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Dyck paths

>

| 2

A Hessenberg function is a non-decreasing function

m: [n] — [n] such that m(/) > i for every i € [n].

The graph associated to h is the graph with vertex set [n]
and set of edges E = {{/,j}; i <j <m(i)}.

These are called indifference graphs.

Hessenberg functions can also be identified with Dyck
paths.

In the rest of the talk by graph we will almost always mean
an indifference graph.

m = (2,4,5,5,5)



Definitions

» The chromatic polynomial of a graph admits a symmetric
function generalization introduced by Stanley. Given a
graph Gt is defined as

csf(G) = ZX”“

where the sum runs through all proper colorings of the
vertices r: V(G) — Nand X, := [],cy(q) Xs(v)-

» Given a graph G the chromatic quasisymmetric function
csfq(G) is

csfq(G) ==Y g,

where the sum runs through all proper colorings of the
vertices k: V(G) — N.



Example of csf,

o—o—oq2 o—o—o0J e—0 00 0o 0o—0(
X1 Xo X3 X4 X3 Xo Xo X{ X3 Xo X3 Xi

o—eo o eo—0—901 06— 0—0J 0 0—0(
X3 X9 Xo Xz Xo X1 X1 Xo X4 Xo X1 Xo

csfq(G) =(1 + 49 + @®)xixoXs + (X2 X2 + XEx3 + XEX1 + X5 X3 + XEX1 + X5 X0)



Basis of the symmetric algebra

» Elementary basis

n
en = Z HX,'/., e,\:HeA,..

1<ii<ip<...<lp j=1

» Power sum basis

Pn = innv Px = HPA,'~
1<i
» For csfq(G) in the example before we have
csfq(G) =(1 + g+ @®)xixox3 + q(X1 X2 + X1X3 + XoX3) (X1 + X2 + X3)
=(1+q+%)es + gz,
csf(G) =p1,1,1 — 2P2,1 + P3



Basis of the symmetric algebra

» Complete homogeneous basis
n

=3 IIx  m=IIm
1<ii <ip<...<in j=1

» Schur basis For each partition A = (A4, ..., \¢) the Schur
symmetric function s, can be defined as

Sy = det(h)\i+j_;);’j:1 /-

77777

csf(G) =(1 +2q9 + q2)31,1,1 + qS2 1



Involution w of A

There is an involution on A given by

Most of the results that follows are for w(csfy(G)).



Stanley-Stembridge formula

. Definition

L We define Spm as
o — 21534 {o € Sp; o(i) < m(i) for every i}.
The p-expansion of csf in terms of permutations

We have that

CSf Gm Z Px(o)>

O'ESnm

where \(o) is the cycle partition of o.

The p-expansion of csf in terms of increasing forests
We have that

w(csf(Gm)) Z PA(F)-
FelF(Gm)



Example

If m=(2,4,4,4), we have that

w(csf(Gm)) = P1,1,1,1 +4P2,1,1 + P22 + 4P31 + 2p4

Below the increasing spanning forests with partition (3, 1).
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Representations of S, and the Frobenius character

» The irreducible representations of S, are indexed by
partitions, representing its conjugacy classes.

» Forevery A\ - n, we let S, — GL(V,) be the irreducible
representation associated with .

» Every other representation S, — GL(W) admits a
decomposition W = @, V.

» We define the Frobenius character of W by
ch(W) =>"aysy € Ap.



Induced representations

» For each partition A = (\q,..., A\x) we let
Sy = S)\1 X S>\2 X ... X S)V c S
» We have that S, acts on S,/ S, by multiplication on the left.

» This gives a representation S, — GL(CS/5)), the
representation induced by the trivial representation of S,.

» The Frobenius character of C57/Sx is h,.



Hessenberg varieties

» For a Hessenberg function m and a diagonal matrix X with
distinct entries, we define the Hessenberg variety

» The Hessenberg variety is a subvariety of the flag variety.
» There is a Sp-action on the cohomology H*(Ym(X)).
> chg(H*(Vm(X))) = csfq(Gm).



Decomposition Theorem

>
>

Consider the map Ym(X) — P~ = Gr(1,n), Vs — V4.
The decomposition theorem states that we can write the

cohomology H*(Ym(X)) in terms of the cohomology of
subvarieties of P"~1.

In this case, these subvarieties will be the varieties
H; c P"1 that are the union of the coordinates
codimension i planes.

H; is the union of the closures of the orbits of codimension
i via the action of (C*)" on P,

Explicitly
n—1
H*(Ym(X)) = @ H*(H) & L;.
i=0

This decomposition is compatible with the S,-action. That

is, we have a Sp-action on each summand H*(H;) ® L;.
Moreover, each vector space L; has an action of S;.



> H; is the union of (7) copies of P"~/~1.

» We have that ch(H*(H;) ® L;) = (n — i)h,_;ch(L;).
» Our goal: find a combinatorial interpretation for ch(L;)

Theorem
We have that gx(Gm) := w(ch(Lk)) (k =0,...,n—1) is equal to

Yo T A kP Py

o=T1--T}€Snm
|T1|>n—k

which is equivalent to

> (G Ay FARSINY- P ARERY - )

F=T1U..UT;€lF(Gm)
|Ty[>n—k

The symmetric function gx(Gm) is of degree k. There are
g-analogue versions.



Corollaries

Corollary
We have that

n—1

csf(Gm) = Z(n —i)ep_igi(m).

i=0

Corollary
The symmetric function gx(Gm) is Schur-positive.



Invariance of g

» Let P, be the path graph with vertices 1,...,¢. Consider
the indifference graph P, L, 1 Gm obtained by attaching the
vertex ¢ of P, with the vertex 1 of Gm. Then

9k(PrUg 1 Gm) = 9k(Gm).

.—O—O—Hm

0 1 2 3 4

» Every increasing subtree of P, Li; 1 Gm with root 0 and size
at least / is of the form P, Li, 4 T where T is an increasing
tree of Gy with root 1.

» We can extend the definition of gx(Gm) for every k, by
defining gk(Gm) = gk(Pr U1 Gm) for £ >> 0.

» As consequence we have that gx(Py) = gk(e).



Generating functions

» We have the following generating function for csf(FP;)

k
Z csf(Pk)Zk ZZEO oKz

= 1 =Y ok —1)exzk

» We have the following generating function for gi(e).

ng(o)zk 1

= T Sk~ DekZk

» This actually holds for any graph G,. We have the
following generating function for gx(Gm). We have that

> k=0 9k(Gm)Z¥ is equal to

n—1 i G i n—i—1
Z <1 _ Zf>(2(k)—z1)ekzk(1 - Z (k - 1)ekzk)>

i=0 k=2




Derangements and Eulerian numbers

» We have that csfq(Pm) = >, Ax(g)my, where Ax(q) is
the Eulerian polynomial associated to A.

A(@) = 3 =)

o is a permutation of
wy=(1,...,1,2,...,2,...,4(\),...,£(N\)) such that
o(i+ 1) # o(i) and desc(o) is the number of indices i such
that o(i) > o(i+1).

> We have that gm(e; q) = >, DA(q@)my, where D,(q) is
the Derangement polynomial associated to \.

Di(g) = 3" g=l?)

o is a derangement of
wy=(1,...,1,2,...,2,... 4(\),..., L)) (that is

o € Sp/S,) and exc(o) are the number of indices i such
that o (i) > wy (/).

>



e-positivity

Corollary
We have that g(e) is e-positive.

Conjecture
The symmetric function gx(m) is e-positive.

Theorem (Positivity of the leading coefficient (only for
qg=1))

We have that the coefficient of ey in the e-expansion of gx(m)
is non-negative.

Corollary

Letm: [n] — [n] be a Hessenberg function and let \ - n be a
partition of length 2. The coefficient of ey, in csf(Gm) is
non-negative.



Thank you!



