The characters of local permutation statistics

Brendon Rhoades
(Joint with Zach Hamaker)

UCSD

Outline

- Local permutation statistics
- Local class functions
- Application to pattern enumeration
- Path Murnaghan-Nakayama Rule

Permutation Statistics

Def: A permutation statistic is a function $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$.

- $\operatorname{exc}(w)=\#\{1 \leq i \leq n: w(i)>i\}$
- $\operatorname{inv}(w)=\#\{1 \leq i<j \leq n: w(i)>w(j)\}$
- $\operatorname{des}(w)=\#\{1 \leq i \leq n-1: w(i)>w(i+1)\}$
- $\operatorname{maj}(w)=\sum_{w(i)>w(i+1)} i$
- $\operatorname{cyc}(w)=$ number of cycles in w

Permutation Statistics

Def: A permutation statistic is a function $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$.

- $\operatorname{exc}(w)=\#\{1 \leq i \leq n: w(i)>i\}$
- $\operatorname{inv}(w)=\#\{1 \leq i<j \leq n: w(i)>w(j)\}$
- $\operatorname{des}(w)=\#\{1 \leq i \leq n-1: w(i)>w(i+1)\}$
$-\operatorname{maj}(w)=\sum_{w(i)>w(i+1)} i$
- $\operatorname{cyc}(w)=$ number of cycles in w

Intuition: A statistic $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local if $f(w)$ is determined by the restriction of w to k-element subsets of $[n]$.

Partial Permutations

A partial permutation on [n] of size k is a bijection $S \xrightarrow{\sim} T$ between two size k subsets $S, T \subseteq[n]$.

$$
\mathfrak{S}_{n, k}=\{\text { all partial permutations on }[n] \text { of size } k\}
$$

Ex: Inside $\mathfrak{S}_{5,2}$ we have the "two-line notation"

$$
2 \mapsto 5,3 \mapsto 1 \quad \Leftrightarrow \quad(23,51) .
$$

For $(I, J) \in \mathfrak{S}_{n, k}$ with $I=\left(i_{1}, \ldots, i_{k}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$, the indicator statistic $\mathbf{1}_{l, J}: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is

$$
\mathbf{1}_{l, J}(w)= \begin{cases}1 & w\left(i_{1}\right)=j_{1}, \ldots, w\left(i_{k}\right)=j_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Local Statistics

Def: A permutation statistic $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local if there are constants $c_{l, J} \in \mathbb{R}$ such that

$$
f(w)=\sum_{(I, J) \in \mathfrak{S}_{n, k}} c_{l, J} \cdot \mathbf{1}_{l, J}(w) \quad \text { for all } w \in \mathfrak{S}_{n}
$$

- $\operatorname{exc}(w)=\#\{1 \leq i \leq n: w(i)>i\}$ is 1-local.
- $\operatorname{inv}(w)=\#\{1 \leq i<j \leq n: w(i)>w(j)\}$ is 2-local.
- $\operatorname{des}(w)=\#\{1 \leq i \leq n-1: w(i)>w(i+1)\}$ is 2-local.
- $\operatorname{maj}(w)=\sum_{w(i)>w(i+1)} i$ is 2-local.
- $\operatorname{cyc}(w)=$ number of cycles in w has no nontrivial locality.

Local Statistics: Basic Facts

Def: A permutation statistic $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local if there are constants $c_{l, J} \in \mathbb{R}$ such that

$$
f(w)=\sum_{(I, J) \in \mathfrak{S}_{n, k}} c_{l, J} \cdot \mathbf{1}_{l, J}(w) \quad \text { for all } w \in \mathfrak{S}_{n}
$$

- The 0-local statistics are constant functions $\mathfrak{S}_{n} \rightarrow \mathbb{R}$.
- Any k-local statistic is also $(k+1)$-local.
- Any $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is $(n-1)$-local.

Idea: The locality of a statistic measures its 'degree'.

Locality $=$ Degree

Def: A permutation statistic $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local if there are constants $c_{l, J} \in \mathbb{R}$ such that

$$
f(w)=\sum_{(I, J) \in \mathfrak{S}_{n, k}} c_{l, J} \cdot \mathbf{1}_{I, J}(w) \quad \text { for all } w \in \mathfrak{S}_{n}
$$

- A linear combination of k-local statistics is k-local.
- If $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local and $g: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is ℓ-local, then

$$
(f \cdot g)(w)=f(w) \cdot g(w)
$$

is $(k+\ell)$-local.

Locality $=$ Degree

Def: A permutation statistic $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local if $f=\sum_{(I, J) \in \mathfrak{S}_{n, k}} \mathcal{C}_{l, J} \cdot \mathbf{1}_{l, J}$.

Artin-Wedderburn Theorem: We have an isomorphism

$$
\Psi: \mathbb{R}\left[\mathfrak{S}_{n}\right] \rightarrow \bigoplus_{\lambda \vdash n} \operatorname{End}_{\mathbb{R}}\left(V^{\lambda}\right)
$$

given by $\Psi: \alpha \mapsto\left(\alpha: V^{\lambda} \rightarrow V^{\lambda}\right)_{\lambda \vdash n}$.
Ubiquitous: [Ellis-Friedgut-Pipel, Even-Zohar, Huang-Guestrin-Guibas, ...]

$$
\begin{aligned}
& f \text { is } k \text {-local } \quad \Leftrightarrow \quad \Psi\left(\sum_{w \in \mathfrak{S}_{n}} f(w) \cdot w\right) \text { supported on } \\
&\left\{\lambda \vdash n: \lambda_{1} \geq n-k\right\} .
\end{aligned}
$$

Characters are Local Statistics

Artin-Wedderburn Theorem: We have an isomorphism

$$
\Psi: \mathbb{R}\left[\mathfrak{S}_{n}\right] \rightarrow \bigoplus_{\lambda \vdash n} \operatorname{End}_{\mathbb{R}}\left(V^{\lambda}\right)
$$

given by $\Psi: \alpha \mapsto\left(\alpha: V^{\lambda} \rightarrow V^{\lambda}\right)_{\lambda \vdash n}$.

Ubiquitous: A statistic $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is k-local if and only if $\Psi\left(\sum_{w \in \mathfrak{S}_{n}} f(w) \cdot w\right)$ is supported on $\left\{\lambda \vdash n: \lambda_{1} \geq n-k\right\}$.

Cor: Given $\lambda \vdash n$ with $\lambda_{1} \geq n-k$, the irreducible character

$$
\chi^{\lambda}: \mathfrak{S}_{n} \rightarrow \mathbb{R}
$$

is k-local.

Vanilla Permutation Patterns

Let $v=[v(1), \ldots, v(k)] \in \mathfrak{S}_{k}$ and $w=[w(1), \ldots, w(n)] \in \mathfrak{S}_{n}$.

Def: Given $S=\left\{i_{1}<\cdots<i_{k}\right\} \subseteq[n]$, the permutation w matches the pattern v at S if

$$
\left[w\left(i_{1}\right), \ldots, w\left(i_{k}\right)\right] \text { is order-isomorphic to }[v(1), \ldots, v(k)] .
$$

Define $N_{v}: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ by

$$
N_{v}(w):=\#\{S \subseteq[n]: w \text { matches } v \text { at } S\} .
$$

Ex: If $v=[2,1]$ then $\operatorname{inv}(w)=N_{v}(w)$.

(Bi)Vincular Permutation Patterns

Let $v=[v(1), \ldots, v(k)] \in \mathfrak{S}_{k}$ and $w=[w(1), \ldots, w(n)] \in \mathfrak{S}_{n}$.
Def: Given $S=\left\{i_{1}<\cdots<i_{k}\right\} \subseteq[n]$, and subsets $A, B \subseteq[k-1]$ the permutation w matches the bivincular pattern (v, A, B) at S if

- $\left[w\left(i_{1}\right), \ldots, w\left(i_{k}\right)\right]$ is order-isomorphic to $[v(1), \ldots, v(k)]$ and
- for all $a \in A$, we have $i_{a+1}=i_{a}+1$ and
- for all $b \in B$, the $b^{t h}$ and $(b+1)^{\text {st }}$ smallest elements of $\left\{w\left(i_{1}\right), \ldots, w\left(i_{k}\right)\right\}$ are consecutive.
Define $N_{v, A, B}: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ by

$$
N_{v, A, B}(w):=\#\{S \subseteq[n]: w \text { matches }(v, A, B) \text { at } S\} .
$$

Ex: If $v=[2,1], A=\{1\}, B=\varnothing$ then $\operatorname{des}(w)=N_{v, A, B}(w)$.

Weighted (Bi)Vincular Permutation Patterns

Let $v=[v(1), \ldots, v(k)] \in \mathfrak{S}_{k}$ and $w=[w(1), \ldots, w(n)] \in \mathfrak{S}_{n}$.
Def: Given subsets $A, B \subseteq[k-1]$ and polynomials $f, g \in \mathbb{R}\left[x_{1}, \ldots, x_{k}\right]$ we define

$$
N_{v, A, B}^{f, g}: \mathfrak{S}_{n} \rightarrow \mathbb{R}
$$

by the rule

$$
N_{v, A, B}^{f, g}(w)=\sum_{S} f\left(i_{1}, \ldots, i_{k}\right) \cdot g\left(w\left(i_{1}\right), \ldots, w\left(i_{k}\right)\right)
$$

where $S=\left\{i_{1}<\cdots<i_{k}\right\}$ ranges over all matches of (v, A, B) in w.

Ex: If $v=[2,1], A=\{1\}, B=\varnothing, f=x_{1}, g=1$ then $\operatorname{maj}(w)=N_{v, A, B}^{f, g}(w)$.

Pattern Counting is Local

Def: If $\Upsilon=\{(v, A, B, f, g)\}$ is a family of weighted bivincular patterns, let $N_{\Upsilon}: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ be

$$
N_{\Upsilon}(w):=\sum_{(v, A, B, f, g) \in \Upsilon} N_{v, A, B}^{f, g}(w)
$$

Fact: If the largest pattern v in Υ has size k, then N_{Υ} is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle type $K_{\lambda} \subseteq \mathfrak{S}_{n}$.

Pattern Counting is Local

Def: If $\Upsilon=\{(v, A, B, f, g)\}$ is a family of weighted bivincular patterns, let $N_{\Upsilon}: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ be

$$
N_{\Upsilon}(w):=\sum_{(v, A, B, f, g) \in \Upsilon} N_{v, A, B}^{f, g}(w) .
$$

Fact: If the largest pattern v in Υ has size k, then N_{Υ} is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle type $K_{\lambda} \subseteq \mathfrak{S}_{n}$.

- "That is pure hell." - anonymous senior combinatorialist

Class Functions and Reynolds

A function $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is a class function if $f\left(v w v^{-1}\right)=f(w)$ for all $v, w \in \mathfrak{S}_{n}$.

Def: The Reynolds operator R acts on maps $f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ by

$$
R f(w)=\frac{1}{n!} \sum_{v \in \mathfrak{S}_{n}} f\left(v w v^{-1}\right)
$$

The map $R f: \mathfrak{S}_{n} \rightarrow \mathbb{R}$ is a class function.

Idea: $R f$ is the best class function approximation to f.

Pattern Counting and Reynolds

Let Υ be a set of weighted bivincular patterns (v, A, B, f, g).

- Let k be the largest size $|v|$ of a pattern v with $(v, A, B, f, g) \in \Upsilon$.
- Let q be the largest size of $|A|+|B|$ for $(v, A, B, f, g) \in \Upsilon$.
- Let p be the largest value of $|v|-|A|-|B|+\operatorname{deg} f+\operatorname{deg} g$ for $(v, A, B, f, g) \in \Upsilon$.
Let $m_{i}(w)=$ number of i-cycles in w.
Thm: [HR] For any $d \geq 0$, the statistic $R N_{\Upsilon}^{d}$ on \mathfrak{S}_{n} is a rational function in $\mathbb{R}\left(n, m_{1}, m_{2}, \ldots, m_{k d}\right)$. If $\operatorname{deg}(n)=1$ and $\operatorname{deg}\left(m_{i}\right)=i$ the rational degree of $R N_{\Upsilon}^{d}$ is $\leq d p$. Also, the statistic

$$
n(n-1) \cdots(n-d q+1) \cdot R N_{\Upsilon}^{d} \in \mathbb{R}\left[n, m_{1}, m_{2}, \ldots, m_{k d}\right]
$$

is a polynomial in $n, m_{1}, m_{2}, \ldots, m_{k d}$.

Pattern Counting and Reynolds

Thm: [HR] For any $d \geq 0$, the statistic $R N_{\Upsilon}^{d}$ is a rational function in $\mathbb{R}\left(n, m_{1}, m_{2}, \ldots, m_{k d}\right)$. If $\operatorname{deg}(n)=1$ and $\operatorname{deg}\left(m_{i}\right)=i$ the rational degree of $R N_{\Upsilon}^{d}$ is $\leq d p$. Also, the statistic

$$
n(n-1) \cdots(n-d q+1) \cdot R N_{\Upsilon}^{d} \in \mathbb{R}\left[n, m_{1}, m_{2}, \ldots, m_{k d}\right]
$$

is a polynomial in $n, m_{1}, m_{2}, \ldots, m_{k d}$.

Rmk: Proven in the vanilla case by Gaetz-Ryba (single pattern) and Gaetz-Pierson (multiple patterns). Proof uses Jones Duality between \mathfrak{S}_{n} and $\mathcal{P}_{r}(n)$ acting on $\left(\mathbb{C}^{n}\right)^{\otimes r}$. Unclear how to extend their methods to vincular or weighted cases.

Proof Idea

Classical Science: Understand atoms \Rightarrow Understand molecules.

$$
f=\sum_{(I, J) \in \mathfrak{S}_{n, k}} c_{l, J} \cdot \mathbf{1}_{I, J}
$$

Atoms of k-Local Statistics: $\mathbf{1}_{I, J}$ for $(I, J) \in \mathfrak{S}_{n, k}$.

$$
R f=\sum_{(I, J) \in \mathfrak{S}_{n, k}} c_{l, J} \cdot R \mathbf{1}_{I, J}
$$

Atoms of k-Local Class Fcns: $R \mathbf{1}_{l, J}$ for $(I, J) \in \mathfrak{S}_{n, k}$.

Atomic Symmetric Functions

Let $\mathrm{ch}_{n}: \operatorname{Class}\left(\mathfrak{S}_{n}\right) \rightarrow \Lambda_{n}$ be the Frobenius characteristic

$$
\operatorname{ch}_{n}: f \mapsto \frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} f(w) \cdot p_{\lambda(w)}
$$

where $\lambda(w) \vdash n$ is the cycle type of w.

Defn: If $(I, J) \in \mathfrak{S}_{n, k}$ is a partial permutation, the atomic symmetric function is

$$
A_{n, l, J}:=n!\cdot \operatorname{ch}_{\mathrm{n}}\left(R \mathbf{1}_{l, J}\right) .
$$

Q: What is the Schur expansion of $A_{n, I, J}$?

Characters and Atomic Symmetric Functions

Defn: If $(I, J) \in \mathfrak{S}_{n, k}$ is a partial permutation, the atomic symmetric function is $A_{n, l, J}:=n!\cdot \operatorname{ch}_{\mathrm{n}}\left(R \mathbf{1}_{l, J}\right)$.

Fact: If $[I, J]=\sum_{\substack{w \in \mathfrak{S}_{n} \\ w(I)=J}} w \in \mathbb{R}\left[\mathfrak{S}_{n}\right]$, then

$$
A_{n, I, J}=\sum_{\lambda \vdash n} \chi^{\lambda}[I, J] \cdot s_{\lambda}
$$

where $\chi^{\lambda}: \mathbb{R}\left[\mathfrak{S}_{n}\right] \rightarrow \mathbb{R}$ is the irreducible character.

Q: What is the Schur expansion of $A_{n, I, J}$?

Characters and Atomic Symmetric Functions

Defn: If $(I, J) \in \mathfrak{S}_{n, k}$ is a partial permutation, the atomic symmetric function is $A_{n, l, J}:=n!\cdot \operatorname{ch}_{\mathrm{n}}\left(R \mathbf{1}_{l, J}\right)$.

Fact: If $[I, J]=\sum_{\substack{w \in \mathfrak{S}_{n} \\ w(I)=J}} w \in \mathbb{R}\left[\mathfrak{S}_{n}\right]$, then

$$
A_{n, I, J}=\sum_{\lambda \vdash n} \chi^{\lambda}[I, J] \cdot s_{\lambda}
$$

where $\chi^{\lambda}: \mathbb{R}\left[\mathfrak{S}_{n}\right] \rightarrow \mathbb{R}$ is the irreducible character.

Q: What is the Schur expansion of $A_{n, I, J}$?

Useless A: Apply the Murnaghan-Nakayama Rule $(n-k)$! times.

Path and Cycle Notation

Partial permutations $(I, J) \in \mathfrak{S}_{n, k}$ decompose into paths and cycles.

Fact: $A_{n, l, J}$ only depends on the unlabeled graph.

Path and Cycle Notation

Partial permutations $(I, J) \in \mathfrak{S}_{n, k}$ decompose into paths and cycles.

Fact: We have a factorization $A_{n, l, J}=A^{\text {path }} \cdot A^{\text {cycle }}$. Also, $A^{\text {cycle }}$ is a power sum.

$$
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & & & 1 & 1 \\
0 & 0 & 0 & & & & 0 \\
\downarrow & \downarrow & & & & &
\end{array}
$$

$$
A_{15, I, J}=A^{\text {path }} \cdot A^{\text {cycle }}=\vec{p}_{332111} \cdot p_{211}
$$

Path Power Sums

$\overrightarrow{p_{332111}}$

Def: For $\mu \vdash n$, the path power sum \vec{p}_{μ} is the atomic symmetric function of a graph with paths of sizes μ_{1}, μ_{2}, \ldots.

Path Power Sums

$$
\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & & & \\
0 & 0 & 0 & & & \\
\downarrow & \downarrow & & & & \\
0 & 0 & & & &
\end{array}
$$

Def: For $\mu \vdash n$, the path power sum \vec{p}_{μ} is the atomic symmetric function of a graph with paths of sizes μ_{1}, μ_{2}, \ldots.

Facts: [HR]

- $\left\{\vec{p}_{\mu}\right\}$ is a basis for the space of symmetric functions.
- $\left\{\vec{p}_{\mu}\right\}$ is unitriangular to the power sum basis $\left\{p_{\nu}\right\}$.

Classical Murnaghan-Nakayama

$$
A_{n, l, J}=\vec{p}_{\mu} \cdot p_{\nu}
$$

MN Rule: For $\nu \models n$, we have $p_{\nu}=\sum_{\lambda \vdash n} \chi_{\nu}^{\lambda} \cdot s_{\lambda}$ where

$$
\chi_{\nu}^{\lambda}=\sum_{\substack{\nu-\text { ribbon tableaux } \\ \text { shape } \lambda}}(-1)^{\operatorname{height}(T)}
$$

Classical Murnaghan-Nakayama

MN Rule: For $\nu \models n$, we have $p_{\nu}=\sum_{\lambda \vdash n} \chi_{\nu}^{\lambda} \cdot s_{\lambda}$ where

$$
\chi_{\nu}^{\lambda}=\sum_{\substack{\nu \text {-ribbon tableaux } \\ \text { shape } \lambda}}(-1)^{\operatorname{height}(T)}
$$

$$
p_{3221}=\cdots+1 \cdot s_{431}+\cdots
$$

Q: What about the path power sum \vec{p}_{μ} ?

Monotonic Ribbon Tilings

MONOTONIC

NOT MONOTONIC

Def: In a monotonic ribbon tiling...

- the tails of the ribbons lie in distinct columns,
- the tail depth decreases from left to right, and
- each initial union of ribbons forms a partition.

Path Murnaghan-Nakayama Rule

Thm: [HR] For $\mu \vdash n$, we have $\vec{p}_{\mu}=\sum_{\lambda \vdash n} \vec{\chi}_{\mu}^{\lambda} \cdot s_{\lambda}$ where

$$
\vec{\chi}_{\mu}^{\lambda}=\operatorname{mult}(\mu)!\cdot \sum_{\substack{\text { monotonic tilings } \tau \text { of } \lambda \\ \text { ribbons of sizes } \mu}}(-1)^{\operatorname{height}(\tau)}
$$

where the ribbons are to be added in all possible orders.

Path Murnaghan-Nakayama Rule

$$
\begin{aligned}
& \overrightarrow{p_{321}}=6 s_{6}-4 s_{51}+2 s_{33}+2 s_{411}-s_{321}
\end{aligned}
$$

Atomic Expansion

Thm: $[H R]$ Let $(I, J) \in \mathfrak{S}_{n, k}$ have path partition μ and cycle partition ν. Then

$$
A_{n, I, J}=\vec{p}_{\mu} \cdot p_{\nu}=\sum_{\substack{\lambda \vdash n \\ \rho \subseteq \lambda}} \vec{\chi}_{\mu}^{\rho} \cdot \chi_{\nu}^{\lambda / \rho} \cdot s_{\lambda}
$$

where $\vec{\chi}_{\mu}^{\rho}$ counts monotonic tilings and $\chi_{\nu}^{\lambda / \rho}$ counts classical tilings.

- Gives a formula for $\chi^{\lambda}\left(\left[w \cdot \mathfrak{S}_{r}\right]_{+}\right)$on coset sums in $\mathfrak{S}_{n} / \mathfrak{S}_{r}$.
- Proves polynomiality results for pattern enumeration on conjugacy classes.
- Has applications to probability.

Quasi-Random Permutations

Defn: [Cooper] A sequence $w^{(n)}$ of permutations in \mathfrak{S}_{n} is quasi-random if for all patterns v we have

$$
\frac{N_{v}\left(w^{(n)}\right)}{\binom{n}{k}}=\frac{1}{k!}+o(1) \quad \text { as } n \rightarrow \infty
$$

where $|v|=k$.

Thm: [HR] Let μ_{n} be a sequence of conjugacy-invariant probability distributions on \mathfrak{S}_{n} and let $\Sigma_{n} \sim \mu_{n}$. If

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{m_{1}\left(\Sigma_{n}\right)}{n}=0\right)=1
$$

then Σ_{n} is quasi-random.

Thanks for listening!!

