Reconstruction of polytopes and Kalai＇s conjecture on reconstruction of spheres

Cesar Ceballos
joint work with Joseph Doolittle

AICoVE：an Algebraic Combinatorics Virtual Expedition June 6， 2022

Convex polytopes

(Convex) polytope P :
convex hull of finitely many points in Euclidian space.
The graph $G(P)$: the graph consisting of the vertices and edges of P.

P

$G(P)$

Simple polytope P :
number of edges incident to each vertex equals the dimension of P.

Reconstruction of polytopes

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of P.

P

$G(P)$

Reconstruction of polytopes

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of P.

Reconstruction of polytopes

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of P.

Reconstruction of polytopes

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of P.

Kalai, 1988: A simple constructive proof.

Reconstruction of polytopes

Theorem (Blind-Mani, 1987)

If P is a simple polytope, then the graph $G(P)$ determines the entire combinatorial structure of P.

This holds for arbitrary polytopes (not only simple) in dimension 3, but not in higher dimensions.

Example

Let Δ_{m} be a m-dimensional simplex. The following are two non isomorphic 6-dimensional polytopes with the same graph (complete graph on 7 vertices)

$$
\left(\Delta_{2} \times \Delta_{4}\right)^{*} \not \not\left(\left(\Delta_{3} \times \Delta_{3}\right)^{*}\right.
$$

Duality of polytopes

Every nonempty d-polytope P in \mathbb{R}^{d} admits a dual polytope in \mathbb{R}^{d} :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where P is assumed to contain the origin in its interior.

Duality of polytopes

Every nonempty d-polytope P in \mathbb{R}^{d} admits a dual polytope in \mathbb{R}^{d} :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where P is assumed to contain the origin in its interior.

Under this duality:

Duality of polytopes

Every nonempty d-polytope P in \mathbb{R}^{d} admits a dual polytope in \mathbb{R}^{d} :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where P is assumed to contain the origin in its interior.

Under this duality:

$$
\begin{aligned}
P & \longleftrightarrow P^{*} \\
\text { vertices } & \longleftrightarrow \text { facets (higher dim faces) }
\end{aligned}
$$

Duality of polytopes

Every nonempty d-polytope P in \mathbb{R}^{d} admits a dual polytope in \mathbb{R}^{d} :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where P is assumed to contain the origin in its interior.

Under this duality:

$$
\begin{aligned}
P & \longleftrightarrow P^{*} \\
\text { vertices } & \longleftrightarrow \text { facets (higher dim faces) } \\
\text { edges } & \longleftrightarrow \text { ridges (codim } 1 \text { faces) }
\end{aligned}
$$

Duality of polytopes

Every nonempty d-polytope P in \mathbb{R}^{d} admits a dual polytope in \mathbb{R}^{d} :

$$
P^{*}=\left\{y \in \mathbb{R}^{d}: x^{T} y \leq 1 \text { for all } x \in P\right\}
$$

where P is assumed to contain the origin in its interior.

Under this duality:

Simple vs simplicial

Simplicial polytope P :

all faces are simplices.
The facet-ridge graph $G_{F R}(P)$:
the graph whose vertices are facets of P
two facets are connected by an edge if they intersect in a ridge.

$$
\begin{aligned}
P \text { is simple } & \longleftrightarrow P^{*} \text { is simplicial } \\
G(P) & =G_{F R}\left(P^{*}\right)
\end{aligned}
$$

Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)
Simplicial polytopes are completely determined by their facet-ridge graphs.

Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)
Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind-Mani, 1987; Kalai, 2009)
Simplicial spheres are completely determined by their facet-ridge graphs.

Reconstruction of polytopes and spheres

Theorem (Blind-Mani, 1987)
Simplicial polytopes are completely determined by their facet-ridge graphs.

Conjecture (Blind-Mani, 1987; Kalai, 2009)
Simplicial spheres are completely determined by their facet-ridge graphs.
A simplicial sphere is a simplicial complex which is homeomorphic to a sphere.

Most spheres are not polytopal

For $d \geq 3$, most d-spheres are not polytopal.

- Goodman-Pollack, 1986
- Kalai, 1988
- Pfeifle-Ziegler, 2004

Deciding polytopality of spheres is a difficult problem
Mnëv's Universality theorem: Realization spaces of polytopes can take arbitrary (semi-algebraic) shapes and thus can exhibit all kinds of pathologies.

The realizability problem for 4-polytopes is NP-hard.

Goal

Our initial goal was:

Look for a counterexample to Kalai's Conjecture among a special family of simplicial spheres which are conjectured to be polytopal.
(kill two conjectures at once)
Instead:
We proved the conjecture for this family. (spherical subword complexes)

Rest of the talk:
Introduce subword complexes and state our main result.

Subword complexes preliminaries

Symmetric group \mathbb{S}_{n+1} :
group of permutations of $\{1, \ldots, n+1\}$

Subword complexes preliminaries

Symmetric group \mathbb{S}_{n+1} :
group of permutations of $\{1, \ldots, n+1\}$
generators $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i}=(i i+1)$
length of w : smallest r such that $w=s_{i_{1}} \ldots s_{i_{r}}$ longest element: permutation $[n+1, \ldots, 1]$
reduced expression for w : expression for w of minimal length

Subword complexes preliminaries

Symmetric group \mathbb{S}_{n+1} :
group of permutations of $\{1, \ldots, n+1\}$
generators $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i}=(i i+1)$
length of w : smallest r such that $w=s_{i_{1}} \ldots s_{i_{r}}$ longest element: permutation $[n+1, \ldots, 1]$
reduced expression for w : expression for w of minimal length

In this talk: finite Coxeter groups
(very similar to the symmetric group)

Subword complexes

W finite Coxeter group with generating set S
$Q=\left(q_{1}, \ldots, q_{m}\right)$ a word in S
$\pi \in W$

Subword complexes

W finite Coxeter group with generating set S
$Q=\left(q_{1}, \ldots, q_{m}\right)$ a word in S
$\pi \in W$

Definition (Knutson-Miller, 2004)
The subword complex $\Delta(Q, \pi)$ is the simplicial complex whose
faces \longleftrightarrow subwords P of Q such that $Q \backslash P$ contains a reduced expression of π

Knutson-Miller. Gröbner geometry of Schubert polynomials. Ann. Math., 161(3), '05 Knutson-Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1), '04

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2),(23)\}\end{array}\right.\right.$

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$
$Q=\begin{gathered}\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right. \\ q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]$

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$
$Q=\begin{gathered}\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right. \\ q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]$

$$
\begin{gathered}
q_{2} \\
0
\end{gathered}
$$

$q_{3} \circ$
$\Delta(Q, \pi)$ is isomorphic to

- q_{1}
$q_{4} \bigcirc$

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2),(23)\}\end{array}\right.\right.$
$Q=\left(\begin{array}{c},, s_{1}, s_{2}, s_{1} \\ q_{1}, q_{2}, \quad,\end{array} \quad\right.$ and $\pi=\left[\begin{array}{lll}3 & 2 & 1\end{array}\right]=s_{1} s_{2} s_{1}$
$\Delta(Q, \pi)$ is isomorphic to

$q_{4} \bigcirc$

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2),(23)\}\end{array}\right.\right.$
$Q=\begin{gathered}\left(s_{1},,, s_{2}, s_{1}\right. \\ , q_{2}, q_{3},\end{gathered} \quad$ and $\pi=\left[\begin{array}{ll}3 & 2 \\ 1\end{array}\right]=s_{1} s_{2} s_{1}$
$\Delta(Q, \pi)$ is isomorphic to

$q_{4} \bigcirc$

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2),(23)\}\end{array}\right.\right.$
$Q=\begin{gathered}\left(s_{1}, s_{2},,, s_{1}\right) \\ , \quad, q_{3}, q_{4},\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2 \\ 1\end{array}\right]=s_{1} s_{2} s_{1}$
$\Delta(Q, \pi)$ is isomorphic to

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$
$Q=\begin{gathered}\left(s_{1}, s_{2}, s_{1}, \quad, \quad\right) \\ , \quad, q_{4}, q_{5}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]=s_{1} s_{2} s_{1}$
$\Delta(Q, \pi)$ is isomorphic to

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$
$Q=\begin{gathered}\left(\begin{array}{c}, s_{2}, s_{1}, s_{2},\end{array}\right) \\ q_{1}, \quad, \quad, \quad, q_{5}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$
$\Delta(Q, \pi)$ is isomorphic to

Subword complexes - Example 1

In type A_{2} :
$W=\mathbb{S}_{3}, S=\left\{s_{1}, s_{2}\right\}=\left\{\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\}$
$Q=\begin{gathered}\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}\right) \\ q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$
$\Delta(Q, \pi)$ is isomorphic to

Subword complexes - Example 2

In type A_{3} :
$W=\mathbb{S}_{4}, S=\left\{s_{1}, s_{2}, s_{3}\right\}=\{(12),(23),(34)\}$
$Q=\begin{gathered}\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}, s_{3}\right) \\ q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$

Subword complexes - Example 2

In type A_{3} :
$W=\mathbb{S}_{4}, S=\left\{s_{1}, s_{2}, s_{3}\right\}=\{(12),(23),(34)\}$
$Q=\begin{gathered}\left(s_{1}, s_{2}, s_{1}, s_{2}, s_{1}, s_{3}\right. \\ q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}\end{gathered}$ and $\pi=\left[\begin{array}{ll}3 & 2\end{array} 1\right]=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$
$\Delta(Q, \pi)$ is isomorphic to

Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Conjecture (Knutson-Miller, C.-Labbé-Stump, ...)
Spherical subword complexes are polytopal.

Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Conjecture (Knutson-Miller, C.-Labbé-Stump, ...)

Spherical subword complexes are polytopal.

Special cases include:

- Cyclic polytopes
- Duals of associahedra
- Cluster complexes of cluster algebras of finite type
- Duals of pointed-pseudotriangulation polytopes
- Simplicial multi-associahedra (conjectured)

Woo, Pilaud-Pocchiola, Serrano-Stump, Stump, C.-Labbé-Stump, Rote-Santos-Streinu, Jonsson, ...

Our main theorem

Theorem (C.-Doolittle)

Spherical subword complexes of finite type are completely determined by their facet-ridge graph. In other words, they satisfy Kalai's Conjecture.

Our current proof is not constructive.
It is based on the topological tools developed by Blind and Mani.

Thank you!

