Reconstruction of polytopes and Kalai's conjecture on reconstruction of spheres

Cesar Ceballos joint work with Joseph Doolittle

Der Wissenschaftsfonds.

< □ > < @ > < 注 > < 注 > □ Ξ

AICoVE: an Algebraic Combinatorics Virtual Expedition June 6, 2022

(Convex) polytope P:

convex hull of finitely many points in Euclidian space.

The graph G(P):

the graph consisting of the vertices and edges of P.

Simple polytope *P*:

number of edges incident to each vertex equals the dimension of P.

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

Kalai, 1988: A simple constructive proof.

If P is a simple polytope, then the graph G(P) determines the entire combinatorial structure of P.

This holds for arbitrary polytopes (not only simple) in dimension 3, but not in higher dimensions.

Example

Let Δ_m be a *m*-dimensional simplex. The following are two non isomorphic 6-dimensional polytopes with the same graph (complete graph on 7 vertices)

$$(\Delta_2 imes \Delta_4)^* \ncong (\Delta_3 imes \Delta_3)^*$$

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

$$\begin{array}{rcl} P & \longleftrightarrow & P^* \\ \text{vertices} & \longleftrightarrow & \text{facets (higher dim faces)} \end{array}$$

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

$$\begin{array}{rcl} P & \longleftrightarrow & P^* \\ \text{vertices} & \longleftrightarrow & \text{facets (higher dim faces)} \end{array}$$

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

 $\begin{array}{rccc} P & \longleftrightarrow & P^* \\ \text{vertices} & \longleftrightarrow & \text{facets (higher dim faces)} \\ \text{edges} & \longleftrightarrow & \text{ridges (codim 1 faces)} \end{array}$

Every nonempty *d*-polytope *P* in \mathbb{R}^d admits a dual polytope in \mathbb{R}^d :

$$P^* = \{ y \in \mathbb{R}^d : x^T y \le 1 \text{ for all } x \in P \}$$

where P is assumed to contain the origin in its interior.

Under this duality:

 $\begin{array}{rccc} P & \longleftrightarrow & P^* \\ \text{vertices} & \longleftrightarrow & \text{facets (higher dim faces)} \\ \text{edges} & \longleftrightarrow & \text{ridges (codim 1 faces)} \\ \dots & \longleftrightarrow & \dots \end{array}$

Simple vs simplicial

Simplicial polytope *P*:

all faces are simplices.

The facet-ridge graph $G_{FR}(P)$:

the graph whose vertices are facets of P two facets are connected by an edge if they intersect in a ridge.

$$P ext{ is simple } \longleftrightarrow P^* ext{ is simplicial} \ G(P) = G_{FR}(P^*)$$

Simplicial polytopes are completely determined by their facet-ridge graphs.

Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind–Mani, 1987; Kalai, 2009)

Simplicial spheres are completely determined by their facet-ridge graphs.

Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind–Mani, 1987; Kalai, 2009)

Simplicial spheres are completely determined by their facet-ridge graphs.

A simplicial sphere is a simplicial complex which is homeomorphic to a sphere.

For $d \geq 3$, most *d*-spheres are not polytopal.

- Goodman–Pollack, 1986
- 🕨 Kalai, 1988
- Pfeifle–Ziegler, 2004

Deciding polytopality of spheres is a difficult problem

Mnëv's Universality theorem: Realization spaces of polytopes can take arbitrary (semi-algebraic) shapes and thus can exhibit all kinds of pathologies.

The realizability problem for 4-polytopes is NP-hard.

Our initial goal was:

Look for a counterexample to Kalai's Conjecture among a special family of simplicial spheres which are conjectured to be polytopal. (kill two conjectures at once)

Instead:

We proved the conjecture for this family. (spherical subword complexes)

Rest of the talk:

Introduce subword complexes and state our main result.

```
Symmetric group \mathbb{S}_{n+1}:
group of permutations of \{1, \ldots, n+1\}
```

Symmetric group \mathbb{S}_{n+1} : group of permutations of $\{1, \ldots, n+1\}$

generators $\{s_1, \ldots, s_n\}$, $s_i = (i \ i + 1)$ length of w: smallest r such that $w = s_{i_1} \ldots s_{i_r}$ longest element: permutation $[n + 1, \ldots, 1]$ reduced expression for w: expression for w of minimal length Symmetric group S_{n+1} : group of permutations of $\{1, \ldots, n+1\}$

generators $\{s_1, \ldots, s_n\}$, $s_i = (i \ i + 1)$ length of w: smallest r such that $w = s_{i_1} \ldots s_{i_r}$ longest element: permutation $[n + 1, \ldots, 1]$ reduced expression for w: expression for w of minimal length

In this talk: **finite Coxeter groups** (very similar to the symmetric group)

W finite Coxeter group with generating set S $Q = (q_1, \ldots, q_m)$ a word in S $\pi \in W$ W finite Coxeter group with generating set S $Q = (q_1, \dots, q_m)$ a word in S $\pi \in W$

Definition (Knutson-Miller, 2004)

The subword complex $\Delta(Q, \pi)$ is the simplicial complex whose

$$\begin{array}{rcl} {\rm faces} & \longleftrightarrow & {\rm subwords} \ P \ {\rm of} \ Q \ {\rm such} \ {\rm that} \ Q \setminus P \\ & {\rm contains} \ {\rm a} \ {\rm reduced} \ {\rm expression} \ {\rm of} \ \pi \end{array}$$

Knutson-Miller. Gröbner geometry of Schubert polynomials. Ann. Math., 161(3), '05 Knutson-Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1), '04

In type A_2 : $W = \mathbb{S}_3, S = \{s_1, s_2\} = \{(1 \ 2), (2 \ 3)\}$

In type
$$A_2$$
:
 $W = S_3$, $S = \{s_1, s_2\} = \{(1 \ 2), (2 \ 3)\}$
 $Q = \begin{pmatrix} s_1, s_2, s_1, s_2, s_1 \\ q_1, q_2, q_3, q_4, q_5 \end{pmatrix}$ and $\pi = [3 \ 2 \ 1]$

In type
$$A_3$$
:
 $W = \mathbb{S}_4$, $S = \{s_1, s_2, s_3\} = \{(1 \ 2), (2 \ 3), (3 \ 4)\}$
 $Q = \frac{(s_1, s_2, s_1, s_2, s_1, s_3)}{q_1, q_2, q_3, q_4, q_5, q_6}$ and $\pi = [3 \ 2 \ 1] = s_1 s_2 s_1 = s_2 s_1 s_2$

Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Conjecture (Knutson-Miller, C.-Labbé-Stump, ...)

Spherical subword complexes are polytopal.

Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Conjecture (Knutson-Miller, C.-Labbé-Stump, ...)

Spherical subword complexes are polytopal.

Special cases include:

- Cyclic polytopes
- Duals of associahedra
- Cluster complexes of cluster algebras of finite type
- Duals of pointed-pseudotriangulation polytopes
- Simplicial multi-associahedra (conjectured)

Woo, Pilaud–Pocchiola, Serrano–Stump, Stump, C.-Labbé–Stump, Rote–Santos–Streinu, Jonsson, ...

Theorem (C.–Doolittle)

Spherical subword complexes of finite type are completely determined by their facet-ridge graph. In other words, they satisfy Kalai's Conjecture.

Our current proof is <u>not</u> constructive.

It is based on the topological tools developed by Blind and Mani.

Thank you!