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Edge polytopes

§ Let G “ pV pGq, ApGqq be a finite directed graph on the vertex
set V pGq “ rns with the directed edge set ApGq.

§ For a directed edge e “ pi , jq P ApGq, we define ρpeq P Rn by
setting ρpeq “ ei ´ ej .

§ The directed edge polytope of G , denoted by AG , is the lattice
polytope defined as

AG “ convtρpeq : e P ApGqu Ă Rn.



Two edge polytopes with the same underlying graph
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Fano polytopes
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Fano polytopes

Let P Ă Rn be a full-dimensional lattice polytope.
§ We say that P is a Fano if the origin of Rn belongs to the

interior of P and the vertices of P are primitive lattice points
in Zn.

§ A Fano polytope P is called terminal if every lattice point on
the boundary is a vertex.

§ A Fano polytope P is said to be reflexive if each facet of P has
lattice distance one from the origin. Equivalently, its dual
polytope

P_ “ tx P Rn : xx , yy ě ´1 for all y P Pu
is a lattice polytope.



Terminal reflexive edge polytopes

Proposition ([HHMNO11])
Let G be a finite directed graph. Then the following arguments are
equivalent:

1. AG is Fano;
2. AG is terminal reflexive;
3. Every directed edge of G belongs to a directed cycle in G.

T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, Roots of
Ehrhart polynomials arising from graphs. J Algebr Comb 34, 721–749 (2011).



Terminal reflexive edge polytopes

Proposition ([HHMNO11])
Let G be a finite directed graph. Then the following arguments are
equivalent:

1. AG is Fano;
2. AG is terminal reflexive;
3. Every directed edge of G belongs to a directed cycle in G.

Notation: For a Fano polytope AG , XG is the normal toric Fano
variety associated to the spanning fan of AG .
In this case, XG is a Gorenstein toric Fano variety with terminal
singularities.

T. Matsui, A. Higashitani, Y. Nagazawa, H. Ohsugi and T. Hibi, Roots of
Ehrhart polynomials arising from graphs. J Algebr Comb 34, 721–749 (2011).



Gorenstein toric Fano variety arising from a directed graph
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What is a deformation of an algebraic variety?

Let X be a scheme of finite type over C and let A be an Artinian
algebra over C. An infinitesimal deformation of X over A is defined
as the following cartesian diagram:

X X

SpecpCq SpecpAq
π
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What is a deformation of an algebraic variety?

Let X be a scheme of finite type over C and let A be an Artinian
algebra over C. An infinitesimal deformation of X over A is defined
as the following cartesian diagram:

X X

SpecpCq SpecpAq
π

where π is flat. Let π1 : X Ñ X 1 be another deformation of X over
SpecpAq. We say that π and π1 are isomorphic, if there exists a map
X Ñ X 1 over SpecpAq inducing the identity on X .
Let DefX be a functor such that DefX pAq is the set of deformations
of X over SpecpAq modulo isomorphisms.

X �
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What is rigidity?

Definition
The map π is called a first order deformation of X if
S “ SpecpCr�s{p�2qq. We set T 1

X :“ DefX pSpecpCr�s{p�2qqq.
‚ The variety X is called rigid if T 1

X “ 0.
‚ This implies that X has no nontrivial infinitesimal deformations.
i.e. every deformation π P DefX pAq over a Artin ring A is
isomorphic to the trivial deformation X ˆ SpecpAq ÝÑ SpecpAq.

Our aim: Describe which Gorenstein toric Fano varieties arising
from directed graphs are rigid purely in terms of graphs.



Combinatorial study of rigidity
§ A Fano polytope is called Q-factorial if it is simplicial.
§ A Fano polytope is called smooth if the vertices of each facet

form a Z-basis of Zn.
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Combinatorial study of rigidity
§ A Fano polytope is called Q-factorial if it is simplicial.
§ A Fano polytope is called smooth if the vertices of each facet

form a Z-basis of Zn.
[BB96] Every smooth toric Fano variety is rigid.
[dFH11] Q-factorial terminal toric Fano varieties are rigid.
Theorem ([Hig15])
Let G be a finite symmetric directed graph on rns. Then the
following arguments are equivalent:

1. XG is smooth;
2. XG is Q-factorial;
3. Gun has no even cycle as subgraphs.

F. Bien, M. Brion, Automorphisms and local rigidity of regular varieties.
Compos. Math. 104(1), 1–26 (1996)

T. de Fernex, C.D. Hacon, Deformations of canonical pairs and Fano
varieties. J. Reine Angew. Math. 651, 97–126 (2011)

A. Higashitani, Smooth Fano polytopes arising from finite directed graphs.
Kyoto Journal of Mathematics, 55(3):579–592, 2015.



Combinatorial study of rigidity
The most general rigidity theorem for toric Fano varieties known to
this date is the following result of Totaro:
Theorem ([Tot12])
A toric Fano variety which is smooth in codimension 2 and
Q-factorial in codimension 3 is rigid.

B. Totaro. Jumping of the nef cone for Fano varieties. J. Algebraic Geom.,
21:375–396, 2012.
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Combinatorial study of rigidity
The most general rigidity theorem for toric Fano varieties known to
this date is the following result of Totaro:
Theorem ([Tot12])
A toric Fano variety which is smooth in codimension 2 and
Q-factorial in codimension 3 is rigid.

Proposition
Let P be a terminal reflexive polytope. Then

1. XP is smooth in codimension 2,
2. all 2-faces of P are triangles if and only if XP is Q-factorial in

codimension 3.
In particular, XP is rigid.
It remains to classify the directed edge polytopes whose 2-faces
are all triangles.

B. Totaro. Jumping of the nef cone for Fano varieties. J. Algebraic Geom.,
21:375–396, 2012.



Faces of directed edge polytopes

Lemma (Kara, , Tsuchiya)
Let G be a connected finite directed graph such that AG is terminal
and reflexive. Then each proper face of the directed edge polytope
AG is the directed edge polytope of a finite directed acyclic
subgraph H of G.
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Faces of directed edge polytopes

Lemma (Kara, , Tsuchiya)
Let G be a connected finite directed graph such that AG is terminal
and reflexive. Then each proper face of the directed edge polytope
AG is the directed edge polytope of a finite directed acyclic
subgraph H of G.
For a finite acyclic directed graph D “ prns, ApDqq, we define a
lattice polytope rAD by

rAD :“ convt0, ei ´ ej : pi , jq P ApDqu Ă Rn.

Let AD1 , . . . , ADr be the facets of AG with acyclic directed graphs
D1, . . . , Dr . Since the origin of Rn belongs to the interior of AG ,
the directed edge polytope AG is divided by rAD1 , . . . , rADr . In
particular, each face of rADi which does not contain the origin is a
face of ADi , hence a face of AG .

S. Kara, I. Portakal, and A. Tsuchiya, Rigid Gorenstein toric Fano varieties
arising from directed graphs, Collect. Math. (2022)



Faces of directed edge polytopes

The directed edge polytope AG is divided by rAD1 , . . . , rADr and
each face of rADi which does not contain the origin is a face of ADi ,
hence a face of AG .

L. Setiabrata. Faces of root polytopes. SIAM Journal on Discrete
Mathematics, 2021.



Faces of directed edge polytopes

The directed edge polytope AG is divided by rAD1 , . . . , rADr and
each face of rADi which does not contain the origin is a face of ADi ,
hence a face of AG .
Theorem ([Set21])
Let D “ pV pDq, ApDqq be a finite acyclic directed graph and

H Ă D a directed subgraph of D with V pHq “ V pDq and the
directed edge set ApHq. Then the polytope AH is a face of rAD if
and only if H is path consistent and admissible.

L. Setiabrata. Faces of root polytopes. SIAM Journal on Discrete
Mathematics, 2021.
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Rigidity purely in terms of graphs
Theorem (Kara, , Tsuchiya)
Let G be a finite directed graph such that every directed edge of G belongs
to a directed cycle in G. Then the following arguments are equivalent:

1. XG is smooth in codimension 2 and Q-factorial in codimension 3.
2. G satisfies both of the following:

§ G has no directed subgraph C1 whose directed edge set is

tpi1, i2q, pi1, i4q, pi3, i2q, pi3, i4qu;

§ For any directed subgraph C2 of G whose directed edge set is

tpi1, i2q, pi2, i3q, pi1, i4q, pi4, i3qu,

it follows that pi1, i3q is a directed edge of G or there exists a
vertex j R ti2, i4u in G such that pi1, jq and pj, i3q are directed
edges of G.

In particular, XG is rigid.
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§ G has no directed subgraph C1
whose directed edge set is

tpi1, i2q, pi1, i4q, pi3, i2q, pi3, i4qu;

§ For any directed subgraph C2 of
G whose directed edge set is

tpi1, i2q, pi2, i3q, pi1, i4q, pi4, i3qu,

it follows that pi1, i3q is a
directed edge of G or there exists
a vertex j R ti2, i4u in G such
that pi1, jq and pj, i3q are directed
edges of G .



Rigidity purely in terms of graphs
Corollary (Kara, , Tsuchiya)
Let G be a finite symmetric directed graph. Then the following arguments
are equivalent:

1. XG is smooth in codimension 2 and Q-factorial in codimension 3.
2. The underlying undirected graph Gun has no 4-cycle as a subgraph.

In particular, XG is rigid.



Rigidity purely in terms of graphs
Corollary (Kara, , Tsuchiya)
Let G be a finite symmetric directed graph. Then the following arguments
are equivalent:

1. XG is smooth in codimension 2 and Q-factorial in codimension 3.
2. The underlying undirected graph Gun has no 4-cycle as a subgraph.

In particular, XG is rigid.
Example
The Gorenstein toric Fano variety XG is rigid, since G has a no C4 as a
subgraph equivalently A has a square 2-face.
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Thank you for your time!
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