Ehrhart polynomials of slices of rectangular prisms

Luis Ferroni

KTH Royal Institute of Technology Stockholm

AICoVE: an Algebraic Combinatorics Virtual Expedition

This talk is based on joint work with Daniel McGinnis "Lattice points in slices of prisms" (arXiv:2202.11808)

The hypersimplex

The hypersimplex $\Delta_{k,n}$ is defined by

$$\Delta_{k,n} = \left\{ x \in [0,1]^n : \sum_{i=1}^n x_i = k \right\}.$$

It is of fundamental importance in

- Matroid theory \rightarrow uniform matroids.
- Graph theory \rightarrow the Johnshon graph.
- Grassmannians \rightarrow specifically TNN Grassmannian.
- The theory of alcoved polytopes \rightarrow triangulations.
- Much more! (tropical geometry, coding theory, statistics of permutations, etc.)

Basic facts about the hypersimplex

Remark

The vertices of the hypersimplex $\Delta_{k,n}$ are all the 0/1-vectors in \mathbb{R}^n that have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Theorem

The volume of the hypersimplex $\Delta_{k,n}$ is

$$\operatorname{vol}(\Delta_{k,n}) = \frac{1}{(n-1)!} A(n-1, k-1),$$

where $A(n-1, k-1) = \{ \sigma \in \mathfrak{S}_{n-1} \text{ having } k-1 \text{ descents} \}.$

It follows from his proof that the hypersimplex admits a certain unimodular triangulation.

Luis Ferroni

Ehrhart polynomials of slices of prisms

Lattice points \rightarrow Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each polytope $\mathscr{P} \subseteq \mathbb{R}^n$ associate the function

$$t \mapsto \#(t\mathscr{P} \cap \mathbb{Z}^n).$$

This happens to be a polynomial that we denote $ehr(\mathscr{P}, t)$. If $d := \dim \mathscr{P}$ and

$$ehr(\mathscr{P}, t) = a_d t^d + a_{d-1} t^{d-1} + \dots + a_1 t + a_0,$$

then

- $a_d = \operatorname{vol}(\mathscr{P}),$
- $a_{d-1} = \frac{1}{2} \operatorname{vol}(\partial \mathscr{P}),$
- $a_0 = 1$.
- a_1, \ldots, a_{d-2} can be negative in general. $\ensuremath{\textcircled{\sc op}}$

h^* -polynomials

If we consider the Ehrhart series,

$$\operatorname{Ehr}(\mathscr{P}, x) = \sum_{j=0}^{\infty} \operatorname{ehr}(\mathscr{P}, j) x^{j} = \frac{h^{*}(x)}{(1-x)^{d+1}}$$

Stanley showed in 1993 that the numerator is a polynomial with nonnegative integer coefficients.

$$h^*(\mathscr{P}, x) = h_0 + h_1 x + \dots + h_d x^d.$$

Remark (Major problems)

- Find conditions that *h**-polynomials of lattice polytopes must satisfy (inequalities, for example).
- Find combinatorial interpretations of the coefficients of the *h**-polynomial, at least for particular families of polytopes.

What about the hypersimplex?

Let $W(\ell, n, m+1)$ denote the number of permutations $\sigma \in \mathfrak{S}_n$ that have exactly m+1 cycles and "weight" ℓ (using some definition of weight).

Theorem (F. '21)

Consider the hypersimplex $\Delta_{k,n}$. The coefficient of degree m of its Ehrhart polynomial is given by

$$[t^m] \operatorname{ehr}(\Delta_{k,n}, t) = \frac{1}{(n-1)!} \sum_{\ell=0}^{k-1} W(\ell, n, m+1) A(n-1, k-\ell-1),$$

which in particular is positive.

Regarding the h^* -polynomial we have the following combinatorial interpretation.

Theorem (Early '17 - Kim '20)

Consider the hypersimplex $\Delta_{k,n}$. The coefficient of degree m of its h^* -polynomial is given by

 $[x^{m}]h^{*}(\Delta_{k,n}, x) = \# \left\{ \begin{matrix} \text{decorated ordered set partitions} \\ \text{of type } (k, n) \text{ and winding number } m \end{matrix} \right\},$

What is a slice of a prism?

Definition

Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{Z}_{>0}^n$. The **rectangular prism** $\mathscr{R}_{\mathbf{c}}$ is defined as the polytope

$$\mathscr{R}_{\mathbf{c}} = \{ x \in \mathbb{R}^n : 0 \le x_i \le c_i \text{ for each } i \in [n] \}.$$

For each positive integer k, the k-th slice $\mathscr{R}_{k,c}$ is defined as:

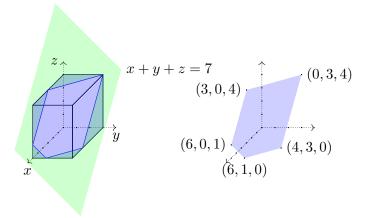
$$\mathscr{R}_{k,\mathbf{c}} = \left\{ x \in \mathscr{R}_{\mathbf{c}} : \sum_{i=1}^{n} x_i = k \right\}.$$

Example (The basic example)

.

Consider $\mathbf{c} = (1, ..., 1) \in \mathbb{Z}_{>0}^n$. The *k*-th slice of $\mathscr{R}_{\mathbf{c}}$ is precisely the hypersimplex $\Delta_{k,n}$.

Example



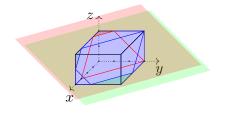
If you consider the 3-dimensional rectangular prism of sides 6, 3 and 4 and you intersect it with the hyperplane x + y + z = 7 you get the polytope on the right.

The preceding type of slice is what we informally call a "thin slice". Consider two nonnegative integers a < b and the polytope $\mathscr{R}'_{a,b,\mathbf{c}}$ defined by

$$\mathscr{R}'_{a,b,\mathbf{c}} := \left\{ x \in \mathscr{R}_{\mathbf{c}} : a \le \sum_{i=1}^{n} x_i \le b \right\}.$$

We say that this is a "fat slice" of the prism $\mathscr{R}_{\mathbf{c}}$.

Example



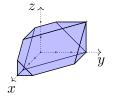


Figure: $\mathscr{R}'_{3,5,(4,3,2)}$

A fat slice can be easily converted into a thin slice while preserving the Ehrhart polynomial.

Proposition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$ and $0 \le a < b$. Then, the fat slice $\mathscr{R}'_{a,b,\mathbf{c}}$ has the same Ehrhart polynomial as the thin slice $\mathscr{R}_{k,\mathbf{c}'}$ where k = b and $\mathbf{c}' = (\mathbf{c}, b - a) \in \mathbb{Z}_{>0}^{n+1}$.

Basic properties of these polytopes

Remark

- Slices of prisms are *alcoved polytopes*.
- The edges of a slice of a prism are all parallel to some vector of the form $e_i e_j$. Hence, they are all generalized permutohedra or base polymatroids.
- They are all *polypositroids*.

Conjecture (F., Jochemko, Schröter '21)

All positroids are Ehrhart positive.

Algebras of Veronese type

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$ and k > 0. The algebra of Veronese type $\mathscr{V}(\mathbf{c}, k)$ is defined as the the graded algebra over a field \mathbb{F} generated by all the monomials $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ such that $\alpha_1 + \cdots + \alpha_n = k$ and $\alpha_i \leq c_i$ for all i.

Theorem (Hibi and De Negri '97)

There is an isomorphism between $\mathscr{V}(\mathbf{c},k)$ and the Ehrhart ring of $\mathscr{R}_{k,\mathbf{c}}$.

A consequence of the above result is that the Hilbert function of $\mathscr{V}(\mathbf{c}, k)$ coincides with $\operatorname{ehr}(\mathscr{R}_{k,\mathbf{c}}, t)$ and moreover, the numerator of the Hilbert series is $h^*(\mathscr{R}_{k,\mathbf{c}}, x)$.

Weighted Permutations and Compatibility

Definition

A weighted permutation is a pair (σ, w) where $\sigma \in \mathfrak{S}_n$ and w assigns weight to the cycles of σ . The total weight of (σ, w) is the sum of the weights $w(\mathfrak{c})$ of all cycles \mathfrak{c} of σ .

Example: $(1\ 3\ 6)^7 (2\ 5)^0 (4)^2$.

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A weighted permutation (σ, w) is said to be **c-compatible** if for each cycle \mathfrak{c} of σ , we have

$$w(\mathfrak{c}) < \sum_{i \in \mathfrak{c}} c_i.$$

Example

Let $\mathbf{c} = (2, 4, 6, 8)$, $\sigma = (1 \ 3)^6 (2 \ 4)^{11}$. Then (σ, w) is c-compatible because

$$w((1\ 3)) = 6 < \sum_{i \in (1\ 3)} c_i = 2 + 6 = 8$$

and

$$w((2\ 4)) = 11 < \sum_{i \in (2\ 4)} c_i = 4 + 8 = 12.$$

Also, the total weight is $w(\sigma)=6+11=17$

Ehrhart Polynomial for Slices of Prisms

Definition

We define $W(\ell, n, m+1, \mathbf{c})$ to be the number of c-compatible weighted permutations (σ, w) where $\sigma \in \mathfrak{S}_n$ has m+1 cycles and $w(\sigma) = \ell$.

Theorem (F. and McGinnis '22)

The coefficient of degree m of the Ehrhart polynomial for the prism slice $\mathscr{R}_{k,c}$ is given by

$$[t^m] \operatorname{ehr}(\mathscr{R}_{k,\mathbf{c}},t) = \frac{1}{(n-1)!} \sum_{\ell=0}^{k-1} W(\ell,n,m+1,\mathbf{c}) A(m,k-\ell-1)$$

which in particular are positive.

18 / 26

Flag Eulerian Numbers

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$. A c-colored permutation on [n] is a pair (σ, \mathbf{s}) where $\sigma \in \mathfrak{S}_n$ and \mathbf{s} is a function $\mathbf{s} : [n] \to \mathbb{Z}_{\geq 0}$ such that $s_i := \mathbf{s}(i) \leq c_i - 1$ for each i. The set of all such c-colored permutations is denoted by $\mathfrak{S}_n^{(\mathbf{c})}$

Definition

The set of **descents** of a c-colored permutation (σ, c) is given by

$$Des(\sigma, \mathbf{s}) := \{ i \in [n-1] : s_i > s_{i+1} \text{ or } s_i = s_{i+1} \text{ and } \sigma_i > \sigma_{i+1} \}.$$

The flag descent number of a c-colored permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})}$ is defined by

$$fdes(\sigma, \mathbf{s}) := s_n + \sum_{i \in Des(\sigma, \mathbf{s})} c_{i+1}.$$

Flag Eulerian Numbers

Definition

Let $\mathbf{c} = (c_1, \ldots, c_n)$. We define the flag Eulerian number $A_{n,k}^{(\mathbf{c})}$ by

$$A_{n,k}^{(\mathbf{c})} := \#\left\{(\sigma, \mathbf{s}) \in \mathfrak{S}_n^{(\mathbf{c})} : \text{fdes}(\sigma, \mathbf{s}) = k - 1\right\}.$$

Theorem

The volume of the fat slice $\mathscr{R}'_{k-1,k,\mathbf{c}}$ is given by

$$\operatorname{vol}(\mathscr{R}'_{k-1,k,\mathbf{c}}) = \frac{1}{n!} A_{n,k}^{(\mathbf{c})}(n,k-1)$$

Remark

The case that $\mathbf{c} = (r, \dots, r)$, reduces to a result by Han and Josuat-Vergès (2016), and when r = 1 we recover Laplace's result on hypersimplices.

Ordered Set Partitions

Definition

A decorated ordered set partition of type (k, n) consists of a cyclically ordered partition ξ of [n] and a function $w : P(\xi) \to \mathbb{Z}_{\geq 0}$ such that

$$\sum_{\mathfrak{p}\in P(\xi)} w(\mathfrak{p}) = k.$$

For a vector $\mathbf{c} = (c_1, \ldots, c_n) \in \mathbb{Z}_{>0}^n$, we say that a decorated ordered set partition ξ is \mathbf{c} -compatible if

$$w(\mathfrak{p}) < \sum_{i \in \mathfrak{p}} c_i$$

for all $\mathfrak{p} \in P(\xi)$.

Example

Let ξ be the following cyclically ordered partition of [8]

```
(\{1,3,6\},\{2,5\},\{4,7,8\}).
```

Let w be given by

$$w(\{1,3,6\}) = 1, \ w(\{2,5\}) = 2, \ w(\{4,7,8\}) = 4.$$

Then ξ and w make up a decorated ordered set partition of type (7,8). It is (2,1,4,5,2,3,1,1)-compatible for instance because

$$w(\{1,3,6\}) = 1 < 2 + 4 + 3 = 9, \quad w(\{2,5\}) = 2 < 1 + 2 = 3.$$

$$w(\{4,7,8\}) = 4 < 5 + 1 + 1 = 7.$$

Winding Number

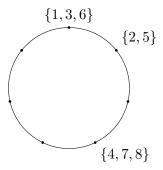
Let ξ and w again be given by

$$(\{1,3,6\},\{2,5\},\{4,7,8\})$$

and

$$w(\{1,3,6\})=1, \ w(\{2,5\})=2, \ w(\{4,7,8\})=4.$$

This decorated ordered set partition can be visualized as follows.



The h^* -coefficients

Definition

The winding number of a decorated ordered set partition of type $\left(k,n\right)$ is the integer m such that

$$mk = \lambda_1 + \dots + \lambda_n$$

where λ_i is the clockwise distance from the set containing i to the set containing i + 1.

Theorem (F. and McGinnis '22)

The coefficient of degree m of the h^* -polynomial for $\mathscr{R}_{k,\mathbf{c}}$ is given by

$$[x^{m}]h^{*}(\mathscr{R}_{k,\mathbf{c}},x) = \# \begin{cases} \mathbf{c}\text{-compatible decorated ordered set partitions} \\ \text{of type } (k,n) \text{ and winding number } m \end{cases}$$

,

Two conjectures regarding roots

Conjecture (F. and McGinnis '22) All the complex roots of the polynomial

$$p_{n,m,\mathbf{c}}(x) = \sum_{\ell=0}^{\infty} W(\ell, n, m+1, \mathbf{c}) x^{\ell}.$$

lie on the unit circle |z| = 1.

Conjecture (F. and McGinnis '22)

The h^* -polynomial of a slice of a prism is always real-rooted. Moreover, if $\mathbf{c} = (c_1, \ldots, c_n)$ and $\mathbf{c}' = (c_1, \ldots, c_{n-1}, c_n - 1, 1)$, then

$$h^*(\mathscr{R}_{k,\mathbf{c}},x) \preceq h^*(\mathscr{R}_{k,\mathbf{c}'},x)$$

namely, these two polynomials interlace.

THANK YOU!