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Dyck paths
▶ A Hessenberg function is a non-decreasing function

m : [n] → [n] such that m(i) ≥ i for every i ∈ [n].
▶ The graph associated to h is the graph with vertex set [n]

and set of edges E = {{i , j}; i < j ≤ m(i)}.
▶ These are called indifference graphs.
▶ Hessenberg functions can also be identified with Dyck

paths.
▶ In the rest of the talk by graph we will almost always mean

an indifference graph.

m = (2,4,5,5,5)
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Definitions

▶ The chromatic polynomial of a graph admits a symmetric
function generalization introduced by Stanley. Given a
graph G it is defined as

csf(G) :=
∑
κ

xκ.

where the sum runs through all proper colorings of the
vertices κ : V (G) → N and xκ :=

∏
v∈V (G) xκ(v).

▶ Given a graph G the chromatic quasisymmetric function
csfq(G) is

csfq(G) :=
∑
κ

qasc(κ)xκ.

where the sum runs through all proper colorings of the
vertices κ : V (G) → N.



Example of csfq
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Basis of the symmetric algebra

▶ Elementary basis

en =
∑

1≤i1<i2<...<in

n∏
j=1

xij , eλ =
∏

eλi .

▶ Power sum basis

pn =
∑
1≤i

xn
i , pλ =

∏
pλi .

▶ For csfq(G) in the example before we have

csfq(G) =(1 + q + q2)x1x2x3 + q(x1x2 + x1x3 + x2x3)(x1 + x2 + x3)

=(1 + q + q2)e3 + qe2,1

csf(G) =p1,1,1 − 2p2,1 + p3



Basis of the symmetric algebra

▶ Complete homogeneous basis

hn =
∑

1≤i1≤i2≤...≤in

n∏
j=1

xij , hλ =
∏

hλi .

▶ Schur basis For each partition λ = (λ1, . . . , λk ) the Schur
symmetric function sλ can be defined as

sλ := det(hλi+j−i)i,j=1,...,l .

csf(G) =(1 + 2q + q2)s1,1,1 + qs2,1



Involution ω of Λ

There is an involution on Λ given by

ω : Λ −→ Λ

en 7−→ hn

hn 7−→ en

sλ 7−→ sλt

pn 7→ (−1)n−1pn

Most of the results that follows are for ω(csfq(G)).



Stanley-Stembridge formula

σ = 21534

Definition
We define Sn,m as
{σ ∈ Sn;σ(i) ≤ m(i) for every i}.

The p-expansion of csf in terms of permutations
We have that

ω(csf(Gm)) =
∑

σ∈Sn,m

pλ(σ),

where λ(σ) is the cycle partition of σ.

The p-expansion of csf in terms of increasing forests
We have that

ω(csf(Gm)) =
∑

F∈IF (Gm)

pλ(F ).



Example

If m = (2,4,4,4), we have that

ω(csf(Gm)) = p1,1,1,1 + 4p2,1,1 + p2,2 + 4p3,1 + 2p4

Below the increasing spanning forests with partition (3,1).
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Representations of Sn and the Frobenius character

▶ The irreducible representations of Sn are indexed by
partitions, representing its conjugacy classes.

▶ For every λ ⊢ n, we let Sn → GL(Vλ) be the irreducible
representation associated with λ.

▶ Every other representation Sn → GL(W ) admits a
decomposition W =

⊕
λ V aλ

λ .

▶ We define the Frobenius character of W by
ch(W ) =

∑
aλsλ ∈ Λn.



Induced representations

▶ For each partition λ = (λ1, . . . , λk ) we let

Sλ := Sλ1 × Sλ2 × . . .× Sλi ⊂ Sn.

▶ We have that Sn acts on Sn/Sλ by multiplication on the left.

▶ This gives a representation Sn → GL(CSn/Sλ), the
representation induced by the trivial representation of Sλ.

▶ The Frobenius character of CSn/Sλ is hλ.



Hessenberg varieties

▶ For a Hessenberg function m and a diagonal matrix X with
distinct entries, we define the Hessenberg variety

Ym(X ) := {V1 ⊂ . . . ⊂ Vn = Cn;XVi ⊂ Vm(i)}

▶ The Hessenberg variety is a subvariety of the flag variety.
▶ There is a Sn-action on the cohomology H∗(Ym(X )).
▶ chq(H∗(Ym(X ))) = csfq(Gm).



Decomposition Theorem
▶ Consider the map Ym(X ) → Pn−1 = Gr(1,n), V• 7→ V1.
▶ The decomposition theorem states that we can write the

cohomology H∗(Ym(X )) in terms of the cohomology of
subvarieties of Pn−1.

▶ In this case, these subvarieties will be the varieties
Hi ⊂ Pn−1 that are the union of the coordinates
codimension i planes.

▶ Hi is the union of the closures of the orbits of codimension
i via the action of (C∗)n on Pn−1.

▶ Explicitly

H∗(Ym(X )) =
n−1⊕
i=0

H∗(H̃i)⊗ Li .

▶ This decomposition is compatible with the Sn-action. That
is, we have a Sn-action on each summand H∗(H̃i)⊗ Li .
Moreover, each vector space Li has an action of Si .



▶ H̃i is the union of
(n

i

)
copies of Pn−i−1.

▶ We have that ch(H∗(H̃i)⊗ Li) = (n − i)hn−i ch(Li).
▶ Our goal: find a combinatorial interpretation for ch(Li)

Theorem
We have that gk (Gm) := ω(ch(Lk )) (k = 0, . . . ,n − 1) is equal to∑

σ=τ1···τj∈Sn,m
|τ1|≥n−k

(−1)k−j+1h|τ1|−n+kp|τ2| · · · p|τj |

which is equivalent to∑
F=T1∪...∪Tj∈IF (Gm)

|T1|≥n−k

(−1)k−j+1h|T1|−n+kp|T2| · · · p|Tj |.

The symmetric function gk (Gm) is of degree k. There are
q-analogue versions.



Corollaries

Corollary
We have that

csf(Gm) =
n−1∑
i=0

(n − i)en−igi(m).

Corollary
The symmetric function gk (Gm) is Schur-positive.



Invariance of gk

▶ Let Pℓ be the path graph with vertices 1, . . . , ℓ. Consider
the indifference graph Pℓ ⊔ℓ,1 Gm obtained by attaching the
vertex ℓ of Pℓ with the vertex 1 of Gm. Then
gk (Pℓ ⊔ℓ,1 Gm) = gk (Gm).
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▶ Every increasing subtree of Pℓ ⊔ℓ,1 Gm with root 0 and size
at least ℓ is of the form Pℓ ⊔ℓ,1 T where T is an increasing
tree of Gm with root 1.

▶ We can extend the definition of gk (Gm) for every k , by
defining gk (Gm) = gk (Pℓ ⊔ℓ,1 Gm) for ℓ >> 0.

▶ As consequence we have that gk (Pℓ) = gk (•).



Generating functions
▶ We have the following generating function for csf(Pℓ)

∑
k≥0

csf(Pk )zk =

∑
ℓ≥0 ekzk

1 −
∑

k≥2(k − 1)ekzk

▶ We have the following generating function for gk (•).∑
k≥0

gk (•)zk =
1

1 −
∑

k≥2(k − 1)ekzk

▶ This actually holds for any graph Gm. We have the
following generating function for gk (Gm). We have that∑

k≥0 gk (Gm)zk is equal to

n−1∑
i=0

(
gi(Gm)z i

1 −
∑

k≥2(k − 1)ekzk (1 −
n−i−1∑
k=2

(k − 1)ekzk )

)



Derangements and Eulerian numbers
▶ We have that csfq(Pm) =

∑
λ⊢m Aλ(q)mλ, where Aλ(q) is

the Eulerian polynomial associated to λ.
▶

Aλ(q) =
∑

qdesc(σ)

σ is a permutation of
wλ = (1, . . . ,1,2, . . . ,2, . . . , ℓ(λ), . . . , ℓ(λ)) such that
σ(i + 1) ̸= σ(i) and desc(σ) is the number of indices i such
that σ(i) > σ(i + 1).

▶ We have that gm(•;q) =
∑

λ⊢m Dλ(q)mλ, where Dλ(q) is
the Derangement polynomial associated to λ.

▶
Dλ(q) =

∑
σ

qexc(σ)

σ is a derangement of
wλ = (1, . . . ,1,2, . . . ,2, . . . , ℓ(λ), . . . , ℓ(λ)) (that is
σ ∈ Sn/Sλ) and exc(σ) are the number of indices i such
that σ(i) > wλ(i).



e-positivity

Corollary
We have that gk (•) is e-positive.

Conjecture
The symmetric function gk (m) is e-positive.

Theorem (Positivity of the leading coefficient (only for
q = 1))
We have that the coefficient of ek in the e-expansion of gk (m)
is non-negative.

Corollary
Let m : [n] → [n] be a Hessenberg function and let λ ⊢ n be a
partition of length 2. The coefficient of eλ in csf(Gm) is
non-negative.



Thank you!


