The Ehrhart h*-polynomial of positroid and alcoved polytopes

Yuhan Jiang

Harvard University

Based on arXiv:2410.01743 and arXiv:2412.02787 (with Elisabeth Bullock)

Overview

- Ehrhart theory
- Positroids and alcoved polytopes
- 3 Circuit/alcoved triangulation of connected positroid polytopes
- h*-polynomials of positroid polytopes and alcoved polytopes
- 5 The relation with decorated ordered set partitions
- 6 Application to tree positroids and half-open positroid polytopes

- Let $P \subseteq \mathbb{Z}^n$ be a d-dimensional lattice polytope. $Ehrhart\ polynomial\ [Ehrhart\ '62]:\ E(P,t):=\#(t\cdot P)\cap \mathbb{Z}^n$ for $t\in \mathbb{Z}_{\geq 0}.$
- Ehrhart series: $Ehr(P,z) := \sum_{t=0}^{\infty} E(P,t)z^t = \frac{h^*(P,z)}{(1-z)^{d+1}}$.
- Ehrhart h^* -polynomial: the numerator of the Ehrhart series $h^*(P,z) = h_0 + h_1 z + \cdots + h_d z^d$ has degree at most d with non-negative coefficients [Stanley '80].

Example

- Let $P \subseteq \mathbb{Z}^n$ be a d-dimensional lattice polytope. $Ehrhart\ polynomial\ [Ehrhart\ '62]:\ E(P,t):=\#(t\cdot P)\cap \mathbb{Z}^n$ for $t\in \mathbb{Z}_{\geq 0}$.
- Ehrhart series: $\mathsf{Ehr}(P,z) := \sum_{t=0}^{\infty} E(P,t) z^t = \frac{h^*(P,z)}{(1-z)^{d+1}}.$
- Ehrhart h^* -polynomial: the numerator of the Ehrhart series $h^*(P,z) = h_0 + h_1 z + \cdots + h_d z^d$ has degree at most d with non-negative coefficients [Stanley '80].

Example

- Let $P \subseteq \mathbb{Z}^n$ be a d-dimensional lattice polytope. $Ehrhart\ polynomial\ [Ehrhart\ '62]:\ E(P,t):=\#(t\cdot P)\cap \mathbb{Z}^n$ for $t\in \mathbb{Z}_{\geq 0}$.
- Ehrhart series: $\mathsf{Ehr}(P,z) := \sum_{t=0}^{\infty} E(P,t) z^t = \frac{h^*(P,z)}{(1-z)^{d+1}}.$
- Ehrhart h^* -polynomial: the numerator of the Ehrhart series $h^*(P,z) = h_0 + h_1 z + \cdots + h_d z^d$ has degree at most d with non-negative coefficients [Stanley '80].

Example

- Let $P \subseteq \mathbb{Z}^n$ be a d-dimensional lattice polytope. $Ehrhart\ polynomial\ [Ehrhart\ '62]:\ E(P,t):=\#(t\cdot P)\cap \mathbb{Z}^n$ for $t\in \mathbb{Z}_{\geq 0}.$
- Ehrhart series: $\mathsf{Ehr}(P,z) := \sum_{t=0}^{\infty} E(P,t) z^t = \frac{h^*(P,z)}{(1-z)^{d+1}}.$
- Ehrhart h^* -polynomial: the numerator of the Ehrhart series $h^*(P,z) = h_0 + h_1z + \cdots + h_dz^d$ has degree at most d with non-negative coefficients [Stanley '80].

Example

Previously, on the h^* of hypersimplices

- Katzman ('05) computed the Ehrhart polynomial of the hypersimplices. Ferroni ('21) showed that the hypersimplices are Ehrhart positive.
- Nan Li ('11) computed the h*-polynomial of the half-open hypersimplices.
- Nick Early ('17) conjectured that the h*-polynomial of hypersimplices are counted by hypersimplicial decorated ordered set partitions (OSP), and Donghyun Kim ('20) proved it.

Question

Is there a formula for the Ehrhart series of an arbitrary alcoved polytope? Can we relate our formula to decorated ordered set partitions?

Previously, on the h^* of hypersimplices

- Katzman ('05) computed the Ehrhart polynomial of the hypersimplices. Ferroni ('21) showed that the hypersimplices are Ehrhart positive.
- Nan Li ('11) computed the h*-polynomial of the half-open hypersimplices.
- Nick Early ('17) conjectured that the h*-polynomial of hypersimplices are counted by hypersimplicial decorated ordered set partitions (OSP), and Donghyun Kim ('20) proved it.

Question

Is there a formula for the Ehrhart series of an arbitrary alcoved polytope? Can we relate our formula to decorated ordered set partitions?

Matroid

- A matroid is a pair $M = (E, \mathcal{B})$.
- E is a finite set; \mathcal{B} is a collection of subsets of E, called the *bases* of M.
- The basis exchange axiom:

For any
$$I, J \in \mathcal{B}$$
 and $i \in I$ there exists $j \in J$ such that $(I \setminus \{i\}) \cup \{j\} \in M$.

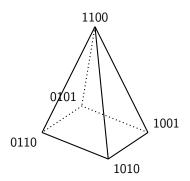
- All bases $B \in \mathcal{B}$ have the same size, called the *rank* of M.
- The matroid polytope is the convex hull of e_B for $B \in \mathcal{B}$ where $e_B = \sum_{i \in B} e_i$.

Matroid from matrix

Given a $k \times n$ matrix of rank k, the subset of columns giving nonzero $k \times k$ minors form the bases of a matroid.

$$\begin{pmatrix}
1 & 0 & -1 & -1 \\
0 & 1 & 1 & 1
\end{pmatrix}$$

$$\Delta_{12}=\Delta_{13}=\Delta_{14}=1, \Delta_{23}=\Delta_{24}=1, \Delta_{34}=0.$$



Positroid

- Postnikov first considered it in his study of the positive Grassmannian.
- Positroids are matroids given by matrices with nonnegative maximal minors.
- In bijection with several interesting classes of combinatorial objects, including Grassmann necklaces, decorated permutations, and equivalence classes of plabic graphs.

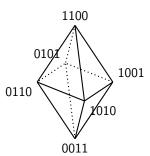


Figure: Uniform matroids are positroids. The matroid polytope of the uniform matroid $U_{k,n}$ is the hypersimplex $\Delta_{k,n}$. Here we show $\Delta_{2,4}$?

Alcoved polytopes

We follow the conventions of Lam and Postnikov.

- Consider the affine Coxeter arrangement with respect to a irreducible crystallographic root system Φ.
- The regions of the affine Coxeter arrangements are simplices called *alcoves*. A convex union of alcoves is an *alcoved polytope*.
- simple roots: $\alpha_1, \ldots, \alpha_n$; fundamental coweights: $\omega_1, \ldots, \omega_n$; highest root: $a_1\alpha_1 + \cdots + a_n\alpha_n$
- The fundamental alcove A_{\circ} is the convex hull of $0, \omega_1/a_1, \ldots, \omega_n/a_n$.
- Positroid polytopes are exactly those matroid polytopes that are also alcoved.

Reduce to connected positroids

- A matroid which cannot be written as the direct sum of two nonempty matroids is connected.
- If M is a positroid such that $M = M_1 \oplus \cdots \oplus M_m$, then each M_i is a positroid [Ardila–Rincon–Williams '16].
- The matroid polytope of M is the direct product $P_M = P_{M_1} \times \cdots \times P_{M_m}$, and the Ehrhart polynomial of M is the product $E(P_M, t) = E(P_{M_1}, t) \cdots E(P_{M_m}, t)$.
- It suffices to give formulas for the h^* -polynomials of all connected positroid polytope. A connected positroid polytope on [n] has dimension n-1.

Grassmann necklaces

Definition

Let $k \leq n$ be a positive integer. A *Grassmann necklace* of type (k, n) is a sequence (J_1, J_2, \ldots, J_n) of k-subsets $J_i \in {[n] \choose k}$ such that for any $i \in [n]$

- if $i \in J_i$ then $J_{i+1} = J_i \{i\} \cup \{j\}$ for some $j \in [n]$,
- if $i \notin J_i$ then $J_{i+1} = J_i$,

where the indices i are taken modulo n.

Theorem (Postnikov '06)

There is a bijection between positroids of rank k on [n] and Grassmann necklaces of type (k, n).

Circuits and cyclic left descents

- Lam and Postnikov defined a circuit to be a sequence of binary vectors $v_1 \to v_2 \to \cdots \to v_n \to v_{n+1} := v_1$ such that v_{i+1} is obtained from v_i by shifting a '1' in v_i one step to the right to the next adjacent place. The positions of the shifts in a minimal circuit give rise to a long cycle $(w) = (w_1, \ldots, w_n) \in S_n$.
- Parisi, Sherman-Bennett, Tessler, and Williams showed that the circuits of a long cycle can be recovered through its cyclic left descents.
- Each circuit defines a simplex (or equivalently, a type A alcove), and they together triangulate the hypercube. The set of circuits of length n with k ones triangulate the hypersimplex $\Delta_{k,n}$.

Circuits and cyclic left descents

- Lam and Postnikov defined a circuit to be a sequence of binary vectors $v_1 \to v_2 \to \cdots \to v_n \to v_{n+1} := v_1$ such that v_{i+1} is obtained from v_i by shifting a '1' in v_i one step to the right to the next adjacent place. The positions of the shifts in a minimal circuit give rise to a long cycle $(w) = (w_1, \ldots, w_n) \in S_n$.
- Parisi, Sherman-Bennett, Tessler, and Williams showed that the circuits of a long cycle can be recovered through its cyclic left descents.
- Each circuit defines a simplex (or equivalently, a type A alcove), and they together triangulate the hypercube. The set of circuits of length n with k ones triangulate the hypersimplex $\Delta_{k,n}$.

Circuits and cyclic left descents

- Lam and Postnikov defined a circuit to be a sequence of binary vectors $v_1 \to v_2 \to \cdots \to v_n \to v_{n+1} := v_1$ such that v_{i+1} is obtained from v_i by shifting a '1' in v_i one step to the right to the next adjacent place. The positions of the shifts in a minimal circuit give rise to a long cycle $(w) = (w_1, \ldots, w_n) \in S_n$.
- Parisi, Sherman-Bennett, Tessler, and Williams showed that the circuits of a long cycle can be recovered through its cyclic left descents.
- Each circuit defines a simplex (or equivalently, a type A alcove), and they together triangulate the hypercube. The set of circuits of length n with k ones triangulate the hypersimplex $\Delta_{k,n}$.

Circuit description of alcoves

Definition (PSBTW '24)

- For a permutation $w \in S_n$, index $i \in [n]$ is a cyclic left descent if i < n and $w^{-1}(i) > w^{-1}(i+1)$ or i = n and $w^{-1}(1) < w^{-1}(n)$. Let $c\mathrm{Des}_L(w)$ denote the set of cyclic left descents of w, and $\mathrm{cdes}_L(w) = |c\mathrm{Des}_L(w)|$.
- Let $w^{(a)}$ denote the cyclic rotation of $w_1 \dots w_n$ ending at a. We define $I_r(w) = \mathrm{cDes}_L(w^{(r)})$, which only depends on the cycle (w). Then $I_{w_1}(w) \to I_{w_2}(w) \to \cdots \to I_{w_n}(w) \to I_{w_1}(w)$ is the *circuit* of $\Delta_{(w)}$, and the convex hull of their indicator vectors is called the (w)-simplex, denoted by $\Delta_{(w)}$.

Circuit description of alcoves

Definition (PSBTW '24)

- For a permutation $w \in S_n$, index $i \in [n]$ is a cyclic left descent if i < n and $w^{-1}(i) > w^{-1}(i+1)$ or i = n and $w^{-1}(1) < w^{-1}(n)$. Let $c\mathrm{Des}_L(w)$ denote the set of cyclic left descents of w, and $\mathrm{cdes}_L(w) = |c\mathrm{Des}_L(w)|$.
- Let $w^{(a)}$ denote the cyclic rotation of $w_1 \dots w_n$ ending at a. We define $I_r(w) = \mathrm{cDes}_L(w^{(r)})$, which only depends on the cycle (w). Then $I_{w_1}(w) \to I_{w_2}(w) \to \cdots \to I_{w_n}(w) \to I_{w_1}(w)$ is the *circuit* of $\Delta_{(w)}$, and the convex hull of their indicator vectors is called the (w)-simplex, denoted by $\Delta_{(w)}$.

• The *i-order* $<_i$ on the set [n] is the total order

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 2 <_i i - 1$$
.

• For $i, j \in [n]$, the cyclic interval [i, j] is

$$\begin{cases} i <_i i+1 <_i \cdots <_i j & \text{if } i \leq j \\ i <_i \cdots n <_i 1 <_i \cdots <_i j & \text{otherwise} \end{cases}$$

• The definition of $cDes_L$ extends to the restriction of (w_1, \ldots, w_n) to the alphabet given by [i, j].

Example

• The *i-order* $<_i$ on the set [n] is the total order

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 2 <_i i - 1$$
.

• For $i, j \in [n]$, the cyclic interval [i, j] is

$$\begin{cases} i <_i i+1 <_i \cdots <_i j & \text{if } i \leq j \\ i <_i \cdots n <_i 1 <_i \cdots <_i j & \text{otherwise} \end{cases}$$

• The definition of cDes_L extends to the restriction of (w_1, \ldots, w_n) to the alphabet given by [i, j].

Example

• The *i-order* < *i* on the set [*n*] is the total order

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 2 <_i i - 1$$
.

• For $i, j \in [n]$, the cyclic interval [i, j] is

$$\begin{cases} i <_i i+1 <_i \cdots <_i j & \text{if } i \leq j \\ i <_i \cdots n <_i 1 <_i \cdots <_i j & \text{otherwise} \end{cases}$$

• The definition of $cDes_L$ extends to the restriction of (w_1, \ldots, w_n) to the alphabet given by [i, j].

Example

• The *i-order* $<_i$ on the set [n] is the total order

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 2 <_i i - 1$$
.

• For $i, j \in [n]$, the cyclic interval [i, j] is

$$\begin{cases} i <_i i+1 <_i \cdots <_i j & \text{if } i \leq j \\ i <_i \cdots n <_i 1 <_i \cdots <_i j & \text{otherwise} \end{cases}$$

• The definition of $cDes_L$ extends to the restriction of (w_1, \ldots, w_n) to the alphabet given by [i, j].

Example

Circuit/alcoved triangulation of connected positroid polytopes

Theorem (J.)

Let $P_{\mathcal{J}}$ be any connected positroid polytope, where $\mathcal{J}=(J_1,\ldots,J_n)$ is the associated Grassmann necklace. For any $i\in[n]$, suppose the elements of J_i are $a_1^i<_i\cdots<_i$ a_k^i . Then $P_{\mathcal{J}}$ is triangulated by (w)-simplices for $w\in D_{\mathcal{J}}$, where

$$D_{\mathcal{J}} := \{(w) \in S_n \mid \text{cdes}_{\mathcal{L}}(w) = k + 1, \text{cdes}_{\mathcal{L}}(w|_{[i,a_j^i]}) \le j - 1$$
for all $i \in [n], j \in [k]\}$

where $I_{w_1} \to I_{w_2} \to \cdots \to I_{w_n} \to I_{w_1}$ is the circuit of (w).

Shelling order

A shelling of a simplicial complex Γ is a linear order on its maximal faces G_1, G_2, \ldots, G_s such that, for each $i \in [2, s]$, the set $G_i \cap (G_1 \cup \cdots \cup G_{i-1})$ is a union of facets of G_i .

A triangulation of a polytope P is a polytopal complex C with underlying space equal to P such that all the polytopes in C are simplices.

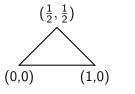
Stanley showed that if P has an unimodular triangulation C, then the h-vector of C is equal to the h*-vector of P.

Weighted dual graph of the alcove triangulation

Let P be an alcoved polytope. We construct a weighted graph Γ_P such that

- vertices: closed alcoves $A \subset P$;
- edges: (A, A') if A and A' share a common facet;
- edge weights: $\operatorname{wt}((A,A')) = \ell_i$ if the facet $F = A \cap A'$ can be transformed to a facet F_\circ of the fundamental alcove A_\circ under the action of the affine Weyl group such that ω_i/a_i is the vertex of A_\circ that does not belong to F_\circ ,
- where ℓ_i is the smallest positive integer such that $\ell_i\omega_i/a_i$ is an integer point.
- In type A, $\ell_i = 1$ for all i.

Example



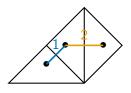


Figure: On the left, we have the fundamental alcove for B_2 , and on the right, we have an alcoved polytope and its dual graph drawn in colors.

Breadth-first search order

Let $\Gamma = (V, E)$ be an undirected graph, and $v_0 \in V$ be a vertex of Γ .

- The breadth-first search order of Γ with root v_0 is the partial order $(\mathcal{P}_{v_0,\Gamma},\prec)$ on V such that $u \prec v$ if and only if there is a shortest path from v_0 to v passing through u, for $u,v \in V$.
- For alcoved polytopes, this is the weak order (of the affine Weyl group with a specified alcove being the identity).
- Following Björner's argument, Bullock–J. showed that any linear extension of the breadth-first search order is a shelling order of the alcoved triangulation complex of P.

The h^* -polynomials of connected positroid polytopes

In type A, the edge weights of the dual graph of triangulation are all equal to one, so the sum of weights becomes the *cover*.

Theorem (J. '24)

Let $P_{\mathcal{J}}$ be any connected positroid polytope, where \mathcal{J} is the associated Grassmann necklace. Let $\Gamma_{\mathcal{J}}$ be the dual graph of the circuit triangulation of $P_{\mathcal{J}}$. For any $w_0 \in D_{\mathcal{J}}$, let $(\mathcal{P}_{w_0,\Gamma_{\mathcal{J}}}, \prec)$ be the breadth-first search order on $\Gamma_{\mathcal{J}}$ with root w_0 . The cover statistic of $\mathcal{P}_{w_0,\Gamma_{\mathcal{J}}}$ gives the h^* -polynomial of $P_{\mathcal{J}}$, i.e.,

$$h^*(P_{\mathcal{J}}, z) = \sum_{w \in D_{\mathcal{J}}} z^{\mathsf{cover}(w)}$$

where $cover(w) = \#\{u \in D_{\mathcal{J}} \mid u \prec w\}$ is the number of elements covered by w in $\mathcal{P}_{w_0,\Gamma_{\mathcal{J}}}$.

The Ehrhart series of alcoved polytopes

Theorem (Bullock-J. '24)

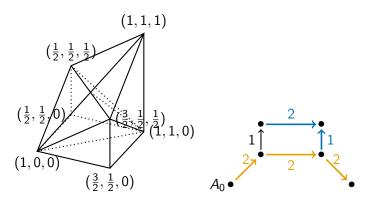
Let P be an alcoved polytope. Let Γ_P be the dual graph of the alcove triangulation of P, with edge weights given by ℓ_i 's. Fix an arbitrary alcove A_0 in P, let \mathcal{P}_{A_0} be the breadth-first search order of Γ_P with root A_0 . The Ehrhart series of P is

$$\mathsf{Ehr}(P,z) = \frac{\sum_{\mathsf{alcove}\ A \subset P} z^{\mathsf{wt}(A)}}{\prod_{i=0}^{n} (1 - z^{\ell_i})}$$

where $\operatorname{wt}(A) = \sum_{A \text{ covers } A' \text{ in } \mathcal{P}_{A_0}} \operatorname{wt}((A, A'))$ is the sum of the weights of the edges between A and the alcoves it covers.

Carolina Benedetti and Kolja Knauer and Jerónimo Valencia-Porras proved the type A case in 2023 using geometric argument.

Example



The generalized hypersimplex for $\Phi = B_3$ and k = 2. The arrows indicate cover relations in the poset \mathcal{P}_{A_0} where A_0 is chosen to be the lower left alcove. The Ehrhart series of $\Delta_2^{B_3}$ is

$$\mathsf{Ehr}(\Delta_2^{B_3},z) = \frac{1+z+3z^2+z^{2+1}}{(1-z)^2(1-z^2)^2}.$$

Example

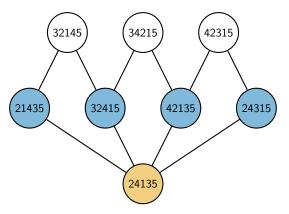


Figure: We show the graph of the circuit triangulation of the positroid polytope $P_{\mathcal{J}}$ associated to the positroid with Grassmann necklace $\mathcal{J}=(123,235,345,145,125)$, which coincides with the Hasse diagram of the poset $\mathcal{P}_{24135,\mathcal{J}}$. The h^* -polynomial of $P_{\mathcal{J}}$ is $1+4z+3z^2$.

Decorated Ordered Set Partitions

Definition (Ocneanu, Early)

A decorated ordered set partition $((S_1)_{r_1},\ldots,(S_d)_{r_d})$ of type (k,n) consists of a cyclically ordered set partition (S_1,\ldots,S_d) of [n] and a d-tuple of positive integers (r_1,\ldots,r_d) that sum up to k. A decorated ordered set partition is hypersimplicial if $r_i \leq |S_i|-1$ for all i. The winding vector of a decorated ordered set partition is an n-tuple of integers (I_1,\ldots,I_n) such that $I_i=r_k+\cdots+r_{\ell-1}$ if $i\in S_k$ and $i+1\in S_\ell$. The winding number is equal to $(I_1+\cdots+I_n)/k$. We denote the set of hypersimplicial decorated ordered set partitions of type (k,n) by $\mathrm{OSP}(\Delta_{k,n})$.

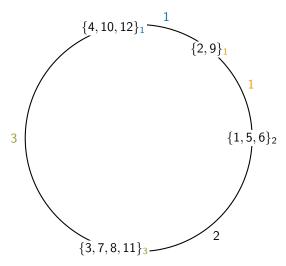


Figure: The winding vector of $((1,5,6)_2,(3,7,8,11)_3,(4,10,12)_1,(2,9)_1)$ is (6,3,3,2,0,2,0,4,6,4,3,2) and the winding number is 35/7=5. The *i*-th entry of the winding vector is the circular distance between i and i+1 in clockwise direction.

Hypersimplicial decorated ordered set partitions and h^* of the hypersimplices

Theorem (Conjectured by Early, Proof by Kim)

The number of hypersimplicial decorated ordered set partitions of type (k, n) and winding number d is equal to the d-th entry in the h^* vector of $\Delta_{k,n}$.

winding number	$OSP(\Delta_{2,4})$
0	$((1234)_2)$
1	$((12)_1(34)_1)$
1	$((14)_1(23)_1)$
2	$((13)_1(24)_1)$

Table: The h^* -polynomial of the octahedron $\Delta_{2,4}$ is $1 + 2z + z^2$.

The relation between $OSP(\Delta_{2,n})$ and $h^*(\Delta_{2,n})$

• For hypersimplices of type A, our main result simplifies to

$$h^*(\Delta_{k,n},z) = \sum_{\mathsf{alcove}\ A \subset P} z^{\mathsf{cover}(A)}$$

where cover(A) is the number of elements A covers in the breadth-first order of $\Gamma_{k,n}$ with arbitrary root alcove A_0 .

• Early and Kim's formula:

$$h^*(\Delta_{k,n},z) = \sum_{\mathbf{S} \in \mathsf{OSP}(\Delta_{k,n})} z^{\mathsf{wind}(\mathbf{S})}$$

where wind(\mathbf{S}) is the winding number of \mathbf{S} .

Is there a bijection between Early and Kim's formula and our formula?

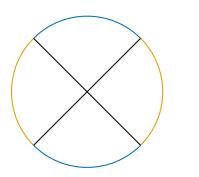
An edge labeling by chords

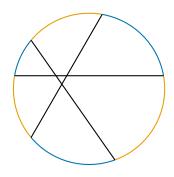
- Let $A, A' \subseteq \Delta_{2,n}$ be two adjacent alcoves. The hyperplane containing the facet $A \cap A'$ is defined by $y_j y_i = 1$ for some $i \not\equiv j \pm 1 \pmod{n}$.
- We associate to the facet $A \cap A'$ the chord $i \leftrightarrow j$.

Lemma

For any choice of A_0 , if both A', A'' are covered by A in $(\mathcal{P}_{A_0}, \prec)$, then the chords of the facets $A' \cap A, A'' \cap A$ cross in the interior of the circle.

From d chords to winding number d





For d chords that pairwise intersect in the interior of the circle, we associate an element (S_1, S_1^c) of $\mathsf{OSP}(\Delta_{2,n})$ of winding number d such that S is the union of every other arc of the circle divided by the chords.

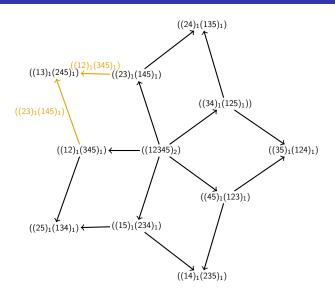
Relation with decorated ordered set partitions when k=2

Define the map ψ_{A_0} from the alcoves in $\Delta_{2,n}$ to OSP($\Delta_{2,n}$) as follows:

- $\psi_{A_0}(A_0) = (1, 2, \dots, n)_2;$
- If A covers A_1, \ldots, A_d in $(\mathcal{P}_{A_0}, \prec)$, then $\psi_{A_0}(A) = (S_1, S_1^c)$ where S is the union of every other arc of the circle divided by the d chords corresponding to $A \cap A_1, \ldots, A \cap A_d$.

Theorem (Bullock-J. '24)

The map ψ_{A_0} is a bijection from the set of alcoves that cover d alcoves in \mathcal{P}_{A_0} to $\mathbf{S} \in \mathsf{OSP}(\Delta_{2,n})$ with winding number d.



Can one generalize the relation to higher k?

Tree positroids

- Positroids are also labeled by planar bicolored graphs (plabic graphs.
- When the plabic graph of a positroid is acyclic, we call it a tree positroid.
- The dual of a plabic graph is a plabic tiling [Oh–Postnikov–Speyer '15]. Tree positroids are those positroids whose plabic tilings are bicolored subdivisions, denoted by τ .

Bicolored subdivision, partial cyclic order

A bicolored subdivision τ is a partition of an n-gon into black and white polygons such that two adjacent polygons have different colors. We say τ has type (k,n) if any triangulation of the black polygons consists of k black triangles.

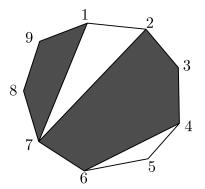


Figure: A bicolored subdivision of type (5,9).

Partial cyclic order, circular extension

• A (partial) cyclic order on a set X is a subset of $\binom{X}{3}$ with

$$(a,b,c) \in C \implies (c,a,b) \in C$$
 (cyclicity)
 $(a,b,c) \in C \implies (c,b,a) \notin C$ (asymmetry)
 $(a,b,c) \in C$ and $(a,c,d) \in C \implies (a,b,d) \in C$ (transitivity)

- A cyclic order C is *total* if for all $a, b, c \in X$, either $(a, b, c) \in C$ or $(a, c, b) \in C$. A total cyclic order on [n] is informally a way of placing $1, 2, \ldots, n$ on a circle.
- We say that C' extends C if $C \subseteq C'$. A total cyclic order that extends C is a *circular extension* of C.
- There exist partial cyclic orders without any circular extension [Meggido '76]. This decision problem is NP-complete.

Partial cyclic order associated with a bicolored subdivision

Let τ be a bicolored subdivision.

- For each white (resp. black) polygon P in τ , we let v_1, \ldots, v_r denote its list of vertices read in clockwise (respectively, counterclockwise) order. We then associate the chain $C_{(v_1,\ldots,v_r)}$ to P.
- Define the τ -order C_{τ} to be the partial cyclic order which is the union of the chains associated to the black and white polygons.

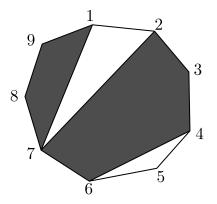


Figure: The partial cyclic order associated to this bicolored subdivision consists of chains (1,2,7), (4,5,6), (6,4,3,2,7), (7,1,9,8).

Triangulation by circular extensions

Proposition (PSBTW '24)

Let σ be a bicolored subdivision of type (k, n). Then

$$\Gamma_{\sigma} = \bigcup_{(w) \in \operatorname{Ext}(C_{\sigma})} \Delta_{(w)}.$$

That is, Γ_{σ} is the union of (w)-simplices $\Delta_{(w)}$.

Corollary

Let τ be a bicolored subdivision and let $\mathcal J$ be the Grassmann necklace of the positroid defined by τ . Then we have $D_{\mathcal J}=\operatorname{Ext}(\mathcal C_\tau)$.

Half-open

The facets of positroid polytopes are all of the form $x_{[i,j]} = k$ for some $i,j \in [n]$ and $k \in \mathbb{Z}$. We will call a facet of a positroid polytope *upper* if it is of the form $x_{[i,j]} = k$ such that the positroid polytope satisfies $x_{[i,j]} \leq k$. Ehrhart theory naturally extends to polytopes with some facets removed.

Theorem (J. '24)

Let $P_{\mathcal{J}}$ be a connected positroid polytope, where \mathcal{J} is the associated Grassmann necklace. Consider the half-open positroid polytope $\tilde{P}_{\mathcal{J}} \subset [0,1)^{n-1}$ which is the projection of $P_{\mathcal{J}}$ onto the first (n-1) coordinates with all upper facets removed. Then the h^* -polynomial of $\tilde{P}_{\mathcal{J}}$ is equal to $h^*(\tilde{P}_{\mathcal{J}},z) = \sum_{w \in D_{\mathcal{J}}} z^{\operatorname{des}(w)+1}$.

Parke–Taylor polytopes are consecutive coordinate polytopes

- If we remove the 'sum of coordinates' equality from the definition of positroid polytopes, we obtain a Parke-Taylor polytope defined by [PSBTW '24].
- If we further require that all upper facets are of the form $x_{[i,j]} \leq 1$, then we obtain a *consecutive coordinate polytope* defined by [Ayyer–Josuat-Vergés–Ramassamy '20], whose h^* -polynomial is obtained from the h^* of the half-open polytope by dividing z.
- Both of them admit a triangulation by circular extensions of a certain partial cyclic order.

How to compute the h^* -polynomial of a closed polytope knowing the h^* of the half-open counterpart?

Let P be a polytope and let F_1,\ldots,F_ℓ be a collection of facets of P. Consider the restriction of the face poset of P to have coatoms F_1,\ldots,F_ℓ . This poset $\mathcal{P}_{F_1,\ldots,F_\ell}$ describes all the faces of P in the intersections of F_1,\ldots,F_ℓ . Let μ_{F_1,\ldots,F_ℓ} be the Möbius function of this poset.

Proposition

Let P be a polytope. Let F_1, \ldots, F_ℓ be a collection of facets of P, and let $\tilde{P} = P \setminus (F_1 \cup \cdots \cup F_\ell)$. The h^* -polynomial of the polytope P is equal to

$$h^*(P,z) = h^*(\tilde{P},z) - \sum_{F \in \mathcal{P}_{F_1,\ldots,F_\ell}, F \neq P} h^*(F,z) \mu_{F_1,\ldots,F_\ell}(F,P) (1-z)^{\dim(P)-\dim(F)}.$$

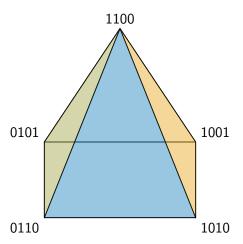


Figure: The positroid polytope associated to the Grassmann necklace $\mathcal{J}=(12,23,13,14)$ is a pyramid. The orange facet corresponds to $F_1:x_1=1$; the olive facet corresponds to $F_2:x_2=1$; the blue facet corresponds to $F_3:x_1+x_2+x_3=2$. These are all the upper facets of this positroid polytope.

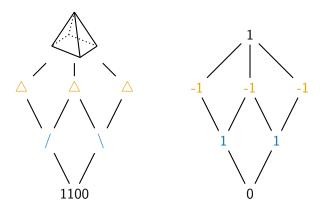


Figure: The poset $\mathcal{P}_{F_1,F_2,F_3}$ and the value of its Möbius function $\mu_{F_1,F_2,F_3}(-,P_{\mathcal{J}})$. Therefore, by inclusion-exclusion, the h^* -polynomial of $P_{\mathcal{J}}$ is $h^*(P_{\mathcal{J}},z)=2z^2+3(1-z)-2(1-z)^2=1+z$.

Thank you!

- A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Advances in Mathematics 52 (1984), no. 3, 173–212.
- M. Parisi, M. Sherman-Bennett, R. Tessler, and L. Williams, The Magic Number Conjecture for the m = 2 amplituhedron and Parke-Taylor identities.
- T. Lam and A. Postnikov, Alcoved Polytopes, I. Discrete & Computational Geometry 38 (2007), 453–478.
- A. Postnikov, Total Positivity, Grassmannians, and Networks.
- C. Benedetti, K. Knauer, and J. Valencia—Porras, On lattice path matroid polytopes: alcoved triangulations and snake decompositions.
- F. Ardila, F. Rincón, and L. Williams, *Positroids and non-crossing partitions*, Transactions of the American Mathematical Society **368** (2016), no. 1, 337–363.