Splitting the cohomology of regular semisimple Hessenberg varieties

Antonio Nigro (joint work with Alex Abreu)

Universidade Federal Fluminense

June 7, 2022

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Dyck paths

- A Hessenberg function is a non-decreasing function m: [n] → [n] such that m(i) ≥ i for every i ∈ [n].
- The graph associated to *h* is the graph with vertex set [*n*] and set of edges *E* = {{*i*,*j*}; *i* < *j* ≤ m(*i*)}.
- These are called indifference graphs.
- Hessenberg functions can also be identified with Dyck paths.
- In the rest of the talk by graph we will almost always mean an indifference graph.

Definitions

The chromatic polynomial of a graph admits a symmetric function generalization introduced by Stanley. Given a graph G it is defined as

$$\operatorname{csf}(G) := \sum_{\kappa} X_{\kappa}.$$

where the sum runs through all proper colorings of the vertices $\kappa \colon V(G) \to \mathbb{N}$ and $x_{\kappa} := \prod_{v \in V(G)} x_{\kappa(v)}$.

 Given a graph G the chromatic quasisymmetric function csf_q(G) is

$${\operatorname{csf}}_q(G):=\sum_\kappa q^{\operatorname{asc}(\kappa)}x_\kappa.$$

where the sum runs through all proper colorings of the vertices $\kappa \colon V(G) \to \mathbb{N}$.

Example of csf_q

 $csf_q(G) = (1 + 4q + q^2)x_1x_2x_3 + q(x_1^2x_2 + x_1^2x_3 + x_2^2x_1 + x_2^2x_3 + x_3^2x_1 + x_3^2x_2)$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Basis of the symmetric algebra

Elementary basis

$$e_n = \sum_{1 \leq i_1 < i_2 < \ldots < i_n} \prod_{j=1}^n x_{i_j}, \qquad e_\lambda = \prod e_{\lambda_j}.$$

Power sum basis

$$p_n = \sum_{1 \leq i} x_i^n, \qquad p_\lambda = \prod p_{\lambda_i}.$$

For $csf_q(G)$ in the example before we have

$$csf_q(G) = (1 + q + q^2)x_1x_2x_3 + q(x_1x_2 + x_1x_3 + x_2x_3)(x_1 + x_2 + x_3)$$
$$= (1 + q + q^2)e_3 + qe_{2,1}$$
$$csf(G) = p_{1,1,1} - 2p_{2,1} + p_3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Basis of the symmetric algebra

Complete homogeneous basis

$$h_n = \sum_{1 \leq i_1 \leq i_2 \leq \ldots \leq i_n} \prod_{j=1}^n x_{i_j}, \qquad h_\lambda = \prod h_{\lambda_j}.$$

Schur basis For each partition λ = (λ₁,...,λ_k) the Schur symmetric function s_λ can be defined as

$$s_{\lambda} := \det(h_{\lambda_i+j-i})_{i,j=1,\ldots,l}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

$${
m csf}(G) = (1+2q+q^2)s_{1,1,1}+qs_{2,1}$$

Involution ω of Λ

There is an involution on Λ given by

$$egin{aligned} &\omega\colon\Lambda\longrightarrow\Lambda\ &e_n\longmapsto h_n\ &h_n\longmapsto e_n\ &s_\lambda\longmapsto s_{\lambda^t}\ &p_n\mapsto (-1)^{n-1}p_n \end{aligned}$$

Most of the results that follows are for $\omega(csf_q(G))$.

Stanley-Stembridge formula

Definition We define $S_{n,\mathbf{m}}$ as $\{\sigma \in S_n; \sigma(i) \leq \mathbf{m}(i) \text{ for every } i\}.$

The *p*-expansion of csf in terms of permutations We have that

$$\omega(\mathsf{csf}(G_{\mathsf{m}})) = \sum_{\sigma \in S_{n,\mathsf{m}}} p_{\lambda(\sigma)},$$

where $\lambda(\sigma)$ is the cycle partition of σ .

The *p*-expansion of csf in terms of increasing forests We have that

$$\omega(\mathsf{csf}(G_{\mathsf{m}})) = \sum_{F \in \mathit{IF}(G_{\mathsf{m}})} p_{\lambda(F)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example

If $\mathbf{m} = (2, 4, 4, 4)$, we have that $\omega(\mathrm{csf}(G_{\mathbf{m}})) = p_{1,1,1,1} + 4p_{2,1,1} + p_{2,2} + 4p_{3,1} + 2p_4$

Below the increasing spanning forests with partition (3, 1).

Representations of S_n and the Frobenius character

- The irreducible representations of S_n are indexed by partitions, representing its conjugacy classes.
- For every $\lambda \vdash n$, we let $S_n \rightarrow GL(V_{\lambda})$ be the irreducible representation associated with λ .

- Every other representation S_n → GL(W) admits a decomposition W = ⊕_λ V^{a_λ}_λ.
- We define the Frobenius character of W by $ch(W) = \sum a_{\lambda} s_{\lambda} \in \Lambda_n$.

Induced representations

For each partition
$$\lambda = (\lambda_1, \dots, \lambda_k)$$
 we let

$$S_{\lambda} := S_{\lambda_1} \times S_{\lambda_2} \times \ldots \times S_{\lambda_i} \subset S_n.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- We have that S_n acts on S_n/S_λ by multiplication on the left.
- This gives a representation S_n → GL(C^{S_n/S_λ), the representation induced by the trivial representation of S_λ.}
- The Frobenius character of $\mathbb{C}^{S_n/S_\lambda}$ is h_λ .

Hessenberg varieties

For a Hessenberg function m and a diagonal matrix X with distinct entries, we define the Hessenberg variety

$$\mathcal{Y}_{\mathbf{m}}(X) := \{V_1 \subset \ldots \subset V_n = \mathbb{C}^n; XV_i \subset V_{\mathbf{m}(i)}\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The Hessenberg variety is a subvariety of the flag variety.
- ► There is a S_n -action on the cohomology $H^*(\mathcal{Y}_m(X))$.
- $\blacktriangleright \operatorname{ch}_q(H^*(\mathcal{Y}_{\mathbf{m}}(X))) = \operatorname{csf}_q(G_{\mathbf{m}}).$

Decomposition Theorem

- Consider the map $\mathcal{Y}_{\mathbf{m}}(X) \to \mathbb{P}^{n-1} = \mathrm{Gr}(1, n), V_{\bullet} \mapsto V_1.$
- The decomposition theorem states that we can write the cohomology H^{*}(Y_m(X)) in terms of the cohomology of subvarieties of Pⁿ⁻¹.
- In this case, these subvarieties will be the varieties *H_i* ⊂ ℙⁿ⁻¹ that are the union of the coordinates codimension *i* planes.
- *H_i* is the union of the closures of the orbits of codimension *i* via the action of (ℂ*)ⁿ on ℙⁿ⁻¹.
- Explicitly

$$H^*(\mathcal{Y}_{\mathbf{m}}(X)) = \bigoplus_{i=0}^{n-1} H^*(\widetilde{H}_i) \otimes L_i.$$

► This decomposition is compatible with the S_n-action. That is, we have a S_n-action on each summand H^{*}(H_i) ⊗ L_i. Moreover, each vector space L_i has an action of S_i.

- \widetilde{H}_i is the union of $\binom{n}{i}$ copies of \mathbb{P}^{n-i-1} .
- We have that $ch(H^*(\widetilde{H}_i) \otimes L_i) = (n-i)h_{n-i}ch(L_i)$.
- Our goal: find a combinatorial interpretation for ch(L_i)

Theorem

We have that $g_k(G_m) := \omega(ch(L_k))$ (k = 0, ..., n-1) is equal to

$$\sum_{\substack{\sigma=\tau_1\cdots\tau_j\in \mathcal{S}_{n,\mathbf{m}}\\|\tau_1|\geq n-k}} (-1)^{k-j+1} h_{|\tau_1|-n+k} p_{|\tau_2|}\cdots p_{|\tau_j|}$$

which is equivalent to

$$\sum_{\substack{F=T_1\cup\ldots\cup T_j\in IF(G_{\mathbf{m}})\\|T_1|\geq n-k}} (-1)^{k-j+1} h_{|T_1|-n+k} p_{|T_2|}\cdots p_{|T_j|}.$$

A D F A 同 F A E F A E F A Q A

The symmetric function $g_k(G_m)$ is of degree k. There are *q*-analogue versions.

Corollaries

Corollary We have that

$$\operatorname{csf}(G_{\mathbf{m}}) = \sum_{i=0}^{n-1} (n-i) e_{n-i} g_i(\mathbf{m}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Corollary

The symmetric function $g_k(G_m)$ is Schur-positive.

Invariance of g_k

Let P_ℓ be the path graph with vertices 1,..., ℓ. Consider the indifference graph P_ℓ ⊔_{ℓ,1} G_m obtained by attaching the vertex ℓ of P_ℓ with the vertex 1 of G_m. Then g_k(P_ℓ ⊔_{ℓ,1} G_m) = g_k(G_m).

- Every increasing subtree of P_ℓ ⊔_{ℓ,1} G_m with root 0 and size at least ℓ is of the form P_ℓ ⊔_{ℓ,1} T where T is an increasing tree of G_m with root 1.
- ▶ We can extend the definition of $g_k(G_m)$ for every k, by defining $g_k(G_m) = g_k(P_{\ell} \sqcup_{\ell,1} G_m)$ for $\ell >> 0$.
- As consequence we have that $g_k(P_\ell) = g_k(\bullet)$.

Generating functions

• We have the following generating function for $csf(P_{\ell})$

$$\sum_{k\geq 0} \operatorname{csf}(P_k) z^k = \frac{\sum_{\ell\geq 0} e_k z^k}{1 - \sum_{k\geq 2} (k-1) e_k z^k}$$

• We have the following generating function for $g_k(\bullet)$.

$$\sum_{k\geq 0}g_k(\bullet)z^k=\frac{1}{1-\sum_{k\geq 2}(k-1)e_kz^k}$$

► This actually holds for any graph G_m. We have the following generating function for g_k(G_m). We have that ∑_{k≥0} g_k(G_m)z^k is equal to

$$\sum_{i=0}^{n-1} \left(\frac{g_i(G_{\mathbf{m}})z^i}{1 - \sum_{k \ge 2} (k-1)e_k z^k} (1 - \sum_{k=2}^{n-i-1} (k-1)e_k z^k) \right)$$

(日) (日) (日) (日) (日) (日) (日)

Derangements and Eulerian numbers

• We have that $\operatorname{csf}_q(P_m) = \sum_{\lambda \vdash m} A_\lambda(q) m_\lambda$, where $A_\lambda(q)$ is the Eulerian polynomial associated to λ .

$$m{A}_{\lambda}(m{q}) = \sum m{q}^{ extsf{desc}(\sigma)}$$

 σ is a permutation of

 $w_{\lambda} = (1, \dots, 1, 2, \dots, 2, \dots, \ell(\lambda))$ such that $\sigma(i+1) \neq \sigma(i)$ and $desc(\sigma)$ is the number of indices *i* such that $\sigma(i) > \sigma(i+1)$.

We have that g_m(•; q) = ∑_{λ⊢m} D_λ(q)m_λ, where D_λ(q) is the Derangement polynomial associated to λ.

$$\mathcal{D}_{\lambda}(q) = \sum_{\sigma} q^{exc(\sigma)}$$

 σ is a derangement of

 $w_{\lambda} = (1, \dots, 1, 2, \dots, 2, \dots, \ell(\lambda), \dots, \ell(\lambda))$ (that is $\sigma \in S_n/S_{\lambda}$) and $exc(\sigma)$ are the number of indices *i* such that $\sigma(i) > w_{\lambda}(i)$.

e-positivity

Corollary We have that $g_k(\bullet)$ is e-positive.

Conjecture

The symmetric function $g_k(\mathbf{m})$ is *e*-positive.

Theorem (Positivity of the leading coefficient (only for q = 1))

We have that the coefficient of e_k in the e-expansion of $g_k(\mathbf{m})$ is non-negative.

Corollary

Let \mathbf{m} : $[n] \rightarrow [n]$ be a Hessenberg function and let $\lambda \vdash n$ be a partition of length 2. The coefficient of e_{λ} in $csf(G_m)$ is non-negative.

Thank you!