Geometric vertex decomposition and liaison of toric ideals of graphs

Jenna Rajchgot
McMaster University

Joint work with Patricia Klein (Minnesota)
and with
Mike Cummings, Sergio Da Silva, Adam Van Tuyl (McMaster)

AICoVE

June 6-7, 2022

Two related viewpoints

Some ideals and varieties are popular among both commutative algebraists and algebraic combinatorialists:

- ideals of $k \times k$ minors of a generic $m \times n$ matrix \leftrightarrow open patch of a Grassmannain Schubert variety
- one-sided mixed ladder determinantal ideals \leftrightarrow Schubert determinantal ideals for vexillary (i.e. 2143-avoiding) permutations
- two-sided mixed ladder determinantal ideals \leftrightarrow certain Kazhdan-Lusztig ideals

We will see that certain techniques used on the two sides of these correspondences are related.

Squarefree monomial ideals

Recall the Stanley-Reisner correspondence between a squarefree monomial ideal $I_{\Delta} \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and simplicial complex Δ on vertices $\{1, \ldots, n\}$:

$$
x_{i_{1}} \cdots x_{i_{r}} \in I_{\Delta} \Longleftrightarrow\left\{i_{1}, \ldots, i_{r}\right\} \notin \Delta .
$$

Example: $I_{\Delta}=\left\langle x_{1} x_{4}, x_{2} x_{5}, x_{1} x_{5}\right\rangle \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{5}\right]$

$$
\Delta={ }_{1} \overbrace{3}^{2} \rrbracket_{5}^{4}
$$

Vertex decomposability

Definition: Given a simplicial complex Δ and a vertex v of Δ, define
$-\mathrm{Ik}_{\Delta}(v):=\{F \in \Delta \mid F \cup\{v\} \in \Delta, F \cap\{v\}=\varnothing\}$. link of v

- $\operatorname{del}_{\Delta}(v)=\{F \in \Delta \mid F \cap\{v\}=\varnothing\}$. deletion of v

Example.
$I_{\Delta}=\left\langle x_{1} x_{4}, x_{1} x_{5}, x_{2} x_{5}\right\rangle \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{5}\right] . \Delta=$

$I_{\text {del }_{\Delta}(5)}=\left\langle x_{1} x_{4}, x_{5}\right\rangle \cdot \operatorname{del}_{\Delta}(5)=\overbrace{1}^{2} \overbrace{3}^{4}$
$I_{\mathrm{k}_{\Delta}(5)}=\left\langle x_{1}, x_{2}, x_{5}\right\rangle . \operatorname{lk}_{\Delta}(5)=$

Definition: A pure simplicial complex Δ is vertex decomposable if 1. Δ is a simplex of $\Delta=\varnothing$; or
2. \exists vertex $v \in \Delta$ s.t. $\mathrm{Ik}_{\Delta}(v)$ and $\operatorname{del}_{\Delta}(v)$ are vertex decomposable.

Theorem: If Δ is vertex decomposable then $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I_{\Delta}$ is
Cohen-Macaulay.

Geometric vertex decomposition (Knutson-Miller-Yong '09)

Set-up: Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right], y=x_{i}$, and let $<$ be a lex order with $y>x_{j}$, $j \neq i$. Consider an ideal

$$
I=\left\langle y q_{1}+r_{1}, y q_{2}+r_{2}, \ldots, y q_{\ell}+r_{\ell}, h_{1}, \ldots, h_{k}\right\rangle
$$

where the given gens. are a Gröbner basis and y doesn't divide any term of any q_{i}, r_{i}, h_{i}.

Definition/Theorem: If $C_{y, I}=\left\langle q_{1}, q_{2}, \ldots, q_{\ell}, h_{1}, \ldots, h_{k}\right\rangle$ and $N_{y, l}=\left\langle h_{1}, \ldots, h_{k}\right\rangle$, then

$$
\mathrm{in}_{y} I=C_{y, I} \cap\left(N_{y, I}+\langle y\rangle\right)
$$

and this intersection is called a geometric vertex decomposition.
Some consequences:

- the given gens of $C_{y, 1}, N_{y, l}$ are Gröbner bases for <;
- in the homogeneous case, the Hilbert series of S / I can be obtained from those of $S / C, S / N$.

More motivation:

- lex resembles vertex decomposition
- used to study Schubert determinantal ideals for vexillary perms

Geometric vertex decomposition: an example

Let $I=\left\langle x_{1} x_{5}-x_{3} x_{6}, x_{2} x_{5}-x_{3} x_{4}, x_{1} x_{4}-x_{2} x_{6}\right\rangle$. Let $<$ be Lex with $x_{5}>x_{1}>x_{2}>x_{3}>x_{4}>x_{6}$.
$\Rightarrow \mathrm{in}_{<} I=\left\langle x_{1} x_{4}, x_{1} x_{5}, x_{2} x_{5}\right\rangle$

$$
\Delta=\overbrace{1}^{2} \overbrace{3}^{4}
$$

$-\mathrm{in}_{x_{5}} I=\left\langle x_{1} x_{5}, x_{2} x_{5}, x_{1} x_{4}-x_{2} x_{6}\right\rangle=\left\langle x_{5}, x_{1} x_{4}-x_{2} x_{6}\right\rangle \cap\left\langle x_{1}, x_{2}\right\rangle=$ $\left(N_{x_{5}, l}+\left\langle x_{5}\right\rangle\right) \cap C_{x_{5}, l}$.

$$
\begin{aligned}
& \operatorname{in}_{<}\left(N_{x_{5}, l}+\left\langle x_{5}\right\rangle\right)=I_{\text {del }_{\Delta}(5)}=\left\langle x_{1} x_{4}, x_{5}\right\rangle \cdot \operatorname{del}_{\Delta}(5)=\overbrace{1}^{2} \overbrace{3}^{4} \\
& \operatorname{in}_{<}\left(C_{x_{5}, l}+\left\langle x_{5}\right\rangle\right)=I_{\mid \mathrm{k}_{\Delta}(5)}=\left\langle x_{1}, x_{2}, x_{5}\right\rangle \cdot \operatorname{lk}_{\Delta}(5)=/_{3}^{4}
\end{aligned}
$$

Geometrically vertex decomposable ideals

Definition (Klein-R '20): An unmixed ideal $I \subseteq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is geometrically vertex decomposable if

1. $I=\langle 1\rangle$ or I is generated by indeterminates, or
2. for some $y=x_{i}$, we have $\mathrm{in}_{y} I=\left\langle C_{y, I}\right\rangle \cap\left(N_{y, I}+\langle y\rangle\right)$ is a geometric vertex decomposition with $N_{y, l}$ and $C_{y, l}$ geometrically vertex decomposable.

Examples: Stanley-Reisner ideals of vertex decomposable complexes, determinantal ideals, ladder determinantal ideals, Schubert determinantal ideals, defining ideals of lower bound cluster algebras, certain toric ideals of graphs

Proposition (Klein-R): If I is geometrically vertex decomposable, then I is radical and $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I$ is Cohen-Macaulay.

Gorenstein liaison

Let C_{1} and C_{2} be equidimensional subschemes of \mathbb{P}^{n}. Liaison theory asks: if $X=C_{1} \cup C_{2}$ is "nice", do "good properties" of C_{1} transfer to C_{2} ?

Example 2.4. If X is the complete intersection in \mathbb{P}^{3} of a surface consisting of the union of two planes with a surface consisting of one plane then X links a line C_{1} to a different line C_{2}.

From Migliore-Nagel's "Liaison and related topics."

For us today, "nice (enough)" will mean that C_{1} and C_{2} share no common component and that X is Gorenstein. An example of a "good property" is the Cohen-Macaulay property.

Gorenstein Liaison

Definition: Let $V_{1}, V_{2}, X \subseteq \mathbb{P}^{n}$ be subschemes defined by $I_{V_{1}}, I_{V_{2}}$, and I_{X}, respectively with X arithmetically Gorenstein. If $I_{X} \subseteq I_{V_{1}} \cap I_{V_{2}}$ and if [$\left.I_{X}: I_{V_{1}}\right]=I_{V_{2}}$ and $\left[I_{X}: I_{V_{2}}\right]=I_{V_{1}}$, then V_{1} and V_{2} are directly algebraically G-linked by X.

Definition:
A subscheme $V \subseteq \mathbb{P}^{n}$ (or its saturated and homogeneous ideal I_{V}) is glicci if there is a sequence of G-links from V to a complete intersection.

Theorem: Glicci \Longrightarrow Cohen-Macaulay
Open question: Is every arithmetically Cohen-Macaulay subscheme of \mathbb{P}^{n} glicci?

We will aim to use geometric vertex decomposition to study this question in some combinatorial settings!

Geometric vertex decomposition and Gorenstein liaison

Gorla, Migliore, Nagel:

- many generalized determinantal ideals are glicci
- use liaison to obtain Gröbner bases

Theorem (Nagel-Römer '07): Stanley-Reisner ideals of vertex decomposable simplicial complexes are glicci.

Theorem (Klein-R '20): A homogeneous, saturated, and unmixed geometrically vertex decomposable (gvd) ideal is glicci.

Examples of ideals that are both gvd and glicci: determinantal ideals, ladder determinantal ideals, Schubert determinantal ideals, defining ideals of lower bound cluster algebras, certain toric ideals of graphs

Toric ideals of graphs

Definition: Let $G=(V(G), E(G))$ be a finite simple graph with vertex set $V(G)=\left\{x_{1}, \ldots, x_{n}\right\}$ and edge set $E(G)=\left\{e_{1}, \ldots, e_{t}\right\}$ where each $e_{i}=\left\{x_{j}, x_{k}\right\}$. Consider the homomorphism $\varphi_{G}: \mathbb{C}[E(G)] \rightarrow \mathbb{C}[V(G)]$:

$$
\varphi_{G}\left(e_{i}\right)=x_{j} x_{k} \text { where } e_{i}=\left\{x_{j}, x_{k}\right\} \text { for all } i \in\{1, \ldots, t\} .
$$

The toric ideal of the graph G, denoted I_{G}, is $\operatorname{ker} \varphi_{G}$.

Example:

$$
\begin{gathered}
\varphi_{G}\left(e_{1}\right)=x_{1} x_{3}, \varphi_{G}\left(e_{2}\right)=x_{1} x_{2}, \quad \varphi_{G}\left(e_{3}\right)=x_{2} x_{4}, \varphi_{G}\left(e_{4}\right)=x_{3} x_{4} \\
\text { ker } \varphi_{G}=\left\langle e_{1} e_{3}-e_{2} e_{4}\right\rangle
\end{gathered}
$$

Toric ideals of graphs and Gorenstein liaison

Theorems: Let G be a finite simple graph and let I_{G} be its toric ideal.

- If there is a monomial order $<$ such that in $_{<} I_{G}$ is squarefree, then $\mathbb{C}\left[e_{1}, \ldots, e_{t}\right] / I_{G}$ is normal. (Sturmfels)
- If $\mathbb{C}\left[e_{1}, \ldots, e_{t}\right] / I_{G}$ is normal, then it is also Cohen-Macaulay. (Hochster)
\Longrightarrow if there is a monomial order $<$ such that in $_{<} I_{G}$ is squarefree then $\mathbb{C}\left[e_{1}, \ldots, e_{t}\right] / I_{G}$ is Cohen-Macaulay.

Question: If there is a monomial order such that in $<I_{G}$ is squarefree, must I_{G} be geometrically vertex decomposable, hence glicci?

Theorem (Constantinescu-Gorla '17): Toric ideals of bipartite graphs are glicci.

Some results on gvd of toric ideals of graphs

Let G be a finite simple graph and let $I_{G} \subseteq \mathbb{C}[E(G)]$ be its toric ideal.
Theorem (Cummings-Da Silva- R- Van Tuyl '22):

1. Suppose that G is bipartite. Then I_{G} is geometrically vertex decomposable.
2. Suppose that I_{G} has a universal Gröbner basis consisting of quadratic binomials. Then I_{G} is geometrically vertex decomposable.

Theorem (Cummings-Da Silva- R- Van Tuyl '22): Let H be obtained from G by attaching a cycle of even length to G along a single edge.

1. If $\mathbb{C}[E(G)] / I_{G}$ is Cohen-Macaulay, then I_{H} is glicci.
2. If I_{G} is geometrically vertex decomposable then so is I_{H}.

Further results on liaison of toric ideals of graphs

Let G be a finite simple graph and let $I_{G} \subseteq \mathbb{C}[E(G)]$ be its toric ideal.
Theorem (Cummings-Da Silva- R- Van Tuyl '22): Suppose that

- there is an edge $y \in E(G)$ contained in a 4-cycle of G; and
- $\mathrm{in}_{<}\left(I_{G}\right)$ is a square-free monomial ideal for some lexicographic monomial order $<$ with $y>e$ for all $e \in E(G)$ with $e \neq y$.
Then I_{G} is glicci.
Definition: A graph G is gap-free if for any two edges $e_{1}=\{u, v\}$ and $e_{2}=\{w, x\}$ with $\{u, v\} \cap\{w, x\}=\varnothing$, there is an edge $e \in E(G)$ that is is adjacent to both e_{1} and e_{2}, i.e, one of the edges $\{u, w\},\{u, x\},\{v, w\},\{v, x\}$ is also in G.

Using the above theorem and a result of D'Ali on gap free graphs we get:
Corollary (Cummings-Da Silva- R- Van Tuyl '22): Suppose G is a gap free graph which contains a 4-cycle. Then I_{G} is glicci.

Thank you!

