Splitting the cohomology of regular semisimple Hessenberg varieties

Antonio Nigro
(joint work with Alex Abreu)
Universidade Federal Fluminense
June 7, 2022

Dyck paths

- A Hessenberg function is a non-decreasing function $\mathbf{m}:[n] \rightarrow[n]$ such that $\mathbf{m}(i) \geq i$ for every $i \in[n]$.
- The graph associated to h is the graph with vertex set $[n]$ and set of edges $E=\{\{i, j\} ; i<j \leq \mathbf{m}(i)\}$.
- These are called indifference graphs.
- Hessenberg functions can also be identified with Dyck paths.
- In the rest of the talk by graph we will almost always mean an indifference graph.

$$
\mathbf{m}=(2,4,5,5,5)
$$

Definitions

- The chromatic polynomial of a graph admits a symmetric function generalization introduced by Stanley. Given a graph G it is defined as

$$
\operatorname{csf}(G):=\sum_{\kappa} x_{\kappa}
$$

where the sum runs through all proper colorings of the vertices $\kappa: V(G) \rightarrow \mathbb{N}$ and $x_{\kappa}:=\prod_{v \in V(G)} x_{\kappa(v)}$.

- Given a graph G the chromatic quasisymmetric function $\operatorname{csf}_{q}(G)$ is

$$
\operatorname{csf}_{q}(G):=\sum_{\kappa} q^{\operatorname{asc}(\kappa)} x_{\kappa}
$$

where the sum runs through all proper colorings of the vertices $\kappa: V(G) \rightarrow \mathbb{N}$.

Example of csf_{q}

$$
\operatorname{csf}_{q}(G)=\left(1+4 q+q^{2}\right) x_{1} x_{2} x_{3}+q\left(x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{1}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}+x_{3}^{2} x_{2}\right)
$$

Basis of the symmetric algebra

- Elementary basis

$$
e_{n}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{n}} \prod_{j=1}^{n} x_{i_{j}}, \quad e_{\lambda}=\prod e_{\lambda_{i}} .
$$

- Power sum basis

$$
p_{n}=\sum_{1 \leq i} x_{i}^{n}, \quad p_{\lambda}=\prod p_{\lambda_{i}}
$$

- For $\operatorname{csf}_{q}(G)$ in the example before we have

$$
\begin{aligned}
\operatorname{csf}_{q}(G) & =\left(1+q+q^{2}\right) x_{1} x_{2} x_{3}+q\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)\left(x_{1}+x_{2}+x_{3}\right) \\
& =\left(1+q+q^{2}\right) e_{3}+q e_{2,1} \\
\operatorname{csf}(G) & =p_{1,1,1}-2 p_{2,1}+p_{3}
\end{aligned}
$$

Basis of the symmetric algebra

- Complete homogeneous basis

$$
h_{n}=\sum_{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n}} \prod_{j=1}^{n} x_{i_{j}}, \quad h_{\lambda}=\prod h_{\lambda_{i}} .
$$

- Schur basis For each partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ the Schur symmetric function s_{λ} can be defined as

$$
\begin{gathered}
s_{\lambda}:=\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)_{i, j=1, \ldots, l} \\
\operatorname{csf}(G)=\left(1+2 q+q^{2}\right) s_{1,1,1}+q s_{2,1}
\end{gathered}
$$

Involution ω of Λ

There is an involution on \wedge given by

$$
\begin{aligned}
& \omega: \Lambda \longrightarrow \Lambda \\
& e_{n} \longmapsto h_{n} \\
& h_{n} \longmapsto e_{n} \\
& s_{\lambda} \longmapsto s_{\lambda} t \\
& p_{n} \longmapsto(-1)^{n-1} p_{n}
\end{aligned}
$$

Most of the results that follows are for $\omega\left(\operatorname{csf}_{q}(G)\right)$.

Stanley-Stembridge formula

$$
\begin{aligned}
& \text { Definition } \\
& \text { We define } S_{n, \mathbf{m}} \text { as } \\
& \left\{\sigma \in S_{n} ; \sigma(i) \leq \mathbf{m}(i) \text { for every } i\right\} \text {. }
\end{aligned}
$$

The p-expansion of csf in terms of permutations
We have that

$$
\omega\left(\operatorname{csf}\left(G_{\mathbf{m}}\right)\right)=\sum_{\sigma \in S_{n, \mathbf{m}}} p_{\lambda(\sigma)}
$$

where $\lambda(\sigma)$ is the cycle partition of σ.
The p-expansion of csf in terms of increasing forests
We have that

$$
\omega\left(\operatorname{csf}\left(G_{\mathrm{m}}\right)\right)=\sum_{F \in I F\left(G_{\mathrm{m}}\right)} p_{\lambda(F)}
$$

Example

If $\boldsymbol{m}=(2,4,4,4)$, we have that

$$
\omega\left(\operatorname{csf}\left(G_{m}\right)\right)=p_{1,1,1,1}+4 p_{2,1,1}+p_{2,2}+4 p_{3,1}+2 p_{4}
$$

Below the increasing spanning forests with partition $(3,1)$.

Representations of S_{n} and the Frobenius character

- The irreducible representations of S_{n} are indexed by partitions, representing its conjugacy classes.
- For every $\lambda \vdash n$, we let $S_{n} \rightarrow G L\left(V_{\lambda}\right)$ be the irreducible representation associated with λ.
- Every other representation $S_{n} \rightarrow G L(W)$ admits a decomposition $W=\bigoplus_{\lambda} V_{\lambda}^{a_{\lambda}}$.
- We define the Frobenius character of W by $\operatorname{ch}(W)=\sum a_{\lambda} s_{\lambda} \in \Lambda_{n}$.

Induced representations

- For each partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ we let

$$
S_{\lambda}:=S_{\lambda_{1}} \times S_{\lambda_{2}} \times \ldots \times S_{\lambda_{i}} \subset S_{n}
$$

- We have that S_{n} acts on S_{n} / S_{λ} by multiplication on the left.
- This gives a representation $S_{n} \rightarrow G L\left(\mathbb{C}^{S_{n} / S_{\lambda}}\right)$, the representation induced by the trivial representation of S_{λ}.
- The Frobenius character of $\mathbb{C}^{S_{n} / S_{\lambda}}$ is h_{λ}.

Hessenberg varieties

- For a Hessenberg function \mathbf{m} and a diagonal matrix X with distinct entries, we define the Hessenberg variety

$$
\mathcal{Y}_{\mathbf{m}}(X):=\left\{V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n} ; X V_{i} \subset V_{\mathrm{m}(i)}\right\}
$$

- The Hessenberg variety is a subvariety of the flag variety.
- There is a S_{n}-action on the cohomology $H^{*}\left(\mathcal{Y}_{\mathrm{m}}(X)\right)$.
- $\operatorname{ch}_{q}\left(H^{*}\left(\mathcal{Y}_{\mathrm{m}}(X)\right)\right)=\operatorname{csf}_{q}\left(G_{\mathrm{m}}\right)$.

Decomposition Theorem

- Consider the map $\mathcal{Y}_{\mathrm{m}}(X) \rightarrow \mathbb{P}^{n-1}=\operatorname{Gr}(1, n), V_{\bullet} \mapsto V_{1}$.
- The decomposition theorem states that we can write the cohomology $H^{*}\left(\mathcal{Y}_{\mathrm{m}}(X)\right)$ in terms of the cohomology of subvarieties of \mathbb{P}^{n-1}.
- In this case, these subvarieties will be the varieties $H_{i} \subset \mathbb{P}^{n-1}$ that are the union of the coordinates codimension i planes.
- H_{i} is the union of the closures of the orbits of codimension i via the action of $\left(\mathbb{C}^{*}\right)^{n}$ on \mathbb{P}^{n-1}.
- Explicitly

$$
H^{*}\left(\mathcal{Y}_{\mathrm{m}}(X)\right)=\bigoplus_{i=0}^{n-1} H^{*}\left(\widetilde{H}_{i}\right) \otimes L_{i}
$$

- This decomposition is compatible with the S_{n}-action. That is, we have a S_{n}-action on each summand $H^{*}\left(H_{i}\right) \otimes L_{i}$. Moreover, each vector space L_{i} has an action of S_{i}.
- \widetilde{H}_{i} is the union of $\binom{n}{i}$ copies of \mathbb{P}^{n-i-1}.
- We have that ch $\left(H^{*}\left(\tilde{H}_{i}\right) \otimes L_{i}\right)=(n-i) h_{n-i} \operatorname{ch}\left(L_{i}\right)$.
- Our goal: find a combinatorial interpretation for $\mathrm{ch}\left(L_{i}\right)$

Theorem

We have that $g_{k}\left(G_{m}\right):=\omega\left(\operatorname{ch}\left(L_{k}\right)\right)(k=0, \ldots, n-1)$ is equal to

$$
\sum_{\substack{\sigma=\tau_{1} \ldots \tau_{j} \in S_{n, m} \\\left|\tau_{1}\right| \geq n-k}}(-1)^{k-j+1} h_{\left|\tau_{1}\right|-n+k} p_{\left|\tau_{2}\right|} \cdots p_{\left|\tau_{j}\right|}
$$

which is equivalent to

$$
\sum_{\substack{F=T_{1} \cup . . . \cup T_{j} \in I F\left(G_{m}\right) \\\left|T_{1}\right| \geq n-k}}(-1)^{k-j+1} h_{\left|T_{1}\right|-n+k} p_{\left|T_{2}\right|} \cdots p_{\left|T_{j}\right|} .
$$

The symmetric function $g_{k}\left(G_{m}\right)$ is of degree k. There are q-analogue versions.

Corollaries

Corollary
We have that

$$
\operatorname{csf}\left(G_{\mathbf{m}}\right)=\sum_{i=0}^{n-1}(n-i) e_{n-i} g_{i}(\mathbf{m})
$$

Corollary
The symmetric function $g_{k}\left(G_{m}\right)$ is Schur-positive.

Invariance of g_{k}

- Let P_{ℓ} be the path graph with vertices $1, \ldots, \ell$. Consider the indifference graph $P_{\ell} \sqcup_{\ell, 1} G_{\mathrm{m}}$ obtained by attaching the vertex ℓ of P_{ℓ} with the vertex 1 of G_{m}. Then $g_{k}\left(P_{\ell} \sqcup_{\ell, 1} G_{m}\right)=g_{k}\left(G_{m}\right)$.

- Every increasing subtree of $P_{\ell} \sqcup_{\ell, 1} G_{m}$ with root 0 and size at least ℓ is of the form $P_{\ell} \sqcup_{\ell, 1} T$ where T is an increasing tree of G_{m} with root 1 .
- We can extend the definition of $g_{k}\left(G_{m}\right)$ for every k, by defining $g_{k}\left(G_{m}\right)=g_{k}\left(P_{\ell} \sqcup_{\ell, 1} G_{m}\right)$ for $\ell \gg 0$.
- As consequence we have that $g_{k}\left(P_{\ell}\right)=g_{k}(\bullet)$.

Generating functions

- We have the following generating function for $\operatorname{csf}\left(P_{\ell}\right)$

$$
\sum_{k \geq 0} \operatorname{csf}\left(P_{k}\right) z^{k}=\frac{\sum_{\ell \geq 0} e_{k} z^{k}}{1-\sum_{k \geq 2}(k-1) e_{k} z^{k}}
$$

- We have the following generating function for $g_{k}(\bullet)$.

$$
\sum_{k \geq 0} g_{k}(\bullet) z^{k}=\frac{1}{1-\sum_{k \geq 2}(k-1) e_{k} z^{k}}
$$

- This actually holds for any graph G_{m}. We have the following generating function for $g_{k}\left(G_{m}\right)$. We have that $\sum_{k \geq 0} g_{k}\left(G_{m}\right) z^{k}$ is equal to

$$
\sum_{i=0}^{n-1}\left(\frac{g_{i}\left(G_{m}\right) z^{i}}{1-\sum_{k \geq 2}(k-1) e_{k} z^{k}}\left(1-\sum_{k=2}^{n-i-1}(k-1) e_{k} z^{k}\right)\right)
$$

Derangements and Eulerian numbers

- We have that $\operatorname{csf}_{q}\left(P_{m}\right)=\sum_{\lambda \vdash m} A_{\lambda}(q) m_{\lambda}$, where $A_{\lambda}(q)$ is the Eulerian polynomial associated to λ.

$$
A_{\lambda}(q)=\sum q^{\operatorname{desc}(\sigma)}
$$

σ is a permutation of
$w_{\lambda}=(1, \ldots, 1,2, \ldots, 2, \ldots, \ell(\lambda), \ldots, \ell(\lambda))$ such that
$\sigma(i+1) \neq \sigma(i)$ and $\operatorname{desc}(\sigma)$ is the number of indices i such that $\sigma(i)>\sigma(i+1)$.

- We have that $g_{m}(\bullet ; q)=\sum_{\lambda \vdash m} D_{\lambda}(q) m_{\lambda}$, where $D_{\lambda}(q)$ is the Derangement polynomial associated to λ.

$$
D_{\lambda}(q)=\sum_{\sigma} q^{\operatorname{exc}(\sigma)}
$$

σ is a derangement of
$w_{\lambda}=(1, \ldots, 1,2, \ldots, 2, \ldots, \ell(\lambda), \ldots, \ell(\lambda))$ (that is $\left.\sigma \in S_{n} / S_{\lambda}\right)$ and $\operatorname{exc}(\sigma)$ are the number of indices i such that $\sigma(i)>w_{\lambda}(i)$.

e-positivity

Corollary

We have that $g_{k}(\bullet)$ is e-positive.
Conjecture
The symmetric function $g_{k}(\mathbf{m})$ is e-positive.
Theorem (Positivity of the leading coefficient (only for $q=1$)
We have that the coefficient of e_{k} in the e-expansion of $g_{k}(\mathbf{m})$ is non-negative.

Corollary
Let $\mathbf{m}:[n] \rightarrow[n]$ be a Hessenberg function and let $\lambda \vdash n$ be a partition of length 2. The coefficient of e_{λ} in $\operatorname{csf}\left(G_{m}\right)$ is non-negative.

Thank you!

