{1<i<j<n:w(i)>w()}is 2-local.
» des(w) =#{1<i<n—1: w(i)>w(i+1)}is 2-local.

> maj(w) =3, )sw(it1) | s 2-local.
» cyc(w) = number of cycles in w has no nontrivial locality.



Local Statistics: Basic Facts

Def: A permutation statistic f : &, — R is k-local if there are
constants ¢; y € R such that

f(W): Z C/7J'1/7J(W) for all w € &,,.
(1,1)eBp i

» The 0-local statistics are constant functions &, — R.
» Any k-local statistic is also (k + 1)-local.
» Any f: &, — Ris (n — 1)-local.

Idea: The locality of a statistic measures its ‘degree’.



Locality = Degree

Def: A permutation statistic f : &, — R is k-local if there are
constants ¢; y € R such that

f(w) = Z cy-1y4(w) forallwe G,
(I,J)EGn’k

» A linear combination of k-local statistics is k-local.
» If f: 6, — Ris k-local and g : &, — R is #-local, then

(f-g)(w) = f(w) - g(w)

is (k + £)-local.



Locality = Degree

Def: A permutation statistic f : &, — R is k-local if
f =216, , cJ - 11J-

Artin-Wedderburn Theorem: We have an isomorphism

U :R[S,] — P Endgp(V?)
AFn

given by U o — (a1 VA = V).
Ubiquitous: [Ellis-Friedgut-Pipel, Even-Zohar,
Huang-Guestrin-Guibas, . ..]

fis k-local & W(3,cq, (W) w) supported on
{AFn: X >n—k}.



Characters are Local Statistics

Artin-Wedderburn Theorem: We have an isomorphism

U :R[S,] — P Endgp(V?)
AbFn

given by W :a = (a: VA — V),

Ubiquitous: A statistic f : &, — R is k-local if and only if
V(> e, f(w)  w)is supported on {AFn : Ay > n— k}.

Cor: Given A F n with \{ > n — k, the irreducible character
6, >R

is k-local.



Vanilla Permutation Patterns

Let v =[v(1),...,v(k)] € 6k and w = [w(1),...,w(n)] € &,.

Def: Given S = {i1 < --- < ix} C [n], the permutation w matches
the pattern v at S if

[w(i),...,w(ik)] is order-isomorphic to [v(1),..., v(k)].
Define N, : 6, — R by

Ny(w) := #{S C [n] : w matches v at 5}.

Ex: If v =[2,1] then inv(w) = N, (w).



(Bi)Vincular Permutation Patterns
Let v =[v(1),...,v(k)] € 6k and w = [w(1),...,w(n)] € &,.

Def: Given S = {i1 < --- < ix} C[n], and subsets A, B C [k — 1]
the permutation w matches the bivincular pattern (v, A, B) at S if

» [w(i),...,w(ix)] is order-isomorphic to [v(1),..., v(k)] and
> for all a € A, we have i;11 =i+ 1 and

» for all b € B, the b and (b + 1)t smallest elements of
{w(i),...,w(ix)} are consecutive.

Define N, o5 : 6, — R by

Ny ag(w) :=#{S C [n] : w matches (v, A, B) at S}.

Ex: If v=[2,1], A= {1}, B = & then des(w) = N, 4 g(w).



Weighted (Bi)Vincular Permutation Patterns
Let v =[v(1),...,v(k)] € 6k and w = [w(1),...,w(n)] € &,.

Def: Given subsets A, B C [k — 1] and polynomials
f,g € R[xy,...,xx| we define

f-) .
Nv’:’f"B 6, =R
by the rule

NEE s(w) = F(in,. .. ik) - g(wlin), ..., w(ik))

S

where S = {i1 < --- < ik} ranges over all matches of (v, A, B) in
w.

Ex: If v=1[2,1], A={1},B=g, f = x;,g =1 then
maj(w) = NJ’§ g(w).



Pattern Counting is Local

Def: If T = {(v,A,B,f,g)} is a family of weighted bivincular
patterns, let Ny : &, — R be

Ne(w)= > NJ&g(w).

(v,A,B,f,.g)eT

Fact: If the largest pattern v in T has size k, then Ny is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle
type K\ C &,.



Pattern Counting is Local

Def: If T = {(v,A,B,f,g)} is a family of weighted bivincular
patterns, let Ny : &, — R be

Ne(w)= > NJ&g(w).

(v,AB,f,g)eT

Fact: If the largest pattern v in T has size k, then Ny is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle
type K\ C &,.

» “That is pure hell.” — anonymous senior combinatorialist



Class Functions and Reynolds

A function f : &, — R is a class function if f(vwv—1) = f(w) for
all viw € G,,.

Def: The Reynolds operator R acts on maps f : G, — R by

Rf(w) = % Z f(vwv™1).

VEGn

The map Rf : &, — R is a class function.

Idea: Rf is the best class function approximation to f.



Pattern Counting and Reynolds

Let T be a set of weighted bivincular patterns (v, A, B, f, g).
> Let k be the largest size |v| of a pattern v with
(v,A,B,f,g)eT.
> Let g be the largest size of |A| + |B| for (v,A,B,f,g) € T.
» Let p be the largest value of |v| — |A| — |B| + degf +degg
for (v,A,B,f,g) e T.

Let m;(w) = number of i-cycles in w.

Thm: [HR] For any d > 0, the statistic RN on &, is a rational
function in R(n, my, my, ..., myy). If deg(n) =1 and deg(m;) =i
the rational degree of RN% is < dp. Also, the statistic

n(n—1)---(n—dg+1)- RN € R[n, my, mo, ..., mi]

is a polynomial in n,my, my, ..., M.



Pattern Counting and Reynolds

Thm: [HR] For any d > 0, the statistic RN{ is a rational function
in R(n, my, ma, ..., myg). If deg(n) =1 and deg(m;) = i the
rational degree of RN% is < dp. Also, the statistic

n(n—1)---(n—dg+1)- RN € R[n, my, mo, ..., mi]

is a polynomial in n,my, my, ..., Myy.

Rmk: Proven in the vanilla case by Gaetz-Ryba (single pattern)
and Gaetz-Pierson (multiple patterns). Proof uses Jones Duality
between &, and P,(n) acting on (C")®". Unclear how to extend
their methods to vincular or weighted cases.



Proof Idea

Classical Science: Understand atoms = Understand molecules.

f= > as-ly

(1,))€Gnk

Atoms of k-Local Statistics: 1, ; for (/,J) € &, .

Rf = Z C[’J'R].[’J
(1,))€&n «

Atoms of k-Local Class Fecns: R1,  for (/,J) € &, .



Atomic Symmetric Functions

Let chj, : Class(&,) — A, be the Frobenius characteristic

1
h,: f — =} Z f(W)-p/\(W)
WGGn

where A(w) I n is the cycle type of w.

Defn: If (/,J) € &, « is a partial permutation, the atomic
symmetric function is

A,,7/7J =nl- Chn(R 1[7_]).

Q: What is the Schur expansion of A, ;7



Characters and Atomic Symmetric Functions

Defn: If (/,J) € &, « is a partial permutation, the atomic
symmetric function is Ap j := n! - ch,(R1; ).

Fact: If [/,J] =" wes, w € R[G,], then
w(

Antg = ZX [1,J] - sx

Abn

where x* : R[&,] — R is the irreducible character.

Q: What is the Schur expansion of A, j7?



Characters and Atomic Symmetric Functions

Defn: If (/,J) € &, « is a partial permutation, the atomic
symmetric function is Ap j := n! - ch,(R1; ).

Fact: If [/,J] =" wes, w € R[G,], then
w(

Antg = ZX [1,J] - sx

Abn

where x* : R[&,] — R is the irreducible character.
Q: What is the Schur expansion of A, j7?

Useless A: Apply the Murnaghan-Nakayama Rule (n — k)! times.



Path and Cycle Notation

Partial permutations (/,J) € &, x decompose into paths and
cycles.

@°§°@®%@@
19 @ (3)
(&

Fact: A, only depends on the unlabeled graph.



Path and Cycle Notation

Partial permutations (/,J) € &, x decompose into paths and
cycles.

Fact: We have a factorization A, ; = Apath | Acycle = Ajgq - Acycle
is a power sum.

OO
o o

()

O

O« 0«0
O« 0«0
O« O

— Apath . Acycle

A1s.1,J = P332111 * P211



Path Power Sums

O (@] O (@] (@) (@]
N
O (@) O
1l
O (@]
P332111

Def: For |- n, the path power sum p,, is the atomic symmetric
function of a graph with paths of sizes 1, uo, . ...



Path Power Sums

O« 0«0
O« 0«0
O« O

Def: For p = n, the path power sum p,, is the atomic symmetric
function of a graph with paths of sizes 1, uo, . ...

Facts: [HR]
» {p.} is a basis for the space of symmetric functions.

» {p,} is unitriangular to the power sum basis {p, }.



Classical Murnaghan-Nakayama

An,I,J = ﬁu *Pv

MN Rule: For v |= n, we have p, = 3", X} - s» where

X,)/\ _ Z (_ 1)height( T)

v-ribbon tableaux T
shape A\



Classical Murnaghan-Nakayama

MN Rule: For v |= n, we have p, = >, , X} - s» where

X,)/\ — Z (_1)height(T)

v-ribbon tableaux T
shape A

4 (O [OC 1 4 (O
FE R E
+1 W +1 -1 W

p322]_:"‘+1‘543]_+"‘

Q: What about the path power sum p,?



Monotonic Ribbon Tilings

QJJOO_JO l OJ_

O

MONOTONIC NOT MONOTONIC

Def: In a monotonic ribbon tiling . ..
» the tails of the ribbons lie in distinct columns,
> the tail depth decreases from left to right, and

» each initial union of ribbons forms a partition.



Path Murnaghan-Nakayama Rule

JOQO

l

O

0 (——

Thm: [HR] For pt= n, we have g, = >, )Z;\L - s) where

)Zf; = mult(p)! -

D

(7 1 )height(T)

monotonic tilings 7 of A
ribbons of sizes p

where the ribbons are to be added in all possible orders.



Path Murnaghan-Nakayama Rule

[O=—=—10=17] [O=—=—00=] [O=0—1]] [O=00—] [ O0—"0=] [ 0= 0—]

+1 +1 +1 +1 +1 +1

-

%,

p321 = 656 — 4s51 + 2533 + 25411 — S321



Atomic Expansion

Thm: [HR] Let (/,J) € &, have path partition 1 and cycle
partition v. Then

Anig=pu Pv=Y_ X0 X" s

AEn
PCA

/p

. - A . .
where Y%, counts monotonic tilings and x;’" counts classical tilings.

» Gives a formula for x* ([w - &,].) on coset sums in &,/G,.

» Proves polynomiality results for pattern enumeration on
conjugacy classes.

» Has applications to probability.



Quasi-Random Permutations

Defn: [Cooper] A sequence w(" of permutations in &,, is
quasi-random if for all patterns v we have

N, (w(m) 1
& K
where |v| = k.

Thm: [HR] Let u, be a sequence of conjugacy-invariant
probability distributions on &, and let X, ~ p,. If

lim P M:O =1
(" =)

n—o00 n

then ¥, is quasi-random.



Thanks for listening!!



