Rigid Gorenstein toric Fano varieties arising from directed graphs

Selvi Kara, İrem Portakal[®], Akiyoshi Tsuchiya

Technical University of Munich

AICoVE: an Algebraic Combinatorics Virtual Expedition June 6-7, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Edge polytopes

Let G = (V(G), A(G)) be a finite directed graph on the vertex set V(G) = [n] with the directed edge set A(G).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Edge polytopes

- Let G = (V(G), A(G)) be a finite directed graph on the vertex set V(G) = [n] with the directed edge set A(G).
- ▶ For a directed edge $e = (i, j) \in A(G)$, we define $\rho(e) \in \mathbb{R}^n$ by setting $\rho(e) = \mathbf{e}_i \mathbf{e}_j$.

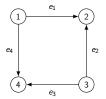
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

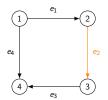
Edge polytopes

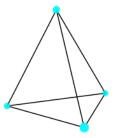
- Let G = (V(G), A(G)) be a finite directed graph on the vertex set V(G) = [n] with the directed edge set A(G).
- ▶ For a directed edge $e = (i, j) \in A(G)$, we define $\rho(e) \in \mathbb{R}^n$ by setting $\rho(e) = \mathbf{e}_i \mathbf{e}_j$.
- ► The *directed edge polytope* of G, denoted by A_G, is the lattice polytope defined as

$$\mathcal{A}_{G} = \operatorname{conv}\{\rho(e) : e \in \mathcal{A}(G)\} \subset \mathbb{R}^{n}.$$

Two edge polytopes with the same underlying graph







◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Fano polytopes

Let $\mathcal{P} \subset \mathbb{R}^n$ be a full-dimensional lattice polytope.

We say that *P* is a *Fano* if the origin of ℝⁿ belongs to the interior of *P* and the vertices of *P* are primitive lattice points in ℤⁿ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fano polytopes

Let $\mathcal{P} \subset \mathbb{R}^n$ be a full-dimensional lattice polytope.

- We say that *P* is a *Fano* if the origin of ℝⁿ belongs to the interior of *P* and the vertices of *P* are primitive lattice points in ℤⁿ.
- ► A Fano polytope *P* is called *terminal* if every lattice point on the boundary is a vertex.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fano polytopes

Let $\mathcal{P} \subset \mathbb{R}^n$ be a full-dimensional lattice polytope.

- We say that *P* is a *Fano* if the origin of ℝⁿ belongs to the interior of *P* and the vertices of *P* are primitive lattice points in ℤⁿ.
- ► A Fano polytope *P* is called *terminal* if every lattice point on the boundary is a vertex.
- A Fano polytope *P* is said to be *reflexive* if each facet of *P* has lattice distance one from the origin. Equivalently, its dual polytope

$$\mathcal{P}^{\vee} = \{ x \in \mathbb{R}^n : \langle x, y \rangle \ge -1 \text{ for all } y \in \mathcal{P} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a lattice polytope.

Terminal reflexive edge polytopes

Proposition ([HHMNO11])

Let G be a finite directed graph. Then the following arguments are equivalent:

- 1. A_G is Fano;
- 2. A_G is terminal reflexive;
- 3. Every directed edge of G belongs to a directed cycle in G.

T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, *Roots of Ehrhart polynomials arising from graphs*. J Algebr Comb 34, 3721-749 (2011).

Terminal reflexive edge polytopes

Proposition ([HHMNO11])

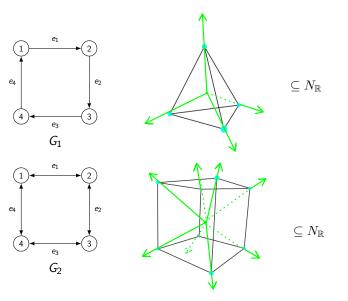
Let G be a finite directed graph. Then the following arguments are equivalent:

- 1. \mathcal{A}_G is Fano;
- 2. A_G is terminal reflexive;
- 3. Every directed edge of G belongs to a directed cycle in G.

Notation: For a Fano polytope A_G , X_G is the normal toric Fano variety associated to the spanning fan of A_G . In this case, X_G is a Gorenstein toric Fano variety with terminal singularities.

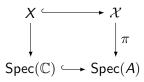
T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, *Roots of Ehrhart polynomials arising from graphs*. J Algebr Comb 34, 2721–749 (2011) =

Gorenstein toric Fano variety arising from a directed graph



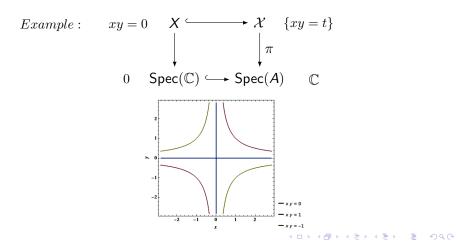
▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Let X be a scheme of finite type over \mathbb{C} and let A be an Artinian algebra over \mathbb{C} . An infinitesimal deformation of X over A is defined as the following cartesian diagram:

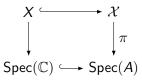


▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let X be a scheme of finite type over \mathbb{C} and let A be an Artinian algebra over \mathbb{C} . An infinitesimal deformation of X over A is defined as the following cartesian diagram:

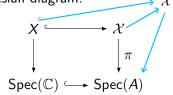


Let X be a scheme of finite type over \mathbb{C} and let A be an Artinian algebra over \mathbb{C} . An infinitesimal deformation of X over A is defined as the following cartesian diagram:



where π is flat. Let $\pi' : X \to \mathcal{X}'$ be another deformation of X over Spec(A). We say that π and π' are isomorphic, if there exists a map $\mathcal{X} \to \mathcal{X}'$ over Spec(A) inducing the identity on X.

Let X be a scheme of finite type over \mathbb{C} and let A be an Artinian algebra over \mathbb{C} . An infinitesimal deformation of X over A is defined as the following cartesian diagram: $\longrightarrow \mathcal{X}'$



where π is flat. Let $\pi' : X \to \mathcal{X}'$ be another deformation of X over Spec(A). We say that π and π' are isomorphic, if there exists a map $\mathcal{X} \to \mathcal{X}'$ over Spec(A) inducing the identity on X. Let Def_X be a functor such that $Def_X(A)$ is the set of deformations of X over Spec(A) modulo isomorphisms.

Definition

The map π is called a first order deformation of X if $S = \operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2))$. We set $T_X^1 := \operatorname{Def}_X(\operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2)))$.

Definition

The map π is called a first order deformation of X if

 $S = \operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2)). \text{ We set } T^1_X := \operatorname{Def}_X(\operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2))).$

- The variety X is called rigid if $T_X^1 = 0$.
- This implies that X has no nontrivial infinitesimal deformations.

Definition

The map π is called a first order deformation of X if

 $S = \operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2)). \text{ We set } T^1_X := \operatorname{Def}_X(\operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2))).$

- The variety X is called rigid if $T_X^1 = 0$.
- This implies that X has no nontrivial infinitesimal deformations. i.e. every deformation $\pi \in \text{Def}_X(A)$ over a Artin ring A is isomorphic to the trivial deformation $X \times \text{Spec}(A) \longrightarrow \text{Spec}(A)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

The map π is called a first order deformation of X if

 $S = \operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2)). \text{ We set } T^1_X := \operatorname{Def}_X(\operatorname{Spec}(\mathbb{C}[\epsilon]/(\epsilon^2))).$

- The variety X is called rigid if $T_X^1 = 0$.
- This implies that X has no nontrivial infinitesimal deformations. i.e. every deformation $\pi \in \text{Def}_X(A)$ over a Artin ring A is isomorphic to the trivial deformation $X \times \text{Spec}(A) \longrightarrow \text{Spec}(A)$.

Our aim: Describe which Gorenstein toric Fano varieties arising from directed graphs are rigid purely in terms of graphs.

- A Fano polytope is called *Q*-*factorial* if it is simplicial.
- A Fano polytope is called *smooth* if the vertices of each facet form a ℤ-basis of ℤⁿ.

T. de Fernex, C.D. Hacon, *Deformations of canonical pairs and Fano varieties*. J. Reine Angew. Math. 651, 97–126 (2011)

A. Higashitani, Smooth Fano polytopes arising from finite directed graphs. Kyoto Journal of Mathematics, 55(3):579–592, 2015.

F. Bien, M. Brion, Automorphisms and local rigidity of regular varieties. Compos. Math. 104(1), 1–26 (1996)

- A Fano polytope is called *Q*-*factorial* if it is simplicial.
- A Fano polytope is called *smooth* if the vertices of each facet form a ℤ-basis of ℤⁿ.

[BB96] Every smooth toric Fano variety is rigid. [dFH11] Q-factorial terminal toric Fano varieties are rigid.

A. Higashitani, Smooth Fano polytopes arising from finite directed graphs. Kyoto Journal of Mathematics, 55(3):579–592, 2015.

F. Bien, M. Brion, Automorphisms and local rigidity of regular varieties. Compos. Math. 104(1), 1–26 (1996)

T. de Fernex, C.D. Hacon, *Deformations of canonical pairs and Fano varieties*. J. Reine Angew. Math. 651, 97–126 (2011)

- A Fano polytope is called *Q*-*factorial* if it is simplicial.
- A Fano polytope is called *smooth* if the vertices of each facet form a ℤ-basis of ℤⁿ.

[BB96] Every smooth toric Fano variety is rigid.

[dFH11] Q-factorial terminal toric Fano varieties are rigid.

Theorem ([Hig15])

Let G be a finite symmetric directed graph on [n]. Then the following arguments are equivalent:

- 1. X_G is smooth;
- 2. X_G is \mathbb{Q} -factorial;
- 3. *G*^{un} has no even cycle as subgraphs.

F. Bien, M. Brion, Automorphisms and local rigidity of regular varieties. Compos. Math. 104(1), 1–26 (1996)

T. de Fernex, C.D. Hacon, *Deformations of canonical pairs and Fano varieties*. J. Reine Angew. Math. 651, 97–126 (2011)

The most general rigidity theorem for toric Fano varieties known to this date is the following result of Totaro:

Theorem ([Tot12])

A toric Fano variety which is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3 is rigid.

B. Totaro. Jumping of the nef cone for Fano varieties. J. Algebraic Geom., 21:375–396, 2012.

The most general rigidity theorem for toric Fano varieties known to this date is the following result of Totaro:

Theorem ([Tot12])

A toric Fano variety which is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3 is rigid.

Proposition

Let \mathcal{P} be a terminal reflexive polytope. Then

- 1. $X_{\mathcal{P}}$ is smooth in codimension 2,
- 2. all 2-faces of \mathcal{P} are triangles if and only if $X_{\mathcal{P}}$ is \mathbb{Q} -factorial in codimension 3.

In particular, $X_{\mathcal{P}}$ is rigid.

B. Totaro. Jumping of the nef cone for Fano varieties. J. Algebraic Geom., 21:375–396, 2012.

The most general rigidity theorem for toric Fano varieties known to this date is the following result of Totaro:

Theorem ([Tot12])

A toric Fano variety which is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3 is rigid.

Proposition

Let \mathcal{P} be a terminal reflexive polytope. Then

- 1. $X_{\mathcal{P}}$ is smooth in codimension 2,
- 2. all 2-faces of \mathcal{P} are triangles if and only if $X_{\mathcal{P}}$ is \mathbb{Q} -factorial in codimension 3.
- In particular, $X_{\mathcal{P}}$ is rigid.

It remains to classify the directed edge polytopes whose 2-faces are all triangles.

 B. Totaro. Jumping of the nef cone for Fano varieties.
 J. Algebraic Geom.,

 21:375-396, 2012.
 (□ > (∅) + (≧) + (≧) + (≧) + (≧) + (≧) + (≧) + (≅)

Lemma (Kara, 🍬, Tsuchiya)

Let G be a connected finite directed graph such that A_G is terminal and reflexive. Then each proper face of the directed edge polytope A_G is the directed edge polytope of a finite directed acyclic subgraph H of G.

Lemma (Kara, 🍬, Tsuchiya)

Let G be a connected finite directed graph such that A_G is terminal and reflexive. Then each proper face of the directed edge polytope A_G is the directed edge polytope of a finite directed acyclic subgraph H of G.

For a finite acyclic directed graph D = ([n], A(D)), we define a lattice polytope $\widetilde{\mathcal{A}}_D$ by

$$\widetilde{\mathcal{A}}_D := \operatorname{conv} \{ \mathbf{0}, \mathbf{e}_i - \mathbf{e}_j : (i, j) \in \mathcal{A}(D) \} \subset \mathbb{R}^n.$$

S. Kara, I. Portakal, and A. Tsuchiya, Rigid Gorenstein toric Fano varieties arising from directed graphs, Collect. Math. (2022)

Lemma (Kara, 🍬, Tsuchiya)

Let G be a connected finite directed graph such that A_G is terminal and reflexive. Then each proper face of the directed edge polytope A_G is the directed edge polytope of a finite directed acyclic subgraph H of G.

For a finite acyclic directed graph D = ([n], A(D)), we define a lattice polytope $\widetilde{\mathcal{A}}_D$ by

$$\widetilde{\mathcal{A}}_D := \operatorname{conv}\{\mathbf{0}, \mathbf{e}_i - \mathbf{e}_j : (i, j) \in \mathcal{A}(D)\} \subset \mathbb{R}^n.$$

Let $\mathcal{A}_{D_1}, \ldots, \mathcal{A}_{D_r}$ be the facets of \mathcal{A}_G with acyclic directed graphs D_1, \ldots, D_r . Since the origin of \mathbb{R}^n belongs to the interior of \mathcal{A}_G , the directed edge polytope \mathcal{A}_G is divided by $\widetilde{\mathcal{A}}_{D_1}, \ldots, \widetilde{\mathcal{A}}_{D_r}$.

Lemma (Kara, 🍬, Tsuchiya)

Let G be a connected finite directed graph such that A_G is terminal and reflexive. Then each proper face of the directed edge polytope A_G is the directed edge polytope of a finite directed acyclic subgraph H of G.

For a finite acyclic directed graph D = ([n], A(D)), we define a lattice polytope $\widetilde{\mathcal{A}}_D$ by

$$\widetilde{\mathcal{A}}_D := \operatorname{conv}\{\mathbf{0}, \mathbf{e}_i - \mathbf{e}_j : (i, j) \in \mathcal{A}(D)\} \subset \mathbb{R}^n.$$

Let $\mathcal{A}_{D_1}, \ldots, \mathcal{A}_{D_r}$ be the facets of \mathcal{A}_G with acyclic directed graphs D_1, \ldots, D_r . Since the origin of \mathbb{R}^n belongs to the interior of \mathcal{A}_G , the directed edge polytope \mathcal{A}_G is divided by $\widetilde{\mathcal{A}}_{D_1}, \ldots, \widetilde{\mathcal{A}}_{D_r}$. In particular, each face of $\widetilde{\mathcal{A}}_{D_i}$ which does not contain the origin is a face of \mathcal{A}_{D_i} , hence a face of \mathcal{A}_G .

S. Kara, I. Portakal, and A. Tsuchiya, Rigid Gorenstein toric Fano varieties arising from directed graphs, Collect. Math. (2022)

The directed edge polytope \mathcal{A}_G is divided by $\widetilde{\mathcal{A}}_{D_1}, \ldots, \widetilde{\mathcal{A}}_{D_r}$ and each face of $\widetilde{\mathcal{A}}_{D_i}$ which does not contain the origin is a face of \mathcal{A}_{D_i} , hence a face of \mathcal{A}_G .

L. Setiabrata. Faces of root polytopes. SIAM Journal on Discrete Mathematics, 2021.

The directed edge polytope \mathcal{A}_G is divided by $\widetilde{\mathcal{A}}_{D_1}, \ldots, \widetilde{\mathcal{A}}_{D_r}$ and each face of $\widetilde{\mathcal{A}}_{D_i}$ which does not contain the origin is a face of \mathcal{A}_{D_i} , hence a face of \mathcal{A}_G .

Theorem ([Set21])

Let D = (V(D), A(D)) be a finite acyclic directed graph and $H \subset D$ a directed subgraph of D with V(H) = V(D) and the directed edge set A(H). Then the polytope A_H is a face of \widetilde{A}_D if and only if H is path consistent and admissible.

L. Setiabrata. Faces of root polytopes. SIAM Journal on Discrete Mathematics, 2021.

Theorem (Kara, 🍬, Tsuchiya)

Let G be a finite directed graph such that every directed edge of G belongs to a directed cycle in G. Then the following arguments are equivalent:

1. X_G is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Kara, 🍬, Tsuchiya)

Let G be a finite directed graph such that every directed edge of G belongs to a directed cycle in G. Then the following arguments are equivalent:

- 1. X_G is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3.
- 2. G satisfies both of the following:
 - G has no directed subgraph C_1 whose directed edge set is

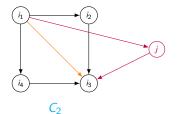
 $\{(i_1, i_2), (i_1, i_4), (i_3, i_2), (i_3, i_4)\};\$

• For any directed subgraph C_2 of G whose directed edge set is

 $\{(i_1, i_2), (i_2, i_3), (i_1, i_4), (i_4, i_3)\},\$

it follows that (i_1, i_3) is a directed edge of G or there exists a vertex $j \notin \{i_2, i_4\}$ in G such that (i_1, j) and (j, i_3) are directed edges of G.

In particular, X_G is rigid.



 G has no directed subgraph C₁ whose directed edge set is

 $\{(i_1, i_2), (i_1, i_4), (i_3, i_2), (i_3, i_4)\};$

 For any directed subgraph C₂ of G whose directed edge set is

 $\{(i_1, i_2), (i_2, i_3), (i_1, i_4), (i_4, i_3)\},\$

it follows that (i_1, i_3) is a directed edge of *G* or there exists a vertex $j \notin \{i_2, i_4\}$ in *G* such that (i_1, j) and (j, i_3) are directed edges of *G*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary (Kara, 🍬, Tsuchiya)

Let G be a finite symmetric directed graph. Then the following arguments are equivalent:

1. X_G is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3.

2. The underlying undirected graph G^{un} has no 4-cycle as a subgraph. In particular, X_G is rigid.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Corollary (Kara, 🍬, Tsuchiya)

Let G be a finite symmetric directed graph. Then the following arguments are equivalent:

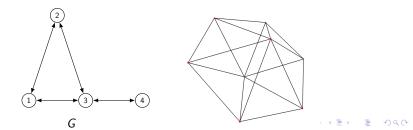
1. X_G is smooth in codimension 2 and \mathbb{Q} -factorial in codimension 3.

2. The underlying undirected graph G^{un} has no 4-cycle as a subgraph.

In particular, X_G is rigid.

Example

The Gorenstein toric Fano variety X_G is rigid, since G has a no C_4 as a subgraph equivalently \mathcal{A} has *no* square 2-face.



Thank you for your time! 🍋

F. Bien, M. Brion.

Automorphisms and local rigidity of regular varieties. *Compos. Math.* 104(1), 1–26 (1996)

T. de Fernex, C.D. Hacon

Deformations of canonical pairs and Fano varieties. J. Reine Angew. Math. 651, 97–126 (2011)

A. Higashitani.

Smooth Fano polytopes arising from finite directed graphs. *Kyoto Journal of Mathematics*, 55(3):579–592, 2015.

S. Kara, I. Portakal, A. Tsuchiya. Rigid Gorenstein toric Fano varieties arising from directed graphs. *Collect. Math.* (2022).

T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, Roots of Ehrhart polynomials arising from graphs. *J. Algebr. Comb.* 34, 721–749 (2011). https://doi.org/10.1007/s10801-011-0290-8

L. Setiabrata.

Faces of root polytopes.

SIAM Journal on Discrete Mathematics, 35(3):2093–2114, 2021.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

B. Totaro.

Jumping of the nef cone for Fano varieties.

J. Algebraic Geom., 21:375-396, 2012.