A multiset generalization of (set) partition algebra

Digjoy Paul

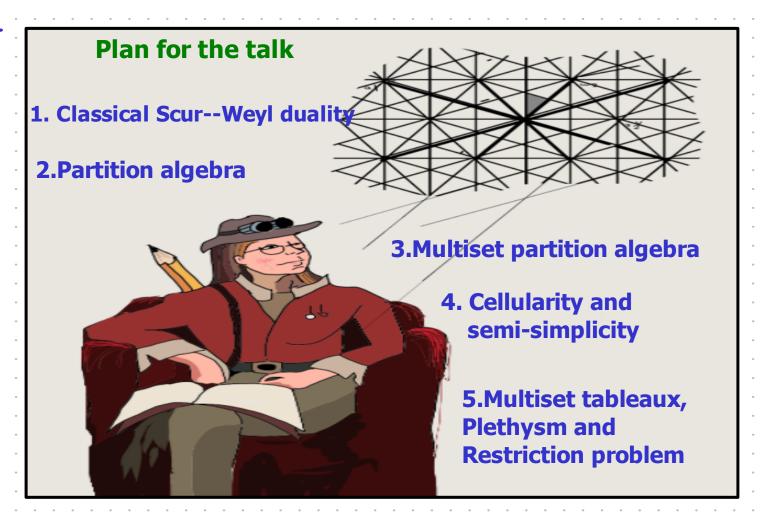
Tata Institute of Fundamental Research, Mumbai

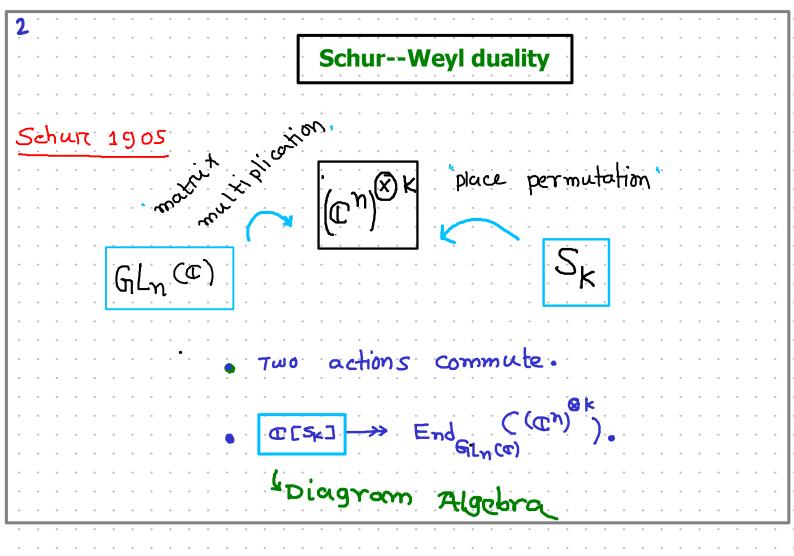
ALCoVE 2021

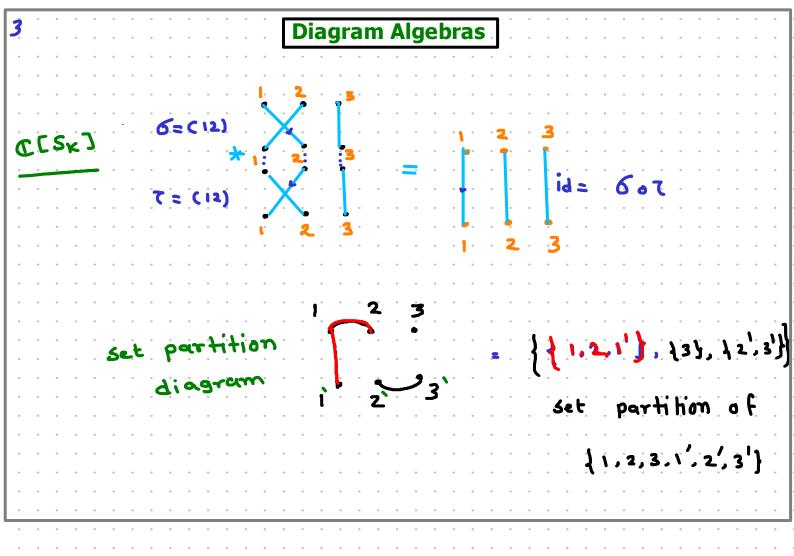
June 15

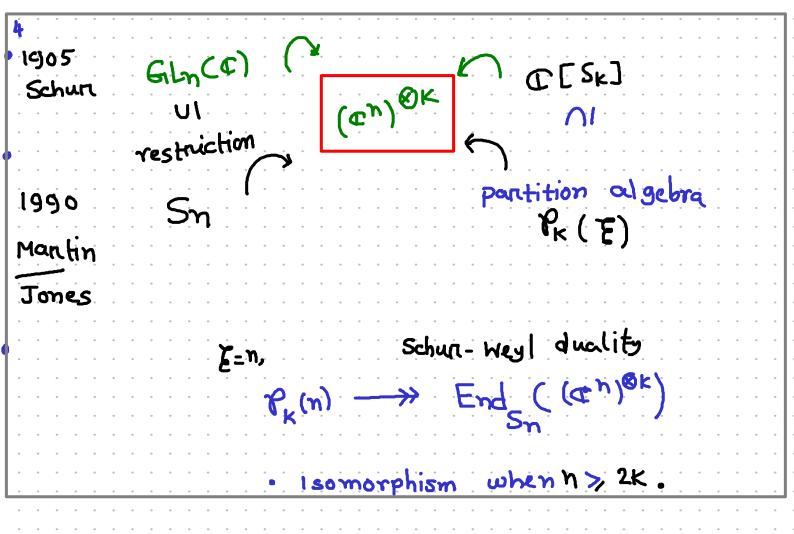
(based on arXiv:1903.10809)

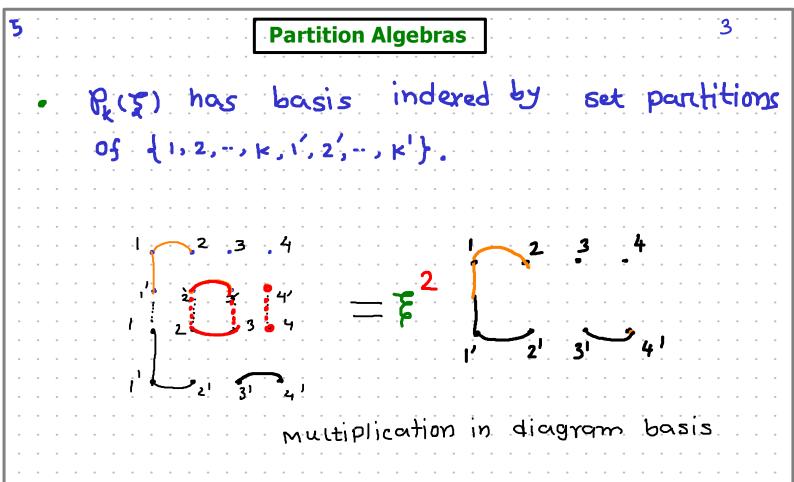
Joint work with Sridhar Narayanan (IMSc Chennai) and Shraddha Srivastava (Uppsala University)

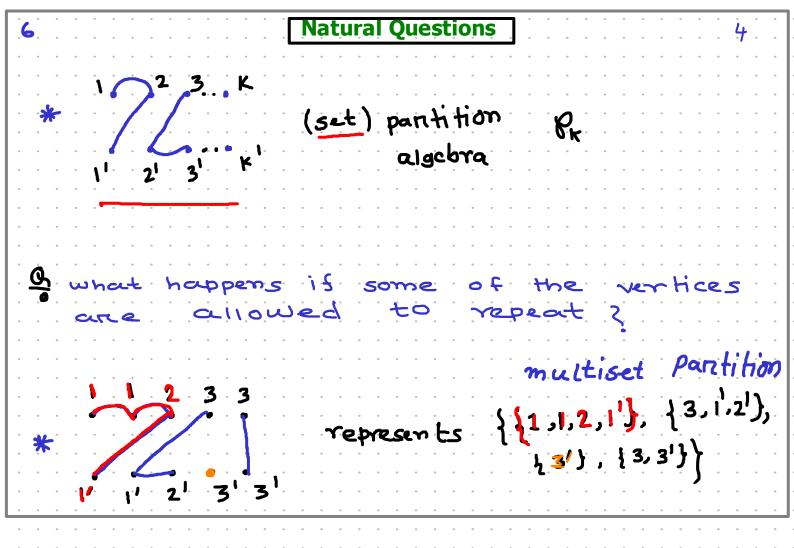












What plays the role of Partition Algebras? $\begin{array}{ccc}
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{C}_{(an)}^{\otimes k} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{C}_{(an)}^{\otimes k} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{R}_{K}(n) & \longrightarrow & \mathbb{E}_{nd} & \mathbb{E}_{nd} & \mathbb{E}_{nd} \\
\mathbb{$

More generally,

For $\lambda = (\lambda_1, \dots, \lambda_s)$, define $Sum^2a^n := \bigotimes Sum^{\lambda_1}(a^n)$.

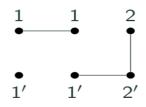
Vectors of mon-negative i=1 integers integers $Sum^2(a^n)$

A new diagram algebra based on multiset partitions

of \(\lambda_1^{\lambda_1}, \lambda_2^{\lambda_2}, \lambda_5^{\lambda_5}, \lambda_5^

A diagram basis

For $\lambda=(2,1)$, diagram associated with multiset partition $\{\{1'\},\{2,1',2'\},\{1^2\}\}$ of the multiset $\{1^2,2,1'^2,2'\}$



$$(\lambda,\lambda)$$

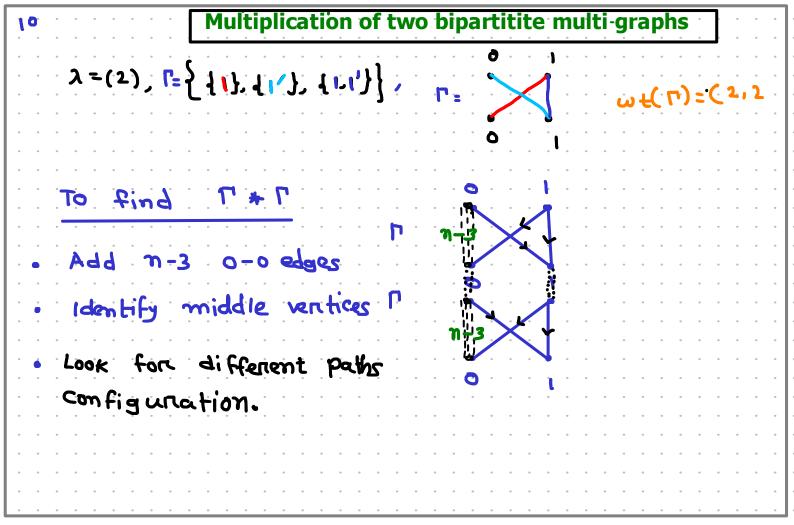
$$(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)$$

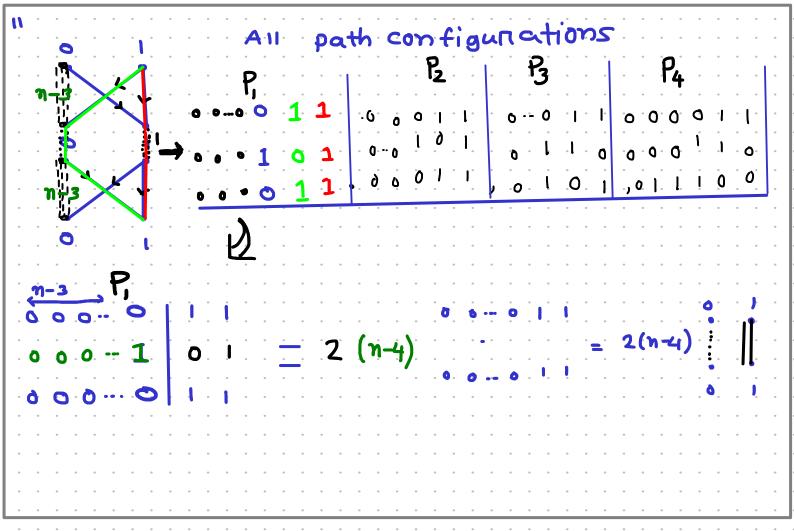
$$(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)$$

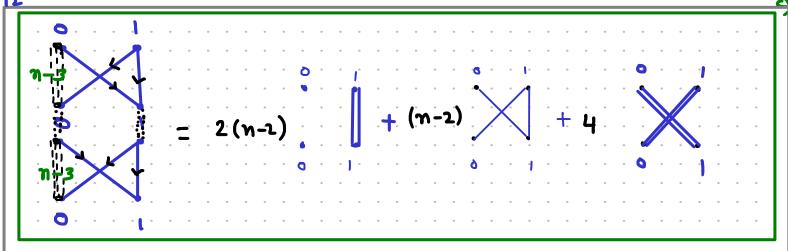
$$(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)$$

$$(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)$$

 $\{2,1',2'\}=\{1^0,2^1,1'^1,2'^1\}$ corresponds to the edge joining (0,1) and (1,1)







Define $\mathcal{MP}_{\lambda}(\xi)$ to be the free module over $\boldsymbol{\mathcal{E}}[\xi]$ with basis $\tilde{\mathcal{B}}_{\lambda}$.

Theorem (The Multiset partition algebra) (N, P, S)

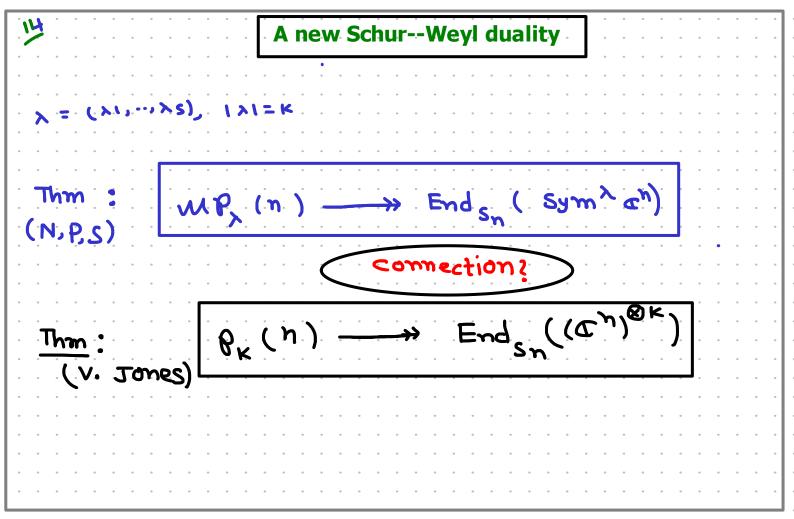
For $[\Gamma_1]$, $[\Gamma_2]$ in $\tilde{\mathcal{B}}_{\lambda}$, the linear extension of the following operation

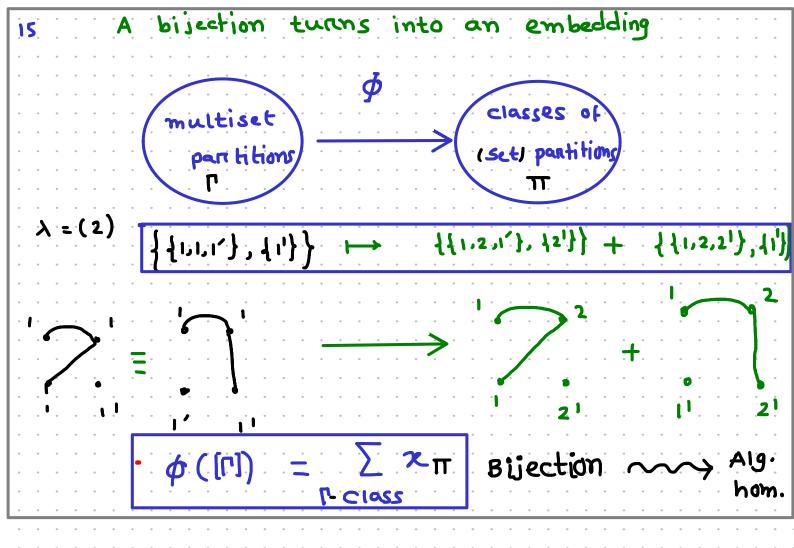
$$[\Gamma_1] * [\Gamma_2] = \sum_{[\Gamma] \in \tilde{\mathcal{B}}_{\lambda}} \Phi_{[\Gamma_1][\Gamma_2]}^{[\Gamma]}(\xi)[\Gamma],$$

makes $\mathcal{MP}_{\lambda}(\xi)$ an associative, unital algebra over $\mathbb{C}[\xi]$.

$$\pi$$
.

$$=(n-2)$$
 $+(n-1)$, $n \ge 2$.





Connection to Partition algebra

Theorem (N,P,S)

There is a canonical embedding

$$\mathcal{MP}_{\lambda}(\xi) \hookrightarrow \mathcal{P}_{k}(\xi)$$

which send multiset partitions to certain class of set partitions. Moreover, there exists an idempotent $e \in \mathcal{P}_k(\xi)$

$$\mathcal{MP}_{\lambda}(\xi) \cong e\mathcal{P}_{k}(\xi)e.$$

Semisimple and cellular algebra

Theorem (N,P,5)

 $\mathcal{MP}_{\lambda}(\xi)$ semisimple over $\mathbf{\mathfrak{E}}$ when ξ is not an integer or ξ is an integer such that $\xi \geq 2k-1$.

- Cellular algebras: Introduced by Graham and Lehrer (Invent. Math 96) motivated by Kazdhan Lusztig's basis of Hecke algebras.
- Example: Partition algebras.[Xi, Compositio Math. 2000]
- Proposition: Let A be a cellular algebra with respect to an involution i. Let e ∈ A be an idempotent such that i(e) = e.
 Then the algebra eAe is also a cellular algebra with respect to the involution i restricted to eAe.

Theorem (N, P, S)

 $\mathcal{MP}_{\lambda}(\xi)$ is cellular over $\boldsymbol{\ell}$.

Combinatorial Representation theory

$$(GL_{n}(C), S_{K}) - duality$$

$$GL_{n} - i Y \cdot Yeps^{n}$$

$$(C^{m})^{MK} = \bigoplus_{\lambda \in \mathcal{N}} W_{\lambda} \otimes V_{\lambda}$$

$$L(\lambda) \in \mathbb{N} \qquad S_{k} - i Y \cdot Yeps^{n}$$

$$Semi - Standard Young \qquad Standard Young$$

$$Gim W_{\lambda} = SSYT_{h}(\lambda) \qquad dim V_{\lambda} = SYT(\lambda) \qquad \text{falleaux}$$

(Orellana-Zabrocki)

− # semistandard Multiset tableau of shape ⊻ ๛า๕ con t∢า เ

(Colmenarejo, Orellana, Saliola, Schlling, Zabrocki)

• Enumerative result:

$$\prod_{i=1}^{s} \binom{n+\lambda_i-1}{\lambda_i} = \sum_{\nu \vdash n} |SYT(\nu)| \times |SSMT(\nu, \{1^{\lambda_1}, \dots, s^{\lambda_s}\})|$$

Representation theory set up (N,P,S)

$$(S_n, M_{\lambda}(n))$$
 - $\operatorname{Sym}^{\lambda}(\mathbf{F}^n) \cong \bigoplus_{\nu \vdash n} V_{\nu} \otimes M_{\nu}^{\lambda}$

