The characters of local permutation statistics

Brendon Rhoades (Joint with Zach Hamaker)

UCSD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Local permutation statistics
- Local class functions
- Application to pattern enumeration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Path Murnaghan-Nakayama Rule

Permutation Statistics

Def: A *permutation statistic* is a function $f : \mathfrak{S}_n \to \mathbb{R}$.

•
$$exc(w) = \#\{1 \le i \le n : w(i) > i\}$$

• $\operatorname{inv}(w) = \#\{1 \le i < j \le n : w(i) > w(j)\}$

•
$$\operatorname{des}(w) = \#\{1 \le i \le n-1 : w(i) > w(i+1)\}$$

• maj(w) =
$$\sum_{w(i)>w(i+1)} i$$

•
$$cyc(w) =$$
 number of cycles in w

Permutation Statistics

Def: A *permutation statistic* is a function $f : \mathfrak{S}_n \to \mathbb{R}$.

Intuition: A statistic $f : \mathfrak{S}_n \to \mathbb{R}$ is *k*-local if f(w) is determined by the restriction of *w* to *k*-element subsets of [n].

Partial Permutations

A partial permutation on [n] of size k is a bijection $S \xrightarrow{\sim} T$ between two size k subsets $S, T \subseteq [n]$.

 $\mathfrak{S}_{n,k} = \{ \text{all partial permutations on } [n] \text{ of size } k \}$

Ex: Inside $\mathfrak{S}_{5,2}$ we have the "two-line notation"

$$2 \mapsto 5, 3 \mapsto 1 \quad \Leftrightarrow \quad (23, 51).$$

For $(I, J) \in \mathfrak{S}_{n,k}$ with $I = (i_1, \dots, i_k)$ and $J = (j_1, \dots, j_k)$, the *indicator statistic* $\mathbf{1}_{I,J} : \mathfrak{S}_n \to \mathbb{R}$ is

$$\mathbf{1}_{I,J}(w) = \begin{cases} 1 & w(i_1) = j_1, \dots, w(i_k) = j_k \\ 0 & \text{otherwise} \end{cases}$$

Local Statistics

Def: A permutation statistic $f : \mathfrak{S}_n \to \mathbb{R}$ is *k*-local if there are constants $c_{I,J} \in \mathbb{R}$ such that

$$f(w) = \sum_{(I,J)\in\mathfrak{S}_{n,k}} c_{I,J}\cdot \mathbf{1}_{I,J}(w) \text{ for all } w\in\mathfrak{S}_n.$$

• $exc(w) = \#\{1 \le i \le n : w(i) > i\}$ is 1-local.

•
$$inv(w) = \#\{1 \le i < j \le n : w(i) > w(j)\}$$
 is 2-local.

- $des(w) = \#\{1 \le i \le n-1 : w(i) > w(i+1)\}$ is 2-local.
- maj(w) = $\sum_{w(i)>w(i+1)} i$ is 2-local.
- cyc(w) = number of cycles in w has no nontrivial locality.

Local Statistics: Basic Facts

Def: A permutation statistic $f : \mathfrak{S}_n \to \mathbb{R}$ is *k*-local if there are constants $c_{I,J} \in \mathbb{R}$ such that

$$f(w) = \sum_{(I,J)\in\mathfrak{S}_{n,k}} c_{I,J}\cdot \mathbf{1}_{I,J}(w) \text{ for all } w\in\mathfrak{S}_n.$$

- The 0-local statistics are constant functions $\mathfrak{S}_n \to \mathbb{R}$.
- Any k-local statistic is also (k + 1)-local.
- Any $f : \mathfrak{S}_n \to \mathbb{R}$ is (n-1)-local.

Idea: The locality of a statistic measures its 'degree'.

Locality = Degree

Def: A permutation statistic $f : \mathfrak{S}_n \to \mathbb{R}$ is *k*-local if there are constants $c_{I,J} \in \mathbb{R}$ such that

$$f(w) = \sum_{(I,J)\in\mathfrak{S}_{n,k}} c_{I,J}\cdot \mathbf{1}_{I,J}(w) \text{ for all } w\in\mathfrak{S}_n.$$

- ► A linear combination of *k*-local statistics is *k*-local.
- ▶ If $f : \mathfrak{S}_n \to \mathbb{R}$ is *k*-local and $g : \mathfrak{S}_n \to \mathbb{R}$ is *ℓ*-local, then

$$(f \cdot g)(w) = f(w) \cdot g(w)$$

is $(k + \ell)$ -local.

Locality = Degree

Def: A permutation statistic $f : \mathfrak{S}_n \to \mathbb{R}$ is *k*-local if $f = \sum_{(I,J) \in \mathfrak{S}_{n,k}} c_{I,J} \cdot \mathbf{1}_{I,J}$.

Artin-Wedderburn Theorem: We have an isomorphism

$$\Psi: \mathbb{R}[\mathfrak{S}_n] \to \bigoplus_{\lambda \vdash n} \operatorname{End}_{\mathbb{R}}(V^{\lambda})$$

given by $\Psi : \alpha \mapsto (\alpha : V^{\lambda} \to V^{\lambda})_{\lambda \vdash n}$.

Ubiquitous: [Ellis-Friedgut-Pipel, Even-Zohar, Huang-Guestrin-Guibas, ...]

$$\begin{array}{ll} f \text{ is } k \text{-local} & \Leftrightarrow & \Psi(\sum_{w \in \mathfrak{S}_n} f(w) \cdot w) \text{ supported on} \\ & \{ \lambda \vdash n \, : \, \lambda_1 \geq n-k \}. \end{array}$$

Characters are Local Statistics

Artin-Wedderburn Theorem: We have an isomorphism

$$\Psi:\mathbb{R}[\mathfrak{S}_n]\to\bigoplus_{\lambda\vdash n}\operatorname{End}_{\mathbb{R}}(V^\lambda)$$

given by $\Psi : \alpha \mapsto (\alpha : V^{\lambda} \to V^{\lambda})_{\lambda \vdash n}$.

Ubiquitous: A statistic $f : \mathfrak{S}_n \to \mathbb{R}$ is k-local if and only if $\Psi(\sum_{w \in \mathfrak{S}_n} f(w) \cdot w)$ is supported on $\{\lambda \vdash n : \lambda_1 \ge n - k\}$.

Cor: Given $\lambda \vdash n$ with $\lambda_1 \geq n - k$, the irreducible character

$$\chi^{\lambda}:\mathfrak{S}_n\to\mathbb{R}$$

(日) (日) (日) (日) (日) (日) (日) (日)

is k-local.

Vanilla Permutation Patterns

Let
$$v = [v(1), \dots, v(k)] \in \mathfrak{S}_k$$
 and $w = [w(1), \dots, w(n)] \in \mathfrak{S}_n$.

Def: Given $S = \{i_1 < \cdots < i_k\} \subseteq [n]$, the permutation *w* matches the pattern *v* at *S* if

 $[w(i_1), \ldots, w(i_k)]$ is order-isomorphic to $[v(1), \ldots, v(k)]$.

Define $N_v : \mathfrak{S}_n \to \mathbb{R}$ by

 $N_v(w) := \#\{S \subseteq [n] : w \text{ matches } v \text{ at } S\}.$

Ex: If v = [2, 1] then $inv(w) = N_v(w)$.

(Bi)Vincular Permutation Patterns

Let
$$v = [v(1), \ldots, v(k)] \in \mathfrak{S}_k$$
 and $w = [w(1), \ldots, w(n)] \in \mathfrak{S}_n$.

Def: Given $S = \{i_1 < \cdots < i_k\} \subseteq [n]$, and subsets $A, B \subseteq [k-1]$ the permutation *w* matches the bivincular pattern (v, A, B) at *S* if

- $[w(i_1), \ldots, w(i_k)]$ is order-isomorphic to $[v(1), \ldots, v(k)]$ and
- for all $a \in A$, we have $i_{a+1} = i_a + 1$ and
- For all b ∈ B, the bth and (b + 1)st smallest elements of {w(i₁),...,w(i_k)} are consecutive.

Define $N_{v,A,B} : \mathfrak{S}_n \to \mathbb{R}$ by

$$N_{v,A,B}(w) := \#\{S \subseteq [n] : w \text{ matches } (v,A,B) \text{ at } S\}.$$

Ex: If
$$v = [2, 1]$$
, $A = \{1\}, B = \emptyset$ then $des(w) = N_{v,A,B}(w)$.

Weighted (Bi)Vincular Permutation Patterns

Let
$$v = [v(1), \ldots, v(k)] \in \mathfrak{S}_k$$
 and $w = [w(1), \ldots, w(n)] \in \mathfrak{S}_n$

Def: Given subsets $A, B \subseteq [k-1]$ and polynomials $f, g \in \mathbb{R}[x_1, \ldots, x_k]$ we define

$$\mathsf{N}^{f,\mathsf{g}}_{\mathsf{v},\mathsf{A},\mathsf{B}}:\mathfrak{S}_n
ightarrow\mathbb{R}$$

by the rule

$$N_{v,A,B}^{f,g}(w) = \sum_{S} f(i_1,\ldots,i_k) \cdot g(w(i_1),\ldots,w(i_k))$$

where $S = \{i_1 < \cdots < i_k\}$ ranges over all matches of (v, A, B) in w.

Ex: If
$$v = [2, 1]$$
, $A = \{1\}$, $B = \emptyset$, $f = x_1, g = 1$ then $maj(w) = N_{v,A,B}^{f,g}(w)$.

Pattern Counting is Local

Def: If $\Upsilon = \{(v, A, B, f, g)\}$ is a family of weighted bivincular patterns, let $N_{\Upsilon} : \mathfrak{S}_n \to \mathbb{R}$ be

$$N_{\Upsilon}(w) := \sum_{(v,A,B,f,g)\in\Upsilon} N_{v,A,B}^{f,g}(w).$$

Fact: If the largest pattern v in Υ has size k, then N_{Υ} is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle type $K_{\lambda} \subseteq \mathfrak{S}_n$.

Pattern Counting is Local

Def: If $\Upsilon = \{(v, A, B, f, g)\}$ is a family of weighted bivincular patterns, let $N_{\Upsilon} : \mathfrak{S}_n \to \mathbb{R}$ be

$$N_{\Upsilon}(w) := \sum_{(v,A,B,f,g)\in\Upsilon} N_{v,A,B}^{f,g}(w).$$

Fact: If the largest pattern v in Υ has size k, then N_{Υ} is k-local.

Goal: [After Gaetz-Ryba] Study patterns restricted to some cycle type $K_{\lambda} \subseteq \mathfrak{S}_n$.

"That is pure hell." – anonymous senior combinatorialist

Class Functions and Reynolds

A function $f : \mathfrak{S}_n \to \mathbb{R}$ is a *class function* if $f(vwv^{-1}) = f(w)$ for all $v, w \in \mathfrak{S}_n$.

Def: The *Reynolds operator* R acts on maps $f : \mathfrak{S}_n \to \mathbb{R}$ by

$$Rf(w) = \frac{1}{n!} \sum_{v \in \mathfrak{S}_n} f(vwv^{-1}).$$

The map $Rf : \mathfrak{S}_n \to \mathbb{R}$ is a class function.

Idea: *Rf* is the *best class function approximation* to *f*.

Pattern Counting and Reynolds

Let Υ be a set of weighted bivincular patterns (v, A, B, f, g).

- Let k be the largest size |v| of a pattern v with $(v, A, B, f, g) \in \Upsilon$.
- ▶ Let q be the largest size of |A| + |B| for $(v, A, B, f, g) \in \Upsilon$.
- Let p be the largest value of |v| − |A| − |B| + deg f + deg g for (v, A, B, f, g) ∈ Υ.

Let $m_i(w)$ = number of *i*-cycles in *w*.

Thm: [HR] For any $d \ge 0$, the statistic RN^d_{Υ} on \mathfrak{S}_n is a rational function in $\mathbb{R}(n, m_1, m_2, \ldots, m_{kd})$. If deg(n) = 1 and deg $(m_i) = i$ the rational degree of RN^d_{Υ} is $\le dp$. Also, the statistic

$$n(n-1)\cdots(n-dq+1)\cdot RN^d_{\Upsilon}\in \mathbb{R}[n,m_1,m_2,\ldots,m_{kd}]$$

is a polynomial in $n, m_1, m_2, \ldots, m_{kd}$.

Pattern Counting and Reynolds

Thm: [HR] For any $d \ge 0$, the statistic RN^d_{Υ} is a rational function in $\mathbb{R}(n, m_1, m_2, \ldots, m_{kd})$. If deg(n) = 1 and deg $(m_i) = i$ the rational degree of RN^d_{Υ} is $\le dp$. Also, the statistic

$$n(n-1)\cdots(n-dq+1)\cdot \mathsf{RN}^d_{\Upsilon}\in\mathbb{R}[n,m_1,m_2,\ldots,m_{kd}]$$

is a polynomial in $n, m_1, m_2, \ldots, m_{kd}$.

Rmk: Proven in the vanilla case by Gaetz-Ryba (single pattern) and Gaetz-Pierson (multiple patterns). Proof uses *Jones Duality* between \mathfrak{S}_n and $\mathcal{P}_r(n)$ acting on $(\mathbb{C}^n)^{\otimes r}$. Unclear how to extend their methods to vincular or weighted cases.

Proof Idea

Classical Science: Understand atoms \Rightarrow Understand molecules.

$$f = \sum_{(I,J)\in\mathfrak{S}_{n,k}} c_{I,J} \cdot \mathbf{1}_{I,J}$$

Atoms of k-Local Statistics: $\mathbf{1}_{I,J}$ for $(I, J) \in \mathfrak{S}_{n,k}$.

$$Rf = \sum_{(I,J)\in\mathfrak{S}_{n,k}} c_{I,J} \cdot R\,\mathbf{1}_{I,J}$$

Atoms of k-Local Class Fcns: $R \mathbf{1}_{I,J}$ for $(I, J) \in \mathfrak{S}_{n,k}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Atomic Symmetric Functions

Let $ch_n : Class(\mathfrak{S}_n) \to \Lambda_n$ be the *Frobenius characteristic*

$$\operatorname{ch}_n: f \mapsto \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} f(w) \cdot p_{\lambda(w)}$$

where $\lambda(w) \vdash n$ is the cycle type of w.

Defn: If $(I, J) \in \mathfrak{S}_{n,k}$ is a partial permutation, the *atomic* symmetric function is

$$A_{n,I,J} := n! \cdot \mathrm{ch}_{\mathrm{n}}(R \, \mathbf{1}_{I,J}).$$

Q: What is the Schur expansion of $A_{n,I,J}$?

Characters and Atomic Symmetric Functions

Defn: If $(I, J) \in \mathfrak{S}_{n,k}$ is a partial permutation, the *atomic* symmetric function is $A_{n,I,J} := n! \cdot ch_n(R \mathbf{1}_{I,J})$.

Fact: If
$$[I, J] = \sum_{\substack{w \in \mathfrak{S}_n \\ w(I) = J}} w \in \mathbb{R}[\mathfrak{S}_n]$$
, then
$$A_{n,I,J} = \sum_{\lambda \vdash n} \chi^{\lambda}[I, J] \cdot s_{\lambda}$$

where $\chi^{\lambda} : \mathbb{R}[\mathfrak{S}_n] \to \mathbb{R}$ is the irreducible character.

Q: What is the Schur expansion of $A_{n,I,J}$?

Characters and Atomic Symmetric Functions

Defn: If $(I, J) \in \mathfrak{S}_{n,k}$ is a partial permutation, the *atomic* symmetric function is $A_{n,I,J} := n! \cdot ch_n(R \mathbf{1}_{I,J})$.

Fact: If
$$[I, J] = \sum_{\substack{w \in \mathfrak{S}_n \\ w(I) = J}} w \in \mathbb{R}[\mathfrak{S}_n]$$
, then
$$A_{n,I,J} = \sum_{\lambda \vdash n} \chi^{\lambda}[I, J] \cdot s_{\lambda}$$

where $\chi^{\lambda} : \mathbb{R}[\mathfrak{S}_n] \to \mathbb{R}$ is the irreducible character.

Q: What is the Schur expansion of $A_{n,I,J}$?

Useless A: Apply the Murnaghan-Nakayama Rule (n - k)! times.

Path and Cycle Notation

Partial permutations $(I, J) \in \mathfrak{S}_{n,k}$ decompose into *paths* and *cycles*.

Fact: $A_{n,I,J}$ only depends on the unlabeled graph.

Path and Cycle Notation

Partial permutations $(I, J) \in \mathfrak{S}_{n,k}$ decompose into *paths* and *cycles*.

Fact: We have a factorization $A_{n,I,J} = A^{\text{path}} \cdot A^{\text{cycle}}$. Also, A^{cycle} is a *power sum*.

$$A_{15,I,J} = A^{\text{path}} \cdot A^{\text{cycle}} = \vec{p}_{332111} \cdot p_{211}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Path Power Sums

 \vec{p}_{332111}

Def: For $\mu \vdash n$, the *path power sum* \vec{p}_{μ} is the atomic symmetric function of a graph with paths of sizes μ_1, μ_2, \ldots .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Path Power Sums

Def: For $\mu \vdash n$, the *path power sum* \vec{p}_{μ} is the atomic symmetric function of a graph with paths of sizes μ_1, μ_2, \ldots .

Facts: [HR]

- $\{\vec{p}_{\mu}\}\$ is a basis for the space of symmetric functions.
- $\{\vec{p}_{\mu}\}$ is unitriangular to the power sum basis $\{p_{\nu}\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical Murnaghan-Nakayama

$$A_{n,I,J} = \vec{p}_{\mu} \cdot p_{\nu}$$

MN Rule: For $\nu \models n$, we have $p_{\nu} = \sum_{\lambda \vdash n} \chi_{\nu}^{\lambda} \cdot s_{\lambda}$ where

$$\chi_{\nu}^{\lambda} = \sum_{\substack{\nu - \text{ribbon tableaux } T \\ \text{shape } \lambda}} (-1)^{\text{height}(T)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical Murnaghan-Nakayama

MN Rule: For $\nu \models n$, we have $p_{\nu} = \sum_{\lambda \vdash n} \chi_{\nu}^{\lambda} \cdot s_{\lambda}$ where

$$\chi_{\nu}^{\lambda} = \sum_{(-1)^{\text{height}(T)}}$$

 ν -ribbon tableaux T shape λ

 $p_{3221}=\cdots+1\cdot s_{431}+\cdots$

Q: What about the *path* power sum \vec{p}_{μ} ?

Monotonic Ribbon Tilings

MONOTONIC

NOT MONOTONIC

Def: In a monotonic ribbon tiling ...

- the tails of the ribbons lie in distinct columns,
- the tail depth decreases from left to right, and
- each initial union of ribbons forms a partition.

Path Murnaghan-Nakayama Rule

Thm: [HR] For $\mu \vdash n$, we have $\vec{p}_{\mu} = \sum_{\lambda \vdash n} \vec{\chi}^{\lambda}_{\mu} \cdot s_{\lambda}$ where

$$\vec{\chi}^{\lambda}_{\mu} = \operatorname{mult}(\mu)! \cdot \sum_{\substack{\text{monotonic tilings } \tau \text{ of } \lambda \\ \text{ribbons of sizes } \mu}} (-1)^{\operatorname{height}(\tau)}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

where the ribbons are to be added in all possible orders.

Path Murnaghan-Nakayama Rule

$$\vec{p}_{321} = 6s_6 - 4s_{51} + 2s_{33} + 2s_{411} - s_{321}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Atomic Expansion

Thm: [HR] Let $(I, J) \in \mathfrak{S}_{n,k}$ have path partition μ and cycle partition ν . Then

$$A_{n,I,J} = \vec{p}_{\mu} \cdot p_{\nu} = \sum_{\substack{\lambda \vdash n \\ \rho \subseteq \lambda}} \vec{\chi}_{\mu}^{\rho} \cdot \chi_{\nu}^{\lambda/\rho} \cdot s_{\lambda}$$

where $\vec{\chi}^{\rho}_{\mu}$ counts monotonic tilings and $\chi^{\lambda/\rho}_{\nu}$ counts classical tilings.

- Gives a formula for $\chi^{\lambda}([w \cdot \mathfrak{S}_r]_+)$ on coset sums in $\mathfrak{S}_n/\mathfrak{S}_r$.
- Proves polynomiality results for pattern enumeration on conjugacy classes.
- Has applications to probability.

Quasi-Random Permutations

Defn: [Cooper] A sequence $w^{(n)}$ of permutations in \mathfrak{S}_n is *quasi-random* if for all patterns v we have

$$rac{N_{v}(w^{(n)})}{\binom{n}{k}}=rac{1}{k!}+o(1) \qquad ext{as } n
ightarrow\infty$$

where |v| = k.

Thm: [HR] Let μ_n be a sequence of conjugacy-invariant probability distributions on \mathfrak{S}_n and let $\Sigma_n \sim \mu_n$. If

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{m_1(\Sigma_n)}{n}=0\right)=1$$

then Σ_n is quasi-random.

Thanks for listening!!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>