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Abstract.

We give eight' linear bases of the ring of polynomials in n indeterminates : Schubert
polynomials, Grothendieck polynomials, flag elementary/complete functions, Demazure
characters (key polynomials) for types A, B, C, D, Macdonald polynomials.

All these bases are triangular in the basis of monomials, with respect to appropriate
orders. We introduce different scalar products and compute the adjoint bases of the
previous polynomials.

We provide recursions (transition formulas) which allow to cut these polynomials
into smaller ones of the same family.

We recover the multiplicative structure of the ring of polynomials by describing the
multiplication by a single variable.

In type A we lift the Schubert polynomials and Demazure characters to the free
algebra.

We recover by symmetrisation Schur functions and symmetric Macdonald polyno-
mials in type A, and symplectic and orthogonal Schur functions in types B, C, D.

'In fact, counting adjoint bases and deformations, many more, but the next lucky number,
88, seems out of reach for the moment.
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Polynomials appeared since the beginnings of algebra, and it may seem that
there is not much to say, nowadays, about the space of polynomials as a vector
space. In the case of a single variable x, many linear bases of Pol(x) other than
the powers of x have been described, starting with the Newton’s interpolation
polynomials. The theory of orthogonal polynomials flourished during the whole
XT1X¢ century, providing many more bases.

In the case of symmetric polynomials, Newton, again, gave a basis of products
of elementary functions. The transition matrices between these functions and the
monomial functions were already considered in the XV III¢ century by Vander-
monde in particular. Later, the chevalier Faa de Bruno, Cayley, Kostka spent
much energy computing different other transition matrices. It happens in fact
that there is a fundamental basis, the basis of Schur functions. A great majority
of the classical problems in the theory of symmetric functions involve this basis,
and leads to a combinatorics of diagrams of partitions and Young tableaux.

The picture is not so bright when one relaxes the condition of symmetry and
consider Pol(x1, ..., x,) in full generality. In fact, computer algebra systems like
Maple or Mathematica do not know the ring of polynomials in several variables
with coefficients in Z, but only the ring Z[z1] ® Z[xs] ® -+ ® Z[z,]. Since 40
years, geometry and representation theory provided a new incentive for describ-
ing linear bases of polynomials. The cohomology theory and the K-theory flag
manifolds lead to different bases related to Schubert varieties: Demazure charac-
ters, Schubert polynomials, Grothendieck polynomials. Independently, the theory
of orthogonal polynomials, in conjunction with root systems, developed in the di-
rection of several variables, with the work of Koornwinder, Macdonald and many
others.

In these notes, we shall mostly restrict to Schubert polynomials, Grothendieck
polynomials, Demazure characters (key polynomials), Macdonald polynomials. These
objects will be obtained using simple operators such as Newton’s divided differ-
ences and their deformations. Such operators act on two consecutive variables at
a time, say x;,x;1, and commute with multiplication with symmetric functions
in x;,x;11. Therefore, they are characterized by their action on 1, z;41 (which is
a basis of Pol(z;, z;11) as a free Gym(z;, z;41)-module). In type A, computations
will not require more than the rules figuring in the following tableau, which ex-
presses the images of 1,x;,; under different operators, and indicates the related
polynomials.
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operator ‘ sﬁ@i (91 5 %z (1—xi+1)82- 71
1 1 0 1 0 1 t
Tit1 l‘l‘—l -1 0 —Ti+1 in+xi+1—1 Z;
polynoms | Jack Schubert  Demazure  Demazure G Macdonald
Grothendieck Grothendieck Hall— Littlewood

To be complete, we have to add to this list the operators 72, 7¢ and 77 in the
case of key polynomials for types B,C, D, and the translation f(z1,...,x,) —
flzn/q, 21, .., 20_1)(x,~1) in the case of Macdonald polynomials, but this does
not change the picture: it is remarkable that such simple rules suffice to gen-
erate interesting families of polynomials. As a matter of fact, one also needs
initial polynomials. In the case of Demazure characters, one starts with dominant
monomials z* = xi‘l .. .xﬁ”, AL > Ay > --- > \,. For Schubert polynomials, one
introduces another set of variables, and one takes Y := [[,_, ,, j_; (i —y;). For
Grothendieck polynomials, one takes G := Hizl..n,jzl.)\i (1— iji_l), still with the
requirement that A\; > --- > \,. In the case of Macdonald polynomials, one needs
only one starting point, which is 1, because the translation operator increases
degree and allows to generate polynomials of any degree.

Schubert and Macdonald polynomials can also be defined by interpolation
properties. Indeed, to each v € N, one associates a spectral vector (v)¥ (which is
a permutation of yi, s, ...), and another spectral vector (v)! (with components
which are monomials in ¢, ¢). Now the Schubert polynomial Y,, and the Macdonald
polynomial M, are the only polynomials, up to normalization, of degree d = |v| =
v1+...+v,, such that

Y, ((u)?) =0 & M, ((w)') =0Vu: |ul <d, uswv.

it is easy to check that the vanishing conditions imply a recursion on poly-
nomials, the image of a Schubert polynomial under 9; being another Schubert
polynomial (when it is not 0), and the image of a Macdonald polynomial un-
der T;+c being another Macdonald polynomial (when choosing appropriately the
constant c).

Divided differences are discrete analogues of derivatives. One can thus expect
a discrete analogue of the multivariate Taylor formula. In the case of functions of a
single variable, this discrete analogue is the Newton interpolation formula. In the
multivariate case, the universal coefficients appearing as coefficients of products
of divided differences are precisely the Schubert polynomials, and this is a direct
consequence of their vanishing properties.

In these notes, we have put the emphasis on Grothendieck polynomials, be-
cause the literature on this subject is rather scanty , apart from the Graffmannian
case, which is the case where the polynomials are symmetric and can be treated
as deformations of Schur functions. We do not touch the subject of Schubert
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polynomials for types B,C, D (see [10, 47, 49, 41, 132, 133]). They require intro-
ducing the operation z,, — -z,, while, for Demazure characters and K-theory,
one must use z,, — x,'. In type A on the contrary, cohomology and K-theory

can be mixed, operators like m; + 0; make sense.

Schubert, Grothendieck polynomials and Demazure characters are directly as-
sociated to the basis {0, : ¢ € &,} of the Nil Hecke algebra, and to the basis
{m, : 0 € &,} of the 0-Hecke algebra. We give two more bases, and their ad-
joint, of YPol(z1,...,x,), corresponding to the basis {V, : ¢ € &,}, and to the
Kazhdan-Lusztig basis {C, : 0 € &,,} of the Hecke algebra.

Linear algebra is not enough, the ring Pol(z, ..., z,) has also a multiplicative
structure that one needs to describe. We mostly restrict to multiplication by a
single variable, which is enough to determine the multiplicative structure in each
of the bases that we consider. Already this simple case involves fine properties of
the Ehresmann-Bruhat order on the symmetric group (or on the affine symmetric
group in the case of Macdonald polynomials). It is clear, however, that more
work should be invested in that direction, the product of two general Schubert
polynomials or two Grothendieck polynomials having, for example, many geomet-
rical consequences . Fomin and Kirillov [40] have introduced an quadratic algebra
to explain the connections between the Ehresmann-Bruhat order and Schubert
calculus.

Having different bases, one may look for the relations between them. We con-
sider the relations between Schubert and Grothendieck, Schubert and Demazure,
Macdonald and key polynomials, but this subject is far from being exhausted.

Polynomials can be written uniquely as linear combination of flag elementary
functions) (products of the type ...e;(x1, s, x3)ej(x1, x2)ek(x1)). Since the nat-
ural way to lift an elementary function of degree k in the free algebra is to take
the sum of all strictly decreasing words of degree k, one has therefore a natural
embedding, as a Z-module, of Pol(z1, ..., z,) in the free algebra on n letters. We
shall rather use a distinguished quotient of the free algebra, the plactic algebra
PBlac(n), quotient by the relations

cab = acb, bac = bea, baa = aba, bab = bba, a < b < c.

The lift of Gym(z; ..., x,) in Plac(n) has now recovered its multiplicative struc-
ture, compared to the lift in the free algebra where one must have recourse to
operations like shuffle instead of concatanation of words. In others words, one has
an embedding of Sym(z; ..., x,) into a non-commutative algebra, and therefore
any identity on symmetric polynomials translates automatically into a statement
in the non-commutative world. Combinatorists will have no difficulty in going
one step further in the translation and use Young tableaux, Dyck paths or non-
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intersecting paths instead of mere words. In short, the diagram

Plac
Sy — V \{CU
Sym

> Lol

where the left arrow sends a Schur function sy onto the sum of all tableaux of shape
A in the alphabet {1,...,n}, and Ev is the commutative evaluation, allows to pass
from algebraic identities on symmetric functions to statements about words and
tableaux.

Simple transpositions can be lifted to the free algebra, inducing an action of
the symmetric group on the free algebra. The isobaric divided differences 7; can
also be lifted to the free algebra, but they do not satisfy the braid relations any
more. This does not prevent using them on the lifts of Schubert polynomials and of
Demazure characters. In particular, this is the most sensible way of understanding
the decomposition of Schubert polynomials as a positive sum of key polynomials.
One still has a commutative diagram, identifying the Demazure characters { K, :
v € N} with the “free” Demazure characters { K7 : v € N"}. However, one has
lost multiplication, Jol(z1, ..., x,) is considered as the free module with basis the
Demazure characters.

Schub = (K7) ———— Free

EN ‘/E v
Pol

We use two structures on the ring of polynomials in x4, . . ., x,,, with coefficients
in y: as a module over Z[y| with basis the infinite family of Schubert polynomials
{Yy(Xn,y) : v € N"}, or as a free module of dimension n! over Z[y| ® Gym(x,,),
with basis {Y,(x,,y) : v < p =[n-1,...,0]}. We show in the appendix how to
extend this finite Schubert basis in types C, D so as to obtain a pair of adjoint

bases for Pol(xf, ..., z}) as a free-module under the invariants of the Weyl group.
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Chapter

Operators on polynomials

PP PPPeeTrPPEbe P
o o o o o o o o o o o o o o o o

11 A,BC,D
What are the simplest operations on vectors ?
e add
e concatanate
e transpose two consecutive components
e multiply a component by -1

Thus, acting on vectors v € Z™ one has the following operators (denoted on
the right) corresponding to the root systems of type A, B,C, D :

vs; — [...,/UiJrl,’Ui,...], 1§Z<n,
vs?P =vs? = [, —u,.. ], 1<i<n,
D .
vsy = [..,—v, —viiq,..], 2<i<n.
The groups generated by si,...,8, 1 (resp. si,...,8,.1,82, resp. si,...,

Sn_1,82) are the Weyl groups of type A, BC, D. We shall distinguish between B

n
and C' later, when acting on polynomials.

The orbit of the vector [1,2,...,n| consists of all permutations of 1,...,n for
type A, all signed permutations for type B, C, and all signed permutations with
an even number of “-” in type D. The elements of the different groups can be

denoted by these objects.
The generators satisfy the braid relations (or Cozeter relations)

8§;Si+1S8; = Si+15iSi+1 & S5iSj = SjSi, |'l — ]| 7é 1, (111)
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sn,lsfsn,lsf = sfsn,lsfsn,l & sisf = sfsi, i<n-—2, (1.1.2)
Sn-0528,_ o =55, 952 & 555 =5Ps iAn—2. (1.1.3)

An expression of an element w of the group as a product of generators is called
a decomposition, and when this product is of minimal length, it is called a reduced
decomposition, the length being called the length of w and denoted ¢(w).

By recursion on n, it is easy to write reduced decompositions of the maximal
element wy of the group for type A, _1, By, Cy,, D,,. Write 1,... ,n for si,...,s, 1
and sB or sP. Then w, admits the following reduced decompositions (that we
have cut into self-explanitory blocks; read blocks from left to right)

o type A 0 |n-1] |n-2\n-1| - | 1|2 |- |n-1
1| 2 n
n-1| n
e type BC n
n—1 2
1

1 1 1
e type D (” ) n—2<" >n—2 12---n—2(” )n-2---21
n n n

In the case of type D we have written (”;1) for the commutative product

Sn—1 8713.

Erase in each block a right factor'. The resulting decomposition is still reduced,
and the group elements are in bijection with these decompositions. Therefore, the
sequence of lengths of the remaining left factors codes the elements for type A
and B. In type D, one has to use an extra symbol to distinguish between a factor
Sk Sp_25,—1 and a factor si - - Sp_25p.

Many combinatorial properties of permutations are more easily seen by taking,
in type A, another decomposition. Instead of reading the successive rows of

n type Dg, for example, the right factors of the block 1@)1 are 0, 1, 21, 31, (g)l, 1@)1.



§1.1 — A,B,C,D 9

n-1
n-2n-1 one takes the successive columns,
and thus chooses the decomposition
1|2 n-1
n-1
n-1
(nfla ,1)(%*1, ’2) (nfl) A n-1
2
2
1

It is easy to check that the decompositions obtained by taking arbitrary right
factors of the successive blocks (= bottom parts of the columns) are reduced and

in bijection with permutations.
[
ole =
°|3[4]

(0321) (eee) (e3) (4) ()
3 0 1 1 0 <=

code

For example, for n = 5,
diagram

—[rofec] o]

reduced
decomposition

is a reduced decomposition, that we shall call canonical reduced decomposition, of

the permutation sgses15384 = [4,1, 3,5, 2], and the sequence [3,0,1, 1, 0] of lengths
of the right factors is called the code of the permutation (one can represent the
code by a diagram of boxes piled on the ground).

Given o in the symmetric group &, its code ¢(o) can also be described as
the vector v of components v; := #{j : j > i & 0; > 0;}, which describes the
inversions of o. The sum |v| = vy + - - - + vy is therefore the length ¢(o) of o.

Having groups, one has also group algebras. Instead of enumerating the ele-
ments of the group W, together with their lengths one can now write a generating
series which is called the Poincaré polynomial

Z qé(w) )

weW

From the preceding canonical decompositions, denoting by [i] the g-integer
(¢" —1)/(g — 1), one obtains the following Poincaré polynomials :

e type A [1][2] --- [n] ,

e type BC'  [2][4] --- [2n]
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e type D [2][4] --- [2n — 2] [n]

One can embed a Weyl group of type B, C,, D,, into G,,, as a subgroup, by
sending s; to 8;50,_4, 1 < i < n-1, s2 and sg to s,, and s2 to $,8,418m_15n-
This amounts transforming a signed permutation v by v; — o; = v; if v; > 0,
and v; — o0; = 2n+1l+v; if v; < 0,7 = 1,...,n, and completing by symmetry:
Oon—i = 2n+1 — 0;, thus obtaining a permutation in G,.

An inversion of a permutation o € &, is a pair (i, j) such that ¢ < j and o; >
0j. One inherits from the embedding into G,,, taking into account symmetries,
inversions for type B, C, D. If w is sent to o, then an inversion is a pair 7,7 : 1 <
t < j < n such that o; > o; or such that o; > 02,,41—;. In type B, C, the indices
i: 1 <14 <mnsuch that w; < 0 (equivalently, o; > 09,41_;) are also inversions. It
is easy to see by recursion that the length coincides with the number of inversions.

1.2 Reduced decompositions in type A

In type A, we shall use graphical displays to handle more easily the braid relations.
A column is defined to be a strictly decreasing sequence of integers. Any two-
dimensional display of integers must be read columnwise, from left to right, each
integer i being interpreted as s; (or some other operators indexed by integers,
depending on the context). A display is reduced if the corresponding product of

s;’s is reduced. For example, ! %% must be read (1)(321)(32) and interpreted as

515352818352 (which happens to be a reduced decomposition of the permutation
[4,3,2,1]). With these conventions, the braid relation sjs2s; = s95152 becomes

12 — 2. More generally, one has the following commutation lemma.

Lemma 1.2.1. Let u,v be two columns such that uv is reduced and each letter of
u also occurs in v. Then uv = vu™, where u" is obtained from u by increasing
each letter of u by 1.

Proof. By induction on the size of u, the statement reduces to the case where u =1
is a single letter. Because v is reduced, v must be of the type v = v’ i+1iv”, with
all the letters of v bigger or equal to 7+2, and all the letters of v” less or equal to
1—1. In that case,

iv=2v1i+liv" =0 i+lii+lv” =0 i+1i0" i+1,

as wanted. QED
For example, starting from the canonical reduced decomposition of w = [5,4, 3,2, 1],
one obtains the decompositions

=W
=N QO
=W
now
=N Qo
N
—how
=N QO
=N
=W
=N

4 =
34

4 pu—
34

=N QO
[\CJOLIEN
=W
=D QO
=W
=N QO

4 4

|
=0 QO
I

(these are 7 among the 2% x 3 reduced decompositions of w).
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1.3 Acting on polynomials with the symmetric
group

Of course, considering vectors as exponents of monomials: ¥ = z]'z5* - - -, we get
operators on polynomials: v — ws; induces the simple transposition of x;, z; :
x¥ — x¥%i and similarly for types B, D. No need to point out that addition of
exponents corresponds to product of monomials, and that concatenation corre-
sponds to a shifted product that we shall use when considering non-commutative
symmetric functions:

n m uU UL U U1 Um
ueZ'velZ" — " =1z e IR AN

If v is such that v; > -+ > v,, then v is called dominant (we also say that
v is a partition, terminal zeros being allowed). When v; < --- < w,, then v
is antidominant. The reversed vector [vy,...,v;] is denoted vw. Reordering v

increasingly (resp. decreasingly) is denoted v T (resp. v |).

Instead of vectors in N, one may use permutations. We have just to reverse
the correspondence seen above between permutations and codes?. One identifies
o € Sy and [0, N+1, N+2,...]; this corresponds to concatenating 0’s to the right
of the code of 0. For example, one identifies the two permutations [2,4, 1,5, 3] and
2,4,1,5,3,6,7,...], as well as their codes [1,2,0,1,0] and [1,2,0,1,0,0,0,...].

Let us consider in more details the space Pol(x1, x2) of polynomials in xfc, xgc,

with the simple transposition s of x1, 5. One remarks that s commutes with multi-
plication with symmetric functions in z;, xs (whose space is denoted Sym(xy, x2)).
Every f € Pol(z,x2) can be written

_f+f3+f—f8_f+fs+(x1_x2)( f-f )

/ 2 2 2 2(x1—12)

This means that every polynomial in ol(x, z5) can be written uniquely as a linear
combination of the polynomials 1 and (x;-z3), with coefficients in Gym(xy, z3).
In other words Pol(z1,z2) is a free Gym(zy, 22)-module of rank 2, and one can
choose as natural bases {1, z1-x2} , {1,252} or {1,271} .

The last choice corresponds to writing f as

f_m(izﬁ>+<ﬁﬁ;££),
T1—T2 T1—T2

the action of s being determined by

{1z} — {1, 29 = —21 + (21+22)}

2This correspondence is in fact due to Rothe (1800), who defined a planar diagram repre-
senting the inversions of a permutation.
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and represented by the matrix

1 14 29
0 -1 '

Since a 2 x 2 matrix has 4 entries, this is not a big step to consider more
general actions, such as

{171;1} - {07 1} )
which, for a general polynomial f, translate into

1

X1 — X2

f_><f_f8) ::falu

and is called Newton divided difference.

Similarly
{1,292} — {1,0} induces f — (x1f — z2f) = fm,
r1 — X2
{17$1} - {Oa$2} induces f — (f - fs) = = f7,
Tr1 — X2

{1, 2o} = {t, 21} induces f— fmt—1)+f°:=fT,

{1,2:} — {1, tas} induces f— fF(t—1)+ f%:=fT1,

which are, respectively, two kinds of isobaric divided differences, and two choices
of a generator of the Hecke algebra Hsy of the symmetric group Gs.

Of course, for every pair of consecutive variables x;, x;,1, one defines similar
operators 0;, m;, 7;, 15, T;. The following table summarizes their action on the basis
{1,241} of Pol(x;, x;11) as a free Sym(x;, x;41)-module :

A~

operator Si 82 5 /7'(\'1 T’l T,

equivalent form <]'_Si)x~71x'+1 l’zaz 5’ixi+1 v (t—l) + s; /ﬂ\'z(t—l) + S5
1 1 0 1 0 t 1

Tit1 x; -1 0 -z T TitTip1 =241

Equivalently, these different operators are represented, in the basis {1, z;.;}
of the free module Pol(z;, x;11), by the matrices

_].I’iJrZL‘H_l _0*]_ _].O
SZ|:O _1 :|7al|:0 0:|77TZ|:0 O:|7
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All these operators are of the type
Di =1 P(x, Tiy1) + 5 Q(24, 7441) (1.3.1)

with P, () rational functions, that is to say, they are linear combination of the iden-
tity operator and a simple transposition with rational coefficients. The operators
0;, m;, m;, T, Ty all satisfy the type A-braid relations

DDy D; = DiysD;Diyy & D,D;=D;D;, |i—j| #1.

One discovers that these operators also satisfy a Hecke relation

S$;S; = 1, &GZ = O, T T, — Ty, /77\'1%1 = —%i, (T;—t)(ﬂ-l—l) = 0, (ﬁ+t>(i—1) =0.

Let us check for example the relation 010,01 = 0,0:0,. These two operators
commute with symmetric functions in xq, xs, x3, and decrease degree by 3. We
can take as a basis of Pol(x,) (as a free module over Gym(x3)) the 6 monomials
{z":10,0,0] <wv <[2,1,0]}. The first five are sent to 0 by 91020, and 050,09, for
degree reason, there remains only to check that z21°9,0,0, = 221°0,0,0, = 1 to
conclude that, indeed, 010,01 = 050,0-.

As a consequence of the braid relations, there exists operators 0, 7y, Ty, 1y,
indexed by permutations o, which are obtained by taking any reduced decompo-
sition of ¢ and the corresponding product of operators D;.

1.4 Commutation relations

Divided differences satisfy Leibnitz® formulas®, as easily seen from the definition:

f90i = [ (90:) + fO; 9° = g (f0) + 90; f* . (1.4.1)

Iterating, one obtains the image of fg under any product of divided differences :
fg (92(9] e 8h

= > (fO507 - 0) (gss0r ST 0, s ) L (1.4.2)

eiv---ehe{ovl}

It may be appropriate to use a tensor notation, the above formula being the
expansion of

3For fear of being called Leinisse, Leibnitz chosed the spelling “Leibnitz” in his letters to the
Académie des Sciences. We shall respect his choice.

4Notice that formulas are disymmetrical in f, g, one has two expressions for the image of a
product.
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In particular, when g = x;, relations (1.4.1) may be seen as commutation
relations :

:cz(?Z = @xiﬂ +1 & LT = T;XL541 +z; & JJﬁT\z = %z‘xiJrl + Tit1, (143)

the relations z,T; = Tjx;+1+(t-1)x; together with the trivial commutations z;7; =
Tixj, when |j —i| # 1, being taken as axioms of the affine Hecke algebra’.

Since %z = &miﬂ, one has also %zxz = &-xi“xi = x,;+1xi(9i = Xj417T05, and by
iteration, reading the objects by successive columns,

T Tni1| Tn ~ =~
~ ’ﬂ'] DY ’n’n x]_"_l 7'("7 DR ﬂ'n
Tpn—1 Tpn—1 .
= y : =
7| T Mitj—n =" T | Ty Mitj—n T

We shall need some more commutation rules. For example,
T ToTM3XL1T2X3 = LoX3L 4T ToTy + T1XoL3L4T1 T2 + L1 XL AT Ty + L1X3L 4T3

and to iterate such relations, we prefer to represent them graphically as

MEE 5 nn -
T T E

T2 x4+ T3 T4
1] o B8] T [o] [2] [8]

In general, given an antidominant v € N¥, the v-diagram V is the array with

columns of length v, ..., v, filled by decreasing integers as follows :
]
Usg | - -
V= ,
Uy
1 2 e k
where u = v +[0,1,...,k-1], and 7V, TV, are the columnwise-reading of V, inter-

preting i as m; or 7; respectively.
Iterating the preceding commutation rules, one obtains the following lemma.

5 For the double affine Hecke algebra for the type A, omnipresent in the work of Cherednik,
one needs also to define Ty or an affine operation.
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Lemma 1.4.1. Let v € N* be antidominant, V its associated diagram, n be an
integer such n > vg+k. Then
% 1 1 ~V

m — VI
XT1- Tk 'T’U1+1'”ka+k

Equivalently, multiplying by the factor xy ...z, which commutes with m;,m; for
1 <mn, one has
T g1 ... 1y = (M> i (1.4.4)

xvl—i—l e xv;ﬁ—k‘

A punched v-diagram U is what results after punching holes in a v-diagram, in
such a way that there are no two holes in the same row or same column, and such
that no two holes occupy the South-West and North-East corner of a rectangle

contained in the diagram. We forbid [e] Te], ,

[ J
Label the rows of a v-diagram by the first entry of each row, and the columns
by vi+1,...,v,+n. The weight of a punched v-diagram U/, that we denote 2,

is the product [, ..« Zi [ Loojumns j» Keeping the indices of punched rows, and of
full columns. By 7 we mean the reading of U columnwise, from left to right,
interpreting each i as m; and ignoring the holes.

Let us give an example of a punched diagram for v = [2,2, 4,4, 4].

T3 Ty Ty Tg Ty T3 xg
67]|8] s o | 7|8 s
516|7] %5 5(6|7

213|456 *2 2/0|415|6]| *2

1(2]3]4|5| ™1 1234 11

coordinates and filling weight of a punched diagram

The punched 133-diagrams with two holes, together with their weights, are

®|5 415 41 415
314 ° 4 3|4 3|e
2|3 2|3 2|3 23
T1 Xy Tg T1 X3 Tg T1 X5 Ty T1 X5 T3

® 5 |5 415

3|e 3|4 .
[1[2]3] [1]2]e] [1]2]e
Lo Xy T3 Lo Ty X1 T T3 L1

We shall need more commutation relations.
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Lemma 1.4.2. For any positive integer n, one has

1
D —— IR (P IO =—7T1 7Tn+z ST AT T, (1.4.5)

Ty Tyt $z+1

71'1...7]'”:1:'2...1'”7]'1...7]'”71 :‘I3"‘xn+lﬂ-1"'ﬂ-nﬂ-l"‘ﬂ-’nfl' (146)

Given v € N" antidominant, V its associated diagram, then
=> oMl (1.4.7)
u

sum over all the punched v-diagrams.

Proof. The first two assertions are obtained by iterating the relation m;z; = z; 1 m;+
x;. Let us check the last one by recursion, adding a top row to the diagram ).
One therefore has to evaluate a product of the type m, - - - w24 7, where the
restriction of ¥ to {z,,...,Zpm41} is a subword of z, - - - 2, which points out full
columns in U.
Let us first examine the case where x,, € U. Taking specific values to simplify

the exposition, ignoring the left part figured by hearts, one has to evaluate

mT15 T 717 718 719

Tie Ti7 - T19
Ol14|15] 16| 17| 18
O Ol e |14]15]|16 |17
O Ol1213]14]15] 16
OOl ]12)13] e |15

By commutation of the incomplete columns with the complete ones, one obtains

15 716 T17 T18 719

Tie Ti7 - T19
@ 15116 | - |18
O Q) e |14|15|16]| 17|18 °
O Ol12|13]|14] - |16]17
OOl 12|13 e | 15] 16

from which one extracts the left factor (mismiemi7 T16717 T15T16)(T18T10 T19 T18),
WhiCh, thanks to (146), is equal to T17X18T20 (7T157T167T157T177T16)(7T187T197T18). We
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therefore have transformed 24 7 into 24" 74", where U™ is obtained from U by
adding a top row.
Let us consider now the case where z,, € 2. Still with the same example, one

has to evaluate
mT15 T 717 718 719
15 Tie L1t : T19

Ol14 15|16 |17 | 18

© Ql13|14|15]16 |17

O Q1121314 15] 16

O Ql11l12]13| ¢ | 15

Thanks to (1.4.5), the factor m5memi7 (T1516717) is equal to the sum

Tie 17 L18 + Tir L18 + L16 18 + Tie L17 .
™5 T Ti7 Ti5 ® Tie Ta7 Tis M5 ® M7 Ti5 Ti15 Tie ®
Adding a top row to the diagram V has resulted in adding a top row to U, or
adding a row with only one hole, in all possible manners such that the new hole
is left of the already existing holes in the last block of columns. This finishes the
proof of the lemma. QED

For example, for v = [1,2,2], one has

3|4 L1993 = XX 4Ty 3|4
1/2]3 11]/2]3
+ 12475 314 + Tox3T5 ° 4 + T1x075 314
[e]2]3 11]2]3 [1]e]3
+ ToT32y 3 + 212074 314 + 212375 4
11]2 [1[2]e e]2]3
3|e
+ T1T3T4 —+ T1X2T3 .
e]2]3 [1]2]e

Comparing the relations mzy = xym -2 and x1(-7) = (-71)T2—22, one ob-
tains a symmetry between commuting any 7, with a polynomial f, and commuting
f¢ and 7,1,

Lemma 1.4.3. Given n, 0 € &, and a polynomial f(x,), suppose known the

commutation
o f(%n) = ZC ge(Xn) ¢ -

Then one has

FO6) Fagi = Y (O OR 0 gc(3) (1438)
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Similarly,
Tof (%n) = ZC 9¢(%n) 7¢
implies
J(X) Too—10 = ZC(*I)K(")_E(OM% 9¢(x3) - (1.4.9)
For example, for n = 3, one has
M Ty = T3M T2 + 1T — T,
ToTTe = TMoT1 — Moy — T3
and
Ty = T3mTe + x3(T1+33)7) + 7370,
TImTy = Mmers — mo(x (71 + 23) — T1To .

Punched diagrams can also be used to describe the commutation of a product
7Y with a monomial. For an antidominant v € N*, n = v, +k, V associated to v, let
us take the monomial x4 ...x,. Transposing diagrams along the main diagonal,
and introducing signs exchange the two cases. For example, for v = [2,2], one has

T3 T4 Lo Ty T3 T2 1 T4 T3 T To Tq
213 — |23 ° 3 2| 213 213 ° 3
112 112 + 112 * 112 * 2 * 1]e + 1[e] "’
1 T2
that is,

MoM3M ML 1 X2 = T3L4ToM3M1 Mo + Loy T3M1 Mo + T3LoTo T o

-+ T1X4TTT3To -+ T3X1 T3 -+ T1X9T3T ,
while
%2%3%177\#3%4 = $2$1%2%3/7%15T\2 - IE3$15T\3%17T\2 - $4I17T\2%1%2
— XoX3ToT 3Ty — Lo 4T oT3T + T3T4TT37T

can be displayed as

r3 1|1

2[3] 74 _ T2 [2]3] _Ts[e]3] Ta[2]e] T2[2]3] T2[2]3],T3[e]3
2 D) 2 D '

1 o [1[2] = [1]2] w3|e x4 [1 z4[1]e

The operators of the type (1.3.1) and preserving polynomials are character-
ized in [125]. They are essentially deformations of divided differences, though
their explicit expression can look more frightening. For example, the operators
(depending on the parameters uy, ..., u4, p,q,7)

((qui + pug)z; + (qua + puy))(uszipr + ug)
U1Ug — U2U3

f—f O +rff:=fD,

do satisfy the braid relations.
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1.5 Maximal operators for type A

The operators associated to the maximal permutation w = [n,...,1] play a
proeminent role. In fact, they all come from the projector onto the alternating
1-dimensional representation of &,,, already used by Cauchy and Jacobi :

f _ Z (_1)6(0') fa )

0’6671

Indeed, writing A for the Vandermonde det(xz_l)ﬁjzl = [[1<icjcn(@i—;), with
0

n’

p=[n-1,...,0], and thus 2¥ = 27~ 'z =% .- 2%, one has the following proposition.

Proposition 1.5.1. Given x of cardinality n, the divided differences 0,,, m, and
Tw VETify :

1
Dy = Z(—l)a%z, (1.5.1)
geG,
T = xﬂZ(—M")al, (1.5.2)
ce6,
p\w
7 = Z(—l)“”)a(? . (1.5.3)
ceS,

Proof. As in the case n = 2, we prefer to characterize operators by their action on
a basis. The monomials z* : u < p are a basis of Pol(n) as a free Sym(n)-module.
They all are sent to 0 by 9, as well as by > +0A~! for degree reasons, except x”
which is sent to 1 (this is the only computation to perform) by both operators.
This proof can be adapted for 7, and 7. QED

We have not mentioned T, in the proposition, because this is not a sym-
metrizer, since, for n = 2 for example, x577 = x1. However, x5(17 + 1) = x1 + 23
and 1(7} + 1) =t + 1. This indicates that one has to take the Yang-Baxter defor-
mation of T, for v = [1,¢,...,t" '] if one wants a symmetrizer. Indeed one has,
as we shall see in more details in (1.9.9), the following symmetrizer in the Hecke
algebra (as shows the last expression):

(Th +1) (T2+ ;__11) (T3 + %) o (Ty + 1) (T2 + ti__11> (T + 1)
=Y T,= ][] (twi—x)0..

c€Sy 1<i<j<n

We shall frequently use the action of d,, on a product fi(z1)--- fu(z,) of func-
tions of a single variable. In that case, the sum Yo (1)) (fi(z1) -+ ful(zn))’
filx;)

is equal to the determinant , and one may view

A (1.5.4)




20 Chapter 1 — Operators on polynomials

as the discrete Wronskian of the functions fi,..., fa.. .

Schur functions correspond to the case where fi, ..., f,, are powers of a variable,
factorial Schur functions arise when taking instead modified powers z(z—1) ... (z—
k), while g-factorial Schur functions stem from g-powers (z —1)(z —q) ... (z —¢%).
More precisely, for any v € N™, the Schur function s,(x,) is equal to " J,,, the
factorial Schur function of index v is equal to

(wl(xl—l) . (a:l—vl—n+2)) . <xn(xn—1) . (a:n—vn+1)> a,
and the q-factorial Schur function of index v is equal to
((xl—l)(xl—q) o (xl—q”1+”_1)) o ((wn—l)(xn—q) . (xn—q”")) Oy .

For example, when n = 3 and v = [5, 2, 1], then the corresponding factorial Schur
function is equal to

(33‘1 — 1) Ce (1’1 — (]6)(262 — 1)(1’2 — (])(.732 — qz)(.Tg — 1)8321

1 (21-1) ... (21-¢%) (22-1)...(22-¢%) (x3-1)...(x3-¢%)
= —|(z1-1)...(21-¢*) (22-1)...(22—¢*) (w3-1)...(z3-¢%)] .
A r1-1 To—1 r3-1

We shall interpret it later as the specialization y; = 1,1, = q,y3 = ¢, ... of the
GraBimannian Schubert polynomial Y95(x,y).



§ 1.5 — Maximal operators for type A 21

Divided differences can be defined for any pair z;, z;, and not only consecutive
variables :

O f— (f =) (i — ;)7
7;; being the transposition of x;,z;. We shall need these differences to factorize

Oy

Lemma 1.5.2. Letn =2m, ' =[m,...,1,2m,...,m+1], w = [2m,...,1]. Then

&J/ 81’m+1827m+2 c. amgm 8w/ = (—1)(7;>m' &U . (155)
Proof. The left-hand side commutes with multiplication by elements of Gym(x,,),
and decreases degree by (T;) It is therefore sufficient to test its action on z” to
characterize it. One has 279, = ™" " 2P0, O1mi1 - - Omom = Y ¥, sum over
all v € N” such that v; + v,,0; = m-1, 4 =1,...,m. Each such monomial has a
non-zero image under 9, if and only if vy, ..., v, is a permutation of [m-1,...,0].
There are m! such monomials, which each contribute to g™ 1-00-m=1g  —
(-1)(%) to the right-hand side. QED

For example, for n = 4, one has 0914301302402143 = —204321- Many other
decompositions are possible, e.g.

812814834623813624 - a4321 - 614813824823824813 - a23613824814834812 .



22 Chapter 1 — Operators on polynomials

1.6 Littlewood’s formulas

One can combine the above operators with change of variables x; — ¢(z;). The

maximal divided difference 9, becomes > (+0) A(p(x)) ™! = d,Ax)A(p(x)) 7},

and it remains to find functions ¢ furnishing an interesting Vandermonde A(¢(x)).
Notice that if ¢(x;) = g(x;)/ f(x;), then

fla)™ " fla)"Pg(x) - gla)

H (z:)" " Alp(x)) .

Taking f(x;) = z;, g(z;) = 1+ 2, k > 0, and remarking that (1 + z¥)/z; — (1 +
ah)fx; = (a;7" — 2;') (1 — 235532 (2s+2;)), one obtains that

) e by o

i=1...n

= (1+25H1+252. . A +2)"
= [I (t-zaysialeiray), (16.2)

1<i<j<n

the first equality resulting from the definition of m,,.
In the case k = 2, the preceding determinant can be transformed into

:1:?_1 :13?_2(1+x?) x?_2(1+xf) (1+x2” 2)

i=1...n

Since the operator m, sends z¥, v € N" onto the Schur function s,), the
preceding identity, still in the case k£ = 2, can be written as

H (1—zizj) = (1423) (1423 .. (1+22)"

1<i<j<n
=(1+ x%)(l + xé) S (T+ xi”_Q) Ty
= ) (1) I51061 262, 2n-2)ea) (X) = 1+ $02(%) + s004(%) + S024(%) + . .
61[61 ----- €n]e{071}n
=1- 811(X) + 8211( ) - 5222( ) +.

=1+ Z s alasin(x), (1.6.2)

sum over all 7, all @ = [ay,...,q,], a1 > s > ..., > 0, using the Frobenius
notation® for partitions.

Similar identities, known to Littlewood [143], [146, p. 78], can be obtained as
easily, the reordering of the indices of the Schur functions being translated into

6
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properties of diagonal hooks.

[[a-=) I O-me)=0-2)(—ad)... (1 -2 ")m,

i 1<i<j<n
= Z (71)|€|5[€1,3€2 ..... (2n—1)en] (X)
e=le1,...,en]€{0,1}7
) + s13(X) — S005(X) + S105(X) + S035(X) — S135(%) +
)

— S92(X) — s311(X) + S321(X) — S332(X) + S333(%) +

_1+Z 1)1 5 (41 (%) - (1.6.3)

=1- Sl(X) — 803(X
=1—51(x) + s21(x

I[] -z =1 -1 —23)...(1—a2)m,

1<i<j<n
== (_1)‘6‘8[261,462 ,,,,, 2nen) (X)
e=[e1,...,en]€{0,1}7
=1 — 59(x) — S04(x) + S24(X) — S006(X) + S206(X) + Soa6(X) — S246(%x) +
=1 — 59(x) + s31(x) — 833(X) — $411(X) + S431(X) — Su42(X) + Saa4(X) +

_1+Z D5 1m5)(x) . (1.6.4)

i=1 1<i<j<n

=(1—z)1 )1 —a3)(1—a3)... (A —ap)(1 — 23" m,

n

= (1 — Sl(X) + Sll(X) — 8111<X> + .. ) Z (—1)‘6‘8[2517452 ..... Qnen](X) . (165)

61'6{0,1}

One can generalize these formulas by adding letters to the alphabet x. For
example, using x U {1} in (1.6.2), one obtains

A R N i

: : : 1 -

gt gttt 14 a? Ax) H( ) 1<E<n( =1 )
1 1 1

the factor [[(1-z;)* being due to s;;(x + 1) = s11(x) + s1(x) and A(x+1) =
A(x) [[(1-z;). More variations of this type can be found in [105].

All the preceding formulas can be interpreted, in terms of A-rings, as describing
the plethysms A*(S?) or A’(A?), and have counterparts describing S*(5?) or S%(A?).
Let us show that the symmetrizer 7, still allow to describe the generating function
of this last plethysms.



24 Chapter 1 — Operators on polynomials

Proposition 1.6.1. For a given n, one has

. 1
H(1 —mE) T = (1-z)(1-2223) ... (1-2% ... 22) T (167)

= ) s

evenrows

[ =)™ = ! - m41.6.8)

i< (1—x1x2)(1—x1 Ce .T4)(1—£C1 Ce l’ﬁ) ..

= > sk

even columns

H(1‘$i)1g(1_xixj)l = Conm) . oy ™ (169)
= ) s\(x)

1
1- i_2 1—ax) b = J(1.6.10
1100 11( ;) o2 (oA 610)
D (A=A 1) (Ag-Ag+1) .. (An+1)s(x)1.6.11)
Proof. One can use induction on n, factorizing «,, = w7, with w’ = [n-1,...,1].

Thus one is left with computing the image under 7, of the quotient of the two
successive denominators appearing in the left-hand sides. For the first formula, it
means computing

(1—z2,) ... (1 =22 1) (1 —22)(1 —21...2,) 7,
= (1 —aper + -+ (-zp)"0)) (L — 2y ... 1) ',

ée1,...,¢e, being the elementary symmetric functions in x,, and therefore com-
muting with 7. Since x,,,..., 2" ! are sent to 0, and (—x,)" 7, = —21 ... Z,, the
above expression is equal to 1, thus proving (1.6.7). The other formulas require no
more pain. Moreover, the rational functions in the right-hand sides expanding as
sums of dominant monomials, the expressions in terms of Schur functions follow
immediately. QED

One should try expressions more general than products of factors (1 4 u)*!,
with © monomial. I shall give a single example.

Lemma 1.6.2. Given n, then

1
(1*1‘1*1)2)(1*%22)(1*1}111*ZE222)(1*.@2222) . Mw

1 1
=11 1_%_%21_[ —— (1.6.12)

% 1<J
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Proof. Let GG, be the right-hand side. Using induction on n, one has to compute
G,-1/Gym,. This depends on parity, and taking n = 4,5 will be generic enough
to follow the proof.

Gs/Gamazn = (1-2174) (1-2974) (1-2374) (1 — 24 — T3) Ta301

4
= H(1 - 13i554)7T4321 - $4(1—$1134)(1—$2$4)(1—$3$4)7T4321 .
i=1

One has already seen that [J(1 — z;z4)ma301 = 1 — 2%??2, and one checks that

all the monomials appearing in z4(...) are sent to 0 under my39;. In the case of
G4/G5Ts4321 on the contrary, the monomial —x'1%% is such that —z11%%7y,3,, =
M mand thus, G4/Gsmsazer = 1 — 222222 — 1L Tn both cases, the resulting
factor is what is required by the left-hand side of (1.6.12) to ensure equality. QED

The left-hand side of (1.6.12) expands as a positive sum of Schur functions,
which multiplicities that are easily written in terms of the multiplicities of parts

in the conjugate partitions.
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1.7 Yang-Baxter relations

With a little more work, one can construct operators offering still more parameters.

The uniform shift D, — D; + 1,4 =1,...,n-1, destroys in general the braid
relations”. For example,

(T4 s1)(1+89)(1+81) =2+ 281 + S+ $152 + $281 + 515281
# (L4 52)(1+s1)(1+52) .

However

(143005 + )Lt 1) = (1 5)(5 + (1 + )

because both sides expand (in the group algebra of S3) into the sum of all per-
mutations.

Therefore, one abandons uniform shifts, but how to find compatible shifts like
1,1/2,17

The solution is due to Young [195], and called Yang-Baxter equation [194, 5]
because Young-Yang-Baxter would be confusing.

One chooses an arbitrary vector of parameters v = [vy,...,v,] (called spec-
tral vector), and each time one operates with D;, i = 1,...,n-1, one modifies
accordingly the spectral vector by v — vs;.

Now, the shift to use depends only on the difference of the spectral values
exchanged, with similar rules for the different varieties of operators D;.

More precisely, given i, let a = v;, b = v;,1 the corresponding components of
the spectral vector. Then, instead of s;, 9;, m;, ;, T; respectively, one takes

TR S LI N S
Sl —7 74 —777-1 —77T-i —7 74 T 4
b—a b—a b/a—1 b/a—1 b/a—1

(the careful reader adds “provided b # a”).

For n = 3, the Yang-Baxter relations for s;, 0;, m; and T}, and a spectral vector
v are, writing ve-v, = a, v3-vy = b, v3/v] = a, v3/vy = [,

7it only works for 7; — 7; + 1 = ;.
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82+a+|—b 81+a+&—b 32+a+rb al+a+‘,—b
Y A A A
23 31 23 31
81+% Sz—l—i 81+% az—l—%
321 321

Y Y Y Y

23 il 231 31
7Tl+ﬁ Ty + 5 T1+2;_11 Ty + =

321 321

The fact that each hexagon closes means that the two paths from top to bottom
give equal elements when evaluated as products of the labels on the edges.

Thanks to the Yang-Baxter relations, to each spectral vector v, is associated
a family of operators D} : o € G,,, obtained by taking products corresponding to
reduced decompositions.
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For example, for &3, and v = [y1, y2, y3], one has the operators

1 1
Ofga =1, 050 =01 + , Ofay = 0y + ,
123 213 1 Y2 — U1 132 2 s — U2
05 0105 + O ! + 0 L + L
= 0102 2 )
281 Y2 — Y1 1?/3 — U (?/2 - yl)(yS - y1)
1 1 1
0%, = 050, + O + 0, + ,
o2 Y3z — Y2 Ys — W1 (3/3 - y2)(y3 - y1)

1 1
+ 004 + O
Ys — Y2 Y2 — Y1 (y2 - yl)(ys - y1)
1

(Y3 — y2)(y3 — y1) " (Y2 — y1)(yz — v1) (Y3 — v2) '

8§21 - 61(9281 + (91(92

+ 0y

One recognizes that the product (14 s1)(27" + s2)(1 + s;) corresponds to the
choice D; = s;, 0 = [3,2,1], v = [1,2,3]. The reader will guess, and prove, that

for any n, the choice D; = s;, 0 =w :==[n,..., 1], v =[1,2,...,n] gives
(o) ()0 +s0)) o (et su) (45 s) ) = 3
S1 5 So S1 n—l Sn—1 9 S92 S1 = L ag.

One can also twist the action of the symmetric group, and use D; = 9;+s;. The
operators D; still satisfy the braid relations, together with the relations D? = 1.
Therefore, the operators Dy, ..., D, 1 provide a twisted action of the symmetric
group on Pol(x,,). Since the Yang-Baxter shifts are the same for 0; and s;, they can
also be used for 0;+ ;. In particular, one can take the spectral vector [1,2,...,n].

Let us show that the maximal Yang-Baxter element for this choice of spectral
vector is still a symmetrizer. In the case n = 2, one has indeed

81+31+1:(1+I1—1’2>81.
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Lemma 1.7.1. Given n, let

O, = <(D1+1) oo (D + ﬁ)) ((D1+1) oo .(Dps + ﬁ)) . <D1> .

Then
Oo= ] Q+zi—z)0.. (1.7.1)

1<i<j<n

Proof. Both sides of (1.7.1) commute with multiplication with symmetric func-
tions, it is therefore sufficient to test their action on a basis of Pol(x,) as a free
Sym(x,,) module. But instead of the basis of monomials {z" : v < p} used above,
we shall use a basis of homogeneous polynomials {Y, : v < p} in their linear
span, such that each Y, has a least one symmetry® in some x;,z;,1, except for
Y,—1, 0 = x”. But using symmetric rational functions in x,, instead of elements of
Ghm(x,), we can take the polynomials Y, [, ., <, (1+z;—x;) as a test cohort. All
these elements, except in the case v = p, are sent to 0 by H1§i<j§n(1 +xz; —x;) 0,
because the factor [], 2 j(l + x; — ), being symmetrical, commutes with d,,, and
because Y, 0, = 0 for degree reasons.
On the other hand, if Y, has the symmetry x;, x;,1, then, by commutation,

Y, H (I4+z;-2;)(0; + s; +1) =Y, ( H (1+xjx,~)> (1+x;-wi11) O;

1<i<j<n 1<i<j<n

=Y,0; < H (1+xjxi)> (I+x;-wi11) = 0.

1<i<j<n

Since, thanks to Yang-Baxter equation, one can factorize on the left of [, any
D; + 1, the image of Y, [[(1 + x; — x;) under O, is 0 when v # p. Thus, both
sides of (1.7.1) coincide up to multiplication by a rational symmetric function. To
determine this constant, it is sufficient to see that

Ly +s1+1) (451427 ) - =nl = [ (L+a-;) 0,

1<i<j<n
and this ensures the required equality. QED

The Yang-Baxter rules do not exhaust the realm of interesting factorized ex-
pressions. Let us take’

(1 =4101)(1 = y102) - (1 = y10n-1))
(1= 9200)(1 = 9y20s) -+ (1 = Y20n-2)) - - - (1 = Yn—101))

8tTo show that such a basis exists is easy by induction on n, we shall see later that the
Schubert polynomials Y, (x, 0) satisfy such properties.

9This product of divided differences is the generating function of Schubert polynomials in the
pair of alphabets y, 0, in the algebra of divided differences, also called the Nil-Coxeter algebra
[39] see (8.3.2).
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and show that this element can be used to transform the staircase monomial x?,
with p = [n-1,...,0], into a product of factors of the type z; — y;.

Let us make the step-by-step computation for n = 4, displaying the factors of
the polynomials planarly.

Zs3 T3 T3
1-y101 1-1102

To | T2 — | T2 | T2 — | X2 |r2—u1
T T I 1 T1 |z1—vy1 T 1 |x1—v1

T3 —Y1 T3 —Y1

1-y103 1—y301
— T2 |z2—y1 T —  |z2—yo|re—y1
1 | X1 |- T1—Y3|T1—Y2|T1—Y1

Each step is of the type fxz;(1 — y9;) = f(x; — y), with f symmetrical in
Zi, Tir1. In final, we have obtained the function Hi+j§4(mi — y;) by using only
that 10; = 0, z;0; = 1. This function, together with the “staircase monomial”
23210 will play a key role in all the sequel. This identity can be written more
compactly, still reading the planar arrays by columns (reading by rows still works

in the present case), as

1=9101 [1=y102 [1—y103 T3—Y1
T3
To i) I*ygal 1*y2(92 - T2—Y2 | T2—Y1 . (172)
Ty [ X1 | X1
1—y301 T1—Y3 | T1—Y2 | T1—Y1

1.8 Yang-Baxter bases and the Hecke algebra

The Yang-Baxter relations constitute a powerful tool to define linear bases with
an explicit action of the Hecke algebra (or of the different algebras obtained by
specialization, the first interesting one being the group algebra of the Weyl group).
In this section we shall change the conventions for the Hecke algebra, compared
to the preceding section, to bring into prominence some symmetries.
The Hecke algebra H,, of the symmetric group &,, is the algebra generated by
Ty, ...,T,_, satisfying the braid relations together with the Hecke relations

(ﬂ-tﬂ(ﬂ-tg)zo, z':l,...,n—l,

for some fixed generic parameters t1,t;. For Macdonald polynomials, one takes
ty = t, to = -1. The 0-Hecke algebra is the specialisation t; = 0, t = -1 of



§ 1.8 — Yang-Baxter bases and the Hecke algebra 31

the Hecke algebra (that one can realize as the algebra generated by 7y, ..., Tp_1).
The 00-Hecke algebra, also called NilCoxeter algebra, is the specialisation t; = 0,
to = 0. It can be realized as the algebra generated by 0, ...,0,_1.

From the point of view of operators, the Hecke algebra is the algebra gen-
erated by operators T; such that each T; acts on x;, x;1; only, commutes with
Sym(z;, xi11), and acts on {1,z;41} by

1T, =t & Tip1 1T = —tom;.

One has therefore T; = m;(t; + t2) — s;ta.

The general Yang-Baxter equation'’ depends on two generic parameters a, 3 :
t1+t2 t1+t2 t1+t2
T T T
(o) (e i) (5%
t1+to t1+to t1+to
=|To+——| (T T . (1.8.1
( 0 ﬂ—l) ( 1+ozﬁ—1) ( o a—l) (5

Graphically, it reads

t1+t2 t1+to
T+ T I + 6—1

Tl + tl‘gt2 T2 + t1l—t2

Given n, one takes an arbitrary spectral vector [yi,...,7,] of indeterminates.
The Yang-Bazter basis {U) : 0 € &,} corresponding to [y1,...,7,) is defined
recursively, as follows, starting from U} = 1 for the identity permutation:

i1 + 1o

o1, = U) (:n it
! '70i+1/70i -1

) for o; < Oit1 - (182)

The consistency of the definition is insured by the Yang-Baxter equation (1.8.1).
Notice that arrows are reversible in the generic case. Indeed, for any i, any

10The Yang-Baxter relations for the group algebra of &,,, for the algebra of divided differences,
and for the algebra of isobaric divided differences are the limits t; = 1,t5 = -1, t; = 0,3 = 0,
t;1 = 1,t; = 0 of (1.8.1 respectively.
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v # 0,1, one has

t1+t t1+t t1+t t1+t t1v+ta) (t1+t
Tt 1tl2 Tt 1tl2 . 1tl2 t 1tl2 :7( 1Y+ 2)( 1+ 27)‘
7-1 -1 7-1 -1 (v —1)?

It is clear that the set {U) : 0 € &,} constitute a linear basis of H,, be-
cause O, = T, + ZM(UKE(U) cT,. Since this basis is generated using the T;’s,
it is immediate to write the matrices representing the Hecke algebra in this ba-
sis. The matrices representing each 7; are made of 2 x 2 blocks corresponding
to the spaces (U}, 07,.). They generalize the semi-normal representation of the
symmetric group due to Young''.

Indeed, for &,, and the spectral vector [1,~], the Yang-Baxter basis is {1, 77 +
(t+t2)(y-1)"1}, and the matrix representing 7T; is given on the left, while Young’s
matrix (which is the limit for v = (—t1/t2)9, (—t1/t2) — 1) is given on the right
[163] :

—(tr+t) (7=1)"Y —(tyyte) (Bt (7-1) 2 L1 g
1 (ti+ta)(y ' -1)7" } , { 1 gl } (1.8.3)

One could write the similar matrices for the other types B,C, D, once the
Yang-Baxter relations have been written for these types.

Irreducible representations can be obtained by either degeneration of the spec-
tral vector, or by making the Hecke algebra act on polynomials. For example, in
the case of the symmetric group, a Specht representation is obtained by acting
on a product of Vandermondes on consecutive variables. Similarly, acting on a
product of ¢-t Vandermondes [, <, (7; —tz;) on blocks of consecutive variables
produces an irreducible representation of the Hecke algebra.

Yang-Baxter bases possess many symmetries. Let f — w x f x w be the auto-
morphism of H,, induced by T, — wx T, xw = T,,,. Then one has

Lemma 1.8.1. The Yang-Baxter bases associated to the spectral vectors [y1, ..., Yn)
and [yt ... y; '] satisfy the relations
Bv U = kO x| g €S, (1.8.4)
Proof. In the case n = 2, this is the identity
th+t th+¢ th+¢
T1+%—w*<T1+1—2>*w—T1+1—2.
oy, — 1 y2/y1 — 1 ya/y1 — 1

For a general o and i such that ¢(cs;) > ((c), putting v = y,,*; /v, 11 _;, one has

Uyﬁl,_,.,ylfl T ¢ t1 4+t — (wr O ) (wa (T + t1 + to e w

t t
:w*<65ﬁ,’;’y" (Ti+ e ))*w,
Yni1—i/Yn—i — 1

11We have taken generic parameters. To build general representations, one also needs blocks
of size 1!.
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and this proves the statement by induction on length. QED
We also need another involution f — f induced by

T, — T =T, — (ti+ts), i — by, ty— ;.

Notice that fl, e ,f n—1 satisfy the braid relations, together with the Hecke rela-

tions N N
(Ti‘i‘tz) (Ti‘i‘h) =0,

and that TﬂA} = —t1to.
Let now f — fY be the anti-automorphism induced by (7, U)v = T,-1. Define
a quadratic form (, )™ on H,, by

(f,9)"=fg'NT,, (1.8.5)

i.e. by taking the coefficient of T, in the product f gY.
The basis {7} is clearly the adjoint of {7}, i.e. one has

~\H
(Twa7 TC) = 50,(7 U7C € Gn .

Testing the statements on the pairs 7T, fc, one checks :

(Tif, 9" =(f, Teig)t & (fTi, 9" =(f, gT)". (1.8.6)

The quadratic form can be restricted to two-dimensional spaces, for which one
has the following property of a Yang-Baxter basis.

Lemma 1.8.2. Let f,g € H,, i,7 be such that

H
(f,g)HZO & (f(Ti+t;Li2),g) =1.

Then
H H
t1 + 1o t1 + 1o b1 + 12
i+ —— =1 T; , 9(T; =0.
(7o ) =1 e (pm+ 5 me 2E) o
Proof. One transfers the factor (T;+e) to the left, and uses that (T;+(t1+t2)(v-1) ") (Ti+
(t+t2) (v~ 1-1)71) be a scalar. QED

In other words, the two Yang-Baxter bases associated with the spectral vectors
[1,~] and [1,771] are adjoint of each other with respect to (, )*.

Combining the Yang-Baxter relations and the preceding lemma, one can eval-
uate scalar products of factorized elements. For example

H
t1+t2 t1+t2
), (T + l—_l)(TQ + r))
« af

t1+t2

51

a-1

b1+t b1+t
<m+1 (T )T+

t1+t2 t1+t2 t1+t2 t1+t2 t1+t2
= | (T} T+ —) (T +—) e+ ——>)T1+——) | NT:
(( 1+ ozfl)( 2+a571)( 1+ ﬁfl)( 2+a_15_1>( 1+ é—l)) 321
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can be computed by reducing the length of the expression, replacing some factors
T; + (t1+t2) (v 1-1)71) by a sum of two terms (Tj+c;) + ¢ to fit the parameters
in the Yang-Baxter relations. But it is simpler to move the RHS of the scalar
product to the left, obtaining

H
t1+t2 t1+t2 t1+t2 t1+t2 t1+t2
T+ —)(11 + —)(1; T: T+ —-),1

which reduces to a scalar multiple of (T} + (t1+t2)(8-1)71, | 1)H =0.

This example is some instance of a general orthogonality of Yang-Baxter bases.
Let us write Tj(a,b) = T; + (t1+t2) (ypy; ' — 1)1, yw = [yn - - ., y1], and first settle
the case of the maximal Yang-Baxter element.

Lemma 1.8.3. The element UY, satisfies the n! equations
H
(Og, U{,‘”) — 5, (1.8.7)

Proof. One takes a reduced decomposition s;,8;,...s; of 0. Then there exists
integers such that

Ug’-w - 7}1 (ala bl),-z—lig (a27 b2) CRCIES ET-(GTW bT‘) .
One can factor w = 07! (ow), and correspondingly write the maximal element as
Uy, = Tn—il(bh a1>Tn—i2(b27 a2) .. -Tn—ir(bru CLT) eoo .

w

Tanks to (1.8.6) ,

H
(ZJZ , Ty (a1, b1) - .. Ti, (ar, br))
H
= (Tn—ir (ara br) s Tn—il (ala bl) Tn—il (b17 (11) s Tn—ir (bra ar) e oo, 1)

H
is a scalar multiple of (o oo, 1) , and therefore null if ¢ is not the identity

permutation. QED
The following duality property of Yang-Baxter bases is given in [114, Th.5.1].

Theorem 1.8.4. The Yang-Baxter bases associated to the spectral vectors [y1, .. ., Yn)
and [Yn, - .., y1] satisfy the relations

<6§ , UZ“)H = S (1.8.8)

that is, they are adjoint of each other.
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Proof. When o = w, this is property (1.8.7). One proves the general statement by
decreasing induction on ¢(o), using Lemma 1.8.2. QED
Given any product

(Ti + alti+ta)) .. (Th +y(tirt2)) = Y ecTe,
¢

then the product R R
(T; — Oé(tl-i-tz)) . (Tk — ")/(t1+t2))

is equal to EC chc. This remark allows to rewrite the orthogonality relation
(1.9.5). Define the coefficients ¢ by UY = " ¢!(y)T;,, and recall that the involu-
tion ¢ — € acts by t; — —to, tog — —t1.

Corollary 1.8.5. Let 0,( € &,,. Then

St ) ENY) = dueg (1.8.9)

neGn

~

o dy)dy) = boce (1.8.10)

neS,

Proof. One uses that
Gzlw = ch(y;17 s 7y;1) TT] )
n

and that the symmetry (1.8.4) translates into ¢2(y; L, ..., y") = ¢ (Y1, ..o, Yn)-

QED
Each of the relations (1.8.9) or (1.8.10) can be used to describe the inverse of

the matrix of Yang-Baxter coefficients [cg].
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1.9 tito-Yang-Baxter bases
For k > 1, write
K] = 77 —totf 2 oo ()", R =t s e ()R

with the convention that [0] = 0, [1] = 1 = [-1]. Define, for all k € Z, k # 0,

Ti(k) =T; +

t1 + 1o _ {Ti—t’; [—k]_l, k>0 (1'9.1)

(*tl/tg)k—l ,I’Z—tl_k[/{?]717 k<0 ’

adding 7;(0) = T;.

Thus
t3 £
ﬂ<1> = ﬂ_t% ﬂ(2) - E - ) E(B) = E - 2 )
ty—t 22— tyty + 12
1 t3
ﬂ(_l) = Tli_tb 7-'1(_2) = T‘Z - —17 7-'1(—3) = TIL - ! 2
t —ts 12— tyty + 12

We denote U; = T;(1) and V; = T;(-1) the two factors of the Hecke relation for
T;. Acting on {1, x;}, one checks that

Notice that for k¥ > 0 one has

[k-1] [k+1]

Ti(k)Ti(=k) = ~hb

(1.9.3)

so that, for k # £1, T;(k) and T;(-k) are inverse of each other up to a scalar.
More generally, the Yang-Baxter equation (1.8.1) implies that, for any ¢ > 0, any
k,r € 7Z such that k,r, k+r £ 0, one has

T(k) T (k)T (1) = Toa (7)T (k) T (R) (1.9.4)

Taking the spectral vectors [t} 1, 7 2ty, ..., (~t2)" Y], and [ty F, ~t1t5 72, ..., ()" 1],
one obtains a pair of adjoint Yang-Baxter bases which are exchanged by the in-
volution exchanging t1,t;. We shall denote these two bases {V, : ¢ € &,} and
{U, : 0 € 6,,} respectively. Here is the basis associated to the spectral vector
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[t%7 _t1t27 t%]

Uz =1
Ugis = T7 — 19 Uigp = T5 — 1o
Wz = Th o115 Usio = 1511117
t3 T t3 t3 T t3
_tz_tl 1 + to—t1 _tz_t1 2 + to—t1

\ /

T1 T2T1 _tQTQTl —tQTl T2

U =
a1 +13Ty + 1315 — t3

and the basis associated to the spectral vector [t7, —tts, t3]

/ Vigg =1 \
Vos =T —t; Vigg =15 — 13
Vg1 = T To-4,T, Vo = 10T -, T)
t7 T t3 [ T 3
Tty 1 + t1—to Tty 2 + t1—to

\ /

oy — AR AV EYARS VAV L
PLT 8+ 8T -

One notices that Va3, V132, V3o1, as well as a3, U139, 3o are quasi-idempotents.
This is due to the choice of the spectral vectors.
As a special case of (1.9.5), one has

Corollary 1.9.1. The bases {U, : 0 € S,} and {V, : 0 € 8,} are adjoint of

each other. Precisely, one has

(@U, VC>H . (1.9.5)

The preceding corollary furnishes in particular the transition between {U,}

and {V,} : N
Up = (U, W) Ve

(<o

The inverse of the transition matrix is obtained by conjugation with the diagonal
matrix [(-1)%?), ¢ € &,]. Non-zero entries correspond to pairs ¢, o such that
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(¢ < o with respect to the Ehresmann-Bruhat order. Thus this matrix may be
considered as “weighing” the order. We shall see later another weight given by
the Kazhdan-Lusztig polynomials.

The case where o is a Coxeter element is specially interesting since then the
interval [1,0] is boolean. Let us just describe the expansion of U, when o =
2,...,n,1].

Define a function ¢ on permutations as follows, starting from ¢([1]) = 1. For
o €6, if g, #n, then p(0) = p(c \ n)), else

(1] [2n-0,-1-1]
n-1] [n-0,_1]

p(0) = pla\n)

For example, ¢([1,3,4,2,5]) = o([1,3,4, 2) Hi=t = (1,3, 2) 5 = o((1,2) g =
[21 [l7]

(1] [4](3]"

Proposition 1.9.2. For any integer n one has

Ug . n1 = Z p(¢) V.

¢<[2...n1]

.....

1/12n-1-v,,_
Upg, n1] = Yp,..n—1,10) Tn1(n-1) = ZCVVV (Tn—l(l/n—rn) + L] 1})

[n-1][n-vy,_1]
_ . [1][2n-1-v4]
= e (Tt i )

which is the required property. QED
For example,

Uysy = 2 14 Bl
Ua31 = Va1 + 0 Viz2 + [2]2 Vaiz + 0 Vias,
Uy = 2 1]14] Bl
Uaza1 = (V2341 + [1]V1342 + [2]2 Vouaz + [1]V1243)
[1][6] [1][4)" [5] [4]
+ ( 3° Vasis + 31127 Voizs + [3]V1324 + [1]V1234> :

The maximal elements U,, V., can be expressed in terms of the maximal
divided difference 9, according to [33] :



§ 1.9 — tto-Yang-Baxter bases 39

Theorem 1.9.3. Givenn, letw = [n,...,1], w' = [n-1,...,1]. Then the mazimal
elements U,, and V,, have the following expressions
U, = WU, Tn,l(n—l) ce T2<2) Tl(l) (196)
Wor (1 = toT g + 82T 1 Tpg — -+ ()" Ty ... T1) (1.9.7)
_ Z (—tg)z(“"”)Tw (1.9.8)
weS,
1<i<j<n
Vw = Vw’ Tn_l(l—n) .. TQ(_Q) Tl(—l) (1910)
= Vo(l—tT + 6T 1T — -+ (~t1)" Ty ... T7) (1.9.11)
= ) (-t)"T, (1.9.12)
’LUeGn
1<i<j<n

Proof. The first expression for U, and V,, result from the definition of a Yang-
Baxter element, choosing the factorization w = w’ s, _1... 1.

By recursion on n, one sees the equivalence of (1.9.11), (1.9.12), products being
reduced.

All the operators occurring in the above formulas commute with multiplication
with symmetric functions in Sym(n), one can characterize them by their action
on the Schubert basis {X,(x,0), 0 € &,,} (see [108]).

Since V;, ¢ = 1,...,n-1, can be factorized on the left from the RHS of
(1.9.12), (1.9.13), these two RHS annihilate all Schubert polynomials, except
X, =z} ... 2% Therefore 0, is a left factor of them.

Every element of H,, can be written uniquely as a sum »_ o 0,P, with
coefficients P, which are polynomials in xy,...,2,. The RHS of (1.9.11) and
of V(1) Ty (-1) = ... Ti(~1) = have same coefficient in d,,. This coeffi-
cient is obtained by mere commutation : fV; = f0;(tox; + t1x;1) ~ O0; f¥ (tax; +
t12,41), the extra term (f0;)(tex; + t12441) imposed by Leibniz formula cannot
contribute to a reduced decomposition of d,,. Therefore, formula (1.9.11) is true
if it is true for n-1. The same reasoning applies to the factorization V, =
Ve Trno1(1-n)...Ti(-1) which has the same coefficient in d,, than V,,V,,_1 ... V;.
By symmetry, the properties of V, imply similar properties of U,,. QED

Let A € N be a composition. Put v = [0, A\, A\i+ g, ..., AL+ -+ A,

L
Af\th — H H (tlxi + t2xj) (1914)
k=1 vp—1+1<i<g<vg
L
At = H H (tow; + ti;) . (1.9.15)

b
Il
—

v —1+1<i<j<vy
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Let wy be the maximal element of the Young subgroup G, = 6, x6,, X - - xG,,.
Then, by direct product, one gets from the preceding theorem

U, = AW, (1.9.16)
Vo, = 0, A%, (1.9.17)

For example, for A = [3,2], and p € N°; the image of z# under
Vo154 = Z (*h)Z(U)Ta = 632154A§22t1
o632

is equal to the Schur function s,_43210(X5) times A2,
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1.10 B, C, D action on polynomials

As for type A, one transfers operations on vectors to operations on polynomials
by acting on the exponents of monomials.

Thus, s? = s¢ acts on x; only by z; — x;*, and s” acts on z;_;,z; by
T; — a:;ll, Tip — xi_l.

We also have divided differences, this time with a difference between types B
and C' :

1 ~ - .
O =(1— Py 7P =208, 7P =0 i=1. 0.

1 ~ :
O =(1—-s)——, 78 =2,0°, 7 =027, i=1...n.
T

As in type A, the above operators can be characterized in a simple manner,
taking into account symmetries. For example, in type C, the divided differences
o°, 7 7Y commute with multiplication with functions symmetrical in x;, 1/z;
(which are functions of the variable 28 = z; +2;'). It suffices to give their action
on the basis {1, 2} of Pol(z;") as a free Pol(z$) module :

o¢ ¢ 7¢
110 1 0
| 1 x+at at

For type D, say for i = 2, the space ol(27", v3) is a free module of rank 4 over
the D-invariants. One can take as a basis 1,21, 7o, 2927 ", on which the divided
differences act as follows :

0y w7
1 0 1 0
T VR S
T 1 o+t xpt
Toxy | 0 Tyt 0

For type © = B, C, the divided differences for two consecutive indices, say
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1,2, satisfy braid relations'?

71'177';971'17'(';Q = 7T§77T17T§77T1
PN v IPUPNV) O~ ~O
but
Ca aC Ca aC
05 0105 01 # 0105 0105 .
In type D, for i # n — 2, then 72 commutes with m;, and 72 commutes with
7, and
D D D ~D~ ~D _~ ~D~
Ty Tn—2 Ty, = Mp_2 Ty Tn—2 & Ty Tn—a Ty, = Mp_2 Ty, Tn—2 .

Notice that the squares satisfy the same relations than in type A :

RN =0 & wwl =n & 7@y =-7m7,V=DB,CD.

(2 3 3

Choosing as generators si,...,5, 1,57, Q = B,C, D, one obtains by reduced
products operators 7y, and 7y, indexed by the elements of the group. Of special
v

importance are those corresponding to wy .

Proposition 1.10.1. Let n be an integer, p = [n-1,...,0], 2 = x; + z;°,
it =1,....,n. Write 07 for the divided differences relatwe to the alphabet x* =
{z3,...,20}. Then

o o= 2Pl O =P Oy el (1.10.1)
%fo = 7B 7Bt =0 7l 7B e (1.10.2)
o = a’al- gag,:xpa;wl R ot (1.10.3)
— et (Z(q)“%) [T -2t [ (o) (110.4)
1<i<j<n 1<i<n
T = T m O P =0T T (1.10.5)
Notice that 95 = 0o [[;oj<,(1 — :vl-_lxj_l)*l commutes with 78 ---75 and
7¢ ... 1% because ! commutes with 72 and 7¢.

Consequently, images of T B and Twg Can be written as symmetric functions

of x%. For example, for n = 3, the image of 23! under Wgo is equal to

(2377 (2375) (a5mS)
= ()" = 4(a})’ + 321) ((23)* — 1) D5
= 3310()(5) — 48110(){5) - 33000(X§) )

120ne has extra relations, like

C C C C
81 7T181 ™ = 7'('181 71'181

81 7T181 ™ = %181 %1810
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310 52

since #9020 = %0, and fr{ = (14)° — A(at)® + Bat, a3wf = (23)? — 1.

Let
O = Z(1+5sP) - (1+s8) +-(1—sP)---(1—sP).
2 2

Proposition 1.10.2. The mazximal divided differences for type D,, satisfy

T = 2" Op (1.10.6)
- (xp Z(l)“w)w> I @ -2 (1.10.7)

w 1<i<j<n
o= Vo =g ml a’ (1.10.8)

In type B or C, an alternating sum > _p,,(-1)“*)(2")"” may be represented
as the determinant
det (xf’ —z; )

In type D, this alternating sum is equal to half of the sum of two determinants :
det (mfj — x;vj)
the first determinant being null when some v; is equal to 0. In particular

Z(fl)z(w)(xp)w =27 "det (v} + xf_")ivjzlmn = H (zf —5). (1.10.9)

w 1<i<j<n

ij=1..n

+ det <fo + w;vj>

ij=1..n ij=1l..n

The groups of type B,, or D,, can be embedded into &,,. However, relations
between type B, C, D divided differences and divided differences relative to g,
are not straightforward. The next proposition describe w{jo in terms of &5, using
the specialization z9;_1 — x;, Xo; — x;l, 1<i<n.

Proposition 1.10.3. Given n, let ( = (51 Sopn—1)(S1 - Son—3) - - - (515283)(s1).
Then
c
Ty =T ,
wo ¢ XH{xl,xfl,xz,zgl,...}

as operators on Pol(x,,).

Proof. The ring Pol(xz,) is a free-module over Gym(xa, ), with basis {z* : [0,...,0] <
v < [2n-1,...,0]}. The submodule Pol(x,) has basis {z¥ : [0,...,0] < v <
2n-1,...,n,0,...,0]}. One can as well take {z" : [0"] < v < [2n-1,...,n]}, or,
our present choice,

{z: [1-2n,...,-n] <v <[0"]}.

Specializing symmetric functions of Xy, into symmetric functions of x1, 27, ..., 2, x
one sees that the same set of monomials'” span Pol(x,) as a Gym(x?)-module.
Therefore it is sufficient to test the proposition on these monomials.

13 but they are no more independent. For example, for n = 2, %72 = 2731 —qz=271 +

o . 21,0 —1 1 1,1
b= b7t — 290 with a =21 + 2o+ 27" + 25", b=m122 + 21205 + @027 + 1+ 27 2y
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Since both WSO and 7, admit the symmetrizer 7, w = [n, ..., 1] as a left factor,
the test can be restricted to all Schur functions of x" := {z7',..., '} indexed
by partitions contained in n".

Instead of enumerating partitions, one can introduce y = {y1, ..., y,} and test

the single function

R(x',y) = [ (" =)

3,j=1

Let us first consider R(xY,y)nS . The monomials 2" in the expansion of
R(xY,y) which give a non-zero contribution are those such that u + p, with p =
[n,...,1], has all its component different in absolute value. Since [0,...,1-n] <

u+ p < p, the vector u + p must be a signed permutation of p, in which case

a"7$ = £1. Therefore, the sum ij:<pr(xv,y)> (A%)~!) which expresses
C . . . o . _
R(x",y)my,, is independent of x. Specializing x = y, only the subsum

> (R ) (A= Y £ () R Q)

weGy, weGy,

survives. After simplification, this subsum appears to be equal to

vicyn [ (0—wiy).

1<j<n

Let us now treat m¢ = m, (7, - - - Ton—1)my,, With m, = (m,_1 - - Top_3) - - - (m2ms)(m1).
The symmetrizer 7, preserves R(y",y) , the operator (m, - ma,_1) acts only on
the factor R(x,',y) and sends it to (-1)"y; - - - y,. One is left with the computa-
tion of

R<X/> y) Tn 10
T2i=Tg;_1
with x' = {o7',..., 2, ', }. Assuming by induction the validity of the proposition
for n — 1, this last function is equal to R(x',y)m.;, with wy relative to C,, ;.

The monomials z* appearing in the expansion of R(x’,y) being such that
[1,...,-n+l] <wu+p <, with p) = [n-1,...,1], then for the same reason as
above, the sum

> (o Ae.y)) (A )

does not depend on x. Specializing r1 = vy1,...,Z,_1 = yn_1, the sum reduces to

> (y”')wR(y’,Y)AC( ! =yt || = wg)RY vn)

wWES,_1 Yy ... ayn—l) i<j<n—1

with y = {y;*,...,%.%,}. In final, the two operators send the test function
R(x',y) to the same element, and therefore are equal. QED
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For example, for n = 2, one has

xllOO(

7T17TQ7T3)(7T1) = (x1+x2)(x3+:1:4) + T122
and this polynomial is transformed, by x — [z1, 27", 72, 25 '], into
etmms mms = (wiay ) (woray ) + 1,

which is equal, as we shall see later, to K, _,.

The two families of divided differences 7y, 7, are related by the equations
m=1+m,i=1,...,n-1 & n’ =147 ,V=B,C,D.

For any element w of the Weyl group of type ©, by taking any reduced decomposi-
tion of it and the corresponding products of 7;’s or 7;’s, one obtains an expansion
of 7, in terms of 7,, and conversely, of 7, in terms of 7,. From a simple property
that followers of Bourbaki call the exchange lemma, which describes the growth of
intervals for the Bruhat order with respect to w — ws;, one obtains the following
relations between the two families of divided differences (given for type A in [99]).

Lemma 1.10.4. For any element w of a Weyl group of type O = A, B,C, D, one
has the following sums over the Bruhat order :

T = ) 7 (1.10.10)

v<w

Rw = Y (-1, (1.10.11)

v<w
For example, for type C, and w = [2, -3, -1], then w = s§s15,5§ and
Tw=1+7)1+7) 1 +T) (1 +7) = Fio3 + (Fo1s + T1z2 + T123)
+ (%231 + To13 + Tisz + /7%132) + (%231 + Tozy + %132) + To31 -
On the other hand, for type D, w = [2,-3,-1] = s1s¥, and
Tw = (1+71) (L + 7)) = Ti23 + Torz + T3z + Tozi -

As a matter of fact, Stembridge [187] shows that the 0-Hecke algebra furnishes
the easiest way to compute the Mobius function relative to the Bruhat order of
Coxeter groups'’.

4 the operators m; and 7; give two realizations of the 0-Hecke algebra, since (m; —0)(m; —1) = 0
and (7 — 0);(m; +1) = 0.
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1.11 Some operators on symmetric functions

Divided divided differences commute with multiplication with symmetric func-
tions. They can nevertheless be used to build operators on symmetric functions,
after breaking the initial symmetry, say for example, by sending x; to z*, or to
qx1, or using derivatives, then symmetrizing.

As a first example, let us use isobaric derivatives §; : f — xidixi( f), and

more conveniently, symmetric functions in the alphabet 1 = {7= 6; — %, To=
0o — 3, =10+ 1-n}.

The following lemma shows that symmetric functions in 9, followed by 7, act
diagonally on Schur functions.

Lemma 1.11.1. Let g € Gym(x,), A € N be a partition, A, be the alphabet
{)\1—%, )\2_%7 R )‘n""%_n}' Then SA(Xn)g(ﬁ) Tw = g(A)\)S)\(Xn)'

Proof. Writing 7, = x”0,,, one can commute z* with g(1), at the cost of changing
9 into 9= {/\1+%fn, /\2+%fn, ...,)\n+%fn}, due to the fact that (0; — a)z; =
2;0; — a — 1. Factorizing 9, = (3, cs, £0) A(x,)7", one can commute Y +o
with the symmetric function in 9, thus obtaining

52 (%n)g(T) T = 53 ()" Y £0g(T)A ()" = 8(%0) Aln) g (T)A(x0) "

The action of g(7) on s)(x,)A(x,), written as a determinant of powers of x4, . .., x,,
is immediate, furnishing the result. QED

Since p1(9) acts by multiplication by d — n?/2 on homogeneous symmetric
functions of degree d, the first interesting operators occur in degree 2. Indeed the
operator po()m, — }1(2”; 1) may be found in different places, as a Hamiltonian. It
can be written, in terms of derivatives with respect to power sums, as the operator

emsf Y Zz’jpﬁjd%%(f) G D= ().

dpi.
i>0 >0 Pi+j

As a second example, let us introduce two parameters «, 0 and consider the
Sekiguchi operator

Q= (ad+0)... (a0, + f-n+l)m,,

on symmetric functions of x = x,,. To explicit the action of 2, we shall take as a
linear basis of Gym(x) the Schur functions in the alphabet x* = éx. Equivalently,
we introduce a second alphabet y of cardinality n, and compute

o(x"y)Q = H H(l — zyy;) Q.

Since (1 — z;y) Y (ad; + ) = zy(l — ziy) Yo + (1 — z;9)"Y*, one sees
that there exists a function F(x,y) independent of a such that o(x*y)Q2 =
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F(x,y)o ((1 + i)xy). This function may be determined by putting o = 1, and
is thus equal to a(xy)Q|a:10(—2xy). We have seen just above that Q|a:1 may
be written A(x)(d; + 7)...(d, + ), with v = f+ 1 —n. Thanks to Cauchy,
o(xy)A(x) = A(ly) det(l_iiyj), and therefore

1 v+ (1= 7v)ziy; 1
O'(X}’)Q‘a:l N det ( (1 — zy,)? > Ax)’

and F(X,Y) is the numerator of this last function.

As in the case of Gaudin determinant det ((1 — x;y;) (1 — z;y; +)7 1), or
Izergin-Korepin determinant det ((1 — z;y;) "' (1 — qx;y;) '), one can write the
quotient of the numerator of U(xy)Q‘OF1 by the two Vandermonde as a prod-
uct of two rectangular matrices [101, 109]. Explicitly, let M¢(x,) be the matrix

_ (1.11.1)
j:

M () = | (1776 -i(0)(8 = m 4 2i = )

2n

==

Then F(x,y) is the determinant of the product of this matrix with [hi_j (y)} 1 on
j=1l.n

For example, for n = 2, F(x,y) is the determinant of the product

ho 0

€o(ﬁ — 1) —61(5 — 2) €2<ﬁ — 3) 0 :| hl ho
0 eoﬂ —61(5 — 1) €2(ﬁ — 2) h2 hl ’

hs hs

where, by symmetry between x and y, the h; are the complete functions of one
alphabet, and the e;, of the other alphabet. In terms of products of Schur functions
of x5 and ys, one has

F(x2,y2) = B(8-1) — (8-1)*s151 + 2511511 + (8-1)(8-2) (52511 + S1152)
— (B-2)*s21521 + (8-2)(8-3) 522522 .

The function o(x%y) expand as ) S,(x*)S,(y), sum over all (increasing) par-
titions in N”. Therefore, the image of S,(x“) under €2 is equal to the coefficient
of S,(y) in F(x,y)o((1 + a~t)xy), that is equal to

j=1l..n

> MSup (145)%)) = det <M€~ [sw+j_z-<<1+§>x>}i,1_..%) SN CRER)
ul

denoting by M¢ the minor of M on columns u;+1, ... u,+n. The matrix M€ is in
fact the sum of the two matrices

[(fl)j_i(b —n+ z')ej_z-(x)] and [(fl)j_i(i — j)ej_i(x)] )
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Let M?(x,) be the n x co matrix of power sums

5+(1)n Pléx) p2(x)  p3(x)
MP(x,) = ; 5+‘. —n pl. (X) pa2(x)
0 e B p1(x)

Since > (-1)e;(x)o((1 + a™t)x) = o(x*), and >_(-1)%e;(x)o((1 + a™H)x) =
(p1(x) + p2(x) + ...)o(x*), the product (1.11.2) can be transformed into the
product

MP(,) - [ Sy ax)] (1.11.3)

j=l..n

Using Newton’s relations >~ | p;(x)o(x) = D .o 4.5;(x), one obtains that 5, (x*)2
is equal to the determinant of

[(a(uj +j —z’)+ﬁ—n+z’)svj+j,i(xa)} . (1.11.4)

ij=1..n

For example,

(la+B—2)S1(x%) (da+5—2)Su(x?) (Sa+ 8- 2)Ss(x?)
Slgﬁ(Xa)Q = (OOé + ﬂ - 1)51(Xa) (30& -+ ﬁ — 1)53(Xa) (70& + 6 — 1)57(Xa) .
0 (20 + 3) 52 (x7) (6cr + 3)S6(x%)

The shifts f-n+i in (1.11.4) are constant by rows. The expansion by rows of the
determinant expressing S, (x)(2, starting from the bottom, may be written

> (DDA + p)o — p) SHTIT(x)

UEGn

with A = v |, where, for u € N §%(x“) denotes the product of complete functions
Suy (x¥) ... Sy, (x%), and ¢(u) = (auy + B) ... (qu, + f+1-n).

Introduce another alphabet z, and denote S2z the linear morphim

Sym(z) 3 sy (%) — > £z € Pol(z)

by 225 the linear morphism sending 2" onto the product S*(x?).
The preceding computation may be interpreted as the following factorization
of the Sekiguchi operator:

Z*)(p

Sym —22 Pol(z) =2 Bol(z) —22 Sym.

Let 9 = {N\= ad — %, To= by — %, o 9= ad, + %—n} The Sekiguchi
operator may be written Y (3+3)" ‘e;(1) 7., and therefore determines the action
of each elementary function e;(9)m,. Since e;(17) acts as a scalar on homogeneous
polynomials, one more generally knows the action of any linear combination of
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e1()*e; (), for example e1(1)* —e2(1) = pa(), e1()* —3e1(Nea () +e3() = pa(),
e1(Mea () — ez(7) = s21(9).

Explicitly, for any polynomial f in 9, any v € N”, let s(v) =
f(owr%, e ,own+%fn). Then the description of the action of the Sekiguchi op-
erator entails

Lemma 1.11.2. Let f = py,p3 or so1. Then the action of f(9)m, on Gym fac-

torizes as
¥ —ps(v)z? 228

Pol(z) —— Sym.

Spym BLIN Pol(z)

The Sekiguchi operator preserves degrees. Expression (1.11.4) shows that is
triangular in the basis {s\(x*), £(A\) < n}. Since ¢ takes distinct values on N",
the eigenspaces of €2 are 1-dimensional, their generators being the Jack symmetric
polynomials. Since these polynomials are specializations of Macdonald polynomi-
als, we postpone at this point any further comments about them. The operator
(pg(ﬁ) —1 (2”+1)) 7, is also diagonal in the basis of Jack polynomials, with eigen-

i\ 3
values > (a\; + 1/2 — )2 — (")) = 23" A2 + @3 (1-2i));. It is in fact a
rewriting of the Calogero-Sutherland Hamiltonian, and has been considered by
physicists [67], see also [16]. To my knowledge, the operators corresponding to
p3() and s91(7) have not been used, though they also diagonalize in the basis of
Jack polynomials. Beware that the operator ps(7)m, does not act diagonally on
Jack polynomials'®.

It is easy to transform isobaric factorized operators into degree-raising opera-
tors, by introducing inside the factorization of the operator the multiplication by a
fixed polynomial. For example, let us see how to transform the first operator that
we saw in this section into an operator deforming the product of Schur functions.

Let A be a partition in N*. Then the operator Qy = z*(§; + ) ... (5, +
f+1-n)m, acting on Gym(x,) may be rewritten

x’\xp(z +0)(6; + f+1-n) ... (6, + +1-n)7,
= sx(x,)A(x,) (01 + f+1-n) ... (0, + f+1-n)7,,,

and therefore the image of a Schur function s,(x,) under Q, is equal to

> (538 80) (1 4+ B) - (vn + Brl-n)s,(Xn)

v

where the coefficients (sys,,, s,) are the structure constants appearing in s, (x,)s,(x,) =
> (5384, 80)s,(%,). We shall meet similar operators in the case of Macdonald
polynomials.

One can also use the divided differences associated to types B, C, D to define
operators on Gym.

15This is compatible with the fact that py = e} — 4eZeq + 4dejes + 2eq2 — 4ey, the term €3
preventing to apply the preceding considerations.
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Let us first consider the action of ~x;*7Pz¥ k € Z, on functions of ;.

. —r/2 . . .
Since S, (z1+1)x; "/2 i3 invariant under sB one has

_ _ +1][2k-r-1] if & > r/2
— Sz DarkrBal = 1)t/ Bk = nlr )
(el Ty = Slretfry = ~a T[] [re1-2K] if K < /2
with [j] = 14z +. .. +2].

One notices that the same functions can be obtained by combining 0; with the
specialization x5 = 1. More precisely, one checks that for all » > 0, all k € Z, one
has

=S (w1 +1) 2y PPl = S, (a7t + w) 27O X
To=

The next proposition shows how to extend this observation to any n, and will
constitute our last example for this section.

Proposition 1.11.3. Let A € N" be a partition. Then one has, for any k €€ Z,

(~1)"sx(xp + V) 2 7Bk m, 1 om(zy .. w,) T = sy sBa*710, ... 0,

:an+1:1 '
(1.11.5)
Proof. By recurrence on n, one sees that, for any symmetric function f(x1,...,z,),
one has
flxy, ..., o) o *aBabn, . om
- 1 ! 1
= ey ! + flxr, .. ) = -
; A x; )R(a:i,xn \ z)(1-;) J( )R(xn, 1)
This is a Lagrange-type sum ([108, Th. 7.8.2]) which can be written
1
B, 2k—1 -1
ey T , 1- O...0h 1+ ey Tp)
f(x Tn)sya; (l-z1)" O 1+ [ xr )R(xn, 1)
but one can make this expression more symmetrical by considering the alpha-
bet x1,...,2,,1, and by supposing'® that f is the specialization z,,1 = 1 of a
symmetric function of zy, ..., x,11, thus obtaining the stated identity. QED

For example, for n = 3, A = [1,0,0], £ = 3, one has
—s1(x3+1) 2337823 = (1+a1+20) (13 + + - + 23) + (w3+zi+ad),

whose image under mom; is (sl(x3+1) + S91 (x3+1))x1x2x3.

On the other hand,
(27" + 2 + 23+ 24)2] 010203 = 51(Xa) + 521(xXa) ,

and this agrees with the proposition.

16This is no restriction: s)(x,) = sx(Xn+1 — 1)|$ =t



§ 1.12 — Weyl character formula 51

1.12

Irreducible characters for type © = A, B, C, D have been described by Weyl. For
A € N dominant!'”, Weyl’s character formula reads

> (D)1 (40"

Weyl character formula

v
= 1.12.1
RS SRE I L —
where p = [n-1,...,0] intype A, D, p=[n,...,1] in type C and p = [n—%,...,%]
in type B.

Using the factorization of the alternating sum of the elements of each group,

one recognizes that the characters XE\? are equal to the image of 2* under Wgo'
Ty =Xy - (1.12.2)
Each Wgo has 0, as a right factor. Since, for any functions fi(x),..., f.(z),

one has :

fi(@1) -+ folan) O = det(fi(z;))/ det (a7 ™)
one may write the numerators of Weyl character formula as the following deter-
minants (still with A\, = 0 for type D) :

det( Ajtn— J) type A (1.12.3)
det( Nn—jHl _ =N 1) type C (1.12.5)
1 d Hah 4 —A-—n+3) type D (1.12.6)

Let A(x) = H1§i<j§n(xi — ;). Then the denominators A% AB AY AD of
Weyl character formula are respectively equal to

1
v \/ZL_',‘)A(X.)7 AC = H(wix—i)ﬁ(f)a AP = A(x*),
still using the notation x* = {%,... 2%}, with 28 = 2; + z; !

The numerators of Weyl’s formula may also be written as determinants, so
that the right hand side of Weyl’s formula for type A, B,C, D, say in the case
A = [3,1,0], would look like

/2 —11/2  5/2 -5/2 1/2  —1/2
37? mf 1 :13%1;2 $111;2 xéjz B $15;2 l};g B x11;2
x5 22 1 Ty —X Ty T — Xy xy " —w
o a1 x§1/2 x;ll/? 5/2 B —5/2 zé/Q B ?:1/2
2?2 oz 1 22 g ‘f” 551_3/2 TE T
m% T2 1 xg/2 _ x2_5/2 3/2 x2_3/2 ;/2 x2_1/2
x5 T3 xg/z B x;5/2 3/2 B w;?’/Q :13/2 _ x3—1/2

"For simplicity, we impose A, = 0 in type D, but we shall lift this restriction later.
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% —a7% 2t - o -t w1° + a7 wita? 1
1'26 — 1’276 1'23 — 1'273 Lo — 1’271 1'25 + 1'275 ZL’22 + 27272 1
51336 — 1’3_6 .T33 — .T3_3 xr3 — .2?3_1 $35 + Z’3_5 .2332 + .173_2 1
= rP—xy? -t ’ R R I R |
1’23 — 1’2_3 ZE22 — 1'2_2 XTo — 332_1 CE22 + 1'2_2 To + .CEQ_I 1
.1'33 — .1'3_3 .’13'32 — 33'3_2 xr3 — [Bg_l .T32 + 1'3_2 T3 + 333_1 1

When ) is an integral multiple of p, the numerator in Weyl’s character formula
is the image of the denominator under raising the variables to some power. Writing
k(p) for [kp1,kps, ..., kp,], and hi(a+b) for the complete function of degree k in
the variables a, b, one has

k+1 E+1
4 [lecicjen(@i™ —27)
X = = hi(zi+z;),
(e) H1§i<j§n (xl - xj) 1SE§” !
—k—1_—k—1
N [cicjen (=2l
k = Xk —1, -
(p) (p) H1§i<j§n 1—z; 1% 1
= H hk(xﬁxj)hk(l-ml_l%_l) )
1<i<j<n
. n x§k+1)/2 _ %_(le
Xk(p) = Xk(p) 1/2 —1/2
i=1 Ty — X
- 1
B Hhk <\/:6_z-+ \/_$7> H hi (i) hi(Lray o)
i=1 1<i<j<n
no g+l —k—1
c _ D Ty — Xy
Xk(p) = Xk<p>H—x, 0
i=1 ¢ v

)

H hk(xﬁacj)hk(lm;lx;l).

1<i<j<n

For example, for n = 2, k = 2, one has

1 1
X = (x%"‘l"i‘ﬁ) ($§+1+P) (23 + z122 + 23) (1+

1 n 1 )
2.2 :
1 2 T1X9 T{T5
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1.13 Macdonald Poincaré polynomial

The length of a reduced decomposition of an element w of a Weyl group is equal,
using standard notions from the theory of root systems, to the number of roots in
the intersection of R* and —wR™.

Instead of enumerating inversions, let us define an inversion weight as follows.
Embed the Weyl group of type B,,C,, D, into &s,. Given w € W and the
corresponding o € Gy, to a pair (i,7) : 1 < i < j < n, such that o; > 0
associate a factor hj;. To a pair such that o; > 09,41_; associate a factor h;;.
Moreover, to all 7 : 1 <17 < n such that w; < 0 associate a factor h; in type B,
and a factor hy; in type C. The inversion weight Z(w) of w € W is the product
of these factors.

One can also define Z(w) recursively by left multiplication by simple transpo-
sitions. Given w, s; such that ((sw) > ¢(w), then w and s,w either differ in two

positions i, j or (spw); = —w;. In that last case (which do not occur for type A
or D), one has Z(syw)/Z(w) = h; in type B and = h;; in type C. In the first
case, if wyw; > 0 and [...w;...wj...] = [...w;...w;...], then Z(spw)/Z(w) =
h;i. Otherwise, if w;w; < 0, then [...w;...w;...] = [... —w;... —w;...] and

I(spw)/Z(w) = hyj.
For example, for type C}, one has the following chain of inversion factors :

sf haa —

2,4,T,3) <2 2,4, T, 3] 22 2,3, T, 4] 4212 11 3,2, 4]

84 h3s [

52h23 [172’3 4] 53h34 [1 2, 1 3] 1,2,4, 3]&[1’2’3’4]

The inversions are more straightforward to read when writing the inverse ele-
ments :

34 hoo [

3,1,4,2) 1 &2 3 1,4, 2] 82 3 1 2 4]t M8 ) 52, 4]

54 h3s [

(12,3, 4] 1, 2,4, 3] A 1,2,4, 8] B [1,2,3,4)

For each Weyl group of type © = A,,_1, B,,C,,, D,,, Macdonald defined the
following kernel'® MY, introducing formal parameters hj; :

MA = H (1—hﬂl’j$1—l)
1<i<j<n

MD = MA H (1—1%]1‘;1]};1)
1<i<j<n

MP = MP T (L= R
1<i<n

M = MP T] (1= haa;
1<i<n

18 Of course, Macdonald does not mix types, but taking a pure combinatorial point of view
leaves us this freedom.
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For example, for A, and Ds, one has

MA: <1_ h21$2> <1_ h31$3) <1_ h32$3> ’
il T T2
w0 et (1o ) () ()t
X1 T2 13 Lo T3

The following theorem, due to Macdonald [147, Th.2.8], generalizes the enu-
meration of elements of a Weyl group according to their length.

Theorem 1.13.1. For a Weyl group of type QO = A, B,C, D, with mazimal ele-
ment wg, one has

My = Zf(w).

weWw

Proof. Each kernel, multiplied by 2#° is a sum of monomials 2?, where the expo-
nents respectively satisfy the conditions (componentwise comparison) : for type
A 10,...,0) <v<n-1,...,n-1],

for type B, [1-n,...,1-n] <v+[L,...,1] <[n,...,n],

for type C, [-n,...,-n] <v <[n,...,n],

for type D, [1-n,...,1-n] <v <[n-1,...,n-1].

Under the operator Y, (-1)"*) <5, such monomials are sent to 0, or to +1
if they appear in the expansion of AY. One checks that in that last case, the
coefficient is indeed the inversion weight Z(w). QED

For example, for type Cs, the contributing terms are

2,1 2,—1 1,—2 —1,-2 1,2
r =X hog + x highgg — x hi1 hig hog — 27%hoy

+ $_1’2h21 hll — l’_2’1h21 hll h12 + $_2’_1h21 hll h12 h22 .

One could have decided'” to denote the elements of the group by the element
of the orbit of p¥. In type A, one would have permutations of [n-1,...,0], in
type B, signed permutations of [n-1,...,1], in type C, signed permutations of
[n,...,1], and finally, in type D, signed permutations of [n-1,...,0].

The usual Poincaré polynomial is obtained by specializing all h;, h;; to ¢ and
thus is obtained by symmetrizing the “g-Vandermonde”.

One could have taken an arbitrary subsum of the expansion of M". Mac-
donald’s theorem states that the only terms surviving after symmetrization are
those having for coefficient the inversion weight of an element of the group. The
following theorem shows how to apply this property to generate intervals for the
weak order.

For v,w € W, write w >, v if the product (wv™')v is reduced, i.e. if {(w) =
l(wv™t) + £(v). In that case Z(v) is a factor of Z(w). In the following statement,

9Tn type A, Cauchy considered the Vandermonde determinant, that he in fact introduced,
as the generating function of permutations together with their signs, and consequently, the
Vandermonde determinant as the “generic” determinant.
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we shall use the same notation Z(w) for the set of inversions and the inversion
weight of w € W.
Let h%; = hjwja; ', j >4, and hf = hyay o' i < j, h = hay .

Theorem 1.13.2. Given a pair w,v such that w >, v, then

[T a-w) [] Cryei = > Z(). (1.13.1)

a€Z(w)\Z(v) a€Z(v) wW>p u>p v

Proof. We already remarked that we have only to extract the products of h;; which
are inversion weights of elements of W. But v € W is such that w > w if and only
if Z(u) divides Z(w), thus w in the RHS if and only if it belongs to the left-order
interval [w, v]. QED

It is interesting to notice that the interval [1,w] for the Bruhat order can be
obtained, thanks to Lemma 1.10.4, by taking any reduced decomposition w =
s;---s; and evaluating the product (14 7;)--- (1 +7;). On the other hand, the
preceding theorem gives the interval [1,w];, for the weak order by symmetrizing a
factor of degree £(w).

For example, for w = [3,4,1,2] € &, the initial interval for the Bruhat order
is given by

Tgq19 = momam My = (1 4+ o) (1 + 73) (1 + 71 ) (1 + 73)
= T412 + 3214 + 3142 + T3124 + Toa13 + T2314 + Ta143

+ To134 + T1432 + Ti423 + T1342 + T1324 + T1243 + T1234

while the initial interval for the left order is obtained by computing

T x x T
(1 - h31—3) (1 - h32—3) (1 - h41—4) (1 - h42—4) T4321
T X9 T T2

= 1+ hay + haihsa + haohaa + haihaohas + haithaihaahys
which translates, passing from the inversion weights to the permutations, into
11,2,3,4],[1,3,2,4],[1,4,2,3],[2,3,1,4],[2,4,1,3],[3,4,1,2].

The Poincaré polynomial is obtained by specializing all h,, to q. For example,
let w=15,2,4,6,1,3], v =13,1,2,5,4,6] in Sg. Then

I([57 27 47 67 17 3])/-’[([35 17 27 57 47 6] = h51h52h53h61h63h64 > I([Ba 17 27 57 47 6]) = h21h31h54

and the polynomial of the interval is equal to

(1-02) (=r2) -2 (1 102) () 12
T X9 T3 xrq T3 Ty

Xz Xz X
X (——2> (——3> <——5) Tesa321 =¢®+2¢° +2¢" +3¢° +2¢° +2¢ + 1.
1 T Ty h

ji=—q
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We end by giving an example in type C, for n = 3, writing the interval and
the inversions in the order they are created.

Thus, the Poincaré polynomial for this interval is equal to 1+ hoy + hgs + hoghss +
haihss + hishashss + hoirhizhss + hoirhizhiihss 4 haihisheshss + hoihighashiihss.



§ 1.14 — Poincaré with descents 57

1.14 Poincaré with descents

For a Coxeter group W, the usual Poincaré polynomial is >y, ¢ . We have
already mentioned, for the classical Weyl groups of type A, B,C, D, the fol-
lowing factorizations of the Poincaré polynomial, denoting by [i] the g-integer

(q'-1)/(g-1):

o type A [1][2] -+ [n] |
e type BC [2][4] --- [2n] ,
o type D [2][4] --- [2n — 2] [n]

The Poincaré polynomial is obtained from Macdonald’s generating function
M@ﬂf,fo, in type O = A, B, C, D, by specializing all parameters to g. But one can
use more elaborate specializations. In particular, descents correspond to param-
eters h;y1, in type A, together with h, in type B, hy,, in type C, h,_;, in type
D, and can be treated differently than the other parameters.

Reiner [173] gives a generating function for the g-Euler distribution Y, oy, t%5)q"®),
for an infinite family of affine Coxeter groups.

In this section, we examine the question of introducing a function ¥ (w) de-
pending on the set of descents D(w) of w, such that > ., ¢“)1h(w) still factorizes
into simple factors.

Iwahori and Matsumoto [68] give a solution to this problem, choosing proper
specializations of the parameters d; into powers of ¢ in the function

ZwEW qu(w) HiED(w) dl ’

Stembridge and Waugh [186] use the corresponding affine groups to give a proof
of Iwahori-Matsumoto formula which does not rely on the classification of root
systems. For types A, B,C, D, the formula given by these authors® reads as
follows.

Theorem 1.14.1. For O = A, B,C, D, the sum Y, .\ gt Hiep(w) d; is equal

to .
H(l — "N (1 = ¢) " in type A | for dy = "™V (1.14.1)
i=1
2 H(l — ') (1 = B Y dn type B, for d; = ¢! (1.14.2)
i=1

n—1

9 H(l _ qi(2n+1—i))(1 o q2i—1)—1<1 _ qn(n+1)/2)(1 o q2n—1)—1
i=1
in type C, for d; = ¢"®" 179 except d, = ¢""V/2 (1.14.3)

20Stembridge and Waugh write a formula which is valid for all finite Weyl groups in terms of
the coefficients b; appearing in the decomposition 2p = byay + - -+ + bpau,.



58 Chapter 1 — Operators on polynomials

n—2
4 H(l*qi(2n+l_i))(1*q2i_1)_1(1*(]n(n_1)/2)2(1*6‘]2“_3)_1(1*qn_1)_1
=1

i(2n—1—1)

in type D, for d; = q except dy_y = d,, = ¢""V/2 . (1.14.4)

We give a more general formula for types A, B, C, D, specializing appropriately
the Macdonald kernels defined in the preceding section.

For type A, we introduce parameters yo, ¥1, - .., Yn_1, and take
-1 n—i—1%j
N =T] (1 - EJ) 11 <1 — Yi1l)! 1—J) (1.14.5)
i+1<j<n Yi Ti/) e, Li

For example, for n = 4, one has
f _ (1 _ yol’:s) (1 _ yo$4) (1 _ y1$4)
Y11 Y121 Yoo
<1 _ y12yo:r;2> <1 _ y2yﬂ?3) (1 _ ?J2$4)
T i) I3
Introducing parameters a, z,d,,_1, d,, we define

n—1
B _ i i(n—i) Titl T
N, = H (1 a'q e > H <1 qxi>

=1

() (o) I () o

1<i<j<n

D _ i i(n—i) Litl Ly 1
= 1— - 1-— 1-—
Nn H( “a qﬂﬁi) ) H ( qxi) H ( qxix-)
= i+1<j<n 1<i<j<n—1 J
1 n— 1
I1 (1 - ) <1 —dyt 1) (1 - dn—) (1.14.8)
qT;Ty gy qTp—1Ty

1<i<n—2

Theorem 1.14.2. The kernels N4, NB, NC give the following generating func-
tions:

wim = 3 T (%

ce6, i=1

ci(o) '
) IT

1€D(o
=L +yo+-Hy DA +ym oyt ) (L yaa), (114.9)
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c(o) being the code of o.

Nf 71_50 _ quf(w) H a qz n—1i)
w 1€D(w)

— (1+CL+ et )(1+aq+ +(GCI)" 2)

(1+aq*+- - +(ag®)" ) -+ (1 + aq"™ H (14 zaq™), (1.14.10)
1=1

m(w) being the multiplicity of sB in any reduced decomposition of w.

NnC ﬂ_go _ Z qfé(w)zm(w) d;(w) H azqz(nfl)

1€D(w)\{n}
= (Lrag+ - +(aq)""*)(L+ag*+ - - +(ag®)" %) -+ (1 + ag"™?)

1
(an_lsn_1(1+— — Z(q_1+ . +q—n+1)
a

1
+ dnzann(TH*l)/QSnil(l_i_a _ t(q+ e +qn_l)) s (11411)
z

with (w) = 1 if n € D(w), and = 0 otherwise, m(w) being the multiplicity of s
in any reduced decomposition of w. **

Specializing y; to ¢°, which corresponds to taking d; = ¢ for a descent i,
one obtains Iwahori-Matsumoto generating function for type A:

Z q—f(U) H qi(n—i) —n (1 +q4--F q”_Q)

€6y 1€D(o

I+ @ 4 4P (14 ¢™) (114.12)

In type B, the specialization a = ¢", z = 1 gives Iwahori-Matsumoto function.
For example,

Sl =(14a+d”)(1+aq)(1+azqg )1+ azq ?)(1+ azq™)

specializes to
21+ g+ +q)(1+¢* +¢°)

and, for n = 4,

(1+a+a*+a®)(1+ag+a*®)(14+ag®)(1+azqg (1 4+azq?)(1+azq ) (14+azq™?)

2lywe use A-rings notations. For any two alphabets A =" a, B = b, one has Sx(A —z2B) =

Zfzo(—z)iSk_i(A)Si(—B), where the S;(A) are the complete functions of A and (-1)'S;(—B)
are the elementary symmetric functions of B.
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specializes to

1

2(1—¢"*)(1—¢")1—=¢") (1-9)(1-¢*)(1-¢")) .

In type C, the specialization a = ¢"*', d, = ¢""*V/2 2z = 1 gives Iwahori-

Matsumoto function. For example, for n = 3, the generating function N m,,,
which is equal to

a*> a* a*\ , [a* a®* a® a a a 9
Itag)| ( 5+t )27+ | —+gtgtgtsts | zta +a+]
a 9 g q° q° g

2
a* a a a a
+ds <(¥+$+q_6) 23+ (q_4+$+¥+$+q_5+q_3> 2+ (g +q7?) z))

specializes to
2(1=¢"(1 = ) ((1-0)(1-¢")(1-4")) .
v

The theorem is proved by factorizing appropriately the operator 7 , details
may be found in the note |.
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Linear Bases for type A
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2.1 Schubert, Grothendieck and Demazure

To interpolate a function f(z1) at points y1,ys, .. .,, Newton [155] chose the basic
polynomials Yy = 1, Y1 = (z1-v1), Y2 = (x1-y1)(x1-y2), ... and found that the
coefficients of f(x1) in this basis could be obtained by divided differences.

One can add the remark to Newton’s computations that the Newton basis
Yo, Y1, Ys, ... is invariant under the divided differences 0. Indeed, Y307 = -Yj_1,
and Y07 = 0 for ¢ # k. It is therefore natural to generate bases of polynomials
using the different operators 9;, ;, ;, T; that are at our disposal. However, we also
need starting points, i.e. polynomials such that them together with their descent
will constitute a basis. In the case of non symmetric Macdonald polynomials,
because one also has “raising operators” which increase degree, we need only one
starting point, which is 1. For the other families of polynomials, the starting
points will be associated to the diagrams of partitions, to the cost of having to
check compatibility conditions between the different starting points.

Given A € N" a partition (i.e. Ay > --- >\, > 0), then

Y, = H (i —y;) & Gy:= H (1 —ya; )

i=1l.n,j=1.)\; i=1l.n,j=1.\;

are the dominant Schubert polynomials and the dominant Grothendieck polynomial
respectively, of index A, and

K)\:l’)\:[?/\

are the dominant Demazure characters for type A. We shall rather say key
polynomials instead of Demazure characters [27] in reference to their combinatorial
interpretation in terms of keys.

61
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_ _ _n _Y2
T3=Y1|T3-Y2 25 | 2 -2 1-5
Y1 Y2
T2—Y1|T2—Y2 To | T2 1—;2 1—5
L1 | L1 | 1 Y1 Y2 Y3
L1=Y1|T17Y2|X17Y3 -2 1-2 1=
Y390 K399 G322

We define Schubert polynomials to be all' the non-zero images of the dominant
Schubert polynomials under products of 9;’s and Grothendieck polynomials® to
be all the images of the dominant Grothendieck polynomials under products of
m;’s. Similarly, the two types of key polynomials are defined by taking all images
under products of m;’s or of 7;’s respectively.

Since the operators satisfy relations, we cannot index the polynomials by the
choice of the starting point and the sequence of operators used. In fact, all these
polynomials can be indexed by weights in N, the recursive definition being

Y. viiiviet,.. = Yo 0, & G...,viﬂ,vifl,... = G, m; when v; > v;qq (2.1.1)

K,mi =K, & IA(U T = l?vsi, when v; > v;11 . (2.1.2)

Thus, the operators act on the indices just by sorting increasingly in the case of

key polynomials, and by sorting and decreasing the biggest of the two components
exchanged, in the case of Schubert and Grothendieck polynomials®.

It is clear that these four families constitute linear bases of Pol(n), because Y,

K,, I?U have leading term* z°, and G, has leading term x~?. However, it is un-
satisfactory to have mere bases, one must be able to express a general polynomial

! There are dominant polynomials in the images of a dominant polynomial, in the Schubert
and Grothendieck cases; therefore, one has to check consistency, as we already mentioned, but
this easy.

2As a natural continuation of my work about syzygies of determinantal varieties, I had de-
termined the classes, as polynomials, of the structure sheaves of the Schubert subvarieties of
a flag manifold. It was a time where Grothendieck had some complaints about the world of
mathematicians. I proposed to M.P. Schiitzenberger to call these classes Grothendieck polyno-
mials, to which suggestion he readily agreed. They appear under the label G-polynomials in
the paper[123] introducing them, the referee having disagreed with the terminology. The said
referee fortunately forgot to extend his ban to future work. Moreover, Alexandre Grothendieck
did not protest against this appellation.

3Choosing permutations as indexing sets, then the action is simply sorting. We did not give
the case v; < v;41 because it is determined by the relations 8? =0, ﬂ? =y, %12 = —7;. Thus in
that case,

~

Y,0; =0, Gym = Gy, Kymm = K,, [?u%z =-K,.

4Notice that 2910; = 2/~ i I =24+ ... 4 2831 and that 29 = 291 +ad =B 4o 4 ghd,
From this, it is easy to prove by induction that the monomials z* appearing in Y,, K, are such
that u, < v,, up +tp—1 < vy +vy—1,.... In particular, u < v for the right lexicographic order,
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in term of these bases. We shall see how to do it in the next section, by defining
a scalar product.

As examples of Schubert and Grothendieck polynomials, one obtains the fol-
lowing polynomials starting from the dominant ones Y515 and Gayg.

_ (2 =)
y510<_.($1 —y1) (1 —9y2)

Y100 = r—y e /Yom = T1+T2-Y1-Y2
Yo0o =1
1— %)
0T a-g) 1-m
_ y_l) °
G1io v Gaoo = 1
(1—2) o (1-£) (1-£)
_° Gopg = 1 — w2
Goo = 1_ ¥ o 010 — T172
1 /
Gooo = 1

For these two families, only the polynomial indexed by 010 is not dominant.
However, in general Schubert and Grothendieck polynomials do not factorize,
though they still have the same type of vanishing properties than the dominant
ones.

Our starting Schubert polynomials are products of linear factors z; — y;. We
shall be able to express general Schubert or Grothendieck polynomials as sums of

i.e. the order such that if u < v then there exist k£ such that u; = v; for i = k+1,...,n and
u < vg. Similarly, all monomials " appearing in the expansion of G, are such that —u,, < -v,,
“Up—Up—1 < ~Vp=Vp—1,----
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products of linear factors’. For example, using Leibnitz’ formula, one obtains the
sequence of polynomials

To=Y1|T2~Y2 T3=Y2 T2=U1
Y320 = , Y301 = + ;
T1=Y1|{T17Y2(T17Y3 T1=Y1{T17Y2(T17Y3 T1=Y1|{T17Y2(T17Y3
T3~Y2 T3=Y2 T2-Y1 T3~Y2 L2=Y1
Yoo = + —+ + + ,
To=Y2|T2=Y3| [T1=Y1|T2=Y3| [T1=Y1|L27Y3| [T1=Y1|L17Y2| [T1=Y1|L1~Y2

and the last polynomial, Y1, does not factorize anymore.

2.2 Using the y-variables

Some properties of Schubert and Grothendieck polynomials are easier to follow
using permutations for the indexing. Given a permutation ¢ of code v, then one
uses both notations Y, (x,y) and X,(x,y) for the same Schubert polynomial, as
well as G, (x,y) and G ) (x,y) for the same Grothendieck polynomial.

Both families satisfy a fundamental symmetry in x,y. Indeed, given ¢ < n-1,

denoting as usual w = [n,...,1], then it is immediate, because the statement
reduces to compute the image of (z;-y,_;) or (1-y,_;z; '), that

Xw (X7 Y) azx = _Xw <X7 y) ar}:—z (221)

G(w) (X7 y) o= G(w) (X> y) 7T711/—}z’ ) (2'2'2>

where W,ll/_ ¥ denotes the isobaric divided differences relative toy" = {y; ', 55", ... }.
By iteration, noticing that the symmetry is valid for X, (x,y) and G)(x,y),
one obtains the following proposition.

Proposition 2.2.1. The Schubert and Grothendieck polynomials satisfy the re-
CUTsion

XSiU(X7 y) = _XU(X7 y) azy & G(Szﬂ) (X7 y) = G(Cf) <X7 y) 7.[.3/)’ ’ (223)
for i such that €(s;0) < l(0), as well as the symmetry
X, (%,y) = ()" X,1(y,x) & Gux,y)=Gry(y',x"). (2.2.4)

Symmetry in consecutive variables can be seen on the indexing. Indeed, if ¢
and v are such that v; < v;,q, then Y, and G, are symmetrical in z;, x;,1, because
they are equal to Y,0; and G,m; respectively, with v = [... v + 1 v;,.. ..
Consequently, one has the following lemma.

Sthese expressions are not unique.
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Lemma 2.2.2. Let ¢, j,v be such that v; < vy < --- <wj. ThenY,,G,, K, are
Symmetric in Ty, ..., T;.

In the case where v € N" is antidominant (i.e. v = v 1), then Y,, G,, K, are
therefore symmetric in x4, ...,z,. In fact, let A = v | be the decreasing reorder-
ing of v. Then K, = 2*n, = 2’79, is equal to the Schur function sy(x,), and
Y, = Y\;,0. specializes to s)(x,) for y = 0, because Y, specializes to P,
The polynomial G, v antidominant, can also be considered as a deformation of
a Schur function. It still possesses a determinantal expression. Geometrically,
it is interpreted as the class of the structure sheaf of a Schubert variety in the
Grothendieck ring of a GraBmannian and I described it in [94] by pure manipula-
tion of determinants without using divided differences.

Let us call Graffmannian Schubert (resp. Grothendieck) polynomials.  the
polynomials indexed by antidominant v.

2.3 Flag complete and elementary functions

Both Schubert, Demazure and Grothendieck polynomials are non symmetric gen-
eralizations of the fundamental basis of symmetric functions that are Schur func-
tions. In fact, the present notes will illustrate that many properties of the Schur
basis can be extended to properties of the Y, K, G, bases. But there are other
bases of Gym(x), particularly the products of elementary functions e;(x) and the
products of complete functions h;(x). Let us generalize these into flag elementary
functions and flag complete functions.

Definition 2.3.1. For any r, any v € N, v < [r-1,...,0], let
P, = ey, (erl) T Gy, (Xo)

and, for any n, any v € N", let
Hy = hy, (x1) -+ by, (X5)

It is clear that {H, : v € N"} is a linear basis of JPol(x,,), which is triangular
in the basis of monomials. Identifying v and Ov, one checks that U.{P, : v € N"}
is also a linear basis of the space of polynomials in zi,xs,.... Notice that the
restriction on v eliminates the elementary functions which are null because of
degree strictly higher than the cardinality of the alphabet. Beware that P,y is
different from P,, because of the order we write the flag of alphabets. This change
of convention for the indexing of the basis of flag elementary functions will be
justified by the non-commutative extension of P,.

It is not straightforward to express monomials in these two bases. For example,

2
Ty = P1,1,0,0 - P2,0,0,0 - Pl,l,O

= (21 + 2o + x3) (1 + T2) — (T123 + 2122 + Tax3) — (71 + T2)71
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$§ = H(]’Q — Hl,l = (l’% + X129 + Jﬁg) — .1'1(.151 + 33'2) .

We shall obtain such expansions by using a scalar product on polynomials.
More generally, monomials can be written as flag Schur functions. Let v € N™,
U = [Up,...,v1]. Then [108, 1.4.10]

x’ = Su(Xna . ,1‘1) = huj—i-j—i(xn-l—l—j) . (231)

For example,

0,3,1,2 _ _
x = 52,1,3,0(X4,X3,X2,X1) =

Expanding by columns (but from the right!), one finds the expression of the mono-
mial in the H-basis :

0312 _
x = Hoyz12— Hi212— Houp2+ Ha202 — Hoso:1
+ Hypo1 + Hos01 — Hzoo01 + Houo0— Hoo20— Hos10+ Hzo10-

The following proposition illustrates that Schur functions in x, can also be
easily expressed in these two bases, using flags of alphabets® in the Jacobi-Trudi
determinants.

Proposition 2.3.2. Let v be the increasing reordering of a partition X\, u € N be
the reordering of the conjugate \~. Then the Schur function s(X,), also denoted
Sy(xy), is equal to both determinants

Sv(Xl/Xg/.../Xn) =

and Au(Xn+7«_1/Xn+7~_2/ .. /Xn) = euj+j—i(xn+T—i> . (232)

st j—i(X:)

The expansions of these determinants furnishes the required expressions of
$x(xy). For example, for n = 3, A = [4, 2], one has A~ = [2,2,1, 1] and

S42(X3) = Spoa(x1/X2/X3) = 0 ha(x2) hs(x2)

= A122(X6/X5/X4/X3)

( (x6) e5(x)

X5) e1(x5) es(xs) ea(xs)
( (xa)  e3(xa)

( (x3)

0 €1 X3) €9

Sbut this time, flags are constant by rows.
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which entails
84,2(X3) = H0,274 - H0,5,1 = P1,1,272,0,0,0 - P1,1,3,1,0,0,0 - P2,0,2,2,0,0,0
+ P10,0,2,0,00 T 031,000 + 1,401,000 — £1,3,0,2000 — £5,0,0,1,0,0,0 -

Given i, there is at most one component of the function P, and of the function
H, which is not symmetrical in x;, x;,1. Since

er(x;)0; = (ek(xi—1> + xz‘@k—1(Xi—1)) 0; = ep—1(xi—1)

and

hi(x:) i = hi(Xit1)
the image of P, = - - - ej(x;)es(x;_1) - - - under 0; is a flag - - - e _1(x;_1)ep(Xi—1) - - -
which is not permitted if (k—1)¢ # 0. Similarly, the image of H, = - - - hy(x;) he(Xit1) - - -

under 7;,which is - - - hy(X;41)he(Xi11) - - -, is also illegal if k€ # 0.
But, from the case of order 2 of (2.3.2), one has, with @ = min(k-1,¢) and
B = max(k-1,¢),

ep—1(Xi—1)er(Xi-1) = (%(Xi)@ﬁ(xi—l) + €a—1(X;)eg1(Xim1) + -+
+ €O(Xz‘)€ﬁ+a(xi—1)> - <6ﬁ+1(xi)ea71<xi71) +o €ﬂ+a(Xi)€0(Xifl)) )
and, with &« = min(k, ¢), § = max(k, (),
P (X1 ) he(Xi11) = (ha(Xi)hﬂ(Xi+1) +oo ho(Xi)hﬂ+a(Xz‘+1)>
— (1) hac1(Xis1) + - + hasa(i)ho(xis1) )

This entails the following actions of 0; and ;.

Lemma 2.3.3. Let n,t be two positive integers, 0 < i < n, v € N" being such

that v < [n-1,...,0], « = min(v,_; — 1,v,_411), B = max(v,_; — 1,v,_411). Then
Poovn,i,vn,.bquoo az = Z Pocafj,ﬁ+joo - Z Poo,@+j,a7joc . (233)
=0 j=1

Forv e N*, o = min(v;, v41), f = max(v;,v;41), one has

HOOU»;,U»;+10¢ T = Z H..chj”@+j.. - Z H00ﬁ+j,a7joo . (234)
7=0 7=1

For example,

P5203210 a6 = P2403210 + P1503210 + (P0603210> - P51 03210 — P6003210 )
H92699 g = H92699 + H91799 + H90899 - H97199 - H98099 )

the term Ppgosa1o being null because eg(x5) = 0.
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2.4  Three scalar products

Let us first look for a scalar product on Pol(n) compatible with the product
structure and with degree.
When n =1,

€

(Flaralon) =T (o)

where CT means “constant term”, is a good candidate. Generalizing to (f,g) =

CcT <f(x1, ey T, g(x—ll), e i)) means considering the ring of polynomials as
a tensor product of rings of polynomials in 1 variable, a rather poor structure.
Reversing the order of variables in the function ¢ is not enough, one needs a
kernel to link the variables.

We define

(f,g):OT(f(xl,...,xn)g(x,;l,...,x;l) I1 (1—xi:cj_1)>, (2.4.1)

1<i<j<n

and write 2, = [],o; <, (1 — z;z; ") for the kernel.

Explicitely, for two monomials, (z*, z%) = (z“~v»U="1 1) and (z%,1) # 0
only when =" appears in the expansion of 2,,. In that case (z,1) = £1 according
to the sign 7 has in (2,.

Similar definitions and properties hold for the root systems of type B,C, D
(see later sections) with appropriate kernels 22, Q¢ QP

For n = 3, one has

Q3 — xOOO o xl,fl,o o xO,l,fl 4+ xQ,fl,fl + x1,1,72 . x2,0,72
and therefore
(xOOO’ 1) —1= ((%72,1,1’ 1) — (xfl,fl,Z’ 1) & (xfl,l,o, 1) = _1= (xo,fl,l, 1) — (51772’0’2, 1)’

the other monomials being orthogonal to 1 (one has enumerated the positive and
negative roots for type As).
Notice that, for symmetric functions, Weyl has defined the scalar product

(1.9 = LOT(f(an w07 2.

We shall see that in the case of Schur functions

(3>\7 Su) - (8>\7 S#)Weyl = 5%# )

so that the restriction of all these scalar products to symmetric functions coincides
with the usual scalar product with respect to which Schur functions constitute an
orthonormal basis.
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However, we have also to use the structure of Pol(n) as a free Sym(n)-module.
We define for f, g € JPol(n),

(f?g>a::fgaw & (fag)ﬂ::fgﬂ-w-

These quadratic forms take values in Gym(n) and are Gym(n)-linear.
The main properties of all these quadratic forms is the compatibility with the
operators used to define the different bases.

Proposition 2.4.1. Fori: 1 <i<n-1,
e ; is adjoint to m,_; with respect to (, ),
e 0; is self-adjoint with respect to (1, )? ,

o 7; is self-adjoint with respect to ( ;)

Proof. Let us check that all these statements reduce to the case n = 2.

(f@',g)a = ((fai)g) 0o = (f0;9)0i0s,0 = ((fai)(gai))asw~

The last expression being symmetrical in f, g, one has, indeed, (f9;, 9)? = (f, g9;)°.
The same computation applies to the case (1, )".

The kernel 2, can be written ' (1 — z;2;},), with € symmetrical in @;, z;1,
and one can first compute the constant term in z;,z;,1. Let us write f = f; +

Tiy1fo, glx ... ,mfl) = h(z1,...,2,) = @1 + Tir192, With fi, fo, g1, go invariant
under s;. The difference fm;h — hm,f = fm;h — h7,f is equal to (fig2 — g1 f2) i1
Therefore the constant term

CTyron, (( frih — hrof) (1 — /xM)Q')

= Oy, ((fRh = W) (1= /i)
= CTy; 201 <(96z'+1 — i) (f192 — 91f2)9/>

is null, because the function inside parentheses is antisymmetrical in x;, x;1. Tak-
ing into account the transformation x; — z!,_;, this nullity proves that m; is
adjoint to m,_;. QED

Thanks to Proposition 2.4.1, the scalar products ( f, sx(x,)) can be rewritten as
scalar products with dominant monomials. Indeed sy(x,) = 2*7,, and therefore

(f7 S/\(Xn)> = (fv ',L)\ﬂ-w) = (fﬂ-wa 37)\7[-0.1) = (fﬂ-wa ZL)\) .
On the other hand,

(fr5x(x))” = (£1)%3(x0) & (fr2(x0))" = (£, 1)7s2(x0),

since these last two scalar products are Gym(x,, )-linear.
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2.5 Kernels

With a scalar product and a basis defined by self-adjoint operators, it is easy to
find the adjoint basis. Once more, it is sufficient to understand the case n = 2.

Lemma 2.5.1. Leti € {1,...,n-1}, D; = m;, ﬁl = (resp. D; = 0; = l/jl)
Let f,g € Rol(n), f' = fD;, ¢ = gD;. Then the two equalities (f,g)” = 0,
(f',9)P =1 imply that (f', 9" )P =0 and that (f,g" ) = 1.

Proof. Consider first the case D; = m; and write f = f1 + 2401 f2, 9 = g1 + Tir190.
Then f' = f1, ¢ = g(m; — 1) = g1 — g. Consequently,

(f;9)" = (fog)" = (f,9)7 = (f,9)" =1 & ([, 9)" = (f1,90)" = (f1.9)" = 0.

The computation is similar for D; = 0. QED
This lemmma will allow propagating orthogonality relations. But to produce
a hen, we need an egg, or conversely.
Let

oY = H (y; — ) & QY .= H (1—zu ).

1<i<j<n 1<i<j<n
Lemma 2.5.2. Letv: 0 < p=[n-1,...,0]. Then
(Y,,0,)" =0=(G,,0,)",
except for v =0, in which case
(¥0,0,)° = 1= (Go,0%)" .

Proof. By definition, (f(x),0Y)? = f(x)OY 4, for any polynomial f(x). If this
polynomial belong to the span of ¥ : v < p, then f(x)©) belong to the span
of ¥ : v < [n-1,...,n-1] and its image under J, is a symmetric polynomial
of degree 0 (only the monomials which are a permutation of 2 have a non-zero
image). On the other hand, the scalar product can also be written as a sum :

1
Yq}@Yaz _14(0) YUGY ‘7_.
Since this is a function of degree 0 in x, one can specialize x = y without changing
its value. However, all (©)Y)? then vanish, except for the identity, in which case
©Y specializes to A. Therefore,” (Y,,0Y)? =Y,(y,y) = 0.
The proof is similar for Grothendieck polynomials. QED

"The vanishing of Y, (y,y), which is evident for dominant v, is proved following an induction
which in fact furnishes more specializations. Thus we do not prove it at this point, but refer to
Corollary 3.1.3 below.
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2.6 Adjoint Schubert and Grothendieck polyno-
mials

The ring Pol(n) is a free Sym(n)-module with bases {z": v < p} and {z7V: v <
p} (one takes Laurent polynomials in the second case). Therefore {Y, : v < p}
and {G, : v < p} are two linear bases. Starting with ?p = 0Y and CAJP = 0¢,
instead of Y, and G, one generates recursively two other bases

~

Y-~7Ui+1yvi*17-~ = Y;, 81 & G...,le,vifl,... = GU /71:1 when Vi > Vi1 - (261)

Here are these bases for n = 3.

S (y1 —x3) (y2 — x3)
YQIO — <y1 o 372)

/ T~

> v (y1 — 3)
Yiio = (y1 — @3)(y2 — x3) Yoo = (y1 — 22)

Yioo=wy1 +y2 — 72 — 13 Yoo = y1 — 73

— -

Yé]OOZ1

~ 1—28) (]— 28
g, (1= (-3

(-2
e 2 z3 z3 G _:c(l_%>
Gro = 2(1-3)(1 - 3 07 (1 )
| |
Go = 32 (1 - 5222) Gowo = 3222 (1= 32)

\A

2
G __ %213
000 y1§y2

\

Lemmas 2.5.1, 2.5.2 give the following pairs of adjoint bases.

Theorem 2.6.1. The bases {Y, : v < p} and {Y, : v < p} are adjoint with

respect to (, )?. The bases {G, - v < p} and {G, : v < p} are adjoint with
respect to (1, )".

More precisely, the pairing is

(Yo, Y.)? = 0y pou = (Gy, Gu)™ . (2.6.2)
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The two bases {Y,} and {G,} can in fact be easily obtained as images of {V,}
and {G,} respectively. Indeed, €2 is obtained from Y, by reversing the alphabet
x, but divided differences satisfy

Similarly, let & be the involution z; — x,,1;_;. Then
&ﬂ'i & = TTn—i & wz™’ T zPw = _%n—i . (264)

Extend the involution to codes of permutations : u & = v if and only iff the
corresponding permutations o, (, are such that wow = (. Then, the relations
(2.6.3, 2.6.4) induce

Lemma 2.6.2. The adjoint polynomials )/}U and CAJU are related to the original ones

by
~\ W v PN . P
(YL) =()"Ya & (G) = (-1) ‘GME. (2.6.5)
As a consequence, for any o,( € &,,, one has
o
<XU(X7y)a XC(XW7Y)> — (*1)6(0507@# (266)

Gty (SGon) ) = (050 26D

The decomposition of any polynomial in the Schubert or Grothendieck basis
can easily be computed using the scalar products with their adjoint bases. Here
is the matrix of change of basis between monomials z¥ : 0 > v > [-2,-1,0] and
Grothendieck polynomials :

| 000 100 010 200 110 210

1 / 2000 1 0 0 0 0

1 / 2100 L L 0 0 0 0
Y 1

1 /2910 1 1 1 0 1 0
] Y1 Y2 Y1

1/1,200 LQ _ y242ry1 0 1 0 0
yll Y12y2 ) Y192

110 .
1/ L Y1y2 Y192 0 0
1 /x210 1 ! 1 1 1 1
Y12y2 y12y2 y1ly2  yity2 y1lye y12y2

2.7 Bases adjoint to elementary and complete
functions

Expanding the kernels ©F and ©¢, one finds the bases adjoint to monomials, for
the two scalar products (, )? and (, ).
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Proposition 2.7.1. Given n, let x¥ = {27',... 27}, Then for any u,v : u <

rrn
p, v < p one has

7]

(Pyu(x), )" = (-, , = (Py(xY), z*)". (2.7.1)

The basis adjoint to {H, : v < p} requires a little more work, because the
monomials appearing in the expansion of H, do not respect the condition that
their exponent be majorized by p. We first some technical properties of divided
differences.

Lemma 2.7.2. Let a,b,k,n € N be such that 1 <k <n, 0 <a,b <n-k. Then

(-1)°if  a+b=n-k

0 otherwise

Slb(Xn — xk)Sa(Xk)ak . 81 = { (272)

Proof. One expands Sys(x, — 2x) = Siv(X,) — TuS10(X,) + -+ + (-2)°. On the
other hand, z¢S,(x;) = S,pi(xx) — >_ %, sum over monomials z%, u € N¥ such
that u, < i-1. The initial function is therefore equal to

(S16(%0)Sa (k) = Spo-1(Xn) Sagr (xx) = -+ + (-1)" S0 (%) Sapn(x1)) — Y cu®,

with ¢, € Gym(x,,) and uNF such that u, < b-1 < n—k. The extra monomials z*
are sent to 0 by O ...0,_1 for degree reason. The sum inside parentheses is sent
to

Slb (Xn)Sa—n-i-k(Xk) — Slb—l(xn)sa—i-l—n—i-k(xk) — ...
+ (-1)°S0 (%) Satt—ntk (X)) = (=1)*Sastmnir(Xn — Xn) .

This last function is different from 0 only in the case Sp(x,-x,) = 1, that is only
for a+b = n-k. QED

Proposition 2.7.3. Given n, for any v < p, let H, = Sin (x, — x1)S102 (%, —
Tg) ... S1n1(Xp — Tp1). Then

(H,, H,)" = ()6, , 0, w0 <p. (2.7.3)
Proof. Factorize 0,, = (0p-1)(0n—20n-1) ... (01 ...0,—1). By decreasing induction
on k, one has to compute

(Slvl (Xn — ZEl) e Slvk (Xn — Jfk)) (Sv1 (Xl) . Svk (xk)>6k e 8n_1
= f (Slvk (Xn — ZL’k)Svk (Xk)) 8k e 8n_1 s
with f symmetrical in xzy, ..., z,, and therefore commuting with 0y ...0,_1. Eq.

2.7.2 forces the equality vy+ur = n—k, to have non nullity, and we can proceed

with k-1. QED
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For example, for n = 3, one has the following pair of adjoint bases.

Hop = x3(z1+2) Hogo = 1
Hio = @1 (21+22) Hoygo = 23 Hypo = ~z5-3 Hoyyo = 213
Higo = 71 Hoio = 71+ ﬁllﬂ = (zotz3)(T1+73) ﬁzoo = T3
Hypo =1 Hypo = ~Zo3(X1+T3)

2.8 Adjoint key polynomials

The two families {Y, : v € N*}, {G, : v € N"} are bases of Pol(n) (as a vector
space). We have also given two other bases, {K, : v € N} and {K, : v € N"},
that are in fact adjoint with respect to ( , ), as states the next theorem.

First, one checks that for any partition )\, then (K,,2*) = 0, except when
v =M w=[A\,,...,\1], in which case (K),,z") =1 (cf. [44, Cor 12]). Using that

~

m; is adjoint to m,_;, this allows to compute any (K, K,). For example, writing
in a box the non-zero scalar products, the knowledge of all (K, K361)

(K31, Ksg1)

_— T~

(K361,f(361) (K613,IA(361)

(K316>K361) (K1637K361)

T~ =

(K163JA(361)
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determines all (K,, [?316)

(K6317 }?316)

In conclusion, one has the following property (cf. [44, Th 15]) :
Theorem 2.8.1. Given u,v € N, then (K,, [/(\’u) =0, except (KU,I/(\'W) =1.

In particular, if X is dominant, then (K,,2*) = 0, except if v = Aw, in which
case K, is a Schur function.

Notice that the pairing, for Schubert and Grothendieck polynomials, is also
the reversing 0 — ow, when indexing these polynomials by permutations, but not
when using codes.
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2.9 Reproducing kernels for Schubert and Groth-
endieck polynomials

In the theory of orthogonal polynomials in one variable one finds it convenient
to make use of reproducing kernels K,(x,y) = Po(z)Py(y) + - + P.(x)P.(y),
associated to a family of polynomials Py(x), Pi(x), ... of degree 0,1, ..., which are
orthonormal with respect to a linear functional f — [ f. The name “reproducing”
comes from the property that

/ (@) Koz, y) = F(9)

whenever f is a polynomial of degree < n.

The Cauchy kernel [], ey ey(1 — y)~" plays a similar role in the theory of
symmetric polynomials. It does not require much effort nor imagination to deduce
from the preceding section kernels corresponding to the bases {Y,}, {G,} or { K, }.
Write Gym(x, ) = Sym(y,,) for the identification of any symmetric function of z,,
with the same symmetric function of y,,.

Theorem 2.9.1. For any v: 0 <wv < p, one has
@Y, ) =y & (8¢, a7 =y (2.9.1)

For any Laurent polynomial f in x,, one has, modulo Gym(x,) = Sym(y,),

©F, fx)"=fly) & (85, fx)" = f(y). (2.9.2)

The two kernels expand as follows

onxz)= [[ i-z) = Y Y@y Vulxy) (293

1<i<j<n v<p
0Sxz)= ] (U—zz") = Y Gulzy)Goulxy)  (2.94)
1<i<j<n v<p

There is no real need of a proof. The reproducing property has been obtained
in the course of proving Lemma 2.5.2. Taking coefficients in Gym(x,,), one obtains
(2.9.2) from (2.9.1). The function ©) (x,z) belongs to the span of {z“z" : u,v <
p}, and therefore can be written

O (x,2) = > cun(y) Yulz,y)Y,-u(x,y).

Therefore, for any v < p, one has (0 (x,z),Y,(x, y))8 = > . Cun(y) Yu(z,y).
However, the reproducing property shows that this is also equal to Y,(z,y) and
this proves (2.9.3), the case of Grothendieck polynomials being similar. QED
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For example, for n = 2, one has

Of(x,2z) =1 —my/21 = Goolz, Y>@10(X7Y) + G10(Z7Y)@00(Xa y)

:1(1_&) N (1_2)_2
n 21 n

93Y(Xa z) = (21 — x2) (21 — x3) (22 — x3) = — (=1 + 22) (—y1 + 23) (—y2 + 73)
+ (22 —v2+ 21 —y1) (=y1 +23) (Y1 +32) — (=21 +y2) (21 — v1) (1 — 23)
+ (21 —y1) (=y2 +23) (—y1 + 23) + (=1 + 22) (21 — 1) (—22 +y2 + Y1 — x3)

—(—z1+12) (21 —y1) (=1 + 22) .

For n = 3, Maple computes

The essential property of O} (x,y) and % (x, y) is that O} (y?,y) and ©¢ (y°,y)
both vanish when o is different from the identity. Along the same lines as for Y
and ©F, one sees that the kernels Y,(x,y) and G,(x,y) satisfy a twisted repro-

duction property :

V,(xy), fx) = fy*) & (G,(xy), fx) = f(y*), (2.9.5)

modulo Gym(x,) = Gym(y, ), the equivalence being replaced by an equality when
f belongs to the span of {zV: [0,...,0] <wv <[0,...,n-1]}. For example,

T n Y2 Y1
(GZIO(Xa y),x?,}) = (1 — x—1> (1 — ;1;_1) (1 — x—2) ZIZ'% 321 — y% .

Notice that, using (2.2.4) and (2.6.5), exchanging the role of y and x, one can
rewrite (2.9.4) into

D (MG, (x,2) Gyu(xy) = Vy(z,y) 2" (2.9.6)

v<p
By taking the image of (2.9.3) under products of 9;’s and the image of (2.9.4)

under products of 7;’s, one obtains decompositions of general ffv or general CAJv,
and by involution, of general Y, and GG,. Let us detail these decompositions in the
next sections.

2.10 Cauchy formula for Schubert

Given u, v, w € N" majorized by p, write w = u® v iff and only the permutations
o(w),o(u),o(v) of which they are the codes, are such that o(w) = o(u)o(v) and
the product is reduced®. With this notation one has the following Cauchy formula
for Schubert polynomials (given in [97] for y = 0).

8 i.e. such that lengths add: ¢(o(w)) = ¢(o(u)) + £(o(v)). Notice that the product of two
permutations 7, v is reduced if and only if 0,0, = Oy,
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Theorem 2.10.1. Let o be a permutation in S, w € N" be its code. Then

Yoxz) = ) Yy z)Y.xy) (2.10.1)
u,v: uOU=w

X,(x,2) = Z X,(y,2z) X, (x,y) . (2.10.2)
1,V: OnOp =0

Proof. One starts from the formula in the case o = w, which is a rewriting of (2.9.3)
using (2.6.5). Supposing (2.10.2) to be true for o, let ¢ be such that ¢(os;) < £(0).
The terms in the RHS are of two types: either ¢(vs;) < ¢(v), or not. These last
terms are such that X, (x,y)0; = 0. Therefore the image of (2.10.2) under 0; is

Xoo(x,2) = Y X,(y,2) Xc(xy),
1,(: OnO¢ =00 s;
with ¢ = vs;. QED
For example, for w = [0,3,1], one has the following expansion of Yj3;(X,z),
writing Y, Y, for Y, (y,z)Y,(x,y)

Yo31(%,2) = Y0000 Y031 )
N
Y0100Y030 Y0001Y021\
e 7
Y0101 Yo20 \Yoozyon
H |
Yo12Y010 /Yo3Y001
I
Y(J31Yboo/
or, indexing by permutations,
X15324(X, Z) = X12345 X 15324
_— o
X13245X 15234 X12354X14325\
~o \ /
X13254X14235 \)(12534)( 13425
H |
X13524 X 13245 /X 15234 X 12435
\ /

X15324X12345

In these last conventions, the edges are simple transpositions: X, X, — X, X¢.
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Notice that the above decomposition of Y,(x,z) = [[, ., (i — z;), becomes
similar, when specializing y = 0, to the Cauchy expansion of the resultant
[1ij<n(®i — 2j) in terms of Schur functions in x and in z. In fact, let m,r be
two integers such that r +m < n. Then the special case of (2.10.1) for w = r™,
y =0is

Yim(x,z) = > Y,(0,2)Y,(x,0) = Y (-D)Ms,(z)s1(xn),  (2.10.3)

u,v: UQUV=w ALrm

sum over all pairs of partitions A, u such that the conjugate of p is [r—=Ap,, ..., 7=A\1].

2.11 Cauchy formula for Grothendieck

The analogous formula for Grothendieck polynomials is not more complicated.
Instead of taking reduced products, i.e. products 9,0, # 0, one has to use products
in the 0-Hecke algebra, of the type m,m,.

Theorem 2.11.1. Let o be a permutation in S, w = [n, ..., 1].
Go(x,2) = )Y Go(2y)Guo(x,y) Tus (2.11.1)
CEGn
yP
~Ge(x2) = D (-1D)"9G ) (2,¥) (Gio) (X, ¥) o)) (2.11.2)
¢

Proof. The first formula is the image of (2.9.4) under 7,,, the second is the image
of the case 0 = w, which is a rewriting of (2.9.6), under 7. QED

For example, for n = 3, writing G,, for G,(z,y) and G, for @v(x, y), the image
of GQIO(X, Z) = ZU Gngl(),v under %1 is

@110(X, z) = (G110 — G210) é000 + (Goro — Gaoo) @010 + (Gooo — G10o) auo )
then under 7,

@100(X, z) = (Goro — G200 — G110 + Ga10) éooo + (Gooo — G10o) é100 .
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2.12 Divided differences as scalar products

Since the 9;’s are self-adjoint with respect to (, )?, and the 7;’s are self-adjoint

with respect to (, )™, one can use (2.9.1) to express any Oy, Ty, -

Proposition 2.12.1. Let f € Pol(x,,y,), 0 € &, and z = z, be an extra
alphabet. Then

fo, = (F Xeolax)| (2121)
fr, = (f,G(w_l)(x,z)fz:Xw (2.12.2)
fr, = (f,@(wfl)(x,z)yz:x (2.12.3)

Proof. The proofs of the three assertions are similar, let us consider only the first
one.

() X (2, %) = Xpm10(x,2) w = X (%,2) D10, 0
= X (X, 2)w (w0,p-1,w) = Xou(x¥,2)0p-1 (1)1

and therefore one has
0 0 o
(f7 XUJU(Z,XW)) = (f7 <_1>£(w)Xw(Xw7Z)aa—1) = (faaw XM(Z,XW)> .
Specializing z = x and using the reproducing property (2.9.1), one gets (2.12.1).
QED

For example, for n = 3, o = [2,3,1], one has wo = [2,1,3], wo™! = [1,3,2],
and

0
= <f7 Zlfx3> _

T1T9
Lol Xz a
(8 (1-2)
z=x Z1%2 (25

o
fOo31 = 010, = <f7 X213(Z7Xw)>

™

zZ=X

g1 = fmmy = <f7 G(132)(X= Z))

Z=x%

™

[Tz = fmimy = <f7 é(132) (x, Z))

zZ=X



§ 2.13 — Divided differences in terms of permutations 81

2.13 Divided differences in terms of permuta-
tions

Let D = > g, Ccc(xs) be a sum of permutations with coefficients which are
rational functions in x,,. Any function f(x,,y,) which vanish in all specializations
X7 = ¥, except in x, = y,, can be used to determine the coefficients c¢(x,).

Indeed, putting g(xp, ¥n) = f(Xn, yn) D, one has g(x,, y,) = >0 (x5, ¥n) (%),
and therefore

9(Xn, Xg) = f(Xgn Xg) c¢(%n) - (2.13.1)

The kernels ©F, ©¢ have the required vanishing properties. In consequence
the operators 0,, 75, T, can be expressed in terms of specializations of Schubert or
Grothendieck polynomials, and one obtains the following expansions (the expres-
sion of the coefficients are not unique, due to the many symmetries of Schubert
and Grothendieck polynomials).

Proposition 2.13.1. Given o € 6,,, the divided differences Oy, 75, T, are equal
to the following sums of permutations :

O [ @i—z) = D (D" Xuo(xn, x5 ) (2.13.2)

1<j<n (<o
To = Y Cf(x§x%) (2.13.3)
(<o
T — & — w C71
i<j<n (<o

with fa(Xn:Y’n) - G(wafl)(xna YR) Hi<j§n(1 - xjxi_l)il‘

For example

1
010, = (s152 (@1-32) — 52 (v1-w2) — (w1-23) 51 + (21-23)) A(xs)
x2 7173 x3
T e (z1-23)(29-73) S (z1-23)(v2-73) - (z1-29)(T2-73)
T1T
($1—$2)(I2—$3)
~ 3 ToT3
mime = (8189 — S9) ($1*$3)E’5L‘2*$3) + (1 —s9) (22 (@)

One can compare these expressions to those given in the preceding section. In
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fact, they can be obtained by mere expansion of

1 1
010, = (1-31) (1—s
T1 — T2 Ty — T3
T x T x
Ty = <51 2 + ! )(82 3 + 2 )
To — X1 1 — T2 T3 — T2 To — T3
1
m™Te = (s1—1 S9 — 1 )
R e LR e

This is essentially the method followed by Kostant and Kumar [83, 84], but with
this method properties of the resulting coefficients are more difficult to extract
than when specializing polynomials in two sets of variables. For example we shall
see later that the inverse transition matrices, from permutations to the different
types of divided differences, involve the same coefficients as the transition matrices,
and this fact can easily be obtained from properties of Schubert and Grothendieck
polynomials.

The leading term of 7, and 7,, i.e. the coefficient of o, is obtained by mere
commutation. Taking a reduced decomposition o = s;5;5j, - - - s, then this leading
term is

. i S
l—wix; "1 —mjw 1 =z,

1 5jSh -5k 1 Sh+Sk 1
e () ()
1 — ) 1 —wjw; I —xpxy

In the language of root systems, this property reads as follows.

Lemma 2.13.2. Let @, ®~ be the positive (resp. negative) roots of the root
system of type A,_1. Then, in the basis of permutations, 7, and T, have leading

term .
F(o):= H oo

acdtNod—

This leading term intervenes in geometry, for what concerns the postulation
of Schubert varieties.

Let A € N" be dominant weight , v be a permutation of A\, ¢ € &,, be of
minimum length such that v = Ao. One defines the limit m — oo of K,,, ™™ to
be

(1 —zaM ', (1 — zx”)‘zirv :
Expanding 7, in terms of permutations, one has

1—z2?
A
(1 —zzY)tm (1 — z2?) —i—E 1—z’\< e,
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with coefficients ¢§ obtained in (2.13.3). The hypothesis on the pair ), o insures
that all terms, but the first one, vanish under the specialization z = =Y. One
thus recovers in the special case of type A a property due to Peterson and Kumar
in the more general context of Kac-Moody algebras.

Corollary 2.13.3. Let A € N" be dominant, 0 € &,, be of minimum length
modulo the stabilizer of X\. Then the common limit m — oo of x™ m,z~™ and

mAS . —mAo
1
H 1 — eo :

"M, X s equal to
aedtnNod—

For example, for A = [2,1,0], v = [1,0, 2], one has 0 = s;59 and the limit of
Kom02m®™ and [A(m,ogmx_m’o’_m is equal to ((1 — 23 (1 — :Ungl))_l.
The limit of Kgom2*%™™ = S, (21 + 22 + 23)23™ = Sp(r175" + 20251 + 1) is
also ((1— zyz3")(1— xga:gl))fl, in accordance with the fact that o is still equal
to $1S89.

m,0,—2m

2.14 Schubert, Grothendieck and Demazure as
commutation factors

One could obtain the expression of permutations in terms of divided differences
by iterating Leibnitz formula, starting with expressions like

$25189 = (1 -+ 82(1'3—372)) (1 -+ 81<£C2—l'1)) (1 —+ 82(1'3—.1'2)) .
Let us specially examine the commutation with d,, or m,. For example,

Oxe =101 — 1
828182$2$§ = 0hx301320505 = (2202 — 1) (2101 — 1) (2202 — 1) = . ..
= 22190,0,05 — 220,05 — 2'1°0,0, + 20, + (2'%° + 29199, — 1.

This case shows a disymmetry which can be cured by using Schubert polynomials
instead of monomials :

020100915 = Ya10(x,0)0105 — Yano(x,0)920102 — Y110(X, 0)020;
+ Yi00(%,0)01 + Yo10(x,0)02 — Yo00(x,0) .

The following theorem states that Schubert and Grothendieck polynomials do
occur in the commutation of some element with d, or m,. Notice that this gives
a generation which does not require division.
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Theorem 2.14.1. Fizing n, with p = [n-1,...,0], one has

Y (D)X (x,y) 0 = 0.Xu(y,x¥) (2.14.1)
ceES,
> (D)0, X, (xy) = Xy, x*)d, (2.14.2)
0'6671
> (D) Gy (x,y) Tor = Ty Xy, X*) (2.14.3)
ce6,
Z ()", Gy (x,y)2” = X, (y,x*)7m,. (2.14.4)
ce6,

Proof. (2.14.1) and (2.14.2) are equivalent, by left-right symmetry of the Leibnitz
relations. Let us prove (2.14.2). The factor X, (y,x*) is the reproducing kernel
©Y and therefore (2.14.2) can be proved by checking that, for any f(x) in the

linear span of (x: 0 < v < p), one has

S (D) ()0, X0 (x,y) = f(y).

Introducing an extra alphabet z, one needs a single check,

Xo(y,2) = Y (D)X (x,2)0,Xo(x,5) = Y (1) Koo (x,2) Xo (x,)

g o

But this is the Cauchy formula

Xu(y,z) = Z Xoo (x,2) X5-1(y, %) .

Similarly, (2.14.4) is proved by checking the action on G(,)(x,z). Thanks to
(2.9.6), one has

G(w) (Xa Z) Z(il)e(a)ﬂ—aG(a) (Xa y) ¥ = Z(il)e(U)G(wa) (X7 Z)G(O') (Xa y) x?
= Xw(Y7 Z) .

On the other hand, X, (y,x*)y " = Y is a reproducing kernel with respect
to m,, and therefore, one has

Gw)(%,2) Xo(y, x*) M = G (v, 2)y” -
In final, the images of G(,)(x,2z) under the two sides of (2.14.4) are equal. QED
By specialisation of y, one obtains the following commutations :
> (1)1, X,(x,0) = 210, (2.14.5)
Y (D) C oy (x, 1) Mo = my(L-an) . (1-z,)" . (2.14.6)
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For example, for n = 3, one has

_ _ 2 —($1—1)2(Z’2—1)7ﬁ7‘r2ﬂ'1
mimem (1-22)(1-23)" = { 220G T
1'1(1'1—1)(.1’2—1)71'271'1 x2($1—1)2ﬂ'171'2
17210G110 T2y $210G200 172

H |
{ *1‘11’2(1'1*1)7'[‘1 { *$1(l’1$2*1)7’[’2

210 210
S A CAT S| -2 %G1 T2

2229

Given n, using on products of divided differences and rational functions in x
the double reversal

0;PO; ... hQ — Q“Op_yy... POy,

one transforms (2.14.3) into

Xo(X,¥) 0w = Y FoGluow)(x°,y) . (2.14.7)

O’EGn

For example,

X301 (X, y) 0321 = MTams(1-tra5 ") (1-ynay ) (L-yoxy )+ Tam2(1-yr25 ) (1-yp23 )
+ Tt (1w ) (1-pnay ) + T (1-yrypry oy ) + To(1-yra3t) + 1
= mmam G (X7,y) + TG 312) (X7, y)
+ M1 G231y (X, ) + T1Gas2) (X7, y) + TG 213 (x*,y) + 1.

Notice that pushing the coefficients on the right in X.(0,x*)d,, for any ¢ €
S, can be obtained by expanding X, (y,x“) in (2.14.2).

In fact, X, (y,x*) may be thought as the generating function of a linear basis
of Pol(x,,) as a Sym(x,,)-free module. Hence Formula 2.14.2 implies that for any
function g(x,), one has

9(x2) 0 = Y (-1)"90, (9(xn) Our) - (2.14.8)

O'EGTL

When restricting the action of g(x¥) d,, to functions having partial symmetries,
one reduces summation (2.14.8), as in the next case.
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Corollary 2.14.2. Let m < n, r = n-m, k > 0. For any partition X < r™,
denote

3A - (&n ce . 8m+)\1_1> ce. (81 ce 8Am_1) .
Then the restriction of the action of Y (x*,y) 0" to Sym(m,r) is equal to

Ykr (Xw7 y) aTm = Z <_1)|u|8)\ YvOlW,kfur,O"Tfl_“T,kfur_h...,[)”l’”Q,kf,ul (X7 y) )

A<rm
(2.14.9)
denoting by p the partition which is conjugate to [r-XApy, ..., r=A].

Proof. The operators X,,(x*,y)0, and Y (x¥,y)0" have the same action on
Sym(m,r), up to sign. Moreover, the permutations o which are not minimal in
their coset (&,, x &,.) o annihilate elements of Gym(m,r), and therefore disappear
from summation (2.14.8). QED

For example, for n = 5, m = 2, writing % 3 I for (0205 ...)(01...), one has

Y, w 234:234Y_234|Y 213y,
666(X7Y)123 1973 666 1o 6605+12 66004
2

11

314 |Y(5055 - % 3 |Y60504 - Yos55 + Y60044

+ Yos504 — [2]Y05044 + [ ]Yo0444 -
Formula 2.14.4 :

Z (_1)“0)7]-0 Go)(%,y) = Xo(y, x*) moa™"

O’GGn

can be rewritten

Z (fl)z(")m7 (G(w) (x, y)7rw> = (fl)é(“’)xp‘“G(w) (x*,y)m,x?,

O'EGn

and implies that, for any function g(x,), one has

Z (1)), (g(xn)ﬁw) =aMg(x) moax™? = g(x) 7, . (2.14.10)

UEGTL

Using, thanks to (2.6.4), that 7, = (~1)“2Pw 7, 4, wr ™", putting ( = wow,
h = (xzPg)“, this last equation can be transformed into

> (-, (h(Xn)ﬁm> = h(x) 7y, (2.14.11)

0'6677,

Taking g(x,) = 2* = h(x,), with A dominant, one obtains key polynomials by
commutation :
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Theorem 2.14.3. Given an integer n and a partition A € N", then one has

> e (-1 Omy (Kamy) = (27 mua™" (2.14.12)
Z (71)6(0)%\4410}?)\0 == xAW%W, (21413)

ceSy,, 0cmin

the sum being limited, in the second expression, to the permutations minimum in
their coset modulo the stabilizer of \.

For example, for A = [3,1,0], one has

mom MoK 310 — T K130 — Mo K301 + m1 K03 + m2Koz1 — Koz

025 210
=T 7T321/$ )

and for A = [1,0,0], one has
~ A A~ f? - [’(\, + ~ [/(i 001 ~
1Ty 100 — 1T £A010 T 18001 = T 7321 -

Using (1.4.8), one rewrites (2.14.13) into the following commutation of 7, with
a dominant monomial :

Tt = Y KX, (2.14.14)

c€Sy,,0min

sum over all permutations ¢ which are of minimum length in their coset modulo
the stabilizer of .
For example,

2 002 020 011 200 110 101
mmm a; = "Pmmm 4+ (2% + 2" mm + (27 + 20 4 2™ m

= [?Q(Xw)ﬂ‘lﬂ'gﬂ'l + k@g(xw)ﬂ'l’ﬂ'g + [?OQQ(XUJ)TFQ .

Taking in (2.14.10) g(x,) = GA(X,y), with A dominant, one obtains again
Grothendieck polynomials by commutation :

GA(X“,y) T, = Z

For example, for A = [1, 1,0}, one has

(-1)" 7,1y, (Ga(x, ¥)T0) - (2.14.15)

0'6671,

(1 — ylxgl) (1 - ylxgl) T301 = (oM Ty — T172) (1 - ylel) (1 — ylxgl)
+ (=mom +m) (1 — yaay ') + (m2 — 1)
= (mamimy — mm2) G110 + (—mem + m1)Gro0 + (T2 — 1)Gogo -

Thanks to the symmetry (1.4.8), one deduces from the preceding formula the
expression of the product of 7, with a dominant Grothendieck polynomial in terms

of 7,:
TG Y) =D (CaxY)Te) " T (2.14.16)

O'een
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For example, for n = 3, one has

T321G210(X, Y) = Ga10(X*,y) T1TaT1 + Gaoo(X”,y) Tam1 + G110(X*,y) T1 7o
+ Go1o(x”,y) 1 + Gioo(x”,y) T2 + Gooo (X7, y) -

The expression of 7,G(x,y) can be reduced when A has repeated parts, i.e.
when there exists ¢ such that G, (x,y)m; = GA(x,y). Thus

T321G110(X, Y) = Gr10(X*,y) T1T2T1 + Ghoo(X”,y) TaT1 + G110(X*,y) T1 7o
+ Gooo(x°,y) T1 + Groo(X”,¥) T2 + Gooo(X”,y)

can be written, by right multiplication with 7, as

7T321G110(X7 Y) = Gllo(Xw7 Y) 1o + Gloo(XW7 }’) Tamy + Gooo(xwa Y) T .
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2.15 Cauchy formula for key polynomials

The usual Cauchy formula is the expansion of [[; ; <,(1=x;y;)7" in terms of Schur
functions. We are going to see that “half” the Cauchy kernel [Tijcna (- zy;) "
expands in terms of key polynomials.

Notice first that

1
= x
(1—IE1?/1)(1—$1$2y1?/2)"'(1—$1"'$nyl"'?/n) 2}\:

is the generating function of dominant monomials z*y* in x and y. Its image
under the product of the two symmetrizers 7% 7% transforms this equality into

H(l—xzy] ZSA

1,j<n

We can use the same starting point, but symmetrize partially in x and y. Let
== ZJGG e my,. Filtering the set of permutations according to the position
of n, one gets the following factorization (we refer to [44] for more details).

Lemma 2.15.1. We have

n—1
SEn-1 <Z%ﬁ1—1:il WﬁLl:nli]) ) (2.15.1)
i=0

WhETe Tip—1:4] 1= Tp—1 Tp—2*** Tp_j.
For example, the element =, factorizes as
Y STT AzAmAx)

e ——— =T
Eq =By (wymym) + TEET + Wy + TR T

From the definition of key polynomials, the image under =, of Y, z*y*
equal to a sum of products of K,(y), K,(x). More precisely

DT B =) KK
A v
Using no more, but repeatedly, that

f—zig)™'mf = f(1 —2ig) 7 (1 — 23419) 7"

when f, g belong to &ym(z;, z;11), one checks that the image of (1 — zyy;) " '(1 —
T1ZTo11%2) L+ - under 2, is equal to [Tisjcnsr (- x;y;) " [44, Prop 3]. Hence the
following kernel.

Theorem 2.15.2. For every n one has

H (1— zyj Z K,y (

i+j<n+1 veENT
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For example, for n = 2, one has

1 1 Y122

mi+77) = +
(1 —2191)(1 — my200190) 1) (1 —zp1)(1 —21y2) (1 —2391)(1 — l‘zyl)
1
1+ S Ky () S R
BT e P P 2.V

i<j 7>t

the key polynomials K;;(y) being Schur functions in y, y2, while IA(U(X) = Ki;(x)—
2% when i < j.
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2.16 7 and 7-reproducing kernels

We have shown in (2.9.2) a reproducing property of the operator f — (f, ©%)".
Let us rewrite it without using the scalar product (, )™. Let

"0Y = ) Fo1 Goy(2,x) (2.16.1)
ceS,

"0 = ) 711 Go(z.x) (2.16.2)
O‘Egn

For example, for n = 3, one has

"o =1+m (1 - ﬁ) + 7 (1 - mz) + s (1 - ﬂ) (1 - ﬁ)
21 2129 21 <1
+ R (1—ﬂ) (1— ﬂ) R (1— ﬂ) (1—ﬂ) (1— ﬂ) .
21 29 21 21 22

With the alphabets z,x“,y instead of x,y,z, Formula 2.9.4 reads

05 =3 Guly.x*)G,u(z,x).

v<p

Indexing by permutations, using the symmetry G )(x,y" )& = G(,-1)(y, x*) given
in (2.2.4), and the conjugation ;e = m,_;, one rewrites this last formula as

0%z,y) = Z 0% (x,y)m,1 @(0)(2, x“) (2.16.3)
v<p
= 0%x,y) 0%, (2.16.4)

In other words, for any v : [0,...,0] < v < [0,...,n-1] = p*, one has the
reproducing property z¥ 0% = 2¥. Equivalently, (2.16.4) rewrites as

Go(x,y)"0f = Gylz,y). (2.16.5)

A similar computation shows that for 0 < v < p, one has 27V 70% = 27, or,

equivalently, R
GP(Xv Y) 71'@76; = GP(Z7 Y) : (2166)

These two sets of monomials are bases of Pol(x,) as a free Sym(x,,)-module,
and therefore the reproducing property extends to the full space, after identifying
Sym(x,) and Sym(z,). In final, one has

Proposition 2.16.1. For any f € Pol(x,) one has
f(xn)"08 = flz0) = f(x0)7OF (2.16.7)

modulo Gym(x,,) = Gym(z,).
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Notice that the two operators "% and 7O¢ are not equal. Thus

= ~ x _
5705 = a5 (1 + (1 — Z—l)> = T1T92] ",
1
2 2
ZL‘QW(—)? = T2 (—2 + 7T1(1 — —2)) = 29,
o) o)

evaluating modulo Gym(x2) = Gym(zs) being necessary to insure equality.
Notice also that the two formulas ¥ "O¢ = 2v for 0 < v < p* and 27°7OY =
2% for 0 < v < p show that both operators "O¢ and "O¢ take values in Gym(x,,)®

Pol(z,).
In the case n = 2, one can rewrite 70§ = m — 0,222 "Qf = 1, — 0, 2,. This
9 ) 2
prompts us to define, for any i,

~ TiTiq1
91:771—81 > & Gi:ﬂi—aiziﬂ.
i

These operators do not satisfy the braid relations if the parameters z; are not all
equal. Let us show however, that one can use them to factorize TO¢ and "0¢.

The action of 650,60, on @glo(x, y) is such that each step is of the type (1 —
xiﬂyj’l)f@i =(1- zi+1yj’1)f, with f symmetrical in x;, x;,1. Therefore one has
@210()(, y)020105 = ém(z,y), and, more generally,

Go(%,Y) (1) (Op—s0p_1) ... (61...00_1) = G,(z,y).

One checks similarly that

~

G, (x,y) (0)(0:0,) ... (0,_y...0,) = Gy(z,y).

Hence, these two products of operators have the same action on ol(x,,) than "O¢
and "OY respectively, and one has the following proposition.

Proposition 2.16.2. Given n, one has the factorizations

"0 = (0n-1)Op-20n-1)...(01...0,1) (2.16.8)
Q% = (0)(001) ... (Opy...00). (2.16.9)



§ 2.17 — Decompositions in the affine Hecke algebra 93

2.17 Decompositions in the affine Hecke algebra

The elementary constituents of all the operators that we have used so far in type A
are divided differences, together with “multiplication by elements of PRat(x)”, the
ring of rational functions in x. One could as well take permutations and elements of
Rat(x). Indeed, the algebras generated by {0;,i = 1...n-}URat(x,) , or {s;,i =
1...n-}URat(x,) , or {m,i=1...n-}URat(x,), or {T;,i =1...n-}URat(x,)
all coincide. With M.P. Schiitzenberger, we call it algebra of divided differences,
Bourbaki prefers produit croisé de lalgébre du groupe symétrique et de Rat(x),
Kostant and Kumar use the expression smash product, and finally, the terminology
affine Hecke algebra for type A puts the emphasis on the elements T;.

Every element of this algebra is uniquely written as a sum ) o 0, R?,
>ves, O RS Y ocs, ToRE, Y ce, ToRE, or 3 s T, R respectively, choosing
to put the coefficients on the right. Symmetry properties like (1.4.8) allow to pass
from the right module structure to the left one.

We show in (3.3.1), as a consequence of the multivariate Newton interpolation
formula, how to pass from divided differences to permutations using Schubert
polynomials, or conversely in (3.3.3). In fact, this type of expansions uses only
the obvious fact that the kernel ©Y (x,y) vanish for all specializations y = x¢,
except when ( is the identity. Instead of ©Y(x,y), one could as well use as a
kernel Y,(x,y), G,(x,y), or @p(x, y), the non vanishing being obtained for the
identity or for the maximal permutation according to the choice of the kernel.

More generally, given any f(x,) € Pol(x,), let O/ (x,y) = f(x,)O}. Then for
any element V = >"_oRS, one has ©/(x,y)V = > _07(x%,y)R:, and therefore
the coefficients are such that

1

s @f X ot Tl Alw )
R xy)o=v| F)AX)

Similar expressions hold for the other coefficients R?, R™, RT.

As a matter of fact, some of the formulas in preceding sections may be inter-
preted as identities in the affine Hecke algebra. For example, taking z = x¢ in
(2.16.7), one obtains the expansion of any permutation in the basis {7, } or {7, }.

Let us summarize the main expansions, that will be needed later, of any ele-
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ment V of the affine Hecke algebra.

Vo= Y 0 (Xo(xy)V

y:x> (2.17.1)

ceG,

= Z g ( H (mi_yj)(’il \Y% ) (2172)
oEG, 1<i<<j<n y=x

= > m (@(0_1)(x,y“’)v ) (2.17.3)
ceS, y=x

= > 7 (G((,l)(x, y)V ) : (2.17.4)
ceG, y=x

For example,

2= 3 Ao Gy y)| =1 P el 717 BPS G 1
s v L3l
ocG3

+ R (1 = ﬂ) (1 = ﬂ) + T (1 = ﬂ) (1 - @>
X1 T3 x3 T3
+ R <1 - ﬂ) (1 - @> (1 = ﬂ)
T3 T3 Ty ) ly=x
— 147 (1—ﬂ) + 7 (1—2) R (1—ﬂ) (1—ﬂ> .
T3 T3 T3 xs

Specific cases of the above expansions appear in the literature. Kostant and
Kumar [83] consider the transition matrices {c} < {0,}. Berline and Vergne
[7], Arabia [1], Kostant and Kumar [84] consider the transition matrices {o} <
{m,}. Kumar shows in [89] how to relate the entries of these last matrices (which
are specializations of Grothendieck polynomials) to the singularities of Schubert
varieties.

Notice that the above expansions are obtained by specializing polynomials in
x,y. These polynomials are not unique. For example, instead of (2.17.3), one
could use as well

)

Let us mention in final the interest of expressing the basis of the usual Hecke
algebra (with normalization (T;-t1)(T;-t2) = 0) in terms of the basis {7, }. For
example, for n = 3, one has

V=3 = (GM (%, )0tV

ceS,

— t t N t t
lem(i@ 1+ 21 2)+t1 & T2:7r2(x3 1+ zats)
1) x3

+t
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2 2
~ ~ (z3t14x2t2)(x1t2+2x3t1 ~ (x3t1+xate)ty ~ (—z1t2"+z3ty 2
2112——7T17r2(31 z)S(Q )+7r2( o ) 7T1( = )+t1
2 2
o~ (zatitarts)(mrtotasty) | ~ (—zite’tazsty o 1 (ot
ToTy = 77y (z2t14x1 ;3));3271 2+x3t1) 7T2( - ) 7 1 (w2 ;:—361 2) t12

T TToT t ¢ lo + x3ly) (x2ly + 211
T1T2T1:7T17T27r1(x31+$2 2)($12+ 31)( ol1 + 12)

1‘2[L’32
. t to)t t t (ot x1ta) (21t xaty)t
+7T17T2(9C31+3?22) 12($12+$31)+7r27r1(21+ 1t2) (z1te + x3t1) t
T3 T3T2
(—zqty? Ut (—xite® + asty?)t
7?2( $12+$31)1+W1( Tl I31)1+t?.
T3 I3

and these expansions specialize to the expression of permutations in the basis {7, }
for t; = 1, to = -1, the coefficients being then specializations of Grothendieck

polynomials.
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Chapter

Properties of Schubert polynomials

3.1 Schubert by vanishing properties

To have linear bases, we could have considered only the special case where y = 0
in the case of Schubert polynomials, and y = 1 in the case of Grothendieck poly-
nomials. But doing so, we would lose many interesting specialization properties
that these polynomials possess, and that can be used to characterize them easily,
as we are going to see in this section for Schubert polynomials.

Given a permutation ¢ (considered as an element of &, whose code is v), let
(0) = ¥° = Wows - i)

We call (v) a spectral vector' and write f((v)) for the specialisation of f €

Pol(x,,y) In 1 = Yoy - oy Tp = Yo, -

Theorem 3.1.1. Given v € N", and o such that v = (o), then the Schubert
polynomial Y, (x,y) is the only polynomial in the space of degree < |v| in X, such
that

Yo((u),y) = 0, u#v, |ul <|v| (3.1.1)
Y((v)y) = m@)= H (Yo = Yo ) (3.1.2)

The specialization M(v) is called the inversion polynomial of o. We shall also
denote it M(o) when no ambiguity is to be feared.
Proof. First, it is straightforward that the dominant Schubert polynomials, which
are products of linear factors, satisfy both (3.1.1, 3.1.2).

1 'We use the same term as for the Yang-Baxter equation, because these two uses are related
in several ways. Notice that x*' = [xq,21,23,...], X*1%2 = [12,23,21,...] = [Toy, Loy, Tos),
with 0 = s150 = [2,3,1]. We are acting on the components of the vector [z1,x2,...]. On the
other hand, the action on the right on exponents of monomials: x§ = g[100ls1s2 — 5,001
xg = xl00lsis2 — 4100 = gl00Usis2 — 2010 — 4, involves the inverse permutation
[3,1,2].

= I3,
= T, 'rg

97
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Therefore, we have just to check the behaviour of these conditions with respect
to divided differences.

Lemma 3.1.2. Let v € N", 0 = (v), i be such that v; > v;11. Suppose that Y,
satisfies (3.1.1, 3.1.2). Then Y, 0; also satisfies (3.1.1, 5.1.2) for the index
v = [vg, .., Vi1, Vg1, Vi—1, Viga, . . ., U], which is the code of os;.

Proof. Write Y, = f(z;, xir1) — wit19(x;, xi01), with f, g € Sym(z;, x;11). Let us
check that g is the polynomial defined by (3.1.1, 3.1.2) for the index index v'.

If Y, vanishes in [z;, ;11| = [a,b] and [z, z;41] = [b,a], with a # b, then g
inherits these vanishings: g(a,b) = g(b,a) = 0. On the other hand, in the points
(v) and (v'), one has

YL(<U>, y) = fm(’l]) = f(ycm ycn+1) - y0i+1g(y(7i7 y0i+1)
Y;)<<U/>7Y) =0 = f(ytn" y0i+1) - yaig(yaw inJrl) :

Therefore ¢(Yo,, s Yor) = M) (Yo, — Yo, +1)_1 is the inversion polynomial of os;,
and g satisfies the conditions (3.1.1, 3.1.2). This proves the lemma. But Y,0; =
—r;1190; = g, and therefore g is the Schubert polynomial of index v". This proves
the theorem. QED

For example,

Y2010(X;Y) = (fl - yl)(xl - ?J2)($2 + T3 — 1y — ?JQ)

is characterized, among all polynomials in x1, zs, 23, x4 of degree no more than 3,
by the vanishing in all x, = ¢, ¢ € &y, £(¢) < 3, ¢ # o = [3,1,4,2], and by the
normalization

Y2010(¥7,y) = (y3 — y1)(ys — y2) (Y1 + ya — y1 — y2) = M([2,0,1,0]).

A consequence of the theorem is the following vanishing property (which evi-
dent only for dominant polynomials), corresponding to (0) = [y1,¥2, - - -, Yn]-

Corollary 3.1.3. For any v # [0, ...,0], one has Y,(y,y) = 0.

3.2 Multivariate interpolation

We have already used several times the vanishing in x =y = (0), this property is
better understood as a special case of (3.1.1).

Notice that the polynomials Yy, = (x; — y1) -+ - (x1 — yx) are the interpolation
polynomials that Newton used in his famous interpolation formula. The next the-
orem states that the Schubert polynomials are precisely the universal coefficients
in the generalization of Newton’s formula to several variables (this theorem could
be deduced from the Cauchy formula that we gave in Th. 2.10.2.
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Given v € N”, let 0 be any product of divided differences” such that Y,0" =
Yo.0. It is easy to see that for any u # v, then Y,0V is either 0 or a Schubert
polynomial of index # [0, ..., 0].

Theorem 3.2.1 (MultivariateNewton). For any f € JPol(x,y), one has the ex-
PAnsion

169 = 3 F00°],_, Yalxy) (3:2.1)

veN”?

Proof. Test the statement on the Schubert basis. In that case, f(x)0" is either 0 or
a Schubert polynomial, whose specialization in x =y (i.e. in the point (0...0))
is # 0 (and equal to 1) iff f(x) =Y,. QED

The preceding theorem gives the expansion of any polynomial in the Schubert
basis, the coefficients being all the non-zero images under divided differences. In
particular, one can take the key polynomials, or the Grothendieck polynomials®.
For example, the polynomial Ky has only 6 non-zero images under divided dif-
ferences, the images under 1, 0y, J5, 0203, 0305, J30505. Writing the coefficients in
y as key polynomials, one has

Koo (x) = Ko(y) Y021 + Ko1(y)Yo2 + Ko11(y)Yoq
+ Ko01(y)Yo11 + Ko2(y) Y001 + Ko21(y)Yo -

In the case where f is a polynomial in x; (and y) only, the only non-zero
divided differences are 0y, f010s, f010205, ..., and the theorem is the original
theorem of Newton, apart from notations :

fla) = fy) + oYL+ f010,Ys + 010205 Y3 + - - (3.2.2)
= fly) + for(x1 — 1) + fO102(x1 — 1) (21 — o) + -+

The interpolation of functions f(xi,zs) of two variables reads

f(x1,x2) = f(y1,y2)Yoo + fO2Yo1 + fO1 Y10 + f0205Y02 + fO201Y11
+ f010:Yo0 + f020304Y03 + f020501 Y19 4+ f02010:Yo1 + fO10205Y50 + . ..

In the case that f(z1,x2) is symmetrical, then f0; = 0, and only the terms

Yi;, 4 < j, which are those symmetrical in 1, x5, survive in the preceding formula:

f(x1,22) = f(y1,y2)Yoo + fO2Y01 + f0205Y02 + f0201Y11 + f020504Y03
+ [020301Y12 + f02050405Y04 + f02050401Y13 + f02050102Y22 + . ..

2Take any reduced decomposition si8j -5 of o, with o of code v. Then 0y - - - 0;0; is such
product.

3after some change of variables, like x; — 1/z; or #; — 1/(1—x;), to transform Grothendieck
polynomials into polynomials in x, and not in xl_l, Ty Lo
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Interpolation methods can also be used in the theory of symmetric polynomials.
If f(x,) belongs to Gym(x,), then only anti-dominant indices occur in the RHS
of (3.2.1). In other words, Newton’s interpolation give an expansion of symmetric
polynomials in terms of Grafmannian Schubert polynomials.

For example, the Schur function s3»(x3), which is equal to Ygo3(x,0), has the
following expansion in terms of GraSimannian Schubert polynomials (writing Y, Y,

for Y, (y,0)Y,(x,y)) :

832(X3) = Y023(X, 0) = Y000Y023 — Y0001 Y022 — Y001 Y013 + Yo0101 Yo12
+ Y011 Y003 — Yo1101 Yoo2 — Y00201 Yo11 + Yo1201 Y001 — Yo2201 Y000 -

Such expansions have been considered by Chen and Louck [20] and by Olshan-
ski and Okounkov [162], in the case where y = {0,1,2,...} ory = {¢°, ¢*, %, ...}
(in which case the polynomials are called factorial Schur functions).

Newton interpolation is compatible with symmetry by blocks. Indeed, let

f(x) € Gym(m,n,p,...),ie. f(x)isafunction which is symmetrical in z1, . .., Z,,,
symmetrical in 41, ..., Tpmin, &c. Then f(x) = > ¢, Y,(x,y), the set of indices
v being restricted to those such that vy < -+ < vy, Viy1 < -0 < U, &c.y e,

to those v for which Y, (x,y) belongs to Gym(m,n,p,...). Otherwise, there would
exist a divided difference 0; annihilating f(x) and not »_ ¢,Y,. For example, if
f € Gym(3,4,2), then the interpolation

160 =3 F0)0°],_, Yalx,y)

involves only the v € N? such that v, < vy < vy, v4 < v5 < v5 < V7, Vg < V.

3.3 Permutations versus divided differences

Fashion has changed since Newton, and it may seem of little interest to interpolate
functions by polynomials. In fact, classical interpolation theory may be thought as
a way of producing algebraic identities involving polynomials or rational functions
in several variables. In this interpretation, it still begs the right to exist, even to
expand. Moreover, one can disguise interpolation under a more sophisticated
terminology.

For example, consider the problem of expressing a permutation ¢ € &,,, con-
sidered as an operator on Pol(x,), in terms of divided differences. The image of
(3.2.1) under o is

Fix7) = 3 00|, Yolx"y)

veEN"

Putting y = x gives the following property obtained by Kostant and Kumar [83]
in the more general context of Kac-Moody groups (they call the algebra of divided
differences the nil Hecke ring).
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Proposition 3.3.1. Any permutation o € &,, expands, in terms of divided dif-
ferences, as

o= 0"Y,(x",x). (3.3.1)

v<p

For example,

S951 = 1 -+ 82(1’3 — 131) -+ 81(132 — l’l) + agal(Ig — .131)(1’2 — Il) s

595183 = 1 + O1(w2 — m1) + Oa(w4 — 1) + O3(w4 — w3) + 0203(74 — 73) (74 — 11)
+8183(ZE2—Il)(l’4—l‘3)+8281(.Iz—l’l)(.Z‘4-LL’1)+828183(.Z‘2—xl)(l’4—$1)($4—1’3) .
Conversely, one may express divided differences in terms of permutations, and

more generally, any linear combination with rational coefficients in x.

Lemma 3.3.2. Let n be an integer, ©Y (x,y) := [Li<icjcn(yi — ;) as before, and
h= Eoeen o hy be a sum with rational coefficients h, in x. Then

O xy)h| .= (=) h, [[ (@i-=)). (3.3.2)
1<i<j<n

Proof. We have already used that ©Y (x,x¢) vanishes for all permutations ¢ dif-
ferent from the identity. Therefore ©Y (y?,y¢) vanishes except for ¢ = o, and the
sum OY (x,y) h =Y OY(x?,y)h, reduces to a single term when specializing y to
a permutation of x. QED

We can take now A = 0,. Then

0¥ (x,y)0, = X, (x*,y)0; = X, (x,y) woww
= (D)X (%,¥) Ourrow = (1) VX1, (x*,y) |

In final, one has the following expression of 0, [108, Prop. 10.2.5] :
Proposition 3.3.3. Let 7 € &,,. Let 9. = ) (] be the expression of O, in terms
of permutations. Then
b L
A(x) Ax)

Notice that, apart from signs and the factor A(x), the entries of the transition
matrix from permutations to divided differences, and its inverse, are the same.

Here are the two transition matrices for n = 3, to be read by rows, coding
.1'1—1’2:12, 1'1—1'3:13, 332—1}3:232

\1 Oy O 010, a0, 01020,

(_1)“{) CE = (_1)£(WT) X’r—lw(xwga X) = Xw‘r (Xa XWC)

(3.3.3)

1 1 0 O 0 0 0
S 1 23 0 0 0 0
51 1 0 12 0 0 0
ses1 |1 23 13 0 23-13 0
s1s9 (1 13 12 13-12 0 0
s18951 |1 13 13 12-13 13-23 12-13-23
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‘ 1 S92 S1 S1S2 S951 5152851
A 12-13-23 0 0 0 0 0
Oy A —12-13 12-13 0 0 0 0
01 A —13-23 0 13-23 0 0 0
DO A 13 -13  -23 0 23 0
010.A 13 —12 —13 12 0 0
010205A -1 1 1 -1 -1 1
Pairs of permutations 7, o such that the specialisation X, (x7, x) is not a divisor

of the Vandermonde correspond singularities of Schubert varieties. There are only
two singularities when n = 4. One of them occurs in the expansion of 05050,0s,
which involves the specializations of Xo143 = (x1 — x2)(z1 + 22+ Y3 — y1 — Y2 — ¥3),
among which one finds (z; — 4)°.

The full expansion of 05030105 is

Ty — T4

(w3 — x4) (22 — 24) (T2 — 23)(—23 + 1) (T1 — X2)
1 1

(z3-24)(v2-23) (73 + 21) (T1-72) o (z3-24)(v2-74) (T2-23) (21-72)
1 1

(w3-24)(T2-24) (22-73) (71-73) T (w2-w4)(w2-w3) (21-23) (21-22)

(1—32)<

+ 5359

1 1
+ 818 —8183S8 )
Y (-2a) (wa—23) (m1-20) (T1-12) 2 (wo—24) (zo—3) (21-24) (~ T3 + 1)
The other singularity, when n = 4, occurs for 030,0,0,05, which requires spe-
cializing X304 = o1 + T2 — Y1 — Yo :

6382818283 A= (1 — 81)(1 - 83) <(ZE1 +x9 — xr3 — {E4) - SQ(ZL‘l — ZE4) + 8283(£L‘1 — IE3)
+ 8231(1'2 — 334) — 828183<£L'2 — [L’g)) .

On could obtain the expansion of a reduced product 0;---9; by writing it
as (1 — s;)(z; — zi01) " - (1 — s5)(x; — x;41) " and enumerating all subwords
of s;---s;. This is the method followed by Kostant and Kumar [83]. We prefer
relating the coefficients to Schubert polynomials, in particular because the number
of subwords of a reduced decomposition of a permutation o is far greater than the
number of permutations in the interval [1, o].

Since the coefficients ¢f in (3.3.3) must vanish when ¢ does not belong to the
interval [1, 7], one obtains the following characterization of the Ehresmann-Bruhat
by vanishing properties of Schubert polynomials, which generalizes (3.1.1).

Proposition 3.3.4. Given n and two permutations o,( € &,, then X,(x%,x) # 0
if and only if o < ( with respect to the Ehresmann-Bruhat order.

Grafimannian Schubert polynomials Y, : v € N*, v = v ] are symmetrical in
Z1,...,%,. One does not need to specialize them in all permutations of y;, v, . . .,
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but, by symmetry, only in (u) = [yg,, ..., Ys,] With o of code u0...0 such that
u = uT. In that case, the last proposition becomes :

Corollary 3.3.5. Let u,v € N" be anti-dominant. Then Y,({u),y) # 0 if and
only if v < u (componentwise).

This property is given by Okounkov [158] in the case where y = {0,1,2,...}.

3.4 Wronskian of symmetric functions

Given a positive integer 7, and r functions f; of a single variable, the determinant
|fi(z;] is divisible by the Vandermonde in xy,x,..., and the quotient may be
thought as a discrete analogue of the Wronskian [108, Prop. 9.3.1].

Writing f;(x;) = fi(x1)s1...s;_1, and using (3.3.1), one sees that

‘fi(xj”i,j:l,...,r H (25 — @)™ = ‘fﬂh A ... aj*l‘i,jzl,...,r'

r>j>i>1

The same formula (3.3.1) may be applied to symmetric functions, replacing
the integer r by a partition. Let A € N be a partition. To a family of symmetric
functions fi(x,), f2(Xn), ... of cardinality the number of partitions contained in
A, we shall associate a Wronskian Wy (f;).

For each u C A, let 0* be the Graimannian permutation of code p 7. Thanks
to (3.3.1), every symmetric function f(x,) satisfies

f(a:azlt,...,argz;) = f(x,) + -+ fO"T @ (0").

Therefore, a determinant ’ fi (xg“)‘ may be transformed, by multiplication by a
unitriangular matrix, into the determinant | fi(xp0"T m (0“)|.

Definition 3.4.1. Given a partition A € N", and a family of symmetric func-
tions fi(x,) of cardinality the number N of partitions contained in X\, then the
Wronskian s

Wifi(xs)) = ‘fia“wz‘:ulc..}\zv.

The preceding analysis has shown that the Wronskian is equal to

1

[L.cnmo)

i (<)

For example, let n = 4, A = [3,1,0,0]. Then the family {u 1}, as well as the
inversion polynomials M(c*), are displayed on the next figure (writing ji instead
of z;-x;). The family {0*1} is the set of paths from the origin.
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43,73,75,76

In the case where the family {fix,)} is the set of Schur functions {s,(x,) :
1 € A}, the Wronskian is unitriangular, and thus its determinant is equal to 1.

In the case of a rectangular partition A C r" the sets {o#(x,)} are all the
subsets of cardinality n of {x1,...,2,.,}. Given any f € Gym(x,), and i :
1 < i < n+r-1, then the set {f#!} is such that, either f*1 and f*19; occur
simultaneously, or f#19; = 0. Thanks to the Leibnitz formula, this forces the
Wronskian W,n(fi1, fa,...) to be annihilated by all 9;, ¢ = 1,...,n+r-1. In other
words, the Wronskian is a symmetric function when A is a rectangular partition.
Moreover, any inversion (j,%), n+r > j > i > 1, occurs ("Z:z) times in the set of
GraBmannian permutations {o*}.

In summary, one has the following lemma.

Lemma 3.4.2. Let n,r be two positive integers, let fi,..., fn, with N = (
belong to Sym(x,,1,). Then

n—+r
n )’

1

fZ(X)‘ i=1..N :Wrn(fla'--va)

n+r72) .
XC{:lfl ~~~~~ anr'r}

Hn+r2j>iz1($j_xi)( nt

is a symmetric function of Ty, ..., Tpiy.
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For example, for n = r = 2, the Wronskian

W22 (}/O (Xa 0)7 )/01 (X7 0)7 }/11(X7 0)) }/03(X7 0)7 Y23<X7 0)7 }/34(Xa 0))
‘ 1 0y 0201 0205 020501 0203010,

Yo|Ye 0 0 0 0 0
Yo |Yoo Yo 0 0 0 0
= YulYu Y1 Y 0 0 0
Yo3 ‘ Yos Yooz 0 Yooor 0 0

}/23‘}/23 }/202 }/012 Y2001 YEJIOl YvOOOl
YV35 ‘ YE’>5 }/2’)04 YE)24 YE’)OOS %203 YE)OlS

is equal to
Yooo1 (Yo101Y0013 - Y(J203Y0001) = Yio01 Yous -
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3.5 Yang-Baxter and Schubert

One can degenerate Yang-Baxter bases of Hecke algebras into bases of the algebra
of divided differences. However, instead of taking products of factors of the type
0;+1/c, let us take factors 14 cd;. Accordingly, given a spectral vector [yi, ..., Yn],

one defines recursively a Yang-Baxter basis U2, starting from 1 for the identity

permutation, by
02, =02 (14 0; (Yor., — Yo,)) for o; < 041 (3.5.1)

For example,

U991 = (1+ 01 (y2-91)) (1 + a(ys—11)) (1 + 01 (ys-y2))
=1+ 01(ys—y1) + O2(y3-y1) + 0102(y2—v1) (Y3-y1)
+ 0201 (y3-v2) (Y3—y1) + 010202 (y2-11) (Y3—y1) (Y3~ 42)
One remarks that the coefficients are the same as in the expression of 0 =
[3,2,1] in terms of divided differences.

The following proposition shows that this property is true in general, and that
the coefficients are still specialisations of Schubert polynomials.

Theorem 3.5.1. The matriz of change of basis between {2} and {9,A(y)}, and
its inverse, have entries which are specializations of Schubert polynomials :

07 = > a.X0%y). (3.5.2)
v<o
9, Aly) = Zzsg?xw(y,yw”). (3.5.3)

Proof. Let o and i be such that ¢(o) < ¢(0s;). Suppose known the expansion

U, = Zau Xo(y7,y) + 0us, Xos, (¥, y)

with v : £(v) < £(vs;). Then its product by 1+(Yo,,, Vs, )0; is
Z au Xu<ya> Y) + 81/51' (Xusi (yga Y) + Xl/(ya7 }’) (yai+1_yai)) ’

and the identities

X,y y) & X (7 Y) = Xoa (v, ¥) + X (Y7, Y) Woirn Vo)

give a similar expansion for Y. QED
Notice that to expand products of factors 1 + 9;(x;41 — x;), one has used the
Leibnitz relations while in the present case the coefficients (in y) commute with
the operators acting on x.
The analogy between Yang-Baxter elements and permutations can be materi-
alised by acting on a proper element, as shows the following proposition.
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Proposition 3.5.2. For any o € &,,, one has
X, (x,y) 0% = X, (x,y°*) (3.5.4)

Proof. In the step by step action of the factorised element 02, each step is of the

type, f(zi —yr)(1+ 0i(yr — y;) = f(@i — y;), [ € ©ym(wy, 2i41). QED
For example, for o = [3,4, 1, 2|, writing the non-symmetric factor in a box, one

hai1 010 = (14 02(ys — 12)) (1 + 0u(ys — 1)) (1 + O3(ya — 12)) (1 + D2(ya — 1))

T1—Y2 1+02(ys—y2) 22 1401 (y3—y1) “1T¥2
T1—Ya T2—Y4 T3 —Y4 T1—Ys To—Y4 T3—Y4 T1—Y4 To—Ya

21—
1405 (ya—ya) o1 U2 14+02(ya—y1) *17Y2

17yl T2—y2 T1—Y1 T2—Y2
T1—Y4 T3—Y2 T1—Y4 T2—Y1 T3—Y2

= Xz (x, X2143) .

The general properties of Yang-Baxter bases induce properties of specialisa-
tions of Schubert polynomials.
The symmetry (1.8.4) entails

DX,y y) = Xuww (U7, y*) . (3.5.5)

Each of the equations (1.8.9) and (1.8.10) gives in turn

D DX (YY) X (YY) = AY) Gow - (3.5.6)

v

but this is a special case of Cauchy formula

> DXy, y) Xy, ) ZXV (Y, y)Xuu(ySy) = XulyS,y7).

v

The quadratic form (, )™ defined in (1.8.5) degenerates into the form

(f, 9™ =fg"na,, (3.5.7)

still denoting f — fV be the anti-automorphism of the algebra of divided differ-
ences induced by (9,)" = 9,-1.
Property (1.9.5) becomes

Proposition 3.5.3. The Yang-Bazter bases associated to the spectral vectors
Y1,y Yn) and [yn, ..., v1] satisfy the relations

‘HOO
(Ui’y : U?’y“) = Oow; A(Y?). (3.5.8)
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For example, for 0 = { = [2, 3, 1], one has to take the product of
Ugé){ =1+ 01(y2 —y1) + Oa(ys — y1) + 0102(y2 — y1)(y3 — y1)
and

\%
(625°) " = 1+ 0192 — ) + Dol — ) + Oor (o — 1) (1 — w5

The coefficient of 955; in this product is&%ual to (yo—y1) (ys—y1) (Y2—vys)+(Y2-11) (Y2-y3) (Y1-y3) =
0, and this proves that (62;31 , Ugé’{w> =0.
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3.6 Distance 1 and multiplication

The ring Sym(x) has a linear basis consisting of Schur functions. Its multiplicative
structure is determined by the Pieri formulas, i.e. by the products of Schur func-
tions by the elementary (or complete) symmetric functions. In the non-symmetric
case, the requirement to recover the ring structure is easier. Polynomials being
sums of monomials, and monomials being products of variables, we need only
describe the images of the different bases under multiplication by 1, xs, .. ..

Our bases being obtained by the use of 0;’s or m;’s, we could use the commu-
tation properties of these operators with multiplication by a single variable.

In the case of Schubert polynomials, let us rather use interpolation methods.
This time, it will be more convenient to index polynomials by permutations, pass-
ing from the notation Y, to the notation X,, where v is the code ¢(o) of o.

Definition 3.6.1. v € N" 4s a successor of u if |v| = |u| +1 & Y, ((v),y) # 0.
Given two permutations (,o, then ( is a successor of o iff this is so for their
codes.

Theorem 3.6.2. A permutation ¢, of code v, is a successor of o iff (o™' is a
transposition (a,b), and £(() = €(o) + 1. In that case,

Xo((v),y) = M(v) (g, — ) -

Proof. If u = ¢(0) is dominant, then it is immediate to write the specializations of
Y, and check the proposition in that case. Let us therefore suppose that there ex-

ists i such that u; < w;, 1, and let p be such that ¢(n) = [u, ..., w1, U1 +1, Ui, Uiro, . . .

Since for any permutation ¢ of code v, one has

(XU<<U>7Y) - (Xn(<v>)7Y)SZ) (yCi - yCi-H)_l = XU(<U>7Y) )

¢ can be a successor of ¢ only if ( = 7, or if (s; is a successor of 7. In the first
case,

Xo((v),y) = X, ((0), Y)W, = Ynr) " = M),

while in the second,

X, ()" y) m(c(Csi)) _ m(c(¢))

Y& — Y (yCiJrl - yCi)(be - yCa) Y& — Y¢a 7

and this proves the proposition. QED

Corollary 3.6.3 (Monk formula [81]). Given v € N", 0 = (v), k € {1,...,n},
then

(ka - yﬁk)XU(Xa Y) = ZXUTk,j (X> Y) o ZXUTk,j (X> Y) ) (361)

>k j<k

summed over all transpositions Ty ; such that {(oTy ;) = (o) + 1.

y Uy |-
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Proof. The polynomial (x; —y,, )X, (x,y) belongs to the linear span of Y,, : |w| =
lu| + 1, because it is of degree |v| 4 1 and vanishes in all y® : |w| < |v|. Writing
it > ceXc(x,y), and testing all the specializations y*, one finds that the permu-
tations appearing in the sum are exactly the successors of o such that y., # yo,.
QED

Instead of multiplying by z, on can equivalently multiply by x1 + -+ + x
at once, obtaining the following Pieri formula generalizing the product of a Schur
function by the elementary symmetric function of degree 1.

Corollary 3.6.4 (Degree 1 Pieri formula). Given n,k: k <n, v € N", 0 = (v),
ie{l,...,n}, then

(T4 +T = You = Yo, ) Xo(X,Y) = Z Xor,(X,Y), (3.6.2)

1<i<k<j
summed over transpositions T; ; such that {(oT; ;) = {(c) + 1.

One can iterate Monk formula. Let us call k-path of length r a sequence of
permutations ¢ o!,... ¢" such that {(c'™') = {(0") + 1 and (") 1o") is a
transposition (k, j).

A k-path can be denoted by the sequence [a,, ..., ag] of values permuted, with

ag = (O‘O)k, a; = (O‘l)k, cosay = (0"

For i = 1,...,r, each permutation ¢’(¢°)~! is a cycle (a;...ajaq). The following

proposition shows that the multiplication by a power of x; can be described in
terms of k-paths, the coefficients being complete functions S;( ) of the variables
y; indexed by the values permuted.

Proposition 3.6.5. Let 0 € &, k < n, m € N. Then, modulo Sym(x,) =
Sym(y,), one has

xzn XU(X, Y) = Z € Sm—l—r(yaoa s 7yar) XTaryaTil...Talaoa'(X7 y) ’ (363)

sum over the k-paths of length < m, the sign being given by the number of times
Tas i, transposes a value at position smaller than k.

Proof. Multiplying by z}*, using (3.6.1), involves enumerating paths with possi-
ble loops ¢’ = o' having weight y;, with j = (0%);. The proposition results
from grouping all the paths differing only by their loops, this explaining that the
coefficient be a complete function. Each application of Monk formula possibly
involves increasing the size of the symmetric group. One avoids that by using the
ideal generated by the identification of symmetric functions in x,, with the same
symmetric functions in y,,. QED

The following tree describes the product x3 X31405(x,y), writing each permu-
tation ¢ above the coeflicient of X, (x,y).
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3[1]425
vi
e N

3[2]415 3[4]125
Sa(y1,Y2) S2 (Y1, Ya)

| N
3[4]215 4[3]125 3[5]124

Y1+ Y2+ Y3 Y1 — Y3 — Ya Y1+ Ys+Ys

N | |

4(3]215 3[5]214 4[5]123 5[3]124
—1 1 —1 —1

or, for the readers who prefer one-dimensional formulas,

$§X31425 = yi’X3142+(yf+yi+y1y4)X341z+(yf+y1yz+y§)st41+(y1+y5+y4)X35124
—(y3+y1+ys) Xas12+(Yaty1+y2) Xsa91 — Xas123+ Xs61245 — X312+ X35214 — Xas01 -
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3.7 Pieri formula for Schubert polynomials

The Italian geometer Pieri described the intersection of a Schubert cycle by a
“special” one in the cohomology ring of the Grassmannian. In modern terms, he
described the product of a Schur function by an elementary or complete function,
the remarkable property being that there is no multiplicity in Pieri formula.

Let us generalize Pieri’s result to Schubert polynomials, the presence of extra
variables y allowing to interpret the intersection numbers 1 as complete functions
of degree 0.

Our starting point will be the following case.

Lemma 3.7.1. Let n,k,r € N, p = [n-1,...,0], m = max(n-k,0) and y° =
{ym+17 Ym+2, Ym+3, - - - } Then

va(xa Y)ka—lr(xa Z) = Y;)<X7 y)%k_lr(yQQ? Z)

k
+ 3D Y tonn (6, ¥) Yorores,(y 7 z) . (3.7.1)
J=1

=1

Proof. One uses Newton’s interpolation (3.2.1) on the product fg, with f =
Y,(x,¥), g = Ype-1,(x,2), using Leibnitz’ formula (1.4.2). The images of f un-
der products of divided differences are 0 or Schubert polynomials that one has
to specialize in x = y. Only Y, o subsists. Let us first suppose that n < k.
masum > oy (070 - 0)) (gs?@}qu?ajﬁj -+ 8§19, ~") there remains
only divided differences 0;, ¢ < n acting on f, s; preserving g, and products
OkO41 - - - Opyj—1 acting on g and sending it to Yoe-144,_;(x, 2).

In final, for n = 3 = k for example, the only non-zero contributions in Newton’s
formula are for 828182(3384 ce ), 82(6384 cee )81@2 and (8384 ce )8281827 and this
corresponds indeed to the RHS of (3.7.1).

In the case where n > k, writing y* = {yn_#, Yr+1, - - -}, one factors Y, (x,y) =
Y-kt n—k-1,..0(%5Y) Ye-1,.0(xX, y¥), and write the interpolation for the product
Yk—l,...,O(X7 y®)%k*1r(x7 Z)‘ QED

For example, for n =5, k =3, r = 2, one has y¥ = {y3,4,...} and

Yis210(X, ¥) Y002 (X, 2) = Yiz210(x, Y)Yoo2(y®7 z) + (3/})3210(3‘% y) + Yao10(x,y)
+ Yisai0(x, Y)) x Yooo1 (y”, z) + (Y63210(X> y) + Yis210(%, ) + Yazao(X, Y)) .

To describe the general Pieri formula, it is convenient to index Schubert poly-
nomials by permutations, and generalize consecutivity in the Bruhat order.

Given an integer k, a pair of permutations 0,7 : ¢ < 7 is called a k-souléevement
of degree indexsoulévement ¢(n)-£(o) if each cycle (; in the cycle-decomposition

V= (- ¢ is of the type ¢ = (a,d,7,...,3) with § >~y > -+ > 3 > q,
{6,....;a}n{o1,...,01} = {a} and €(n) = (o) + (#( — 1) + -+ + (#(n — 1).
Denote furthermore yo7 = {yo,, ..., Yo,  U{yi : i € {G} U-- - U{Gn}}
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For example the pair o = [5,2,7,4,1,6,8,3,9], n = [6,2,9,4,3,5,7,1,8]) is a
5-soulévement of degree 1+1+2 = £(n) —{(0), because no~' = (1,3)(5,6)(7,9,8),
and y=" = {ys, Y2, Y7, Y1, Y1} U {y1, y3} U {ys, ve } U {yr, Yo, Ys}
= {Ys, Y2, Y7, Ya, Y1, Yo, Ys» Yo } -

Theorem 3.7.2. Letn,k,r € N, 0 € G,,. Then

Xcr (X> y)%k_lr(xv Z) = Z X77<X7 y)%k—l‘ﬁrfj <y0',n’ Z) ) (372)
n
sum over all k-soulévements (o,n) of degree 7 =0,... 7.

Proof. The divided differences in y send X, 1(x,y) onto any X, (x,y), up to sign.
Thus, the theorem can be proved by decreasing induction on ¢(¢), checking the
evolution of the RHS of (3.7.6) under a simple divided difference in y, starting
from (3.7.1). QED

For example of the recursion, the term Xsy71956(X,y)Yos2(ys, Y1, Ys, Y4, Y7, Ys)
occurs in the expansion of Xs540(X,y)Y005(X, z), and the permutation
3,4,7,1,2,5,6][3,1,5,4,2] ! is equal to the product of cycles (1,4)(5,7,6). Under
—0Y, this term gives, in the expansion of Xs1543(X,y)Yo05(x,2) the two terms
Xsar1256(X, Y) Yoo1 (Y2, Y1, Y5, Ya, Y3, Y7, Ys) and
Xoar1356(X, ¥) Yos2(Y2, Y1, Us, Ya, Y7, Ys), in accordance with

3,4,7,1,2,5,6][2,1,5,4,3] 7" = (1,4)(2,3)(5,7,6) ,
2,4,7,1,3,5,6][3,1,5,4,2] " = (1,4)(5,7,6) .

The product of a Schubert polynomial by the elementary symmetric functions
of x1,..., xp can be described similarly. In fact, instead of starting by the product
of Y, (x,y) by Sh(x,0)(~2)" = Yix(x, 2) = [[F(2;-2), one can multiply Y, (x,y)
by H’f(azl—zl) under some hypothesis on v. The elementary step is the following,
which transforms multiplication by x; into an action of a divided difference in y.

Let v be dominant, ¢ = 1 or i be such that v; ; > v;+1, v/ = v + [0°7!1],
7 =v;+1. Then

Yo(x,y)(2i-2) = Yo (x,y) + (y;-2)Yo(x,y) = Yo (X, ¥) (2-9j+1)05 .

For example, for v = [4,2,1], i = 2, ignoring the factors which are invariant under
sy, one has

[ ] .
L] L] ‘foUS‘ ’3*94‘ — Y01 (x,y) (22-2) .
LT | | |

Yior (X, y)(22-y3) (2—ys) =
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By iteration, for an integer £ and v dominant such that vy > -+ > v > Vg1,
one has

Yo(x y)(@1-21) - - (2r-2)
=Y, 1 (x, Y)((Zk—l—yvk,1+2)agk,l+1) T ((Zl_yv1+2)ag’1+1)($k_zk)
=Y e (X, ) (p—21) ((Zk—ryvk_lw)agk_ﬁl) T
= v+1k(X7Y)(<Zk_yvk+2)az}1’k+1) ((Zl_yv1+2)agl+1) )

and one obtains the following lemma.

Lemma 3.7.3. Let v be dominant, k be such that vy > -+ > v > Vgy1, U =
v+ [1%]. Then one has

Yo (%, ¥)(x1-21) -+ (2r-2k) = Yu(X, ¥) (2h Yy 11) 0%, - (21~ Yuy +1)0%,
= Yu(xv Y) (Zkfyuk—l—l) e (21*yu1+1)agk te 3,3'1 . (373)

As a corollary, one has, for p = [n-1,...,0] and k < n,
Y, y)Yiy,z) = > Y o y)Wn-2)" - (Yooknr-21)" . (3.7.4)
0k<u<1k

Using the divided differences in z, this formula implies the following analog of

(3.7.1).

Lemma 3.7.4. Letn r, k be three integers, 0 <r <k <mn, p=[n-1,...,0]. For
u € [0,1)%, denote y' = {yn1_ : i such that u; = 1,1 <i < k}. Then

YVP(Xu Y)Y()le*T (Y7 Z)
= Z (_1)\u\—r p+1’“—u(X7 Y)S|u]—r(21+ 2yl — y<u>) . (375)

0k <u<l1k

For example,

Yizo1 (%, ¥)Yo11(X, 2) = Yauz1 (X, y) + Ya331 (%, y) + Y21 (x,y)
- Y5321(X, Y)(21+Z2 - 3/4—193) - Y4421(X, Y)(Z1+Z2 - y5—y3)
- Y4331(X, Y)(ZHZQ - y5fy4) + Y4321(X7 Y)82<21+ZQ - ?J5*?J4*y3) .

The general product Y, (x,y) Yy 1x-- (X, z) requires mirroring the notion of souléve-
ment. Given an integer k, a pair of permutations 0,7 : ¢ < 7 is called a k-
soulévement gauche of degree ((n)—€(o) if each cycle ¢; in the cycle-decomposition

V= ¢+ (n is of the type ¢ = ((a, 3,7,...,0) with a < 8 < v--+ < 4,
[0 0} s 01k = 18, and €n) = (o) + (G — 1) 4+ -+ (#Gu — 1), For
a pair (a n) of permutations, denote y" = {y, . ..., ys, } N {¥y,, -, Un. }- Then
one has the following Pieri formula for multiplication by elementary symmetric
functions.
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Theorem 3.7.5. Let n,k,r e N, 0<r<k<n,oce6,. Then

Xo(x,¥)Yor1e-r(x,2) = Z(_l)k#ﬁ(a)ian) Xy (%, ¥) Sk—rtt(0) () (Zr1 — Y[U’n]) g
n

(3.7.6)

sum over all k-soulévements gauches (o,n) of degree 7 =0,...,7.

For example, in the product Ya41506837(X,¥)Y0111(X, 2), one has the term
~Y34105807(X, ¥) (21+20 —y1 —y4), the cycle decomposition of no~! being (2, 3)(5,9),
and the intersection {Yoy, ..., You } NV {Un1s- - Un.} being {y1,ya}.
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3.8 Products of Schubert polynomials by oper-
ators on y

We have described in the preceding sections Pieri multiplications by the combina-
torics of soulévements. Let us rather use now operators in y. For example, the ele-
mentary products Yao1(x,0)Y11(x,0) = Y35(x,0)+Y311(x,0), Yi01(x,0)Y11(x,0) =
Y31(x,0) + Yaa(x,0) + Y11 (%, 0) can be rewritten

Ya01(x,0)Y11(x,0) = Yaz(x,0)(-07-03)

21
Yio1(x,0)Y11(x,0) = Ys1(x,0) (-0 -05)(-05-0%)
Vi1(x,0) (0} 03 + 0y 0% + 03 05)

x,0
x,0

indicating that the elements §; = 0; + 0,41 play a role in the multiplication of
Schubert polynomials.
For them, the braid relations of order 3 are still valid:

0i0;+10; = 0;410;0;41 = (aiai—H+aiai+2+ai+lai+2>ai + (aiai+2+ai+lai+2)ai+1 .
In the case of order 2, one has 6;0; = §;6; if [j—i| > 2, but
0i0i+2 — 0i120; = 0;1 1012 — 0i120;41 .
Note, however, that the elements §; do not satisfy a Hecke relation, but that

67 = ;011 + 01105, 0 = 20,0105, 0} =0.

1

Given two positive numbers 7, p, let ¢([r],p) = 0, - - - 0p1r—1, and for a partition
A € N let
v\ p) = o(M], p)e([Aa), p=1) - (A, p=£+1) (3.8.1)

For example, the product ¢([3, 3, 1], 3) is obtained by reading by the successive
5

rows of the display gg 55 61. In fact, one easily checks that dy, 0, ... satisfy the
1

nilplactic relations (cf. 6.9.1)
0i0i+10i—1 = 0;0;—10;41 ,

and this allows to pass from the row-reading of the array to its column-reading.
Hence ¢([3,3,1],3) is also equal to (030201)(d403)(J504).
By induction on 7, one checks that

ptr

P([r];p) =D (O 01) (D1 -+ Dy -

Jj=p

We shall not use the fact that, more generally, the non-zero terms in the expansion
of (A, p) are in bijection with the partitions whose diagram is contained in the
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diagram of \. For example, reading the diagrams by rows, ¢ standing for 9;, one has
9 terms in the expansion of ¢([3,2],2). The partitions are obtained by reordering
the lengths of the rows of the left part of diagram (as cut by the bullets).

e|3[4]5] e|3[4]5] 2|e[4]5] e[3[4]5]
° 1 °

©([3,2],2) = [®]2]3] + [L[*[3] + °|3] + [1]2
0 1 11 2
2]e[4]5] 2[3[4]e] 2[3]e[5] 2[3[4]e] 2[3[4]e]
+ [1]2]e + [*]2]3 + [1]2]e + [1]e]3 + [1[2]e
21 3 22 31 32

When v is dominant, and 4 is such that v;_; > v;+1 (or i = 1), then
YL(X, y)(:vi—z) = YU<X7 y) + (yui_z)m)(X’ y) = YU(X7 y) (1 + azi<z_yui>) ) (382)
with u = v 4+ [0, 1]. One has therefore to introduce the operators
Di(z) =1+0)(z — )

depending on extra indeterminates z.

Let us show that these operators allow to express the product of two dominant
Schubert polynomials Y)(x,y)Y,(x,z). We have first to reinterpret the construc-
tion of the canonical reduced decomposition of a permutation from its code. Let
u € N°. Fill the diagram of u by consecutive numbers upwards in each column,
starting with the column number at the bottom, as in section 1.1. Then D%(z) is
the product obtained by reading the diagram by successive columns, from top to
bottom, interpreting an entry ¢ at level j as D;(z;). For example, u = [3,0,1, 2]

gives the diagram 51 and the product
[1] [3]4

D3012(Z> = (D3(2’3)D2(22)D1 (Zl)) ( ) (D3<Zl)) (D5(22>D4(21)) .

Decomposing Y),(x, z) into products of factors of the type (z1—2;) - - - (zx —2;),
and applying repeatedly remark (3.8.2), one obtains the following description of
the product of two dominant Schubert polynomials.

Proposition 3.8.1. Let A\, u be dominant, ( be the permutation of code \+u, o
be the permutation of code \, and u be the code of (o=t. Then

YVi(x,y)Yu(x,2) = YA—&-/L(Xv y)D*(z). (3.8.3)

For example, for A = [4,3,3,2,1], un = [2,2,1,1], one has AM+u = [6,5,4,3,1],
¢=17,6,5,4,2,1,3],0 = [5,4,6,3,2,1], (o' = [1,2,4,6,7,5,3],u = [0,0,1,2,2,1],
and D"(z) = D3(z1) - D5(22)Dy(21) - Dg(22)D5(21) - Dg(21). Hence

Y43321(X, Y)Y2211(X, Z) = Yé5431(X, Y)DS(ZI)D5(22>D4(ZI)D6(22>D5(ZI)DG(ZI) .

We are now in position to rewrite the product of a Schubert polynomial by an
elementary symmetric function, ¢¥ (A, p) standing for a product of operators on y
instead of x.
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Proposition 3.8.2. Let k € N, 0 € &,, such’ that n & {oy,...,01}, v be the
code of o, ¢ be the permutation of maximal length in the coset 0Gy,—. Let
A be the partition #{i : § < (0 = 1,...,k,j = k+2,...,n}. Let moreover
u=|o1,...,01] 1. Then

X, (%, y)Yie(x,2) = (- 1) X o1,(%,y) 0¥ (N, n-k-1)Dy, (21) - - - Doy (21) . (3.8.4)
Proof. . One first shows that
Xe(x,y)Yir(x,2) = (DX (x,5) @Y (A, nk-1)Dy, (1) - Dy (21)

by induction on the last part of A\. Since 0%_,  commutes with Yjx(x,z), one has

Xo(%,y)Yi(x,2) = Xe(x,y)Yir(X,2)07 1,
= (71)|A‘Xw<x7 Y) 82(—1090)]()‘7 nfkl*l)Dm (Zl) T Duk (Zl)
= (DM Xue-15(%,5) @Y (A nk=1)Dyy (21) -+ Dy (21)

QED

For example, for o = [1,4,2,5,3], k = 3, one has ( = [4,2,1,5,3], w(lo =
3,5,4,2,1], A = [2], and

X14253(%, ¥)Y111(X, 2) = X501 (%, y) (0703 + 0y 0 + 0505 ) D1(21) Da(21) Da(21)
= (X25413(X, y) + Xoszai (X, Y))D1(21)D2(21)D4(Z1)
= Xosa13 + Xoszar + (Ya—21) Xoasiz+ (y1-21) Xissaz + (Ya—21) Xoazsr + (y1-21) Xis403
+ (ya—21) (y1—21) Xasse + (Y2-21) (y1-21) X153
+ (Ya—21) (y1-21) Xuasoz + (Ya—21) (Y2-21) (Y1-21) X1a2s3 -

One can rewrite the preceding formula using that

Xoc-10(x,y) = (-1)HOX, (x,y)0

wo— 1w

so as to start from a dominant polynomial.

Combining with formula (3.8.3) expressing the product of two dominant Schu-
bert polynomials, one obtains the product of a general Schubert polynomial by a
dominant one in x,z, and by using divided differences in z, the product of two
Schubert polynomials.

Theorem 3.8.3. With the notations of (3.8.4), let p = [n-1,...,0,w = [n,...,1].
Let moreover v be a partition of length k, n = u— 1%, £ be the permutation of code
p+n, and finally w be the code of Ew. Then

XO'(X7 Y)Yu(xv Z) = (71)|>\‘+£(J)+E(C)Y;J+77Dw<22a s 7ZM1)
&y’ (A n=k=1)Dy, (21) - - Dy, (21) . (3.8.5)

4if not, one adds a fixed point n+1 to o.
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Let v be such that there exists a permutation v such that Y,,(x,2)0% = (-1)" Y, (x, z).
Then

XO'(X7 Y)K)(Xv Z) = (7]‘)‘A|+€(U)+Z(C)+E(V)Yp+an(ZQa s 7Zu1)
o @ (A, n-k=1)Dy, (21) -+ - Dy, (21) 9%. (3.8.6)

wa—lcw

Continuing the preceding example, one has

Xi4253(%, ¥)Y331(X, 2) = Yazo1(X, y) 05 03 p([2], 1) D1 (21) Da(21) Da(21) Yoo (X, { 22, 23})
= Yi501(X,y) D5 (23) D6 (23) Da(22) D5 (22) 03 05 ¢([2], 1) D1(21) D2(21) Da(21) -

The image of this equation under 0% gives a non-dominant product:

— Xi4253(%, ¥) Ya31(X, 2) = Yos01 (X, }’)(ay+ay+ay3y(23+Z4—y5—96))
Day(22) D5(22)07 95 ¢([2], 1) D1(21) Da(21) Da(21) -

Formula (3.8.6) for the product of two Schubert polynomials involves us-
ing divided differences in z. Thanks to Leibnitz, one needs only to know that
Dj(2)0f = 97 and Dj(z41)0f = ~0] to eliminate the divided differences in z. In
all, the product of two Schubert polynomlals X, (x,0)Y,(x,0) in x only is com-
puted by starting from a dominant ancestor Y, (x,z) of Y,(x, z), taking the image
of (3.8.5) under an appropriate product of divided differences in z, then specializ-
ing all z; to 0, i.e. replacing all D;(2;) by D;(0) = 1 — 07y; = ~y;10;. However,
evaluating a mixture of 9 and y;,10} is not straightforward.

Let us follow another strategy by first pushing all the operators D;(z;) to the
right, iterating the Pieri formula.

First notice that (3.8.4) implies that the expression

X, (x,0)x ZXC x,0)
extends to
X, (x,y)Yir(%,2) Zchy wp (21) -+ Dy, (21)
Moreover, since uq, ..., u; is increasing, coefficients can be pushed to the right

and the product D, (21) -+ Dy, (z1) is equal to

3 @) () (21-9u) T (1)

€;=0,1

For a given ¢, some 07 possibly annihilate X¢(x,y). Thus there exists a minimal
subsequence u$ = [Ul, ., 0p] of [ug, ..., ug] such that

Xe(%,9) Dy (1) -+ Duy (1) = X¢(x,¥) Dy o(21),
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with D (21) = Dy, (1) - - - Dy, (21). For example,

Xa165247(%, ¥) Y111 (X, 2) = Xesr124(%,¥)0([2,2,1],3) D1 (21) D3(21) De(21)
= X4275136<X7 Y)D1(21)D3(Z1)D6(21) + X4571236(X7 Y)D3(2’1)D6(21)
+ Xso73146(X, Y ) D1(21) Ds(21) + Xsar1246(X, ¥) D (21) -

Let us write o = ¢ for such a Pieri pair of permutations (which was called
k-soulévement gauche of degree k in the preceding section). One can iterate the
Pieri multiplication

X, (x,y)Yie(x, 21)Yir (X, 22) ZXC X, y) Dy (21)Yir (X, 22)

- Z Xe(x,y)Yir (x, ZQ)Dt]:,C(Zl) ’

and therefore, assuming r < k, one has

Xo (%, y)Yarin-r(x,2) = ZZX %, ¥)D{ . (22) DE (21)

sum over all Pier: paths o LR Ty
By iteration, one obtains

Proposition 3.8.4. Let o be a permutation, A be a partition, p = N~ be its
conjugate, m = \i. Then

XU(X7 Y)Y)\(X’ Z) = Z XCm (X7 Y) Dg:,gm_l (Zm) U Dgll,go (Zl) ) (387)

sum over all Pieri chains

I3 % u
o= (o e G - CREE — Cm -

Continuing the preceding example, writing X, Cbl - |for X, (%,¥)Do(22)Dy(21)De(21),

one has

Yo032(X, ¥)Ya21 (%, 2) = Xs16504(X, ¥) Y01(X, 2)

= X 5 X 4151+ X e X 4
6723145 17 6|+ 5671234 e + X7425136 i 3|6|+ 5741236 = 5l
X 2 X 314+ X 214 X 2
+ X7345126 i 3|6|+ 7451236 5 + X'5374126 3 6|+ 7352146 [ gl
X 4 X d X, 51+ X, 4
+ X5724136 i 3|6|+ 7523146 6|+ 6731245 5 + X5472136 11376]

X 21514 x 3[5] 4 x _
+ X6372145 6 + Xga71235 6 + 7531246
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Formula (3.8.5) would on the other hand give

Yzosz(xa Y)Yzm(X, Z) = 5/6542(X, Y)D5(22)D6(22)90([2, 2, 1], 3)D1(21)D3(21)D6(2’1) .

By image of (3.8.7) under divided differences in z, and specializing y and z to 0,
one obtains the product of two general Schubert polynomials in x only. However,
cancellations occur, the different Pieri paths cannot be considered independently
of each other, and more work is needed to produce a positive combinatorial rule.

Fomin and Kirillov [40] describe the product of two Schubert polynomials
by introducing some quadratic algebras and evaluating Schubert polynomials in
Dunkl-type operators.
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3.9 Transition for Schubert polynomials

The right-hand side of Monk formula (3.6.1) involves two sets W, W_ of permu-

tations:
(@5 = 4o )Xo () = D Xe(x,y) = Y Xu(xy),

ceWwy veWw_

Let us call transition the case where W, is a singleton, rewriting the equation

Xe(x,y) = (wr = 9o) Xo (5, y) + D> Xou(x,y), (3.9.1)
veWw_

the set W_ depending on the pair (k, (), or equivalently, the pair (k, o) as described
in (3.6.1).
For example,

X52186347(X> }’) = (2-y1) Xs1086347(X, Y)
= (T4-y7) Xs217634(X, y) + X5271634(X, y)
+Xs712634(X, ¥) + Xr215634(X, y)
= (5-ya) X52184367(X, y) + Xs2a81367(X, y) + Xsa180367(X, )

Transitions are compatible with Young subgroups. Indeed, let ¢ belong to
Syjn—r. Then ¢ = (¢'¢", where ¢’ fixes r+1,...,n and ¢” fixes 1,...,r. Any
transition for ¢’ induces a transition for . A transition

Xo(%,y) = (25 = 4o )Xo (5, 9) + Y Xu(x,),

veWw_
all the permutations v fix r+1,...,n, and therefore one has the transition
XC(X> Y) = (xk - yak)XaC” (Xa Y> + Z XVC” (X7 Y) : (392)
veWw_

By recurrence on the length of (', one obtains the following factorisation property
of Schubert polynomials.

Corollary 3.9.1. Let ¢ belong to a Young subgroup, and { = ('C" its corresponding
factorisation. Then
Xc<X, y) = XC/(X’ y) XCN(X7 y) . (393)

Transitions may be used recursively to decompose Schubert polynomials into
sums of "shifted monomials" [[(z; — y;), stopping the process when arriving at
dominant polynomials.

Among all transitions for a given (, let us choose the one for which £ is max-
imum, and call it maximal transition. For this transition, let us rather index
polynomials by codes instead of permutations. Let v € N be the code of (, and
k be such that that vy > 0, vy = 0 = -+ = v,. Let v/ = v — [0F7110"7¥]
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and ¢ = (v). In other words, #¥ = 2"z, with k maximal. Then the maximal
transition rewrites as

Yo (x,y) = (@ — o) Yo (x,y) + Y Ya(x,y) (3.9.4)

summed over all u such that |u| = |v| and (u)o~! is a transposition 75, with ¢ < k.
For example, starting with v = [2,0,3], (v} = 0 = [3,1,5,2,4], one has the
following sequence of transitions :

Yoos(x,y) = (23— ys5)Yo02(X,y) + Yaso(x,y) + Yao1 (%, y),
Yoso(X,y) = (22 —ya)Yoso(X,y) + Va0 (X,y),
Yin(x,y) = (23— v2)Ya00(x,y) + Yaro(x,y),

that one terminates when attaining dominant indices. Finally, writing each shifted
monomial as a diagram of black squares in the Cartesian plane ( a square in column
i, row j corresponds to a factor (x;-y;) ), the polynomial Ya03(x,y) reads

‘2 L T | S , .
' R T T B R T
IR HE . |} I HN. [ .. HE. 1 B

the first diagram, for example, coding the product

u ) : (353—3/5)

u ) : ($3—y4)
. . . :> . . .
" N (x1-y2) - (z3-Y2)
. (w11

We shall give in the sequel a different combinatorial description of Schubert
polynomials in terms of tableaux.

Fomin and Kirillov [39] give configurations from which one reads a different
decomposition of Schubert polynomials into shifted monomials.

3.10 Branching rules

Let us ignore the term (25— ¥y, )Yy (X, y) in the maximal transition formula (3.9.4)

and write
Y, — Z or X, — Z)Q, (3.10.1)
u ¢

where the u’s or (’s are described in (3.9.4).
However, if v is dominant, then Y, = (2 — ¥, )Y and it would not be very
informative to write Y, — 0. Let us introduce the equivalence v ~ [0, v], allowing
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the concatanation of 0's on the left, which corresponds to identify &,, and its
image 61 X 6, in G,,,1.
We can now iterate (3.10.1), producing an infinite graph.

Let us examine more closely the case where a permutation ¢ has only one
successor. Write this permutation 0 = A2B4C3 D, with 2 <3 <4, A,B,C,D
being factors® such that C'3 D is increasing, D > 4 and BN [2,...,3] = 0. The
successors of o are all the permutations obtained by exchanging 3in A2 B3C4 D
with a letter on its left such that length increases by 1 only. The permutation
( = A3B2C 4D fulfills this requirement, and if B does not contain any letter
smaller than 2, then it is the unique successor of o.

This indicates that permutations avoiding the pattern 2143 play a special role.
Let us say that o is vezillary® if there does not exist i, j, k, 1 : 0; < 0; < 0 < 0.
A wexillary code is the code of a vexillary permutation.

We have just seen that if ¢ is vexillary, then it has only one successor in
a transition. In terms of codes, transition for vexillary codes reads as follows
(eventually transforming v into [0, v]).

Lemma 3.10.1. Let v = [AbDc|] € N" be a vezillary code, with ¢ # 0, the letter
b being the rightmost occurence of the maximal value in {AbD} N{0,1,... c-1}.
Let v =[AbDc-1], u=[AcDb], 0 = (v'), k = 0,. Then v' and u are vexillary
codes, and

Yo(x,y) = (0 — yp) Yo (x,¥) + Yu(x,y) . (3.10.2)
With this rule, here is the graph originating from the vexillary code [0, 1,2, 8,2, 7,6, 4] :

0,1,2,8,2,7,6,4] — [0,1,2,8,4,7,6,2] — [0,2,2,8,4,7,6,1]
—[1,2,2,8,4,7,6] — [1,2,2,8,6,7,4] — [1,2,4,8,6,7,2]
—[2,2,4,8,6,7,1] ~[0,2,2,4,8,6,7,1]
—[1,2,2,4,8,6,7 — [1,2,2,4,8,7,6] — [1,2,2,6,8,7,4]
—[1,2,4,6,8,7,2] — [2,2,4,6,8,7,1] — ...

Since a vexillary code has only one successor, one can truncate any transition
graph, stopping at each vexillary code. For example, for v = [0,3,1,2,0,2], the
transition graph is :

50 is considered as a word, and the letters 2,3,4 are not necessarily consecutive in the
alphabet. One requires only that 2 < 3 < 4.

6 There are a lot of flags in a flag variety, but M.P. Schiitzenberger and I needed still more,
to describe the properties of certain permutations. This is why we introduced the latin root
“vexillum”, which survived a first period of drought and flourished afterwards.
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Y031202
/ \
Yo3120 Yos1301
/ \
Yoz131 Y0323
| e
Yizi3 Yos32 Yoa22
/ \
Yiza Yia2

Garsia [50] studies in detail this transition tree.
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3.11 Vexillary Schubert polynomials

To a permutation o, with code v € N", one associates two partitions u, A € N”
as follows. Let w € N be such that w; = max(j : j > 4,v; > v;). Then p, is the
decreasing reordering of w and A be the minimum dominant weight such that Y,
is the image of Y) under a product of divided differences.

The next property shows that vexillary Schubert polynomials can be expressed
as a multi-Schur function.

Proposition 3.11.1. Let v be a vexillary code, p and X be the associated partitions
defined just above. Then
Yo(%,¥) = St (Xpus — Y- X — Y - (3.11.1)

Proof. Normalize v by suppressing terminal 0’s, so that one may suppose r = v,, #
0. Then the transition formula (3.10.2) states that

Yo(x,y) = (20 — ) Yo (x,y) + Ya(x,y)
Suppose the proposition to be true for v’, by induction on weight, and u. The two
Schur functions differ in only one column the sum being
(@n, — Yk)Ser—1,6(®, Xy, —Yi—1,0) + Sere(®Xn_1 — Yi_1,9).
Since for any j, any A (here, A =x,,_1 — yx_1), one has
(@n = yi)Sj-1(A +2n) + 55(A) = Sj(A+ 20 — Yi)

this sum is equal to the expected multiSchur function S, .(®, X, — yi,®). One
initiates the proposition by the Grasmannian case, where the determinant is ob-
tained as the image of Y)(x,y) under 0,,. QED

For example, for v = [0,2,7,2,4,5,5,4] one has w[8,8,3,8,8,7,7,8], u =
[857%3], A = [937%320],

Yoor24554(X, y)
= 502244557(X8—YO, X8~Yy3,X87Yy3, , X8—Y7, X77Y9, X77Y9, Xs—yg)
= (st—y7)yo27245530000 (X7 Y) + Y027445520000 (X7 }’)
= (968—y7)502234557(x8—}’0, X8~Ys3,Xs7Y3, 7 X8=Y7, X77Y9,X77Y9, Xs—yg)
+ 502244557(3(8*}’0, X8~Y3,X87Yy3, 7 X87Y7, X77Y9, X77Y9, X3*Y9) .

In the case of only one non-zero component, one has
Yon-11(%,y) = Se(Xn = Yrtn-1) ;

two of the indices appearing in the complete function determine the third one. The
entries of the determinant (3.11.1) are not exactly of this type, but nevertheless,
we are going to replace complete functions by Schubert polynomials.
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Let us first modify (3.11.1), in the case of repeated parts of v 7. Transform
each block of columns

Sook"'oo(‘.7 Xn"Ymy - Xn"Ym, .‘>

into
SookToo(..7 Xn=Ym; Xn_Ym+17 e XnTYmtr—1, ..) .
This amounts to adding to some columns a linear combination of the ones on its

left, and does not change the value of the determinant.
The bottom row of the new determinant is

[Ybﬁ‘l_lul (X7 y)7 %“2_1u2 (X> Y)7 SR 7%“"‘111” (X> }’) ] )

with u = v 1 —p (defining Yy (x,y) = 0 when k < 0). If the bottom element of a
column is Ygr-14(X,y) = Sk(X,~ym), the last but one is

Sk+1 (XT_Ym) = Sk+1 (XT_Ym+1> + ym+1Sk(XT_Ym)
= Yor-1641(X,Y) + Ymi1Yor-16(X, y) -

However, since the index m+1 is different in each column, one cannot transform
the last but one row into a row of Schubert polynomials by adding to it a multiple
of the last row. This can be overcome by introducing a truncation map ¢ on
polynomials in x,y. Given f(x,y1,...,Ym), of positive degree in y,,, define

gb(f(x,yl,...,ym)) = f(X,y1,-,Ym-1,0).

Thus the complete function Syy1(X, — Yrir—1) can be written gb(YoquH(x, y)),
and more generally, the determinant expressing a vexillary Schubert polynomial
can be expressed as a determinant with entries of the type ¢ (qu pri(X, y))

In summary, one has the following expression of a vexillary Schubert polyno-
mial.

Proposition 3.11.2. Let v € N" be a vexillary code, i be the partition associated
to it asin (3.11.1), w =v7T —p. Then

Y, (x,y) = det

¢n Z( i~ uj-—i-n—i) : (3112)

Continuing the preceding example, for v = [0,2,7,2,4,5,5,4] one has n = 8,
pu=[8723], u=1[-7,-4,-3,0,1,3,4,7] and Y,(x,y) is equal to the determinant

‘¢8 Z(Y(ﬂ 1—i(x,y (5/67,4—z‘(X, Y)), ¢8_i<Y07,5—i(X7Y)>, ¢* (YO7,8—¢(X> Y))>

).
O Z(Yo79 i(x, }’)) ¢°~ (YO6 11-i(X, Y)) ¢87i(}/06,127i(x7 Y))a ¢87i(Y02,154(X, Y)) .
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3.12 Schubert and hooks

We have seen that vexillary Schubert polynomials can be expressed as determi-
nants. It is therefore natural to have recourse to the theory of minors to obtain
properties of the different families of polynomials we have seen so far. We have
already used Binet-Cauchy formula for the minors of a product of two matrices,
or Jacobi’s formula for the minors of the adjoint of a matrix.

Another powerful relation is Bazin formula for determinants of minors. Let M
be na n x oo matrix. Given v € N", denote by [v] the minor of order n of M taken
on columns vy,...,v,. Let r < n, A, B € N, C € N*". Then Bazin formula
(108, p.188] is
=[A,C) 1 [B,C)] (3.12.1)

acA,beB

det][A \a,b,C]

It is remarked in [131] that the expression of a Schur function s)(x,) as a
determinant of hook-Schur functions is a direct corollary of Bazin formula for the
matrix M = [sj,i(xn)] )

1=1,...,n;j=1,...,00
More general matrices produce analog formulas for different generalizations

of Schur functions, as illustrated by Macdonald [149]. In fact, Macdonald 9th
variation (see also [146, Ex.21, p.57]) is precisely a direct proof of Bazin formula in
the special case where the minor [A, C] is equal to 1. As a corollary of it, Olshanski,
Regev and Vershik [164, Prop.3.1] give the expression of a Graimannian Schubert
polynomial in terms of hooks. We are going to show that Bazin formula applies
to any vexillary Schubert polynomial, but we have first to precise what is a hook
in Schubert calculus.

For Schubert, an “elementary condition®“ meant a Schubert subvariety of a
Grafimannian indexed by a hook partition. He expressed the class of a general
Schubert variety in the cohomology ring as a determinant of hooks. Giambelli
in his thesis [55] explicited the cohomology ring (in fact the Chow ring) of a
Grafimannian as a ring of symmetric polynomials, with linear basis the classes of
Schubert varieties indexed by a partition contained in a fixed rectangle, identifying
them with Schur functions (defined as determinants of complete or elementary
symmetric functions). Thus Giambelli’s contribution, for what concerns Schur
functions, is rather in the equality between the Jacobi-Trudi determinant and the
determinant of hook-Schur functions which now bears his name, but is due to
Schubert. We shall nevertheless keep the terminology Giambelli determinant for
the determinant of hooks equal to a Schur function.

Changing in a Giambelli determinant every hook Schur function Yje;s,(x,0)
into Yjes4(X,y), one notices on a few examples that the new determinant becomes
equal to a GraBmannian Schubert polynomial (this is not true for the Jacobi-Trudi
determinant). So one can expect vexillary Schubert polynomials to be amenable to
hooks, but one has to extract more information from the code that the Frobenius
coding of the partition obtained by reordering it.
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. Thus let us define a hook Schubert polynomial to be a polynomial Y, (x,y),
where all components v; belong to {0, 1} except at most one, and such that v be
a vexillary code. For example, [1,1,3],[1,3,1],(3,1,1],[3,0,1,1], [3,0,0,1,1] are
allowable, but not [1,1,0, 3], nor [3,0,0,0,1,1].

For k > 1, w = [07,17], let n = B+y+1. For j < n-1, let v = [wy,...,wj_y,k,
Wy, ..., wy—1]. If v is vexillary, then the determinant 3.11.1 can easily be trans-
formed into

Yo(X,¥) = S1ok(Xn-Yrt1s - s Xn =Yt 1, X~ Yitjo1) 5

determinant that one can denote s,_y3(n|j), in accordance with the notation used
in the case of Schur functions [146, p.47].

Going back to Bazin, let v € N be a vexillary code, u = v 1 —p, r = #{j :
u; > 0}. Let us enlarge the matrix 3.11.2 into a matrix of order n x (n+r). One

transforms the sequence , e , into the sequence
1 Un
51 [Hl } K2 [M } [l‘n—r] Hn—r+1 Hn
wy | Lur+1] o lue [0 [ug+1] 29 10 M Up—prt1 |77 | Un |?

by inserting in the sequence uy, ..., u, the values in [uy, ..., 0] missing, and corre-
spondingly, completing the exponents by keeping the first exponent p; on its left.
Let v be the new upper sequence, and 71 the lower sequence. Define M,(x,y) to
be the matrix

My(x,y) [(zﬁ”"' (Yovrl,]ﬁn_i)}z : (3.12.2)

=1,...,n;5=1,....n+r

Thus, for the same v = [0,2,7,2,4,5,5,4] as above, the sequence

811818 8117|713
71413 1([31][4]|7

is transformed into

EIE @ BIE e @ BRIEIEIE

and therefore v = [8°,72 3] and n = [-7,...,0,1,3,4,7].

The Giambelli determinant for s,|(x,) used the Bazin formula for the ma-
trix obtained from M, (x,y) by erasing ¢ and replacing each Yo (x,y) by sx(x,)-
Taking the same minors as in the case of Schur functions [131] gives a determi-
nantal expression of the vexillary Schubert polynomial Y, (x,y), where the entries
54|8(%n) have been replaced by some hook Schubert polynomials. Making precise
which hooks appear is the subject of the next proposition, after introducing two
more vectors associated to a vexillary code.

Let v be vexillary, and r be the rank of the partition v |. Let by, bs,... be the
levels of the bottom boxes of each of the non-void columns of the Rothe diagram of
v (taking matrix coordinates), written in decreasing order. The first vector that

~l 0o
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we need is t¥ = [t1,...,t.] = [b1=b1,b1-ba, ..., b1=b,]. The second vector starts
from the code ¢ = [c1,¢a,...] of v, that is ¢; = #{j : j > i,v; > v;}, as when
v is a permutation. Let d” = [dy,...,d,] be the truncation of ¢ | to its first r

components. Then Bazin formula gives the following determinantal expression of
vexillary Schubert polynomial.

Proposition 3.12.1. Let v € N" be a vexillary code, A = v |, («a|3) be the
Frobenius notation of A\, and t*,d" be the two vectors defined just above. For every
1,7 <, let

w! = [0"TRTER0N]) & w' = [w], ... ,wfl_l_di, a;+1, wfb_di, . ,wf‘%l] )
Then
Yo(x,y) = det’Ywij (x,) (3.12.3)
i,j=1,...,r
= det|sq,p, (n—di|n-t;) (3.12.4)
ij=1r

For example, for v = [0,2,7,2,4,5,5,4], one has («|3) = (6320/|6521), r = 4,
n=38,c=10,0,5,0,0,1,1,0], " = [5,1, 1,0}, t* = [0, 0,0, 0],

Y()1715(X7Y) Y02715(X7Y) Y0270312(X7Y) Y027041(X,Y)
- Y01541(X>Y) Y021441(X,}’) 5/65141(X,Y) Yo641( )

X,y)
Yv(x,y)— Y01531(X>Y) Y021431(X,Y) Y05131(X,Y) }/[)631(X7Y)
Yorr(x,y)  Yoersi(xy)  Yozu(%,y)  Yoou(x,y)

S6l6(3[8)  s65(3(8)  s6j2(3[8)  s6/1(3[8)

_|536(78)  s35(7[8)  s32(7[8)  s31(7[8)

82|6(7|8) 82|5(7|8) 82‘2(7|8) 82‘1(7|8> ’

5016(8]8)  50/5(8[8)  s012(8]8)  s0/1(8]8)

The Giambelli determinant is compatible with transitions. For example, one

has
56|6 2|8 36|2 2|6

§3|8§ Esmg Esmg E3|5§
x _ |46 S4)3 S4/2 S4l0

Voroousnn (6 Y) =10 (318)  s9a(3]6) s92(316) s200(3/5)

506(5/8) 503(5/6) 502(5/6) 5010(5/5)

(

The transition Y7@04311(X, y) = (23 —y7)Y704311 X,y) +Y@04311(X7 y)

amounts to decompose the preceding determinant as the sum

s616(2[8)  s6/3(2[6) s6/2(2]6) s6/0(2]5)

(w5—yy) [363I8) 538(316) s5512(3[6)  s510(315)
$216(38)  $213(3[6) 5212(3[6) 5210 (3[5)
80|6(5|8) 80‘3(5|6) 50‘2<5|6) S[)|0(5|5)

sel6(2(8)  s63(2[6) s62(2[6) s610(2]5)

+ 84|6(2|8) 84|3(2|6) S4‘2(2|6) S4‘0<2|5)

82|6(3|8) 82|3(3|6) 82‘2(3|6) 82‘0(3|5> ’

80|6(5|8) So|3(5|6) 80‘2(5|6) 50‘0(5|5)
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each element of the second row decomposing as
sap(3IN) = (23 = yr)s3p(3|N) + s4p(2| V) -

The order of the Giambelli determinant can decrease by 1 in a transition, but
this case also can be followed on the determinants. For example, the transition

Y576311(X7 y) = (25— y5)Y5760311<X’ y)+ Y576311(X7 y) gives the sum

s s 5 s6l6(2]8)  5613(2[6) s62(2]6) s6j0(2]4)
(e (5 S(A0) a0 + [0 30 a0} ()
Sol6 So|3 Salo 2|6 523 S92 S2)0

6(3[8)  $213(3]6) s02(3]6) nldl8) s(d16) sn(416) sue(4l4)

In fact, the determinants expressing Ysze04311(X,y) and Yiszea0311(X,y) differ only
by their South-East entry, respectively soo(5|5) and sgo(4[4). Since sgo(5/5) —
so0(4|4) = x5-ys, the difference of the two determinants is equal to the minor of
this entry times x5-ys.
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3.13 Stable part of Schubert polynomials

In the theory of symmetric functions, one usually prefers to eliminate variables by
taking the projective limit Gym(x.,) of the ring Gym(xy,...,z,), which amounts
to using infinite alphabets.

In terms of Schubert polynomials, the embedding Gym(x,) — Sym(xX,i1)
translates into the transformation Y,(x,0) — Y;,(x,0) for v antidominant. This
leads to define the stable part St(Y,) of a Schubert polynomial Y, (x,y), a

St(Yy) = Yo o(x,¥)|, _o_y son

with IV big enough, and consider it as an element of Gym(x) @ Sym(yo).
We first need to analyze the transformation Y,(x,y) — Yo,(X,y) to compare
Yon o(%,y) and Yynv+1,(x,y) and precise what “N big enough” means.

Lemma 3.13.1. Letv € N" v <n,...,1]. Then

Y, (x,0)7%. .77 = You(x,0) (3.13.1)
You(x,¥) (3.13.2)

Yo(x,y)mp .. ofmdowd

Proof. By trivial commutation, one writes 7% ... 77 = x, ... 2105 ...07, and one
uses that Y, (x,0)z,...21 = Y,y12(x,0) when v € N™. This proves the first
statement. Writing Y, (x,y) as a sum Y ¢, Y,(x,0)Y,/(y,0), one obtains that
Y,(x,y)mE ... 7wf is equal to Y ¢y You(x,0)Yow (v, 0), that is, to Yy, (x,y). QED

Lemma 3.13.2. Let f € Pol(x,) @ Pol(ym), wn = [n,..., 1], wp = [m, ..., 1],
Tosxn = (Tn o Top_1) ... (m1 ... 7). Then

fre = f TosnTimsm| o (3.13.3)
z;=0,i>n,y;=0,j>m

Proof. Any monomial z¥, v € N" can be written z¥ = S,,(Xn, Xpn_1,---,X1),

and its image under m, ..., 1 is equal to Sy, (Xon, Xn_1, ..., X1), which is sent

t0 Sypw(Xon, Xon_1,Xpn_2,...) under m, 1...7o, 9. In final, 2%m,y, is equal to
Sow(Xon, Xon_1, - - -, Xnt1), and this function restricts to Sy, (x,) = z'm,,. QED

Forv <[n,..., 1], the stable part of Y, (x, y) is obtained by computing Yyn,(X,y),

which is the image of Y, (x,y) under (7% ...7{) ... (75, ...70) (7l ... 7)) ... (78,1 ... 77)
according to (5 13.2). But the product of divided differences can be rewritten

T m2mmi AL m2mmi1 TaxnTnxn-  Lhe first two factors preserve functions of
x,, and y,. Therefore,

Yb"v<x7 ) Y (X Y) y

an n><n N

Using (3.13.3), one sees that

St(Y,(x,y)) =Y, (x,y) 7 T - (3.13.4)

’VZXTZ an
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A transition
Yo(x,y) = (2-9;) Yo (x,5) + Y Ya(x,y)
ueU
entails a transition
%"v(x7 Y) = (xk-&-n_yj—i—n))/()”v’ (Xa Y) + Z %"u(x7 Y) .
uel

Therefore transitions may be used to compute stable parts :

SHYu(x,¥)) = St¥oru(y) = 3 SHYalx,¥)) (3.13.5)
ueU
The determinantal expression of a vexillary polynomial, for v < [n,..., 1],

shows that its stable part is equal to

St(YO"v<X7 Y)) = SUT(XR - yn) .

One can in fact relax the condition on v. If Y)(x,y) is a dominant ancestor of
Y,(x,y), with v € N® and m = Ay, then Y, (x,y) is a polynomial in 1, ..., z, and
Y1, .- Ym. Using (3.13.2) and (3.13.3), one sees’ that

Yo(x,y) 7l 70 =S (Xn — Ym) - (3.13.6)

Wn " Wm

In summary, one has the following three ways of determining the stable part
of a Schubert polynomial.

Theorem 3.13.3. Let v € N", Y, be a dominant ancestor of Y,, m = A\;. Let
You(X,¥) = (21-9;) You (X,¥) + X e Yu(X,y) be a transition. Then

StY,(x,y)) = Y.(xy)n, 7% (3.13.7)
(3.13.8)

= YE)”*’“U (Xa Y)

z;=0,i>n,y;=0,j>m

= ) StYu(xy)). (3.13.9)

ueU

For example, the transition graph for v = [0, 3, 1,2, 0, 2] given above has five
terminal vertices: }/03122, }/1331, Y1412, }/0332, Yb4227 and this 1mphes that

St(Yo31202(X, Y)) = 83221 (Xoo—Yoo) + 53311 (Xoo—Yoo) + S4211 (Xoo—Y o)
+ 5332(Xoo—Yoo) + S122(Xoo—Yoo) -

7 The action of 7w, on the determinant of complete functions of x; —y; expressing Y, (x,y)
consists in replacing all x; by x,,. The action of 7, is much more delicate, one has to use that
some determinants of complete functions in x; —y; can be written as determinants of complete
functions in y; — x; (cf. [94]). For example, the equality X,(x,y) = (-1)“?) X, -1 (y,x) gives
such a transformation of determinants in the vexllary case. We have bypassed this transformation
by using Y, (x,y) — Yon,(x,y).



134 Chapter 3 — Properties of Schubert polynomials

We shall see later that
Yo31202(%, 0) = K31202 + K31301 + Ka1201 + K323 + Koo -

Since evidently the image under 7, of a key polynomial is a Schur function, the de-
composition of a Schubert polynomial (specialized in y = 0) into key polynomials
is still another way of computing its stable part.

A special case of the determination of the stable part of a vexillary Schubert
polynomial is the Sergeev-Pragacz formula showing that a Schur function of a
difference of alphabets x,,-y,, can be obtained by symmetrization of a product of
differences x;-y;. Indeed, let A € N" be dominant, m > A;. Then

YA(x,y)7m, 7 = S (Xn, Ym) - (3.13.10)

For example, writing the explicit expression of 7, a a sum over the symmetric
group, one has

_ x Y
5024(X3 - Y4) = Y420 T301 4301

1 oc
= (_1)€(o)+£(g) x210y3210 Yy, ‘
A(xq, 22, 23)A(Y1, Y2, Y3, Y1) EGIZCGG’J ( )

ocL3, 4
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3.14 Schubert and the Littlewood-Richardson rule

When a permutation o € G,, belongs to a Young subgroup &, x G,,», the Schubert
polynomial X,(x,y) = Y, . (X,y) factorizes. This factorization is compatible
with the restriction® of Yy ./ ,»(X,y) to Xy, yn, and therefore in that case

St(K}(Xv y)) = 'St(Y:U’ <X7 Y>> St(YL)” (X7 Y)) :

In particular, when the Schubert polynomial factorizes into two vexillary Schu-
bert polynomials, then its stable part is the product of two Schur functions. Since
the stable part can be computed by transition, this observation furnishes many
ways, different from the usual Littlewood-Richardson rule, of computing the prod-
uct of Schur functions.

For example, to compute the square of sg;, one can start with any v =
v'v” with o' v" € {[2,1,0],[2,0,1,0],[1,2,0,0]}. Here are two possible transi-
tion graphs, starting with [2,1,0,2,1,0] or [2,1,0,1,2,0,0], which are the codes
of the permutations [3,2,1,6,5,4] € 63 x &3 and [3,2,1,5,7,4,6] € 63 x &4, and
stopping at vexillary codes.

Y1021
Yo112 Y2202 Y3102
| | |
Yo2121 Y02 + Yas01 Y310 + Va3 Yo
| |
Yio12 Y + Yo
|
Y1221 + Y311
Yi20021
/ \
Yio012 Yi3002
| T
Yi2021 Y1302 Y4001
] | |
Yio12 Y2202 Yigo + Va3 Yiio1
| | |
Y1221 + Y311 Yo00 + Yason Yig1 + You

8using symmetization is more delicate, since symmetrization does not commute vith product

in general.
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Both graphs imply that

891821 = S42 + Sa11 + S33 + 28321 + S3111 + S222 + S2211 -



Chapter

Products and transitions for
Grothendieck and Keys

4.1 Monk formula for type A key polynomials

Instead of considering the multiplication by each x; in the key basis, let us describe
the multiplication by

This element is invariant under the symmetric group acting on z; and y; simulta-
neously, and therefore, for any permutation o, one has (£)7" = (£)@")".

Since key polynomials are obtained by applying on dominant monomials the
operators m,, 0 € G,,, we essentially need to describe the products 7,&, that we
shall write

Tol = 2105 + -+ + 1,07 .

The commutation relations mm;x; = x; 1T+, TiTis1 = TiTM—T; = LT, T . .. TiTip1 =
17y ... T imply

Y
T To1§ =10 T2 (5)5"“17%—1 + 7. -7T1<;—21’k—1(yk—1 - yk)
=T1...Tk-3 (5)%,28%,1@72@71

+ ... 7Tk_3$k_27l'k_1(yk_2 — yk) + -171/7%1 S /7Fk:—3(yk—1 - yk) :
Iterating and grouping the coefficients of v, one obtains
v ~ ~ ~ ~
T .. 7Tk_1§ = (g)sl“'skflﬂ'l e T—1 + 21 (71'1 e Th—1Yr + 71 Te—2Yk—1
+ %\1 Ce %k—?)yk—Qﬂ-k;—l + 5'('\1 Ce %\k—4yk—377-k—277k—1 + 4 Y172 . .. 7Tk> . (411)

Given a permutation o € &,,, let us write it 0 = (s1... 8,1, with ( € G1xp_1.
Relation 4.1.1 entails
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gp},:7T§<y17rg...7rk—|—---+5T\1...%k_1yk),

while goé = TcY1-
These recursions furnish an induction on n for the products K,£.

Proposition 4.1.1. Letv € N*, A =wv |, 0 € 6,, ( € Gixn_1 be such that
Kym, = :c’\7r<7rl ... Tp_1. Then

YooY
S1-Sp_1
+
y1=0

fﬂ)\xlﬂ'c (ylﬂ'g o TR +%1y271'3 T e —|-/7'[\'1 .. .%\kflyk> . (412)

va = (ZEAWCf

For example, when v = [1,3,5,7], one has A = [7,5,3,1], 0 = [4,3,2,1],
¢ =1[1,4,3,2]. Supposing known that

Krzs § — 1 Ks135 = <y4K7136 + (3 — ya) K763 + (Y2 — yg)K7613)
+ (y3K7145 + (Y2 — y3)K7415) + y2 K735

one obtains

x> <$290z21321 + T3P0, + $4903321) = (93K1367 + (Y2 — y3) K637
+ (11 — y2) Kersr) + (y2Kuasr + (11 — y2) Kasr) + y1 Kagsr

while

7531, 1 ~ ~ o~ ~a
T T30 = K135 (y17T27T3 + MYy + T1T2Ys + 7T17T27T3y4)

= ys K358 + (Y3 — ya) Kisss + (y2 — y3) Kisss + (y1 — y2) Kgiss

the sum of these two terms being equal to Ki357&.

A fully explicit Monk formula would require finding combinatorial objects com-
patible with the above recursion, as well as a justification of the fact that the
coefficients seem to be of the type y; or (y; — y;) only. For example,

K424 & = Y5 Ko0a25 + (Y3 — ys) Koos24 + (Y2 — y3) Koso2a + (Y1 — y3) K50224
+ (Y1 — y2) K32104 + (Y3 — Y2) Ks2024 + YaKo0434 + Y2 K21424
+ (y1 — Y1) Ks0a24 + (Y2 — ys) Kooas2 + (Y5 — ya) Kaosaz + (Y2 — ya) Koza04 -

4.2 Product G,z1...x;

We first need to extend the Ehresmann-Bruhat order to weights. Let u,v € N"
be permuted of each other. Then u > v if and only if for £ = 1,...,n one has
(w1, ... ug] 1> [v1,..., 0] T componentwise.
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Given v € N", k < n, let
C(v, k) ={u: u>v& (Vi#k,us; > v implies us; > u)}.

In other words, C(v, k) is the set of weights above v which are minimum in the
intersection of their coset modulo &y, with the interval [v, [n...1]].

Using these sets, we define two operations ®, ®. Given v € N”, k < n, z € N¥,
let u € C(v, k) be such that [uy,...,ux] T= [z1,..., 2] T if it exists. In that case,
define

vez=u & v®z=u+[170"""].

Otherwise put v@ 2z =0 = v ®
For example, for v = [3,5, 1, 6 2,4], z = [6, 3, 2], one has

vEe2z=13,6,2,51,4 & v®z=1[4,7,3,51,4].

We have given in Lemma 1.4.2 the normal reordering of products of the
type myx1 - - - 2. These reorderings provide the decomposition of G,z - - -z and
K,x1---xp in the Grothendieck or key basis respectively, in terms of punched
diagrams.

Let us index Grothendieck polynomials by permutations, putting Gy = 0, and
let us introduce the ideal Gym(x,, = y,) generated by e;(x,) —e;(yn), i=1...n

Theorem 4.2.1. Let o € S,,, k < n. Then, modulo the ideal Sym(x,, =y,), one
has

G(O‘)-CE]_ SRR i A Z y‘l'l e ka G(T) = Z yzl [P ka G(O‘@Z) . (421)

TEC(0,k) zeNF:in>z1 >z

Proof. Let ¢ be the maximal permutation in the coset Gy (n—x). Then

Go)T1 Tk = Go)Twq)T(¢two) T1 0 T = Go)T(we) T1 7+ Tk T¢-two) -

Thanks to (1.4.7), the product )21 - - - 2 is equal to a sum Y a7 over some

punched diagrams. However, for any i, one has'

H] dLZ 1(:101 y;) = 0, hence G,(1 — Yny1-ir; 1) = 0, that is, Gz =
G()Ynt+1-i- Therefore Gz - -z is congruent to a sum )¢, Gy, with ¢, a
monomial in y, of degree k. It remains, but we shall not do it, to check the
equivalence between enumerating punched diagrams and permutations in C(o, k).

QED

! For every i < n, one has H Iz @i = 53) = Stnsi—iyyi (% — Yni) = Sari—iy) (yn —
Ynti1-i) — (Xn — %xi) + (Xn — yn)) Stnt1-i))i (( — Ynt1-i) — (xXp — xz)) his last function is
null because the cardinality of y,, — yn4+1-; is < ¢ and the cardinality of x,, — x; is < n+1-i.
For example, for n =5, i =2, Sy4(x2 —y4) = Sus (y5 — (z3+ 24 + :1:5)) =0.
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For example, foro = [4, 2, 1, 5, 3], and k = 3, then G(42153) = G(54321)7Tl7T37T27T47T3
and one has to enumerate the punched 122-diagrams to describe the product
G(42153) 112273 = G31010 T17273 =

<$29€4$5|1 314 —>y4y2y1G<42153)> + <$1$4$5| 314 —>y5y2y1G(52143)>

213 (2|3
4 4 4
$2$31‘5| IDIE — Yay3y1Gziaz) | + $1$2$5| o3 — YsY4y1G(45123)
+ 3 G 314 G
$2$3$4| 513 — YaYsY2G(a2351) | + $1I2$4| 5] e — YsYaY2(5(42513)
+ (2 4 G 3¢ G
1$3I5| . 3 — YsY3Y1G(s3142) | + $1I3$4| o3 — Ys¥3Y2a (52341)
+ | 12273 ° |4 — Ysyay3Gassiz) | -
[1]2]e

One obtains the products G, x1xex3, for any n in the coset 0G3x2, by taking
the image of the preceding expansion under products of m;’s, i # 3. For example,
G (24153) T17273 = G(42153) T17273m) Tesults from sorting each permutation 7 in the
preceding sum into [[1y, 72| T, 73, 74, 75

The number of terms in (4.2.1) is equal to the number of strict partitions
2z € N¥ between u and [n,...,n+1-k], where u = [o4,...,0%] |, or, equivalently,
the number of partitions containing [u;-n, ..., u,-1] and contained in [(n—k)¥].

The original Schubert calculus involved Grafimannians, and, in our terms,
Schubert and Grothendieck polynomials indexed by Grafimannian permutations.
For any GraBmannian permutation o, corresponding to the partition u = [ox—k, ..., 01-1],
any r, the number of terms in the expansion of G (@1 ---x;)" is the dimension
of some space of sections, and is called a postulation number. From what pre-
cedes, it is equal to the number of increasing chains of partitions pu° = pu < pt <
oo < pk <kt = [(n—k)*]. This number has a determinantal formula proved by
Hodge, with some help from Littlewood.

For example, the product G(145236)(x1$2x3)2 involves 46 chains of strict parti-
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tions [541] < pu! < p? < [654] (represented as two-columns Young tableaux) :

515 6|6 5|6 6|6 6|6 5|6
414 | Gaasase)+ | [4]4]+[4]4]| Gaasssy+ | [4]5]+[5]5| 1T [4]5]] Gase2sa
1|1 111 111 1(1 111 111
515 515 515 515 515
+ \[a]4]+ [4]4] ) Geasize) + | [4]a]+[a]4]+[4]4] ]| G 345126)
112 212 313 113 213
6|6 6|6 5|6 516
+ | [4]4]|+ 44|+ [4][4]+[4[4]]| Gas6135)
12 212 112 212
6|6 6|6 6|6 6|6 516 5|6
+ |\ [4[5]+ 55|+ 5[5 [4]5] 45|+ [4]5]] Geseis
112 212 1(2 212 1]2 2|2
6|6 516 6|6 616 516 516
+ | [4]4]|+ 44|+ [4a]4]+ 44|+ [4]4]|+[4]4] ] Goasrzs)
113 313 213 313 113 213
66 6|6 6|6 516 6|6 6|6 516 66 516
+{[4]5]|+[5]5|*+[5][5|+[4]5]|+[4][5]|+[5][5]|+|4][5]|FT[4]5]|FT[4]5 G(356124)
113 313 213 313 213 113 113 313 213
6|6 5|6 6|6 6|6 516 6|6 6|6 5|6 6|6 6|6
+H 4[5+ 45|+ 6565|4545+ 5[5t [4][5]t[4[5]+[5]5]] Guse2s)
114 214 314 214 314 214 114 114 314 414

4.3 Product K,x;...x;

The computations of K, x;---x; and G,z - -1, are similar, and use the same
equivalence, detailed in the appendix, between enumerating punched diagrams and
describing sets C(v, k). It translates into the following theorem for what concerns
key polynomials.

Theorem 4.3.1. Let v € N, k <n. Then

KU Ty X = Z Ku+[1’€,0”—k] = Z KU@Z , (431)
ueC(v,k) z

sum over all z € N¥, 2 = 2 1, 2z subword of v 1.

For example, for v=[2132], k = 2, we frame the elements of C([2132]) inside
the interval [2132,3221], and figure the intersection of this interval with cosets
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modulo Gyys.
[3221]

[2321] 3212]

[2231] 2312 3122]

2132]

On the other side, the subwords of length 2 of v 1= [1223] are 12, 13, 22, 23 and
one has v ® 12 = [2132] + [1100], v® 22 = [2231] + [1100], v ® 13 = [3122] + [1100],
v ® 23 = [2312] 4 [1100], so that

Koo 17 = Koizar1100 + Ka23141100 + K3z12241100 + K2312+1100
= Kis932 + K331 + Ka290 + K412 .

Notice that

Ko1300170 = K391 T3y 1T = I3221$2$4 3 + I3221$1$ 3
3 3 3 |1 5 3| TTe

S-SR ) B P 1 I LY
[1]2 [o]2 |e]2

but that the term x32211:1x3|. ; = 2?11, = 0 disappears.

Dominant monomials can be written as products of fundamental weights z; - - - 2.
Iterating (4.2.1) and (4.3.1), one obtains the product of a Grothendieck or a key
polynomial by any dominant monomial. The rule will however take (later) a more
satisfactory formulation when stated in terms of the plactic monoid.

4.4 Relating the two products

Let us show how to relate the products G’(U)x’\ and K,z

Proposition 4.4.1. Let 0 € G,, A € N” be a partition, r > X\, and u =
[roy,...,ron). Then K,a* = > K, is a sum without multiplicities and G(U)x)‘
is a sum over the same weights :

A w
Gyt =)y G,

with ((w) = [lwi/r], ..., lwa/r]], z=w 1, (W) = [z1-7,..., z,-7].
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Proof. The product by z* is a chain of A\; multiplications by monomials of the
type 1 ---xp. From the preceding theorems, it can be written in terms of the
operators x'm,, with ¢ < [A;,..., A;]. The hypothesis on u is such that each u| +¢
is dominant, and therefore, gives the key polynomial indexed by [u] +t]n. On
the other hand, the same operator z'm, contributes to a Grothendieck polynomial
multiplied by the monomial in y of exponent [¢, ..., t]. QED

2200

The following table describes the product Gz as the same time, taking

r = 3, as the product Ky 31267%%.

Gas21 y0112 K14,10,7,3
G342 y2020 K11,5,12,6
G'3421 3/0121 Ki11373
G4312 y1012 K14,10,4,6
G3oa1 Y120 0220 Ki18123 + Ki17,124
Ga32 PO - 4y2002 Kias96 + Kiss.106
G3412 y'0?t 4 40022 Ki11436 + K11,1346

0211, ,.0202 1102, 1111
Gaaz1 Y =+ o4y oy Kisg103 + Kia893 + Kia794 + Ki37104

Of special importance is the case of multiplication by x*+!. Let us show in the
next lemma a case where it is of interest to mix bases.

Lemma 4.4.2. Let k < n, u € N" be such that uy > -+ > ug, Ugyy > -+ > Up.
Then R

Kyab-oa? ap = Youitk,..1.0n-4(X,0) .

Proof. The hypothesis on u implies that, with A\ = u |, there exists a strictly
increasing v € N¥ such that

K, = K)\(ﬁ-\vl %1>(%v2%2)(%vk%k)
:KA(@;l"'31$2"'%1+1)(3v2"'32$3"'%1+1)"'(avk"'akxkﬂ“'%kﬂ)
Using repeatedly that (83 tee &ixiﬂ s JIj+1)I1 Xy = X0 Ij+1J s ai, one can

transfer all monomials to the left and obtain

~

Koot ooy =aMay - 2p 1) (1 Tgr) By, - 01) - (Do - - Ok) -

This is the image of a dominant monomial under a product of divided differences,
hence the lemma after identifying the index of the Schubert polynomial.  QED

4.5 Product with (z;...xz;)"!

The original formulas of Pieri involved intersection of Schubert varieties with spe-
cial Schubert varieties corresponding to elementary symmetric functions. At the
level of Grothendieck polynomials, one has to consider products of Grothendieck
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polynomials with some special ones, for example with Ggr-1; = 1—y; - - ypry ' an

This is not what we have done in (4.2.1), having taken x; - - -z intead of its in-
verse. Let us repair this in the next theorem, which can be found in [99, Th 6.4].

Theorem 4.5.1. Let 0 € S, k < n. Let ( € S, be such that [(1,..., ] =
01,y ok] L, [Gests -y Gl = [Oka1y - 500 |, and w = [n, ..., 1]. Then, modulo
the ideal Sym(x, =y,), one has

yal"'yok ~
Gl o — R 45.1
 — () TG g1 (4.5.1)

Proof. The hypothesis on ¢ implies that, with V the diagram of v = [n—(3,...,n—
k + 1 — (), one has 7, = 7¥. Thanks to (1.4.4), one has 77 (z1---a3)"' =
(Toyt1 -+ Typtx) " @Y. Since the factor (xy - - - )" commutes with 7;-1,,, because

(!0 belongs to Sjxn_i, the theorem follows. QED
For example, for k =3, 0 = [4,3,6,7,8,2,1,5|, one has ( = [6,4, 3,8,7,5,2,1],
415
v=18,7,6]—[6,4,3] =[2,3,3], V=234, and ("o = [2,3,1,5,4,7,8,6] has
1(2]3
reduced decomposition s;S9545¢57. Altogether,

YaYslYs __ .~~~
G0 =G (7r27T1 M43 7T57r47r3) (7T17I'27T47T67T7)
T1X2X3
= G3678215 — Guares8215 — G63678214) + G53768214)

— G5678213CG6,4678213) T Ga5768213 — G5476821,3) -

V. Pons [167] shows that the expansion of the right hand side of (4.5.1) in the
Grothendieck basis is a signed interval. Lenart and Postnikov [141] give a more
general equivariant K-Chevalley formula valid for any Weyl group.

The preceding theorem involves products of 7;’s and 7,’s, that one can study
using key polynomials rather than Grothendieck polynomials. Let V be an ar-
bitrary product of m;’s and 7;’s, 4,5 < n. If Gy V = > ¢,G(), then K,V =
> ¢, K, with the same coefficients, since every 7; acts in the same manner on the
indices of both families of polynomials. This will allow us to reformulate (4.5.1)
in the next statement.

Proposition 4.5.2. Let k < n, v € N* be antidominant, V be the v-diagram and
o be a permutation in Spy,_r. Then

K,7¥r, =Y K., (4.5.2)

sum over all weights T in the interval [n,no], with n € N" permutation of w =
[n, ..., 1] such that m = ve+k, ..., nx = v1+1, Ny > -+ -
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Proof. The weight 7 is such that K, 7Y = IA(n. The operator 7, is equal to a
sum Zuga 7,, where all v belong to Gy,_r. Hence products are reduced and

K,7m0m, =Y, uf/(\'m,. QED

For example, let k = 3, v = [1,2,2], 0 = [3,1,2,5,4]. Then n = [4,2,1,5,3]
and

AN AN A A A

= f?42153 + (f(41253 + IA(24153 + 1?42135) + (f?14253 + f?41235 + fA(24135) + IA(14235 .

This is also equal to K14235 — K15234 — K14325 + K15324, in accordance with

Y1Y2Y4
T1T273

G (14235) = G(14235) — G(15234) — G(1a325) + G(15324) -

4.6 More keys: K polynomials

Stability properties of Schubert polynomials can be analyzed by using the isobaric
divided differences ;. Let us show that the operators
Di= 11—z = (z; — 1)0; (4.6.1)
play a similar role for what concerns the Grothendieck polynomials.
These operators satisfy the braid relations, being the images of the m; under
the transformation x; — x;—1. As an operator commuting with multiplication by
elements of &ym(x;, x;11), D; is characterized by

More generally, D, = (z1-1)""'... (2,-1-1)0, = G,(x,1) 7, is characterized by
the fact that it commutes with multiplication by elements of Gym(x,,) and sends
any z¥: 0 <wv <[0,...,n-1] to 1. Indeed, "D, may be written (z*, G,(x,1))",
and Formula 2.9.5 tells that (¥, G,(x,y)) = y*.

Taking the same starting points as for G,(x,1), one defines recursively K¢
polynomials by

K{ = Gi(x,1) when A dominant & K = KS D; when v; > vipq. (4.6.2)

The operators D;, combined with multiplication by G;x(x,1), can be used to
generate recursively the Grothendieck polynomials G,(x,1), or to express them
in terms of the basis { K¢}.

Proposition 4.6.1. Given v € N*. If0 & v, then

Go(x,1) = (1-27Y) ... (12, 1) Gy_1n(x, 1) .
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Otherwise, let k be such that v, =0 and v; > 0 fori <k, let
u=[vi-1,...,05-1-1, U411, ...,0,]. Then

Go(x,1) = Gu(x,1) (1-2;.%) -+~ (1-2; ") Doy - -+ Dy,
=Gu(x,1) D,y -+ Dy (1-2;') -+ (1-27") . (4.6.3)

Proof. By trivial commutation, one can transform D,,_ --- Dy
= (1-a, )y ... (12D into (1-2,%,) ... (1-2; ") w1 . .. . Therefore

Gu(x,1)(1-z1,) ... (1
= Gy

o)y e (L) - (-2 )
x, 1) (1-z. 1) ... (1Y) Ty . T

== Gu+1n—l(x, 1) Tp—1...M = GrU(X, 1) 5

as claimed. QED
With the same notations than in (??), if v is vexillary, then w is also vexillary,
as well as v’ = u + [1¥71 0"~*]. Suppose that G (x,1) = KS. Then

Gv(X, ].) = Gu+1n—l(x, 1)71'”,1 TR
=Gu(x,1)(1-2,1) ... (1~2, Yy . T
= Gu(x,1)D,_1...Dy =KD, ,...D}, = K&

By recursion on n this proves

Corollary 4.6.2. If v is vexillary code, then G,(x,1) = K&,

Notice that the shift of indices G(x,1) — Gon(x,1) may be obtained with
the D;. Indeed, if v € N, then

Go(x,1)D,, ... D1 = Go(x, 1)(1-z;Y) ... (1-2y Y7, ... m
= GU+1n(X, 1)71'” ol = GOU(X, 1) .
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4.7 Transitions for Grothendieck polynomials

We have seen that multiplication by x;, in the case of Schubert polynomials, can
be used to provide a recursive definition of these polynomials. We are going to
show that one still has a transition formula for Grothendieck and key polynomials
(and later also Macdonald polynomials).

The case of Grothendieck polynomials is an extension of the case of Schubert
polynomials, and is described in [104, Prop. 3]. Since it is proved by a straigh-
forward recursion, let us state the property without proof (caution: in reference
[104], one uses the variables 1 — 1/z; instead of x;).

It is more convenient to use indexing by permutations and write G, instead
of G,, if v is the code of o. In terms of permutations, the maximal transition
formula for Schubert polynomials (3.9.4) reads as follows.

Given ( and its code v, let k be such that v; =0 for ¢ > k and v, > 0. Let o
be the permutation whose code is v — [0*7110"7*]. Then

X§ = (‘Tk - yj)XU + ZXT]-W ) (471)

sum over all transpositions 7j; such that o = [...0...5...], 0 =[...7...0...]
and {(1;,0) = £(7) + 1.

Order decreasingly the integers i occuring in (4.7.1): i, > « -+ > iy, and write
(1 = 755) * G0y for Go) — G(r;,0)- With these conventions, one has

Theorem 4.7.1. With the conventions of (4.7.1), one has the following transition
formula
Lk
(G(o—) — G(O) y— = (1 — Tjim) * ... (1 — Tji1) * G(U) . (472)
j
For example, for ( = [5,7,3,4,1,8,2,6], one has o0 = [5,7,3,4,1,6,2,8], k = 6,
7 =6, and
x
(G 5r311628) — G (57341826)) y—6 = (1 = 765) * (1 — T6a) * (1 — T61) * G (57341628)
6
is equal to the alternating sum of Grothendieck polynomials displayed below (with
both indexings) :

57341628
45220100 _

—

67341528 57361428 T T 57346128

55220100 45230100 45222000

67351428 67345128 57364128

55230100 55222000 45232000
67354128

55232000
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Relation (2.6.5) allows to transform transition for G-polynomials to transition
for G-polynomials.

Corollary 4.7.2. With the conventions of (4.7.1), writing i’ for n+l-i, i =
1,...,n, one has the following transition formula

~ Tt

(G(waw) + a(w(w)) - (]- + Tj’i’m) Koo (]. + Tj’i'l) * é\(ww) . (473)

J

For example, the transition for G (wlw) = G 137185624) is the image of the transition
for G given above :

~ ~ T ~
(G(17385624) + G(37185624)) y_3 = (14 734) * (1 4 735) * (1 + 738) * G17385624) »
6

and can be displayed as

17385624
05142200 _
17485623 17583624 T T 17835624
05242200 05341200 05512200
17584623 17845623 17853624
05342200 05522200 05531200
17854623
05532200

One could in fact extend all transitions of Schubert polynomials, and not only
maximal transitions, to transitions of Grothendieck polynomials. This is useful in
the case of a permutation ¢ = ('¢” belonging to a Young subgroup as in (3.9.3).
One has the same property as in (3.9.2). A transition

Ty
(G(U) — G(C’)) y— = (1 — Tjim) ) oe e (1 — Tji1> * G(U)
J
entails the relation
Tk
(G(Ucu) — G(O) y_ = (1 — Tjim) ). .. (1 — Tjh) * G(O.C//) . (474)
J

As a consequence, Grothendieck polynomials satisfy the following factorization
property (shown in [99, Prop. 6.7] for the polynomials G'¢)(x, 1)).

Corollary 4.7.3. Let ( belong to a Young subgroup, and ¢ = ('C" its corresponding
factorisation. Then

G(x,y) = Geny(x,y) Gen(x,y) - (4.7.5)
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Using the recursive definition of Grothendieck polynomials to prove factoriza-
tion would be delicate. For example, Gpi90(X,y) is a sum of 12 monomials which
does not factorize’. Its image under 73 is equal to

G0101 (X7 Y> = GOI(X7 Y)GOOOI (X7 Y> = <1 - yly?) (1 — —y1y2y3y4 ) .

T1X2 T1X2T3T4

2W€ shall see in (??) that it is equal to 5222 (Xg, X3 —Y2,X3 — y4)/$222.
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4.8 Branching and stable G-polynomials

As in the case of Schubert polynomials, one can use the transition formula (4.7.2)
to obtain a transition graph with root a Grothendieck polynomial (indexed by a
permutation), vertices being + a Grothendieck polynomial, stopping at vexillary

permutations.

For example, for o = [3,1,6,2,7,4,5], one has

G (5162347

G (4163257)

G (4261357

G (5241367

G (3162745)

|
G (3165247
/

G (3461257)

—G (5341267)

T~

G (4523167)

The corresponding tree for X3igo745 is

If v € N" is antidominant, then K¢ is symmetrical in a1, ..

has the stability property K

X3162745

—

X3165247

|

X3461257

X5162347

X4163257

X4261357

T

X5241367 X4523167

Tp+1=1

T~
T
—

—G (5163247)

—G (4361257)

T

—G (4531267)

—G (5421367)

G (5431267)

., T,, and one

= KY. As for Schubert polynomials, this

leads to define the stable part of a Grothendieck polynomial®, for v € N" and

w=n,..., 1.

St(GU> = Gv(X, ].)Dw = GOTLU(X, 1)

3Contrary to the Schubert case, we eliminate for simplicity the alphabet y.

xn+1:1:"':x2n

(4.8.1)
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A transition
Goro(x,1) = (1 — 2. Gonwr (%, 1) + 2" ) Goru(x,1)

induces the equality
SHGy) = SHG.),

and therefore, the transition graph is a convenient way of obtaining the stable
part of a Grothendieck polynomial.

For example, the above graph shows that the stable part of G si62745) is equal
to

St(G s1623a7)) + St(G(5241367)) + SE(G (4521367)) — St(G(5421367)) + SE(G (3461257))
— St(G(s3a1267)) — St(G as31267)) + SH(G(5431267)) — St(G (5163247 )
= KGhoo124 + Kioooaas + Koooonza — 2K 500134
+ K023 — KGpooaza + Koooorss — Kooozss -

The terms St(G sa21367)) and St(G s163247)) are both equal to K134, hence a
multiplicity 2.
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4.9 Transitions for Key polynomials

Key polynomials satisfy a similar transition formula, exhibiting a boolean lattice,
except that now one uses weights instead of permutations. The following consid-
erations are drawn from an unpublished manuscript with Lin Hui and Arthur L.B.
Yang.

Let v € N”, let k be such that v; = 0 for ¢ > k and v > 0. The leading term z"
of K, is equal to z"xy, and we want to describe the difference K, — . K, as a sum
of key polynomials. We can suppose that v; > --+ > wv,_1, because my,..., T o
commute with multiplication by .

Let us compute an example :

TeKp43103 = Ksazioa _
| ST
—Ksa4103 —K543401 "~ —Ksuuo
7 |
K430 Ks44130 Kis43410
/
— K544310

Using the same notation as above for operations on indices, one may rewrite
the preceding identity into

26 K543103 = (1 — 7u3) * (1 — 7a1) * (1 — Tu0) * Ks43104 -

We have used transpositions of values 74, ignoring the leftmost 4. However,
this example is not generic enough. What to do when values ¢ are repeated?

Let us take a bigger example, which, this time, will pass the test of genericity.
Let v=5,4,3,3,1,1,1,0,5]. We have to compute

K5,4,3,3,1,1,1,o,4 X9 = K5,4,4,3,3,1,1,1,0 T3...Tg Xy .

Noticing, by the Leibnitz’ commutations (1.4.3), that

AN A A A A A

one obtains that K5 43311104 %9 = K54331,1,1,04. The general case is similar and
given in the following statement.

Lemma 4.9.1. Let v € N" be such that vi > --- > wv,_1, v, # 0, and let
u=1[..,0_1,0,-1]. Then

Kyan =K, . (4.9.1)
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Expanding [/(\'U in terms of K, (which means taking the Ehresmann-Bruhat
interval), one obtains the transition for key polynomials in that case. Let us show
the evolution of the transition under successive applications of m;, i # n—1.

We begin with the transition for Ky39295 :

Ky3025 — K4322047T5 = Ky3005 — Ku3295
= (K5,3,2,2,4+K4,5,2,2,3+K4,3,2,5,2) — (K5,4,2,2,3+K5,3,2,4,2+K4,5,2,3,2) + (K574,2,3,2) ;

that we display as a boolean lattice (forgetting signs), writing the starting element
as the bottom element

[5,4,2,3,2]

P

5,3,2,4,2]  [4,5,2,3,2] [5,4,2,2,3]

[4,3,2,5,2]  [5,3,2,2,4] [4,5,2,2,3]

[4,3,2,2,5]

Applying 79, then 7, then again 79, one obtains the transitions for Ks 4395
and Ky3495 :

[5,2,4,3,2]

P

5,2,3,4,2]  [4,2,5,3,2] [5,2,4,2,3]

[4,2,3,5,2]  [5,2,3,2,4] [4,2,5,2,3]

2,5, 4,3,2] 2,3,5,4,2]
[2,5,3,4, 2] [2,4,5,3,2]\[2,5,4,2,3] 2,3.4,5,2] 2,3,5,2,4]
2,4,3,5,2) 2,5.3.2. 4]><[2 15,23 12,3425 |

[2,4,3,2,5]
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The terms which are not underlined cancel two by two at the last stage, because
(Kojioo - Kojioo) g = 0.

To write the general transition, we need to introduce, for each pair of integers
i,J, an operator 7; ; on linear combinations of K,, defined* by

Then, one has the following transition formula, similar to the one for Grothendieck
polynomials.

Theorem 4.9.2. Let v € N, such that v, >0, and v = [vy,..., 01,0, —1]. Let
11 < --- <1, <n be the places i such that v; is strictly maximal among the values
{vj i <j<n, vy <wv,}. Then

Kyxp=Ky*x(1—=7;) (1 —Tin). (4.9.2)

Prvof. When vy > --+ > v,,_1, the statement comes from rewriting the expansion
of K, in (4.9.1) in terms of the operators 7;,.

Given any k such that vy > vgyq, one has K, z, m, = Ky, ©,. On the other
hand, the product of the RHS of (4.9.2) is obtained by replacing v by wvs; and
exchanging k£ and k+1 in the indices of the operators 7;,, except one has the
double factor (1 — 74,)(1 — Tkt1,,). In that case the factor (1 — 74,) disappears,
and this corresponds to the pairs K, — K5, which vanish under 7. QED

The four examples above must be rewritten

Kisooaxs = Kuysoos > (1 —715) (1 — 7a5) (1 — 745)
Kyogoa w5 = Kyzooa x5my = Kaogos * (1 — 715) (1 — 735) (1 — 7u5)
Kougoa x5 = Kuogoa xsm = Koagos x (1 — 7o5) (1 — 735) (1 — 7u5)
Kogioa x5 = Kyogoa w5 m = Koggas * (1 — 735) (1 — 7u5) -

If v € N" is a vexillary code such that v,, # 0 and there exists ¢ : v; < v,, then
Y,(x,0) and K, satisfy the same transition :

Y;)(X> 0) - ka;/ (X> 0) + Yu(X7 O) & Kv = kavl + Ku )

with v" and u vexillary (cf. [124, Lemma 3.10]). Therefore, one has the following
property, which is a special case of the expansion of a Schubert polynomial in
terms of keys given in (7.3.2).

Lemma 4.9.3. If v is a vexillary code, then

Y,(x,0) = K, . (4.9.3)
For example, there are 23 Schubert polynomials Y, (x,0), v < [3,2,1, 0], which
coincide with the key polynomial of the same index, while Yj010(x, 0) = (:cl +To+T3)

is different from Kjg19 = z1(z2+23).

4If needed, u is transformed into u,0,0, ...
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4.10 Vexillary polynomials

We have already stated that vexillary Schubert and key polynomials have a deter-
minantal expression. This property is also satisfied by Grothendieck polynomials,
and we collect together these three families in the next theorem.

First, dominant polynomials can be written as multi-Schur functions. Let v
be dominant, ©u = vw, k = v;. Then

}/:U - Su(xn_YHna"‘7X1_yU1>
G, = (xl-“:cn)’kSkn(xn—yvn,...,xl —Yu)
K, = Su(Xp,...,71)

For example, for v = [6, 3, 1], one has

Sl(Xs - Yl) 54(X2 - Y3) Ss(Xl - Y6)
Y31 = SIBG(XB — Y1, X2 Y3, X1 — Y6) = 50(X3 - }’1) 53(X2 - Y3) 57(X1 - Y6) )
0 So(x2 —y3) Se(x1—ye)

Ges1 = (131%2333)765666@3 — Y1, X2 — Y3, X1 — Y6) )
Ke31 = 5136(X3,X2,X1) .

As we already saw, the action of 0; or 7; on a determinant of complete functions
Sk(x, —y,) is straightforward if only one column or one row is not invariant under
the transposition of x;, x;,1. In that case, one has to transform this row or column,
following the rules Si(x; — y)0; = Sk_1(Xix1 —¥), Sk(Xi — y)mi = Sp(xi11 — y).

For example,

82 81
Yo31— Y612 = S126(X3 — ¥1,X3 — ¥3, X1 — Y6)— Y152

P
= S1o5(X3 — y1,X3 — ¥3, X2 — ¥6)—— Y124 = S124(X3 — ¥1,X3 — ¥3, X3 — Y6)

T

G631(l‘1$29133)6£> = 5666(X3 — Y1, X3~ Y3, X1 — YG)—>
= 5666(X3 —Yi,X3 — Y3, X2 — Y6)l2—> = 5666(X3 —Yi,X3 —Y3,X3 — Y6) .

On the other hand, Ys3:07 = Si35(X3 — y1,X2 — ¥3,X2 — ¥6) and we cannot
proceed so easily with Oy, since two columns involve x5 and not xs.

When v is vexillary, we have already used the property that there exists at
least one sequence of operators J; or 7; respectively, starting from a dominant
case, such that at each step, only one column is transformed by the operator

To describe the missing determinants in the Grothendieck case, we have to
follow the same recursion than for Schubert, but with different flags. To any
v € N" let us associate the two following flags of alphabets. Let w be the
sequence w; = max(j : j > 4,v; > v;. Then v” is the decreasing reordering of w.
Let now u be the element of N™ obtained by decreasingly reordering v according
to therule [...4,5...] — [... j+1,i...] whenever i < j. Then v¥ is set to be the
increasing reordering of u.
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Theorem 4.10.1. Let v € N™ be vexillary, v*,vY be the two vectors defined above,
k = max(v¥). Then

Yy = Sup(Xer = Yoty Xoz — Yo) (4.10.1)
Gy, = Spn(Xer — Yous - Xog — You) (21 - -xn)_k , (4.10.2)
Ky, = Syp(Xur, ..., Xuz) - (4.10.3)

In particular, when v is vexillary, then K, = Y,(x,0).

For example, for v = [3,5,4,0, 2], one has w = [3,2, 3, 5, 5], which reorders into
v* =[5,5,3,3,2]. On the other hand, the chain v = [3,5,4,0,2] — [6,3,4,0,2] —
6,5,3,0,2] — [6,5,3,3,0] gives the second flag v¥ = [0, 3,3, 5,6]. Hence, one has

Y3502 = 502345(X5*YO, X57Y3,X37Y3,X37Y5, X2*Y6)

_ —6
Gssa02 = 566666(X5_y0> X57Y3,X37Y3,X37Y5, X2‘Y6)($1 e I5)
Kss400 = 502345(3(5, X5, X3, X3, X2) .

Property (2.6.5) allows to write from (4.10.2) a determinantal formula for G,
polynomials such that vée be vexillary. This condition is in fact equivalent to
requiring that v be vexillary, since if a permutation ¢ avoids the pattern 2143,
then wow also avoids this pattern, and conversely.
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4.11 Grothendieck and Yang-Baxter

One can degenerate Yang-Baxter bases of Hecke algebras into bases of the 0-

Hecke algebra, i.e. the algebra generated by 71, 75,.... But as in the case of
divided differences, instead of taking products of factors of the type m;+1/c, let us
take factors 1 + ;. Accordingly, given a spectral vector [y, ..., y,], one defines

recursively a Yang-Baxter basis U7, starting from 1 for the identity permutation,
by

Uisi = UF (1 + (1 _ Yo ) %) for o; < oy . (4.11.1)

Yoirr

For example,

T = (1+ (1—&>%1> (1+ (1—ﬂ)%2> <1+ (1_%)%1>
Yo Y3 Ys
=1+ (1—2)%1—1— (1—&)%2"’ <1_ﬂ) (1_2)%1%2
Y3 Y3 Y2 Ys
+ (1—%) (1—@) oy + (1—@> (1—2) (1—%)%@%-
Ys Ys Y2 Ys Y3

s As in the case of divided differences, the Yang-Baxter coefficients are speciali-
sations of known polynomials. The proof of the next properties is similar to the
proof of Theorem 3.5.1, and we can avoid repeating it.

Theorem 4.11.1. The matriz of change of basis between {UT} and {7, }, and its
inverse, have entries which are specializations of Grothendieck polynomials :

UF = ) wmGuly). (4.11.2)

v<o

= ] (1 - %> = D ()OI G (v, y7) . (4113)

1<j Yi o<lv

For example, for v = [2,3, 1], one has v~'w = [2,1,3], and the coefficients of
the expansion of T3, are specialisations of the polynomial G913 = 1 — ylel. One
has

T [ (1= wiy;") = UlnnGans (™, y) — U5iGras(y™, y**)
1<j<3

- 6?326:(213()’321, y132) + U§31G(213(y321, y231)

Y1 7 Y2 7 n 7 Y2 =
— (1= )0 — (1-2 )0 — (1= 2 ) U+ (1= 2 ) UG, .
( Y3 > 123 < s ) 213 ( s ) 132 ( Y3 > 231

The general properties of Yang-Baxter bases induce properties of specializa-
tions of Grothendieck polynomials.
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The symmetry (1.8.4) entails

o L) wow W

using the involution & : y; — y;ilfi, i=1,...,n introduced in (2.6.4).
Each of the equations (1.8.9) and (1.8.10) gives, after some rewriting,

Z(,l)Z(V)""K(U)G(V) (ya7 Y)G(Vw) (YQ Y) = 50,Cw H (1 - &) ) (4115)

v i<j Y

which is a special instance of formula (2.9.4).
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GY/X and G Grothendieck polynomials

In the preceding sections, we have seen that Grothendieck and Schubert polynomi-
als satisty similar properties. To relate these two families precisely, it is convenient
to perform a change of variables in the former. In fact, we shall use two slightly
different transformations, in view of different geometrical considerations.

5.1 Grothendieck in terms of Schubert

Denote the image of the Grothendieck polynomial G,(x,y) under the inversion
T — oy — vy, by Gzl,/x(x, y), and by év(x, y) the image under the transfor-
mation’

v — (1—2) 7y — (1 —y) ™ i=1,2,...

Thus, in the dominant case, for A € N" a partition, one has

Ai n oA

xy) = [Ty & Gaxy) = [T T@i-u) -y,

i=1j=1 i=1 j=1

and the other polynomials are generated using respectively the operators

7T7;1/x = —xi+18,» & 7’\1:1 = (1 - l’i—&-l) 8i, (511)
or the generation in y seen in (2.2.3), which uses the isobaric divided differences
in y in the first case, or in the indeterminates y;—1,y»-1,... in the second case :

o & w0 =y, —1)0. (5.1.2)

I Many authors use the transformation x; — (1 —x;)~%, y; — (1 — y;). This not compatible
with simultaneously using Y,,(x,y), but only with Y, (x,0). In fact, the factor 4y — xy, instead
of 1 —x/y) or (z —y)/1-y) that we now take, does not possess the right symmetry in x, y which
is imposed by geometry.

159
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For example, the polynomial G(l){x(x, y) = 1 — xy29y; 'y, is the image of
G%x(x, y) = (I=zy; ) (1-2195 ") under /% = —2,0;, as well as the image of
GI(x,y) = (1-zyyr ') (1-72y; ') under 7. ~

From the expression of 7;, one sees that the basis G, (x,y) is triangular in the
basis Y, (x,y), the term of év(x, y) of lowest degree being

(I=y1) (1 —y2) ™ Yo(x,y),

with u the code of the permutation inverse to (v).

Any example reveals that the expansion of these new polynomials in the
Schubert basis posseses a structure quite willing to uncover itself. For exam-
ple, v = [2,0,2,1] is the code of the permutation [3,1,5,4,2], the code of the
inverse permutation is equal to u = [1, 3,0, 1, 0], and one has

(L-y1)(1-32)* (1-34) G = Yo021
1 Vago0 o7 Y3021 1/(1;;321;223/'2121
1 1 +y2—2
T 13220 i1 Y22 W) Y3121

T~ |

1
(341*1)2(y371)y3221

A similar computation gives the expansion of G%;l (x,y) (writing Y, for Y, (x,y)) :

1 (y1 + v2) 1
Gl/x xX,y)=— Yooo1 — ~——="Yo121 — ———5— Y22
2021 (%, ) Nyt o ytysBy Y1223y
1 1 Y1+ vy
— —5 5 Yoo — ——— VY3001 — % 3121
Y17Y2-Y4 Y1Y2-Ysya Y1°Y2°YsYa
1 1

y12y23y3y4Y322 y13y23y3y4Y3221'
On this single example, it appears that the two expansions are identical, up to a
minor transformation of coefficients. Indeed, since a Schubert polynomial Y, (x,y)
is invariant under a uniform translation x; — x; +€, y; — y; +¢,1=1,2,..., the
expansion of G,(x,y) is obtained from the expansion of G*/*(x,y) by the change
of variables y; — y;—1 in the coefficients.

Notice however that the polynomials in x only are different. In the case of
Gi/x(x, y), one has to specialize y to {1,1,...}, while for év(x, y), one sends y

to {0,0,...}. Thus G (x,y) = =3 You(x.¥) — 7 'v3 'Y (x, y) gives

GM¥(x,1) = —Yo(x,1) — Vii(x,1) = 1 — 2125
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while Go1(x,y) = (1-1) " VYor(x,y) — (1-y1) "L (1-92) "' Yi1 (x, y) induces

CN¥01(X, 0) = Yo (x,0) — Y11(x,0) = 21 + 29 — 2172 .

Normalizing for a moment the polynomials in such a way that év =Y, +...,
one renders the matrix of change of basis unitriangular. Here it is, together with its
inverse, for n = 4, putting A = (y1-1)"", B= (yo-1)"1, C = (y1 +y2—2)(1-y1) 2.

000
001
010
100
020
011
200
101
110
300
021
201
120
111
210
301
220
310
121
211
320
311
221
321

1. . A
1. .
1 DA
..... 1 .. C
..... A P
1 B - A

CAB - - - .-

For example, the row of index 101 must be read

6101 = (y1 - 1)(3/3 - 1)6101

or equivalently

=Y +
Yy

. AB - -
A.-C - A2 .
.. A

. B .

- - S A

N
L1 .

1 - B -
1 - -
1 -
1 -
14
1
Y
1 111-|—(2_1

y1y3G%f = Yio1 + 5 Yaoor +y; Y + vy by Yo

The inverse matrix looks very similar, apart from signs, and different location
of the non-zero entries.
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000
001
010

wo | -1
o0 | -1 - - - . . A . ..AB.

o1 | -+ - 1 - e e . —C . -
200 | - - - - - .1

01 (- -1 - . =B - —-A ..

110 | - . . .. L1

300 | - - P

021 | ... .. R . . .. _-A.-C - - .- AB -
200 | ... A .

120 ... .. . .. . .. . 1 . .._-B.

111

210
301
220
310
121
211
320
311
221
321

For example, the row of index 021 must be read, with the normalized polyno-

mials G,, or the polynomials G&/*,

= 1 = 1 1-y = 1 =
Y, = Goo1 + Gag + ( + ) Gion+ ———G
021 021 -0 22 = (1—y1)2 121 (1—y1)(1—y2) 221
Yoou = —y22y3G32/f - y1y22G¥x — Y1Y3 (3/1 + yz) G}é? - 91292G¥f .

Let us precise and prove the observation of the closeness between the two
matrices. Thanks to (2.6.5), the orthogonality relation between the polynomials
G, and G, can be rewritten as

(Gua?)? y PGy m, € {£1,0}. (5.1.3)
Since the operator x* 7, is equal to

(21...2,)""8, = (Z(—l)“%) (1. 2) " LA(x) !

its image under the change of variables x; — (1-x;)~! is the operator
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Indexing by permutations rather than codes, one rewrites (5.1.3) as
1/x 1/x/ w o))~
G(z!) <X7 Y> G(g/) (X 7Y) aw = (_1)4( ) pfso Cw (514)
Gio)(%,¥)Go(x*,y) 0 = (1) (y-1)"" - (yp1-1)0p 0. (5.1.5)

Because (f,9)? = fgd,, is the scalar product used for Schubert polynomials,
the preceding equations mean that, with respect to (, )? and up to normaliza-
tion, {(-1)PIGY*(x*,y), v < p} is adjoint to {GY*(x,y), v < p}, and similarly
{(-DPG,(x*,y), v < p} is adjoint to {Gu(x,y), v < p}. Thus one has the fol-
lowing symmetry property:

Theorem 5.1.1. Let n be an integer. Denote (y-1)7 = (y;-1)""'--- (y,_1-1).
Then, for any ¢ € &,,, one has

Xexy) = Y (D)OXcxy), Gl y) Glr(xy)  (5.16)
c€Gn

XC(Xv y) = Z (71)6(0)(XC(X7 Y)a (yfl)pé(ow)(xwayna é;(O') (Xv y) (517)
oceGy,

and the inverse formulas

GlExy) = S0 DG xy) . X3, y) Xoulx,y)  (5.18)

Goxy) = Y (D GoEy), Xxy)" Xo(xy). (5.19)

O'een

For example,

1o}
(Gl ey —Xunley)) = (o + w2y

(é(1342) (x,¥), —X1432(Xw,y)>a = (+yp—2)y—1) 3 (yp—1)7

imply that
G(1{§‘42> (x,y) = -+ Wity 2y Xosu (X, y) + -+
6(1342) (x,y) = -+ (G+y2-2)(11-1) 2 (y2-1) > Xogar (x,y) + - - -
Xus(x,y) = - —yys(yity2) G(12/Af31)(x7 y) -+
Xigga(x,y) = - = (ni-D(y-1)(y1+y2-2) 6(2431)(?(7 y)+ -

A combinatorial description of the coefficients will be given in a later section.

We have defined the bases {Gi/x(x, y)} and {G,(x,y)} using the operators
7% and 7; = m/* 7 Taking the operators 7,/* = 7/*~1 and 71/ = 7171
instead gives alternating summations which are descrlbed in the following propo-

sition.
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Proposition 5.1.2. Given n, 0 € &,,, one has the following identities involving
the Ehresmann-Bruhat interval [o,w], and the alphabets 1-x = {1-x1,1-29,...}

and 1-y = {1-yy, 1-ya, ... }.

Y ()G (xy) = ¥ xy) (5.1.10)
(<o

(1-2) > (1) OG(xy) = (1-9)'G*(1-x1-y)  (51.11)
(<o

Y (DG xyY) = yGL(xy). (5.1.12)
(<o

Proof. The three identities result from each other by change of variables, let us
consider the first one. Its left-hand side can be written (1) G (X, y)T(wo) (X, ¥).
1/

X — — — o~
However, ;" 27 ? = —~x;4,0;x~? = —x~*7;. Therefore
y 1y 1+1Y 7

(_1)6(0) Gw <X7 y)%(wo) (X> }’) = (_1)““}) G(};/x (X7 y)xipyp%\wo'
= G (x, y)miy" = G (%, y)y"

wo

which is the required identity. _ QED
Combining 5.1.10 and 2.6.5, one can also express the adjoint basis {G,(x,y)}
with alternating summations:

Z(_]')e(C)G(lé“/)x(X? Y) = a(u.)mu) (wa y> . (5113)

(Lo

For example, for o = [1,3,2], one has

GolX (%, y)-G1 (%, ) -Gy (x, y)+ Gl (%, ¥)

B ROIGRGIRHICIE
Y1Y2 Y1 n n Y2 Y1 Y2 Y1

_ oz (T —iye) A w
= 72y = G (x”,y).
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5.2 Monk formula for G/* and G polynomials

We have described in (4.5.1) the product G,(zy...x)"t. After change of vari-
ables, this translates into the product G,(1-zy) ... (1-z3).

We are going to refine this result by giving the product by a single variable,
instead of by (1-z1)...(1-x;). To do so, we need the k-paths introduced in
(3.6.3). Recall also that a hook is a word or a sequence z; ...z, such that there
exists j: z1 > - > 25, 25 < 2jp1 <o <z

Theorem 5.2.1. Let 0 € G,,1 be such that 0,1 =n+1, letk: 1 <k <n. Then

mkG(la/)x<X7 Y) = Z(fl)eymin Gl/x (X, }’) (521)

(Tar,ap_q ...TalaOO')

(1= ) Gy (%,¥) = > (D (1Ymin) Clrararyrmyugn) (5 ¥) 5 (5:2.2)

sum over all the k-paths a = [a,, . .., ag] such that a be a hook, as well as a subword
of [Oks1y- -y Ont1, 01, -, 0k, with min = min(a,, ...,aq), £ + 1 being the height
of the hook.

Proof. Thanks to Colin Powell, who has considerably lightened the requirements
for a proof?, I shall content myself of sketching the method. The two statements
are equivalent by change of variables. Let us take the G-polynomials. One uses
a decreasing induction on length, starting with o = [n, ..., 1,n+1], and using the
two recursions

G(a)xk = G(ask,l)%kflxk = G(ask,l)ﬂﬁkfﬁkq + é(ask,l)(ﬂ%—l) y Ok—1 < O,

é(a)xk = é(ask)%kﬁk = G(ask)xk-i—l%k + é(osk)(]-_xk—i-l) y Ok < Ok41,
which are a direct consequence of Leibnitz’ formula. QED

As a small example, let ¢ = [3,1,5,2,4,6], k = 4. One has to enumerate 4-
paths which are hooks as well as subwords of [4,6,3,1,5,2]. One finds the hooks

, , and ‘11 5] which correspond respectively to the permutations

13,1,5,2,4,6],[3,2,5,1,4,6],[3,1,5,4,2,6] and [3,2,5,4,1,6]. Hence one has the
two expansions

1/x 1/x 1/x
x4G(3/1524) (x,y) = y2G(3/1524) (x,y) + ?/IG(3,/2514) (x,y)

1/x 1/x
- 3/2G(3/1542) (x,y) = ylG(:’)/2541)<X7 y)

(1-24)G(31524) (X, ¥) = (1-12)G31524) (X, ¥) + (1-y1) G (32514) (X, Y)
- (1*92)G(31542) (X;Y) - (1*?/1)G(32541)(Xa}’) .

2 Colin Powell’s presentation to the U.N. Security Council, February 5, 2003.

http://edition.cnn.com/2003/US/02/05 /sprj.irq.powell.transcript.10.
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Let us illustrate the recursion for Monk formula on a bigger example. Let
k=4 0=11,3,4,6,2,7,5,8] (resp. 0 = [1,3,4,6,2,5,7,8]).

Suppressing the terminal 8 which is a fixed point of all the permutations in-
volved, one has

(1—564)6(1346275) = (1_y6>é(1346275) - (1_3/6)6(1347265) + (1—3/4)@(1364275)

_(1_94)6(1365274)+(1_y3)é(1463275)_(1_y4)6(1367245)+(1_y4)é(1367254)_(1_93)6(1465273)
+ (1*91)G(3461275) - (1*3/3)G(1467235) + (1*y3)G(1467253) - (1*91)G(3462175) )

(1—1’4)é(1346257) = (1_3/6)@(1346257)_(1_y6)é(1347256)+(1_y4)é(1364257)_(1_94)é(1365247)
+ (1_y3)G(1463257) - (1—3/3)G(1465237) + (1—y1)G(3461257) - (1—y1)G(3462157) .

The following two trees describe the cycles Co~! in the preceding expansions
(1-24)Gy(x,0) = > :|:G< (x,0), these cycles being hooks which are subwords of
[ 7,5,1,3,4,6] when o = [1,3,4,6,2,7,5], and subwords of [2,5,7,1, 3,4, 6] when

= [1,3,4,6,2,5,7].

/
/\ /
N

/ |

o — 9
=]

Ak
[~

6l

\\_\

3als) [3a[g

416]

7] 5
5] [1131416] 51476
416] ‘

W

2
1[3[4]6]

7]
5
3

416
For example, the two bottom elements of the left tree must be read as follows.

o=1346275 .
2462175 differ by the cycle (1 -3 —4 — 6 — 2),

The two permutations

2
that one writes as a hook finishing by 6: [1[3]4[6]. The minimum of the cycle

is 1, the height of the hook is 2, and therefore the corresponding term in the

decomposition of (1-24)G (sigma) (X, ¥) is —(1-y1)G (3462175) (X, Y ).

o=1346275
1467253

Similarly, differ by the cycle (3 — 4 — 6 — 7 — 5), that one
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7]
writes [5] . The minimum of the cycle is 3, the height of the hook is 3, hence

314]6] ~
the term (1*y3)G(1467253) (X» Y)-

Lenart[138, Th.3.1] describes the product z,G,(x,0) in terms of chains in the
“k-Bruhat order” and criticizes (4.5.1) for involving cancellations. For our defense,
we shall put forward that this is not the same case which is treated in the two
formulas. In the former, one multiplies by 1-xj, in the later, taking into account
the change of variables, by (1-z1)... (1 — xx).

The Pieri formula for the products G,(x, 0)@01’7” (x,0) or Gy(x, O)éoiyj(x, 0)
is given by Lenart and Sottile [140].
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5.3 Transition for G/* and G polynomials

By change of variables, one transforms (4.7.2) into a transition formula for G/*

and épolynomials.

Proposition 5.3.1. Let v € N¥ be such that v, > 0, let o be the permutation of

code v' = [v1,...,vp_1,vx—1]. Then, with the conventions of (4.7.2), one has
1/x <\ Yj 1/x
(Gv/ —GY ) To= ) e 0o epl (5.3.1)
~ N 1 — s -
(Gv=G) =2 = (1=mi) e (1=70)%Gioy. (5:32)

These expressions are not a direct corollary of Monk formula for é-polynomials.
For example, for v = [1,0, 1, 1], one has 0 = [2, 1,4, 3, 5], and, writing at the same
time codes and permutations,

_ _ 11 _
<G10100 - G10110> L (1 = 732)(1 = 731) * G100
21435 21453/ 1-x4 21435

= Gio100 — G11100 — G20100 + G21100 ,
21435 23415 31425 32415

while, writing also in a box the hooks appearing in the statement of (5.2.2), one
has the Monk formula

1-2)G = (1-12)G 1-y)G 1-1)G
(1-24)Go100 = (1-43)Gong0 [3]+ (1-41) Gpaag [15]+ (1-y2) Gamigo [23]

— (1-12)G 5 (1—u O 51 (1) 5
(1-05) G [8] = ()G [1] = A0 Cpg [B]
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5.4 Action of divided differences on G/* and G
polynomials

Let us show that the property that, up to normalization, {Gl/ *(x*,y), v < p}
is adjoint to {G3/*(x,y), v < p}, and similarly {G,(x*,y), v < p} is adjoint to
{Gy(x,y), v < p}, allows to exchange multiplication by x; with 0,_;.

Indeed, for any o, € 6, any i < n-1, let ' = (s; if (; > (o1 or or (' = (

otherwise. Consequently, Gé/x(x V) (~xi110;) = Gé/x(x, y).

Then, according to Theorem 5.1.1, one has

w X a
V() D5 = (G ) (2i18) " G (x,y))
w X 8
= <7 (G(lg/)x(xv Y)xi—i-l) waiwa G:(lo/-) ( 7Y)>
w X 8
= <(G(1</)X(X> Y)xi+l) >G(1C{) (X7 y)an71> .

Therefore, up to reversal of alphabets, multiplication and divided differences
are exchanged. Thus, let a = hook be a word z; ...z, such that there exists j:
2z < -0 < zj, z; > zZjgp > -+ > z.. Then Monk formulas (5.2.1) and (5.2.2)
translate about the following description of the action of divided differences.

Theorem 5.4.1. Let 0 € &,,, k : 1 < k < n-1 be such that o, > o1, and
1N = 0sg. Then

Gy = (1 GubeGl o (%0Y) (5.4.1)
Go)(%,y)0 = Z(‘lyilﬂ_ymam) 1G(Tar,ar,1...m1a0n)(xaY)7 (5.4.2)

sum over all the k-paths a = [a,,...,ap] such that a be a — hook, as well as a

subword of [Mks1y- -y Mnt1, M,y - - -, Mk}, with maz = max(a,,...,ay), { being the
width of the — hook.

For example, for k = 3, 0 = [3,1,5,2,6,4], then n = [3,1,2,5,6,4], and,
writing each polynomial together with its —hook, one has

1/x —11/x
G(3,1,5,2,6,4 —[2] vy 3 1 12,5,6,4) I Ya G (3,1,4,5,6,2)
—1,~1/x —1,~1/x
+[1]2] % G(3,2,1,5,6,4 +U 3 G (3,4,1,5,6,2)
+ B4 S SUETEpyrereh

5194 M 413562) 5194 Ys1562)
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G315.264)03 = -—G (3.1.2,5.6.4) T I—G (3,1.4,5.6,2)

1 ~
o - G(3,271,5,674 -1 é 1— g G(3,4,1,5,6,2)
1 1 ~
- | 3 121 —y G (4,1,3,5,6,2) + | 1 |3 ;1 1 Y G(4737175’672) .
Lt &L — Ya
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5.5 Still more keys: K¢ polynomials

When ¢ is Grassmannian, X, (x,0) is equal to a Schur function, as well as to a
key polynomial. The polynomial é(g) (x,0) is also symmetrical, but not equal to
a Schur function, nor to any classical symmetric function. One has to find another
family of polynomials which play the role of key polynomials versus Schubert poly-
nomials, and coincide with the polynomials G ,)(x, 0) in the symmetric case. The
polynomials K¢ seen in (4.6.2) play such a role with respect to G(,)(x,1). There-

fore, we define the polynomials [?f , v € N" to be the images of the polynomials
K% under the transformation x; — (1-z;)'. In fact, these are the polynomials

denoted KG[v] in [104].
The corresponding operators are
5@' = il?z‘(l - 513i+1) 0; = (1 - $i+1) TG s
which can be characterized by
1D;=1 &  z(l—24)""D; =0

and, therefore, are obtained from the isobaric divided differences by the change of
variable ; — z;(1-z;)~!. In short, D; = 7rl?c/(lfx)'

In explicit terms,

K¢ =2 when A dominant & I?fs = K®D; whenuv; >uvipr. (5.5.1)

For example, for the weights which are permutations of [4, 2, 0] these key poly-
nomials expand in the usual key polynomials as follows :

[?4%0 = Ky

K$y = Kup — Kuo

k2G40 = Ko — Ky

—f(z%z; = Koo — Koy — K301 + K314

K§y = Kow + Koso — 2K 140 + Kz — K

%(%4 = Koos — Kozq + 2K134 — Koza + Kooy — 2K 194

Notice that the image of 7, = x?9J,, under the change of variables is

Dy=a"" . xp (I-my) ... (1-2,)" ' 0y = (1-22) ... (1-2,)" iy, (5.5.2)
so that

K, = aMl-ay) - (L-2,)" ' my = 2P (1) - 9, = Gho(x,0) . (5.5.3)

The following proposition is the image of Proposition 4.6.1 by the transforma-
tion z; — (1-z;)~! and shows how to generate the polynomials G, (x, 0) using the

operators D;.
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Proposition 5.5.1. Given v € N", let k be such that vy = 0 and v; > 0 for
i < k. (if no component of v is 0, change n — n+l, v — [v,0]). Let u =
o1 —1,.. . vp_1 — L, 0gy1, .-, 0n). Then

G'U(X7 O) - éu(x, O) (xk—l s J,‘l) Dn—l . -5k
= éu(xa O) ﬁnfl Tt ﬁk (wkfl - '-Tl) . (554)

For example, if v = [3,0,4], then k£ = 2, u = [3-1,4], and
6304(X, O) = 624(X, 0)1‘152 = ég4(X, 0)1‘1(1*‘@3) o .

As in the case of Schubert polynomials, the preceding proposition can be used
to expand the polynomials G, (x, 0) in terms of the K. For example,

~ ~a ~G ~G ~a ~a ~a ~a
Gooaa(x,0) = Koo + Ksio + Kia — Kaou — Ksoo — Kso31 + Kiosa
the leading terms corresponding to

Ya0a2(x,0) = Kopaz + Ks012 + K041 -

The appropriate quadratic form (which is not symmetric) is

o=t <f # I (-5 %)) (T )

1<i<j<n

taking the scalar product (, ) used for key polynomials, and the involution & :
Ti — xr_ﬂlrlfi‘
One checks that, with D; = (z;,-1)0;, one has

(f D;, Q)G = (f, Qanz‘)G, (5.5.5)

the proof of the statement being reduced, as usual, to the case n = 2.
This leads to define still another basis,

[?f = 2* when \ dominant & Ei, = I?UG O0i(r;41-1) when v; > vy . (5.5.6)

The rest of this section depends on the following lemma, that we leave as an
open question for lack of a simple proof.

Lemma 5.5.2. For any dominant A\ € N", any v € N", one has

(KG, ") = 6y p0- (5.5.7)

The equations (5.5.5) and (5.5.7) give by a recursion that we already used

several times a pair of adjoint bases:
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Corollary 5.5.3. For u,v € N" one has

(KG, K9 = 6y - (5.5.8)
For example,

I?OG21(1*5U1)_2(1*952)_1 = K1+ Koo+ K301+ Koz + Koz + Koa1 +2 Kyo1 + Ko+ -+,

~

kﬁn = Kips — 2 K3 + Kip2 — 2 K301 + Koo1 — K13 + K2 — K31 + K91 + K3

and

(—’N((?m ; —’N(4G()1)G = 2(Kyo, —f(loz;) — 2(K301, —f(lozs) — (Kos1, f?130) + (Ko21, 1?120) =0.
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5.6 GraBmannian GV* and G polynomials

GraBmannian codes lead to the symmetric world. In that case, GY/*-polynomials
are obtained using the symmetriser 7o/ = (=1)“®)z%n=19, while one uses 7., =
(1-25) ... (1-2,)" 1, for G-polynomials, and D, = (1-mz3)...(1-z,)" ', =

2°7,, for K%-polynomials
Explicitly, given a partition A and v = AT its reordering, the Gramannian
polynomials of index v are

Gxy) = (DG ey,

Go(x,y) = Grp(x,y)(1-22) ... (1=2,)" "D,
Kf = 2'D, = x’\ﬂ’(lfxg) o (xy)" O,

Each of these starting points can be written as a flag Schur function. Let u be
the partition conjugate to A+p and ¢y = [[,(y;,-1)*. Then

and therefore

1/x n—
yMG)\érp(Xw Y)xo ..... b= (71)‘)\—’—[)‘511-%[(”—1)"] (Xn*yvm s 7X17Y11n+n—1)

exGayp (%, y)(1-23) ... (1-2,)" "}
= v+[(n71)"](xn7yM*(n71)a S 7X17YUn+n—170)
(fl)f(w)x”\ﬂ’(lfxg) () = vtln-1)n] (Xn — (n-1),...,%; = 0)

Writing the image under J,, of these functions is immediate, and one obtains
the following determinantal expressions of qu,/ *, G, and K¢

Proposition 5.6.1. Let A € N" be dominant, v = X\ T, u = v + [0,...,n-1],
p=[n-1,...,0], u=A+p)~, ex=1Lw — 1)*. Then

y”G;/X(X, y) = (—1>|’U|Sv+p(xn —Yurs-- s Xp — yun) (561)
CAév(X> Y) = Sv-i—p(xn —Yu — (nfl), ey Xy — Yu, — O) (562)
(-1)"VRRE = S, (%, — (n-1),...,%, — 0). (5.6.3)

For example, for n = 3, A = [3,1,0], one has v = [0,1,3], v+ p = [2,2,3],
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u=10,2,5], n=1[2,2,1,1,1] and the determinants

SZ(XS_YO) 53(X3—Y2) Ss(x3-y )
Y) = 51(X3—YO) 52(X3—Y2) 54 X3~ Y5)
So(x3-yo) Si(x3-y2) S3(x3-ys)

(
y22111G1/x( (
(

So(x3-yo- ; S3(x3-y2-1
2)

013

(y1-1)%-- - (y5— )G013(X y) = |S1(x3-yo—2

)
)
So(x3=yo—2) Si(xz- Y2*1) 3(X3-Ys
N SQ(X3—2) Sg(Xg—l) S5(X3)
—K0G13: Sl(X3*2) SQ(Xg*l) S4(X3)
S()(Xg*?) Sl<X3*1) Sg(Xg)

Lenart[137, Th.2.4.] gives the case y = 0 of (5.6.2), that is the case (5.6.3):
Gu(x,0) = K& = 48, ,(x, — (n-1),...,%, — 0).

One can expand by linearity such determinants, eliminating® the flag [. .., 2, 1, 0],

or the ﬂag [yMa SR 7YUn]'
For example, cg31G136(X,y) = S346(X3 —y1 — 2, X3 — y4 — 1,x3 — yg). Writing
Sy for S, (x5 — y1,X3 — Y4, X3 — ¥s), one obtains

06316136(X7 y) = —Ss16 + 25946 + S336 — S146 — 25236 + S136
K% = —Kzug+ 2Kous + Kazs — Kiag — 2Ka36 + K136 -

The functions generalizing the complete or elementary symmetric functions are
of special interest. For v = [0"7'k], (5.6.2) becomes, with A = [k+n-1,n-2,...,0],

C}\G’U(X7 Y) = Sn—l,n—2 ..... 1,]<:(Xn*n+1_y07 Xn*n+2—}’1, CIE axn717Yn—2> Xn_Ykz-i-n—l) .
Using recursively that for any z one has
S...,TJrl,T,..A(' ceyZ— 17 Z=Yiy - - - )
=S i1 (ovzyzy ) =S o (o 2,2,.00)

- yiS...,r+1,T—1,...(‘ <Ly 2y .. ) + yiS...,T,T—l,...(' <Ly 2y )
=(y-1)S_ sr (o 2,2,...),

one obtains in final that
(1—3/1) ce (1_yk+n71)éon—1k(x7 Y) = 51,..., 1,k(xn_1> N T e yk+n71) .

(5.6.4)
One may separate the two alphabets x and y, and expand this last determinant

as o
SN D) TS g (%) St (Yhani) -
i J

In terms of the Schubert basis, one has

Recall that Sg(x —7) = Sk(x) — rSk—1(x) + (5) Sk—2(x) —
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Lemma 5.6.2. Let k > 0, m = k+n-1. Then

x 1 1
(*UkG;r/z—lk(K y) = mymflkz(X, y)+ myonﬂm(xj y)
1
4o ——— Vi (x,y). (565
o Yeuey) (565)
Gonrn(x,¥) ! Yoo (. ) ! Yor-anu(x,Y)
n—1 X, — n—1 X’ —_— n—2 X,
Y ) () Y T 1y ) () TR
(_1)n71

+ Yin-1,(x,y). (5.6.6)
(1=y1) - (1-ym)
The case corresponding to elementary symmetric functions, v = [0"7"1"] is
a little more elaborate. To understand it, let us treat more generally the case
v = [0""Ek"], which also comprises the case that we have just disposed of. The
determinant (5.6.2) becomes

C)\GU<X7 y) = Snfl,...,r,k+r71,...,k(Xn_<n_1> — Yo, Xn T — Yn—r+1,
anfr‘*l — Yn—rtks--- aannJr]- - Yn+1—k) )
with A = [k+n-1,... k+n-r,n-r-1,...,0].
As in the case r = 1, the determinant can be simplified in the two blocks of
columns, factors (y;-1) being extracted, and one obtains, writing m = k+n-r,

m

H(yi*:[)TéOnfrkT (X,y) = Spn—r jor (zcnfr, Xy T X" Yim, - - ,xnfy,,}) . (5.6.7)

= n—r r

Expanding this determinant in the Schubert basis is not straightforward. Let
us proceed differently, and use the recursion (5.1.2) in y.
The polynomial Ggn—rpr(x,y) is the image of

ék" <X7 Y> = }/}C’L(Xa Y)<1_y1)7n tet (1_yk>7n

under a product of isobaric divided differences in the indeterminates y; = y1-1,y, =
yo—1,.... Since this product acts on a function which is symmetrical in y1, ...,y
and symmetrical in yri1,...,Y%mn, With m = k+n-r, it can be replaced by the

maximal symmetrizer 7¥, ,. Concretely,
Yin (X,¥)
1-2/1)” . (1_yk:)

Taking into account the symmetry in the two blocks of indeterminates y;, one
obtains

=1 (Y1) Gorrir (x,Y)
= (D)"Y (v, %) Wrr1-1)" - (Y1) (8 ... %) ... () ... 0%, .

éon_rkr (x,y) = ( - (yl—l)mfl e (ym—l)o o1
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One can now use (2.14.9), the role of x and y having been exchanged, divided
differences in the indeterminate y; being the same as in the y; = y;—1. The images
of Yy (x,y) are Schubert polynomials indexed by antidominant v such that v < k™.
The images of (y1-1)" ... (Ym—r—1)" = Y(n—pr(y~,0) being some “skew" Schubert
polynomials that will be detailed in the next chapter. For v € N" u € N"
antidominant, let

u u2—u Un —Un —
v/u=1[0" v —uy, 07" vy —ug, ..., 0" T 0, — ]

In final, one has the following expansion of éonfrk'r (x,y) and, by change of vari-

ables, of Gé,{’frkr (x,¥).

Proposition 5.6.3. Given positive integers r,n such r < n, and k > 0, let
m = k+n-r. Then

<_1>kT<yl_1)r s (ym_l)r éO"*TkT (X7 y) = Z K},k’“ (Xa Y) Y;”"’T/v<y77 0)(568)
v<kn—T

(*1)kryrer(1y/L)—(7-k'r- (X7 Y) - Z Yv,kr (X7 Y) 3/7’"77'/1) (ya 0) (569)

v<kn—r

sum over antidominant v, the polynomials having indices with a negative compo-
nent being set equal to 0.

For example, for n = 4,k = 5,r = 2, writing Y, Y, for Y,(x,y)Y.(y,0), one
has m = 7 and

2 2 ~1/x _
Y- Y7 G0055<X7 Y) =
Y0255 Y200
Yoos5Y22 ~~ Yois5Y201 Yio55Y010 ~~ Ya255Y000
Y1155 Y011

Notice that the Schubert polynomials in y are all the images of Y55 under divided
differences.

5.7 Dual GraBmannian Grothendieck polynomi-
als

Each of the three sets {G%/x(x, )} {Gu(x, )}, {KS} | for v € N* antidominant,
constitute a linear basis of Gym(x,). Recall that the natural scalar product on
this space, which orthonormalizes Schur functions, is the restriction of (, ). It is
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therefore natural to consider the bases adjoint to the preceding ones with respect
to the usual scalar on symmetric function. Let us determine only the basis adjoint
to {K5}.

From (5.5.7), one has, for any pair of partitions in N,

~ 1 ~ 1
G A _ G A _
(K#TH—(l —xi)”*i , T ) = (KMT’ i H—<1 —xil)i_l) _5>\7M'

i<j i<j
In the right-hand side, each factor of the type 1/(1 — 1/x;) is interpreted as the

series 1 + ;' + x;2 + ---. However, in the expansion, only the terms z* with

u > —p can give a contribution. Thus one can replace
M1 —ap)7 - (1-2,) 7! by

& =2 Loy ey (1+(n1)x;1 e +<n + in B 2))

=2 S\ 4n-1(x1)Sr1n_o(z2+1) - - Sy, (zp+n-1).

Since KET is symmetrical, one has

=G ~G
(KG. &) = (KG, &) .
The image of # under 7, = x”0, is a multiSchur function, for which we shall

follow the terminology used by [3, 14, 93, 182]. For a partition A € N, define the
dual Grothendieck polynomial g)(x,) to be

a(x,) = &7, = Sy(x, +n-1,...,2,+0). (5.7.1)

The preceding computations, assuming the validity of (5.5.7), show that the dual
Grothendieck polynomials constitute the basis adjoint to {IN(ET = CNJM (x,0)}.
Comparing the determinantal expression with the expression of a vexillary
Schubert polynomial, one sees that g, is equal to a specialization of a Schubert
polynomial:
gr(xn) = You-1,] (5.7.2)

Tpp1=1==Tan_1

The expansion of g, in the Schur basis is easy to write by multilinearity of the
determinant (5.7.1). This amounts to expand & =) ¢,z", and then to formally
replace each " by the Schur function s,. For example, for n = 3, A = [3,2,1],
one has

&= (Lo + 27 +257°) (14 2257)
— B2 811 301 4 3-11 90820 4 90310 4 9,300 4 2$3,71,07

Replacing x by s, dropping exponents, one obtains

G321 = S321 + S311 + 8301 + S3.—1,1 + 25320 + 25310 + 25300 + 25310,
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and finally, reordering or eliminating indices to keep only partitions,
g321 = S321 + S311 + 28320 + 25310 + S300 -

In fact, the combinatorial interpretation of vexillary Schubert polynomials,
that we shall see later, gives a better description in terms of tableaux satisfying
flag conditions. Lenart [137] used similar tableaux to describe the expansion of
the Grafmannian Grothendieck polynomials CNJ,\T(X, 0) in the Schur basis. Lam
and Pylyavskyy [93] call them “elegant fillings“, and also give a description of gy
in terms of reverse plane partitions.

In [117] , one finds several properties of dual Grothendieck polynomials, among
which a finite-sum Cauchy identity for an arbitrary integer 7:

Y Gai(x,0) galyn) = Y sa(xa) sa(y) - (5.7.3)

Arn AZrn

This formula implies directly the orthogonality property, without assuming (5.5.7).
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Chapter

Plactic algebra and the module Gchub

6.1 Tableaux

Let A be a totally ordered alphabet A = {a; < as < ...}, of non commuting
letters. We usually take A = {1,2,...,n}. The number of occurences of a given
letter a into a word w is denoted |w,.

Let us repeat the distinction between factors and subwords. A factor of w is
a word obtained by erasing letters at the beginning and the end of the word w, a
subword is a word obtained by erasing letters inside the word. It is important not
to mistake between these two notions | We shall also need sometimes to record
the position of a subword inside a word. In that case, it will be better to replace
erased letters by a black box.

31415912 EE415910 Hi4iE5E12

word factor subword

A Young tableau is a labeling of the boxes of the diagram of a partition A (which
is called the shape of the tableau) with letters of A, in such way that columns are
strictly decreasing from top to bottom, and rows are weakly increasing from left to
right. One can replace such an object by its reading’, that we still call a tableau.

68
415(516 & 68 4556 223357 1112444 .
21213[3][5][7

1[1]1[2]4]4]4]

One also needs to read (planar) tableaux by columns, still from left to right. The
ensuing word is called a column-tableau. For the above object, it is 6421 8521 531 632 54 74 4.

! Adopting occidental conventions that one reads from left to right, and from top to bottom.

181
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6.2 Strings

How to interpret the space of polynomials in 1, x5 of fixed degree, say 57 This
is a vector space with basis {z°°, 2!, ... 2%} but one can as well replace each

x?xg with 1...12...2, and write the string of monomials

a B

11111 — 11112 — 11122 —— 11222 —— 12222 —— 22222

An homogeneous polynomial ) ¢,z" in 21, £ may now be considered as a weighted
string, attaching a coefficient ¢, to each element of the string.

Of course, one can now view the above string as a string of words in the letters
1,2. These words look special, because they are increasing and involve only two
different letters. However, we show just below how to reduce general words to this
case.

Given a totally ordered alphabet A, a word w in A*, two consecutive letters in
the alphabet, say 1,2, pair recursively ---2---1--- as if they were parentheses.
Ignoring the paired letters, and the other letters of the alphabet, we are left with an
increasing subword u of w in 1,2 that we call the 1-subword (and more generally,
for a pair 4,i+1, one has a i-subword).

For example, given the word 1222111211222, we write on the same level the
letters in the order that they are paired, and put in boxes the remaining letters.

1 22211 1 211 2 2 2 initiadword

2 1

1—subword

We can now build a string of words, replacing the subword « inside w succes-
sively by all the elements of the string of u. By definition, an ¢-string is a sequence
of words which differ only by their i-subwords, and such that the sequence of i-
subwords is of the type

i —— M (i+l) — (i) — o —— (i+1)".

Here is, for example, a 2-string :

[2]1]2]342][2] —[2]1[2]342[3] — [2]1[3]342[3] —[3]1[3]342[3]

One may view the construction of the i-subword of a word w as the reduction
of the word to a monomial in x;, x;11. Let us show conversely that this allows to
lift any degree-preserving operator ¢ on JPol(x;, z,11) to an operator ¢ on the free
algebra.
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Indeed let w be a word, + = 1 and u = 1‘“25 be the 1-subword of w. Then
if p(xS22B) =3 Cy6:mr6=arpliTy, one defines ¢p(w) as the sum > ¢, 5w, s of all
words in the string of w with coefficients c, 5.

In particular, the lift of the simple transposition s; acts by symmetry around
the middle of the string, while the lift of 7 sends w, when o > 3, to the sum of
all words in the string between w and its image under the lift of s;.

For example, the image of w = 1123211112 under the lift of m; is

w= 1123211112 1123211122 1123211222 1223211222
w= 11 112 "1 o122 T 222 T 12 222
BU S + a3xg + x5 + 23).

We can perform this construction for every pair of consecutive letters in the
alphabet, and thus obtain i-strings in the letters i, i+1 and operators lifting s;, 7;, 7;
that we shall still denote by the same letters.

In particular, when the words are Young tableaux, their images by s;, 7;, 7; are
still (sums of) tableaux.

in accordance with 28x3z3m =z

Here is an example of a 3-string of tableaux

[3]] 4 [3]| 4 [3]] 4 [4]] 4
21213 —l212]3 —2]2]3 —l2(2]3
1]1]2 ]33] 1]1]2 || 1] 1] 2|44 1] 1] 2|4

and here is the action of of s3 and 73 on the first element of the string :

1 4
21213 S3=121213
1]1]2 B3] 1] 1] 2[4
4 4 4 4
21213 T™=1212|3 +1212(3 121213
1]1]2]|3]E] U] 2Bl [ 2|l (1] ]2 |[|H]
The last two equations lift respectively the identities z*31 23 s3 = %123 and
P37y = 2?1 (22 + 1314 + 23) 4.

The most elementary operators are the crystal operators e;, f;, which consist
in moving leftwards or rightwards on a i-string (or sending to 0 if not possible).
Write a for the letter ¢ and b for the letter ¢+1. Then one has :

ei(a®b?) = a*TT & e(a®) =

0
fi(a®?) = a7 & £i(bP) =0
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6.3 Free key polynomials

Beware that the lifted s;’s satisfy the braid relations according to [118], but not
do the 7;’s. It is proved” in [126] that one can however lift the key polynomials to
the free algebra, so that the following definition is consistent (we keep the word
“polynomial” for these elements of the free algebra, but distinguish them by the
notations K7, K7).

Definition 6.3.1. The free key polynomials K7, IA(f, indexed by v € N*°, are
defined recursively as follows. If v is dominant, then

K]: — [?.7: — ...3v39Qu2111
v v °
Otherwise, if v and i are such that v; > v;,1, then
F F > F I>F ~
K, =K, m & K, =K 7.

We display below the decomposition, in the basis K¥ , of the sum of all tableaux

of shape [2,1] on three letters, which is equal to s3,(3) = K7, °.

K = % 1]
_— SN
kgo:?zl f%l:?n
H |
K = B+ B, K =B
S =
f%:g:ﬂ

Since {K, : v € N"} is a linear basis of Pol(n), we have therefore lifted the
ring of polynomials into the free algebra, as a free Z-module. Rather than using
the free algebra, we will mostly use a quotient algebra, the plactic algebra, which
is defined in the next section.

Column tableaux belong to our family. Indeed, let v € {0,1}". Suppose known
that Kf =n"---1" and let i be such that v; = 1,v;1; = 0 (concanating 0 to
the right of v if needed). Then the image of K7 under 7;, which by definition is

20ne directly shows that either Proposition 6.6.1 or Proposition 6.6.2 is compatible with the
action of 7; or ;.
- 3Th€ COI‘I‘GSpODdng functions in ng[ are 1/012 = K012 = K012 + K021 + K102 + K201 =+ K120 =+
Koip.
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[?fsz_, consists of a single column-tableau obtained from K 7 by changing the letter
i into (i+1). By induction, this proves that any K7 : v € {0,1}" consists of a
single column-tableau.

For example,

~ 3] 2 = 4] 7 = 4] 7 =
Kﬁl_—3> £01:—2’K§)11:—4> 1f6101:~--

6.4 Embedding of Gym into the plactic algebra

By going to the free algebra, we have lost multiplication. In this section, we
introduce partial commutations to recover some products.

The combinatorics of the symmetric group makes an extensive use of tableaux,
which are an appropriate tool to extend to the non-commutative setting the dif-
ferent bases that we have considered.

Schensted described an algorithm to associate to any word w a tableau P(w).
This algorithm, in fact, may be traced back to Robinson. One gives an algebraic
formulation of this algorithm by defining, after Knuth [79], the plactic' relations:

cab = ach (a<b<c), (6.4.1)
bac = bea (a<b<c)),

that one can write planarly :

[a

(a<b<c)

]
a

b]

(b

(a<b<c)

[2]a] [&]=

D]
alc|

Two words are congruent iff they differ by a sequence of plactic relations.
The plactic algebra Plac is the quotient of the free algebra under the plactic
relations. The plactic algebra is an intermediate quotient between the free algebra
Sree = Z[A*] and the algebra of polynomial :

Sree = Z[AY] — Plac = Z[A* /=] — Pol(x) = Z[x] .

Let us note ev the projection map (called evaluation) onto Pol(x) (in the free
algebra, we shall use the alphabet A = {1,2,...} or A = {ay,a9,...}; in the
commutative case, we stick with x).

We recover now symmetric functions, because of the following property [118]

4 Terminology chosen by M.P. Schiitzenberger, as a tribute to Plate tectonics. There are
indeed "plates” inside plactic classes, in relation with Kazhdan-Lusztig theory, but the combi-
natorics of Kazhdan-Lusztig cells is far from being fully understood.
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Proposition 6.4.1. The ring Sym(x) is canonically embedded into the plactic
algebra, by sending a Schur function sy(x) to the sum s% of all tableauz of shape
A.

As a consequence, any algebraic identity in Gym has a non-commutative in-
terpretation in the plactic algebra.
For example, the product of two Schur functions

sx(X)s,(x) = D e su(x)

is described by a certain rule due to Littlewood and Richardson. However, the
equation

sTA)sp(A) =) &0 (A)

gives more information : the coefficient ¢ , is the number of factorizations (in the
plactic algebra) of any given tableau of ¢ shape v into a product of two tableaux
of respective shapes A and u:

t being of shape v, one has cf , = #((tl, to) = tites = t,8h(t1) = A, sh(te) = u) )
The original rule is the case where one takes t a Yamanouchi tableau®, i.e. t =

ce 3 = K7
For example , to find the multiplicity of sgs3; in the product s4915422, One can

4]
start with the Yamanouchi tableau 4'332516, which planarly displays as ; g g 5T
L{1]1]1]1]1]
into a product of two tableaux of respective shapes [4,2, 1] and [4, 2, 2]. There are

three such products

3] 33 3] 33 4] 313
2|2 2|2 1214 2[2 1213 2|2 :
1[a]2f4jafafa11] [afaf2f2)alafaf1] [af1]2]2][a]1]1]1]

and this is one way of finding, according to the original rule of Littlewood &

Richardson, that the multiplicity — ¢§37',5, is equal to 3. But one could as well

4
have factorized | 3|4 |4 into the products
2(3(3/4]4
112]2[3[3]4]
4 3[4 4 414 1 414
3|4 213 v 13]4 213 1314 33 ~
213[4[4)1]2]3[4] [2[3]4]4]1]2]3[3] [2[3]4][4]1]2]2]3]

5A Yamanouchi word is a word w such that for every factorization w = w/w”, then the right
factor is such that |w”|; > |w”]s > |w”|3 > 0. In particular, for any partition A, there is only
one Yamanouchi word which is a tableau of shape X, and it is equal to ...2*21*,
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Many determinants occur in the theory of symmetric functions. They give
elements of Plac, once one decides to expand them in some arbitrary order (thanks
to the plactic relations, the elements do not depend of the choice of the order).

Take for example the Jacodi-Trudi determinant expressing a Schur function
in terms of complete functions. Replace the sum of (unordered) terms s, =
> thih;--- by, by the sum > +s7s7 - sf. Then, in Plac, one has

Fo_ FF F
5\ = E £ 85 S -

For example, the determinant

hy hs hy
5221 = hi he hs
0 1 h~

can be expanded as hohohy — hohg — hihshy + h1hs and the element

sfsfsf—sfsf—sfsfsf—i—slfsf
is equal to Sg_j 5.1~ All words which are not congruent to a tableau of shape [2,2, 1]
cancel out.

Tableaux can be interpreted as non-intersecting paths. In that set-up, one
recovers properties of (binomial) determinants that Gessel and Viennot[54] obtain
by producing an involution which eliminates intersecting paths, instead of having
recourse to the plactic relations.

The same function as above is also a determinant of hooks :

5211 S2
5221 =
5111 S1

which can be expanded as s21,151 — 51,1,152. The reader can check that, in four
variables,

3 B B [ Bl HE] [
sil,lsf—sfl,lsfz(z +2] +[2] +[2] *[2] 2] 2]t
111] [1]2] [1[3] [1[4] [1]4] [1]1] [1]2]
S e Y e ) e e N Y
31 +1[21 +[3] +I[3] +[3] +[3] +[3] +I[3 <+++>
113] [113] [1]4] [1]1] [2[4] [2]3] [2]2] [1]2
1
—\[2]T 2] [3]F]3 <I1|1|+|2|2|+|1|2|+|1|3|+|3|3|+|2|3|
2

+ @4+ B4+ 24+ [114))

is still equal to s{ 2.1, the words which are not congruent to a tableau of shape
2,2, 1] eliminating two by two.
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6.5 Keys and jeu de taquin on columns

The jeu de taquin on two-columns tableaux produces a contretableau® with two
columns, or conversely. Starting from a tableau with r columns, repeating the jeu
de taquin on pairs of adjacent columns, one produces 7! objects’. Here follows an
example of the plactic class of a tableau with three columns of different lengths :

5]
2160 [1]3]6
13 b
5 14] 4
/! RN
5] 17576
316 314
1214] 9]
N /!
% 175
- 316
11276 e
4]

Given a tableau t with r columns, and the r! words w = w; - - - w, (factorized
as a product of columns) obtained by the jeu de taquin, the set of right columns
C(t) = {w,} is totally ordered by inclusion. The (right) key of t is defined to be
the tableau of the same shape as ¢t with columns in C(t), or, equivalently, and this
is what we shall keep in most cases, to be the exponent of the evaluation of this

key-tableau.

key = set of columns embedded into each other
< tableau congruent to some word of type . ..3"32v21"
& monomial x¥ = x' w3’ ...

& weight v = [vy,vg,...].

6| , one reads from the preceding hexagon
4]

For example, for t =

—eoler]

2
6]
C(t) = {a 7 } <1416 <:>l‘2$il%<:> [0,1,0,3,0,2]
2[4]4]

The fact that one has an action of the symmetric group on the columns of
a tableau has for consequence that one can compute the key in several steps,
replacing an arbitrary block of left columns by their key.

6skew tableau with outer shape a rectangle.

"Reading them by columns, they are the only words in the plactic class of the tableau which
are products of columns of lengths a permutation of the lengths of the columns of the original
tableau.
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By taking the set of left columns in the above jeu de taquin, one defines
similarly the left key of a tableau.
For the preceding tableau ¢ = 5 36 124, the left key is any of the following

objects
{, , <

6.6 Keys and keys

& rirsri < [3,0,1,0,2].
1]

—eoler]
—|o

According to [126], keys give the following characterization of the elements IA(f :

Proposition 6.6.1. Let v € N*, X\ be the reordering of v. Then IA(vf is the sum
of all tableaux on the alphabet {1,... n} of shape X\, whose key is equal to v.

Thus the set of tableaux of shape A is decomposed into a disjoint union of
subsets K7, v | = . Each subset contains a distinguished element ¢,, which is
the only tableau congruent to a permutation of a Yamanouchi word. One has

ty =...3%2"21" so that ev(t,) = z".

The jeu de taquin gives a second action on tableaux, this time by permuting
rows. Indeed, in the class of a tableau with two rows, of lengths «, 3, there exists
a single word which is the product of two rows of lengths (3, , and this element
(which is a contretableau) is given by the jeu de taquin :

3[6 [1]3]6 [1[3]4]6 [1]3]4]6]7
1[2]4]5]|7] — 214[5]7] — 2[5]7] — 2[5
tableau contretableau

Repeating this operation on a tableau t of shape \,with r rows, one generates
r! elements®. Given any permutation v of \, there exists one and only one word in
the class of ¢ which is a product u; - - - u, of rows of respective lengths v,, ..., v;.
Let us call this product the element of shape v in the class of t.

Here are some such elements in the class of the tableau 43423112 :

(4] 4 [1]4]4 [1]4]4
314 1[3[4 3 313
213 = 213 — 213 = 212
1]1]2] 112 12 1]
v=1[3,221] v=12,2,3,1] v=1[2,21,3] v=11,2,2,3

The second characterization of K7 given in [1206] is the following.

Proposition 6.6.2. Let A\ € N” be a partition of length r, v be a permutation of
it. Let uy < --- < u, be the indices of the non-zero components of v. Then K7 is
the sum of all tableaux of shape A such that the words congruent to them of shape
v satisfy the flag condition uy,. .., u,.

8with repetitions when some rows have equal lengths.
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For example, with A = [4,2,1,0,0], v = [0,2,4,0,1], the flag condition is
2,3, 5]. The tableau

- - flag
4 4 5
2 =11]2|2]|3]| 3
1]1]2]2] 1]2] 2
belongs to f?02401, but not
4] 4]
2 =l1]2]2]|H4]
1]1]2]2] 1]2

because there is a 4 in the middle row of the element of shape [1, 3, 2].

6.7 vice-tableaux

There is a third characterization of key polynomials which uses another distin-
guished element in the plactic class of a word w, the vice-tableau V(w).

The word V(w) can be recursively defined as follows. It is the unique word
aj -+ - ap in a plactic class Pl(w) such that

e a, is the suffix (i.e. the rightmost letter) of the contretableau in PBl(w)

e The shape of the tableau congruent to a; - - - a,_1 is maximum (with respect
to the natural order on partitions) among the words in Bl(w) having suffix
Qy.

® a;---ay_q is a vice-tableau.

Recall that the inverse operation of “inserting a letter” into a tableau ¢ (Inverse-
Schensted algorithm) consists in choosing a box at the periphery of ¢, and finding
a pair (¢, x) such that ¢’ is a tableau of shape obtained by erasing this box from
the shape of t/, and #z = ¢. Thus, the recursive definition of a vice-tableau
implies the following algorithm, consisting of a distinguished sequence of Inverse-
Schensted operations : at each step, the box, denoted B, which is erased is the
highest which factors out on the right the suffix of the contretableau.

For example

[1]3[3]4]5
[1131314]5] [1[3[314[5 w42 [(W13[3]5
12[4]|= 112[4]2 = 111l = 112]4]4
112 (1 12

choose!
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shows that
V(13345 124 12) = V(13345 24 11) - 2.

Iterating, one finds a word that one factors into its maximal rows, and that on
can display as a skew tableau

315
V(13345 124 12) =[1[21374[4|, shape [0,3,0,5,2].
1[1]2
The shape of the vice-tableau is the sequence vy, vs, ..., v,, where v; is the length

of the (single) row ending with a letter i. Empty rows have to be recorded !
The original unpublished characterization of key polynomials is the following.

Proposition 6.7.1. Given v € N", then IA(f is the sum, in Plac, of all vice-
tableaux of shape v.

415
+2[3]3
2

9|5 415 5|5 415 5
1[3[3+[113]3]t[3[3[3]+[3]3[3]|*[2
2 2

(O8] [

KF.
For example, K50, =

3
2] 2] 2]
. This sum is congruent to the following sum of tableaux, which is more difficult to

5] 4 5] 4] 5] 4]
identify at first glance : [3T5] +[3[5] +[3[5] +[3[5|! +I[3[5] +[3[5] -
11213] [1[2[3] [2[3[3] [2[3[3] [2]2]3] [2][2]3]

One has a similar notion of left vice-tableau, by iterating the operation: factor
t into xt’ in the plactic monoid, in such a way that x is the first letter of the
tableau, and the shapes of ¢ and ¢’ differ by a box which is the lowest possible.

The same word as above gives

roco

—]

315
315 5 324w 315
21314 =3[2][3]4 = [1[1]1]2[4] =1[2]3]4
1]1]1]2]4] 1]1]1]2]4] 1[1]2]4[m]
choose!
and, iterating, the left vice-tableau
[3]3]5
214 :
1]1]1]2]4]
6.8 Ehresmann tableaux
Given a permutation o € S, the sequence {01}, {01,02},...,{01,...,0,} is an
increasing flag of subsets of {1,...,n}, and may be interpreted as the sequence of

columns of a contretableau, ordering each set decreasingly, or of a tableau, reading
the flag from right to left.

315151515 5
3344 15
o=13,51,4,2 = 13[3] = [3]4]5
112 2131315
1] 11111(3]3]
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These tableaux, that we shall denote £(o), were used by Ehresmann [35] to
describe a cellular decomposition of the flag variety relative to the linear group
GL,(C). Ehresmann described the attachment of cells by introducing an order:
o < ( if and only if £(0) < £(¢) componentwise. This order on permutations
is the same as the one obtained by taking subwords of reduced decompositions,
and usually called the Bruhat order, or strong order”’. A tableau t on the letters
1,...,n of shape [n, ..., 1] has a key which is some £(¢), and we shall denote this
permutation ?zég’(t) More generally, if ¢ is of arbitrary shape, the set of columns of
its key may be completed in the set of columns of an Ehresmann tableau, and we
define %(t) to be the permutation o such that £(o) is (componentwise) minimum
among those £(() containing the columns of the key.

4] 2[414 4]
For example, [513T4]=[1[113| has key [374]4], and
1/1]2 12 21212
4]
% % ;)1 1 = [2,4,3,1] is the minimum Ehresmann tableau containing
112]2]2]

the columns [4, 2], [4, 3, 2].

Similarly, one can take the maximum Ehresmann tableau containing the columns
of the left key of a tableau, and one obtains a second permutation ‘%916 7 (2).

Given two tableaux ¢, u of shapes A, u, the product tu is defined to be frank if
the shape of the tableau congruent to tu is equal to the sum A 4 p. The action of
the symmetric group on the columns of a tableau seen above has exhibited frank
products of columns.

In the case where t and u are single columns, tu is frank iff tu is a column-
tableau (case ¢(t) > ¢(u)) or a column contretableau (case £(t) < ¢(u)). More
generally, it is shown in [126, Th.2.8] that tu is frank iff for every permutations
t=t'...tF, u=u'... u" of the columns of ¢t and u respectively, then the product
of two columns t*u! is frank. Thus, the test to be frank reduces to the case of
pairs of columns.

The notion of frank product is closely related to the Ehresmann-Bruhat order,
as shows the following lemma given in [126, Th.2.10].

Lemma 6.8.1. Given two tableaux t,u of respective shapes \, i, then the product
tu is frank if and only if ¥(t) < ¥ep(u).

The order on Ehresmann tableaux is the componentwise order. One could
think of avoiding the construction of keys, and directly use the componentwise
order on tableaux of a given shape. This structure on tableaux is not related to

9Ehresmann did not mention permutations, but was using flags of Pliicker coordinates,
in other words, was using Ehresmann tableaux. The terminology “Bruhat order” is due to
Verma[190], because of the Bruhat decomposition BoB, of GL,(C), B being the Borel sub-
group of triangular matrices. I interviewed Bruhat, who, of course, did not claim any paternity
about the Bruhat order.
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the combinatorics of Schubert, Grothendieck and Key polynomials. It is not even
appropriate to characterize the shapes of products of tableaux. For example, the
product

4] 4] 414
2|2 2|3 = |2]2|2]2|3
1[1]2] [1]1]2] 1[1]1(1]2

has shape [5,5,2] # [3,2, 1] + [3, 2, 1] though the first tableau (which is eqal to its
right key) is componentwise smaller than the second one. In fact, the left key of

the second tableau is equal to [9]92] and the preceding lemma forbids the shape
1]1]1]

o~
D)

of the product to be equal to |6

6.9 Nilplactic monoid and algebra
The plactic relations
ikj=kij & jki=jik,i<j<k,

are compatible with the braid relations s;s, = s,s;. However, there is a problem
in the limit case

121 =211 & 221 =212,

while s18987 = $28182. Since $25151 and $28987 are not reduced decompositions, one
can decide to transform accordingly the plactic relations and define the nilplactic
relations on reduced words'’ to be

ikj 2 kij & ki jik & i(i+1)i & (i+1)i(i+1) (6.9.1)

sending to 0 all non-reduced words.

The nilplactic monoid is the quotient of the free monoid under the nilplactic
relations, and the nilplactic algebra is its associated algebra. The nilplactic monoid
is very similar to the plactic monoid. In particular, one has the following analog
of Schensted bijection[122; 34].

Proposition 6.9.1. In each nilplactic class of a word which is a reduced decom-
position, there exists a tableau and only one tableau. The words in the class of a
tableau t of shape \ are in bijection with the Q-symbols'' of total shape X.

Oreduced when interpreted as products of simple transpositions

11 Given a word w = wy ... w,, the shapes of the successive tableaux which are congruent to
the words w1, wiws, ..., w; ... w, constitute a flag of shapes which can be encoded by a standard
tableau of shape A\. One has a plactic Q-symbol and a nilplactic Q-symbol, depending on the
relations that one uses to transform the left factors of a word into a tableau.
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The correspondence between the plactic and nilplactic classes can be realized
by describing a bijection exchanging the two congruences. I gave such a corre-
spondence with M.P. Schiitzenberger under the name plazification, but Reiner and
Shimozono obtained a much more elegant description. The plactification Bl is a
transformation on words which is defined recursively as follows, starting with the
empty word which is exchanged with itself.

(w=iw', Pw)=n) = Fiw) =il

where s; acts as defined in the preceding section.

The plactification can be visualized as moving a cursor (here a box) from right
to left, a pointed letter acting as a simple transposition s; on the factor on its
right. For example, PI([3,2, 1, 3,2, 4,3, 4] is the last word in the following chain

2,1,3,2,4,3,[4]] = [3,2,1,3,2,4,3,4
2,1,3,2,4,[3], ,2,1,3,2,4,3,3
2,1,3,2,[4],3,3] = [3,2,1,3,2,4,3,3

3,2,1,3,[2],4,3,3

3, ]
3, 4]
3, ]
[ ] 3,2,1,3,2,4,2,2
[3,271,,2,4,2 9]
3, ]
[ ]
13 ]

3,2,1,3,2,3,2,2
3,2,1,3,1,3,1,1
3,2,1,2,1,2,1,1
3,2,1,2,1,2,1,1

3,2,[1],3,2,3,2,2
3,1,3,1,3 1,1
3],2,1,2,1,2,1,1

Needless to add that the morphism inverse to Pl is obtained by moving a cursor
from left to right, and acting accordingly on the right factor.

3, ]
3 ]
3 ]
[ ]
[ ]
[ ]
[ ]
[ ]

Proposition 6.9.2. [175] The morphism BI() sends the nilplactic class of a re-
duced word to a plactic class, preserving the Q-symbol.

For example, the nilplactic class of [2,3,1,2,3] is sent to the plactic class of
2,2,1,1,1].

23123 22111
H H
21323 ﬂ 21211
/ \\\ / \\\
12312 21232 12211 21121
\\\ / \\\ /
12132 12121

One has still an action of the symmetric group on the columns of a nilplactic
tableau, so that one can define a right nilplactic key or a left nilplactic key.
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For example, the hexagon

2]
24 24
13 3
23] 2]
/ N\
4] [1]2]4
213 113
1[2]3] 2]
N\ /
4 1[4
2 — " 2[3
1{2]3 11
2]
. 4] . 4]
gives the left key [912] and the right key [373] -
1]1]1] 2[2]3]

Notice that, because the tranpose of a nilplactic tableau is still a nilplactic
tableau, one has also two other keys, the bottom key, and the top key, obtained
by transposing rows using the niplactic relations.

Since two reduced words which are nilplactically congruent are reduced de-
compositions of the same permutation, the set of reduced decompositions of a
permutation decomposes into a union of nilplactic classes, that one can charac-
terize by the tableau that each of them contain. As a consequence, the number of
reduced decompositions of a given permutation is a sum of cardinals of plactic or
nilplactic classes'? The problem of determining the number of reduced decomposi-
tions of a permutation has been considered by Stanley [184] who have reformulated
it in terms of certain symmetric functions which are now called Stanley symmetric
functions, and are the stable parts of Schubert polynomials. Edelman and Greene
[34] gave a more combinatorial solution in terms of balanced tableauz, using also
the nilplactic relations. I preferred to use here the point of view of the note [122],
supplemented by the plaxification.

For example, there are 414 = 168+84+162 reduced decompositions of the per-
mutation [3,1,7,6,2,4,5], which regroup into three nilplactic classes. We write
below these three tableaux, as well as their images under JI.

- _ 6] 6]
6 6 516 516 s [ &
=16 ﬂ)55 4[5 ﬂ45 26 LZ5
21415 ola[4]” 274 214l " 575 214
1/3]4 11212 113[4] 1[2]2] 1314 112]2]
cardinality 168 84 162

of each class

125, plactic or nilplactic class containing a tableau of shape A\ has cardinality the number of
standard tableaux of shape A\. This number is also the dimension of the irreducible representation
of index A of the symmetric group.
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6.10 Lifting *Pol to a submodule of PBlac

Let us first consider the space of polynomials Bol in z1, s, ..., Ty, ... (no limit on
n), as an inductive limit of Pol(x,), with x,, = {z1,..., 2, }.

We have defined flag-elementary functions P,(x). There is only one natural
way to lift an elementary symmetric function to the free algebra. It must be,
in agreement with the definition of free key polynomials, the sum of all strictly
decreasing words of a given degree in a totally ordered alphabet, that is to say
the sum of all tableaux whose shape is a column of a given length :

ex(x,) «— AF(r) = sum of all decreasing words of length k in 1,...,r .

By product, for any v € N", v < [n-1,...,0], define in the free algebra
PF = A" (n-1)A"?(n-2)--- A" (1)A""(0) .

The Z-span of all P7 in the quotient algebra Blac is denoted Schub, and is
therefore a lift of Pol. Indeed, every polynomial is lifted to Blac by expanding it
into the basis {P,}, then formally changing every P, into P7.

The word 21 = A?(2) belongs to Schub, but not the word 12, because it
has the same evaluation. Neither does the word 22 belong to Gchub, because
ZL’% = PllOO - P2000 - P200 lifts into

(1+2+3)(1+2) — (21+31+32) — (1+2)1 =22+ 12 — 21 = + —12]

We have a problem now. We have already lifted JPol to the free algebra by
defining free key polynomials, we must ensure that the two elements corresponding
in Plac to a polynom f = > ¢, P, = > d, K, coincide.

Let us prove that Gchub is the image in Plac of the product ring
@ Gym((3) ® Gym(2) @ Gym(1).

First, the lift of a Schur function sy(x,), in terms of P7, is given by the ordered
expansion of a determinant A,(m/m —1/---/n), where u is the reordering of
A~. Since AY(m) = AY(m-1) + mA"™!(m-1), the determinant is the sum of
Ay(m-1/m-1/--- /n) and a determinant with first two rows

mA (m-1)
A'(m-1)

However, all the A’(m-1) commute between themselves in Plac, and therefore
this second determinant is null. Repeating this transformation, one sees that the
original determinant is equal to A,(n/---/n), and is therefore equal to the sum
s{ (n) of all tableaux of shape X in the alphabet n = {1,...,n}.

The intermediate expression A,(n+1/---/n+1/n) shows that s{(n) is also
equal to a sum y_, . Fs7 (n+1)A’(n). A product s/ (n+1)s{(n) may therefore be
expressed as a sum of products s7 (n+1)s; (n+1)A’(n), then of products s7 (n+1)A’(n).
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Finally, by right to left transformation, any product - - - sf (n+1)s{ (n)s? (n-1) - -
may be expressed as a linear combination of P”.

As a consequence, the elements

HY = ... 57 (4)s7 (3)sT (2)s7 (1)

Vg v3 v2 V1

constitute a linear basis of Gchub because they belong to Sehub and their commu-
tative images are a basis of Pol.

Let us check that the operators m;, 7; preserve Schub. For any ¢, any product
f=---s{(i+1)s) (i)s] (i-1)--- is a sum of products Uw, where U is a i-string,
and w is a word in the alphabet 1,...,i. However, for any k, the image of Ui*
under 7; is equal to Usy (i,i+1). Therefore the image of Uw, and of f, under
belongs to Gehub’®.

Since the dominant free key polynomials K7 belong to Schub, all the K7 also
belong to Gehub.

In all we have at our disposal four bases of Gchub : {P7}, {H”} and {K7},

{K7}, and we can use the operators m;, 7;'".

The relations between these different bases are exactly the same as at the com-
mutative level. For example, writing the functions together with their expression
in terms of tableaux, one has

RF —[3] 3]
02l g 2|+ 1]2]

_ F oo 2 F
(- @ BB (e
_ Foo_ 2 Foo_ |2
<P2010 = (++) ) + <P0210 —>

- <P1€00 = (++>

- (Hg;l = (1+2+3)(11 + 12+ 22)) - (H{m —(1+2+ 3)11)

- (Hg; 111+ 1124122+ 222) - (Hf; = (11+12+22) 1)

+ (H-fl —(1+2) 11) + (H{: 111).

13 As usual, the case ot understand is the case of cardinality 2. The image of (12)(11) under
71, which is 1211 4+ 1212 + 2122 is not equal to (12)(1171) = (12)(11 + 12 + 22) in Plac, though
12 is invariant under s;. The word 12 does not belong to Schub. On the other hand, 11412422
is a 1-string, and the image of (11 + 12 4 22)(11) under 71, which is (111 4+ 112 + 122 4 222) +
(121 + 221) + (0), is congruent to (11 + 12 + 22)(1 +2) = K + K{, and do belong to Schub.

14But the simple transpositions s; do not preserve Gchub. The image under s, of 11 is 22, which
do not belong to Schub because the elements of degree 2 in 1,2 of Gchub are linear combinations
of K =11,K{, =21, K§, = 12+ 22.
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Let us denote Gehub,, the lift of Pol(n). It has bases {K7,v € N}, {KF v €
N} and {H7,v € N*}, but the finite set {P7,v < [n-1,...,0]} generates only a
subspace. R

Any element f of Gehub,, is written uniquely as a sum f = > ¢, K. Instead
of characterizing f by its commutative evaluation, one can simply restrict it to

the set of tableaux {t, : v € N"}. Indeed, ¢, is the coefficient of ¢, in f. For
example, in the above expression, one points out 3] and to
xample, ve exp , one p 2|, 31272

Is not necessary.

2
check the multiplicity in I?g;l, the second tableau g

2]
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6.11 Allowable products in Gchub

We have just stated that any product of the type ---s{(k+1)s7 (k)s] (k-1) - -
belongs to Gehub. The weakly decreasing condition on alphabets is necessary. For

example, the product
s (3)s7(2) = Ko, + Kijny

belongs to Gehub, but

st (2)sT (3) = K + K, + +

does not belong to it.

Let us show that right multliplication by a column k...1 is permitted.

Given k, and any f = ---s{(k+1)s}, (k)s} (k-1)---s7 (1), its product on the
right by k---1 is equal to

o8 (k1)sh (k) (k- 1) 87 (k-1) -+ 57 (1),

because all letters not greater than k£ commute with the column £---1.

By iteration this proves that the product on the right by any K7, X partition,
preserves Gehub. Thus, the product in ol by a dominant monomial 2, that we
have used many times, lifts to the right multliplication by K7 .

We have seen that column-tableaux belong to Gchub, being equal to some l?f
with v € {1,0}*. Given n,r, the column (n+r)---(n+1) may be expressed'® as a
linear combination of Pf on- Consequently, for any v € N”, the product

(n+r) -« (n+1) KT

belongs to Gehub.
For example

R = (M) - 3) - N AN+ M@ @) (@) - 1)

4]
+13
2

- [ em) -

2] 2]

belongs to Sehub (it is in fact equal to f({m).
One can use the fact that products s (n)K7

-, v € N belong to Gehub,,, to
generalize the Littlewood-Richardson rule.

15 Explicitely,

(ntr)---(n+l) = Z (_1)70_1“(“)(})51,0,@71 ,,,,, Up—r41,0n Pi,url ..... wr—r41,0n)
u<[r,1...r—1]

sum over all permutations u below (for the Ehresmann-Bruhat order) [r,1,...,7r-1].
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In the case where v = p is dominant, one has

sy (n) by = Zt Kgl:(ttu) 5

sum over all tableaux ¢ of shape A such that tt, is congruent to some tableau
t,. Using the operators 7., one obtains the product of a Schur function by a key
polynomial in terms of tableaux which are in the orbit of Yamanouchi tableaux
under the symmetric group.

Lemma 6.11.1. Let \ be a partition in N*, v € N”, then one has
st (KT = Zt Kl (6.11.1)

sum over all tableauzx t of shape X\, t' € IA(vf, such that tt' is congruent to some
tableau t,,.

For example, restricting the products K{ul?v, with v = [2,1,0], to the terms
which give a key which is a permutation of [1,2, 3], one has

3 3 3
K£2K£0 - 112 ) € K?Z;l ’ 212 9 € Kg;lv 113 2 S Ké}iQ )
1[1] 1[1] 1[1]
KKy — | 12 3 € K, , 213 3 € K33 |,
1]1] 1]1]
KoKy — | W 32 € K33 , 232 €Kiy |,
1]2] 112]
KoKy — 233 € Ky 233 € K |
1]2] 112]
KO};2K1]€]2 - 213 ) < K1];3 ) 113 ) € Ki?; ’
1]3] 1[3]
while K%,KZ, = K, — 0. The sum of all these terms is
KK — ) . 2K, = 2K,
in accordance with s3, = 28391 +.... The multiplicity 2 can already be read from

the first product K(ﬁQIA(Qf'lO, because K(ﬁQIA({'lOngl = K{,KJ,. It is therefore the
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number of tableaux t of shape [2,1] such that ¢ty be congruent to t3p;. We are
back to the Littlewood-Richardson rule ! Notice that in the product KgiZ[/(\'gio one
hAas now ignored the contributions 322 211 and 313 211 because I?2§17T321 =0=
K om301.

Linear relations in Gehub can be checked by examining their commutative im-
age in Pol, and conversely, any identity in ol has a non-commutative counterpart

in Gchub. We already used this property for symmetric polynomials.
For example, we have seen that Kyo39; has a determinantal expression

So0123(X5, X5, X5, X3, X3) = S123(X5,X3,X3) ,
because [0,2,3,0,1] is a vexillary code. Expanding

Koooor Kooz Koos
S123(X5,X3,%3) = | 1 Kooz Kooa
0 Koo Koos

in any manner, transforming each K, into K7 after reordering each product into
a decreasing flag, one obtains

F o qoF F o F F F o F F o F F o F
Ko2301 = Koooo1 Kooz Kooz = Kooo01 Kooa Koo = Koo3 K003 + Koos Koor -

Because Koo, = Koi, — 373K0,0,k—17 Koo = Kj, — (5E2+$3)K0,0,k—1 +$25U3K0,0,k—2,
rt+ast+as Ky Ks

one can transform the preceding determinant into 1 Koo Koy .
0 Koo1 Kooz
Writing x1+x4+x5 = Koot — Koor + K1, expanding the determinant, and

reordering the products, one obtains a second expression

F g F F o F F F o F F o F o F F N2 F
Koas01 = Ko0001 Kooz Koz — Koooo1 Koo Koa — Koo Kooz Koz + (Koor) Koy

+ Koo K K = Koo K K™ = Koos K3 + Koy K3

Apart from the vexillary case, we have met other determinantal expressions.
The case treated in Th. ?? has for counterpart in Schub the following lemma
(which is a special case of the description of key polynomials).

Lemma 6.11.2. Let v € N" be dominant, u € N" be anti-dominant, v//u =
(0%t vy, 0%2 7" wg, ..., 0=t ] Then va//u is equal to the sum of all tableaux
of shape v satisfying the flag condition [u; + 1, ..., u, + nJ.

For example, for v = [2,1], u = [1,3], then v//u is [0%,2,0% 1], the flag is

u+[1,2] = [2,5] and Ko, is equal to the sum of all tableaux CCL 3 such that
b<2 ¢<bh.
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6.12 Generating function of Schubert polynomi-
als in Gchub

According to Cauchy formula (2.10.2), the product §2 = Hi7j:i+j<n(yj +x;) expands
asum y o Xgu(y,0)Xs(x,0). Thus, one can define the Schubert polynomials
in x as the coefficients in the expansion of €2 in the basis of Schubert polynomials
in y. This looks like a circular definition without interest, except that one can
easily lift 2 to an element of Gehub, and obtain now the free Schubert polynomials
from the commutative ones.

Given n and an alphabet A = {a4,...,a,}, one defines

X7 (A, x) = ((an_rxl) . (ar:vl)> ((an_gfxg) . (arxz)) o ((arzvn_l)> .

Given 0 € &, the free Schubert polynomial X7 (A,y) is defined to be the
coefficient of (~1)““?) X, (x,y) in the expansion of X7 (A, x) in terms of Schubert
polynomials in x,y '°

Since the kernel X7 (A,x) belongs to Schub, the element X7 (A,y) coincides
with the element defined by expressing X, (x,y) in any of the bases K, (x), P,(x), H,(z),
and replacing these polynomials by their lift in Gchub.

For example, taking the alphabet A = {[1],[2],..., }, persevering in reading

columnwise, then the coefficient of X513(x,y) in the expansion of

2 _
XZy(A,x) = 21

*931 *932 ’

is equal to

+12 —12 ,|_(Z/1+3/2) 1|+y1y2 -lE(—y1> (—y2).

1] [ [

In the case where ¢ is dominant, of code A, the filling of each box of the
diagram of A with the factor |i| — y;, where (4, j) are the coordinates of the box,
still belongs to Gehub, and therefore is equal to X7 (A,y). For example,

F _—y1 —yz
Xina(Ayy) = _yl _y2

2121~ (y+9p) (f tH 2|> + e (T1)+ [112)+[212)

+ (Wi+yyer3) B — (ie+ny3) (1] +[2) + vivs -

16 A function of A, x may be expanded in terms of functions of A,x,y, one can use simultane-
ously several Schubert bases {X,(x,2z)} of Pol(x) with different z.
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Free Schubert polynomials X7 (A, y) may be recursively obtained by using the
divided differences in y'”. For example

_X:’iu(AaY)a%’:ngus(A,Y): (% 1|+ 2 2|> — Y1 (|1|1|+|1|2|+|2|2|)

1
— (Y1+y2+ys) + (Y3 +11y2 + v1ys) ([T +[2) — v (2+vs)
= <—y1) <_y1> (+—y2 —ys) .

"but defining divided differences in A which would satisfy the braid relations is not feasible.
One can however lift formally the action of divided differences on the basis {P,}, as is used in
[127, 48].
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Chapter

Schubert and Grothendieck by keys

7.1 Double keys

In the commutative case, we did not define key polynomials in two sets of variables,
contrary to Schubert or Grothendieck polynomials, because there was no “good”
candidate. In the free world, it is very easy. Indeed, the operators s; or m; on
words can be obtained from the operator f;, which changes, whenever possible, a
specific occurence of a letter ¢ in a word w, or a tableau, into i+1. We can act on
biletters (i.e. letters with a superscript). Ignoring the superscripts, we point out
some biletter (z) as in the case of single letters, and we transform it into (iﬁ)
This action does not lift a commutative action.

Noticing that the above transformation preserves the difference between su-
perscript and subscript, we can describe directly the transformations on biwords
from the case of words: if a letter ¢ is transformed into a letter k, then in the case
of biletters, (Z) is transformed into (j +,’:_i).

Starting with an appropriate word in biletters replacing the word - -- 22171,
and extending the action of 7; or 7; to biwords, we obtain sums of biwords.

For a partition A, define

(s) Cv)

By definition, the elements K, and ]I:Q,, when v runs over the set of permuta-
tions of A, are all the images of K, and K, under (reduced) products of ;s (resp.
%7;,8).

205
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It seems that not much has been gained by passing to biletters. Writing

K, = 2 +2 + +12 +|3 instead of
tla] [af2] [1]1] [1]3] [1]3]

1 1 2 2
o - O] O] 0] Jol [
() (1) (1) ()| G)
is, indeed, immediate. But these new functions possess more properties than in
the case of single letters. For example, under the projection

(1) = = w,

one obtains polynomials in two sets of variables that we shall still denote K,.

For example, K, = g 2|—|— il)) 2|+ % 2|+ i’ 1|—|— % 1lis transformed into

five tableaux of biletters which compose Kgo; and become

T3=Y2 T3=Y2 T2=UY1 T3=Y2 T2=Y1

To2—Y2|(T2—Y3 T1=Y1|T2-Y3 T1=Y1|T2—Y3 T1=Y1|T17Y2 T1=Y1|T1~Y2

We already met polynomials in two sets of variables x,y. The next theorem
shows that double key polynomials and Schubert polynomials coincide in the vex-
illary case.

Theorem 7.1.1. Let v be a vexillary weight. Then K, = Y,(x,y) .

Proof. The two polynomials K, and Y, satisfy a transition formula involving the
same vexillary weights v', u :

Yo(x,y) = (zn —y)Yo(x,y) + Yu(xy) & K,=2,Ky+K,.

One can suppress terminal zeroes, and therefore suppose that v,, = k > 0. In that
case v' = [vy,..., V51, k — 1]. On the other hand, the expansion K, =>_ _ K,
can be cut into two parts, according to whether w,, = k or not. Let 7 be the set of
tableaux occuring in K7 such that the top row of length k ends with n (and there
is no n below in the tableau). From the properties of keys and vice-tableaux given
in the appendix, one sees that the sum of these tableaux is equal to Kf . Erasing
the pointed occurrence of n in these tableaux, one obtains K7,, and therefore one
has that the x,y-evaluation of ), ;¢ is equal to (z, — yj)f?v/, with j =n+k—/,
(k, ¢ being the coordinates of the pointed box containing n. Assuming now by
induction that K, = Y,(x,y), Ky = Y, (x,y), one obtains that K, = Y, (x,y).
QED
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The function Kyo; displayed above as a sum of five tableaux is equal to Yga1,
but the function Kjgs, also displayed above as a sum of five tableaux, is not equal
to a Schubert polynomial, because the weight [1,0, 2] is not vexillary. In fact, one
has

Kio2 = Yioa(X,¥) + (ya-y3)Ya(x,y) + (y2-93) Y11 (X, y)
+ (Y3-y2)Yio1 (X, y) + (y2-v3) (ya-y3) Yi(x,y) -

The functions Y,(x,y) can be characterized by their vanishing properties. For
example, Y91 (X,y) vanishes on all specializations corresponding to the permuta-
tions in &4 of length < 3 different from [y1,ya4, y3,y2]. However, the individual
tableaux in the expression of KZ,, do not necessarily vanish, only their sum does.
The following matrix give the non-zero specializations for the tableaux of shape
[2,1] given above, and written here as words in 1,2, 3, putting A = (y1 — y2)(y1 —
Ys) (e —y3), B = (yo — v1)(y2 — va)(ys — 91), D = (y2 — y3)(y2 — va)(ys — v1),
E=(y2 —y1)(ya —y1)(ya — y3), F = (y2 — y1)(y2 — ya) (Y2 — y3)-

212 322 312 311 211
Y2, Y1, Y3, 04] | O —A A 0 0
Yo, v1,9a,3]| 0 —-B B 0 0
s, y1, 90,2 | 0 —B B—D D 0
(Yo, ya,y1,y3] | B F —E—F 0 0
Y3, Y2, Y1, 94) | A0 —A A —A

Let us indicate another manner of using key polynomials to distinguish some
interesting elements of Pol(y) ® Pol(x). In fact, we shall rather use the space
Sree[y] = Pol(y) ® Free, obtaining the previous case by projection.

Fori=1,2,..., let

O, =1mm+7 ®s;

acting on §ree[y]. These operators do not satisfy the braid relations, since the
operators T; acting on Free do not either.
For any € N let

Fy = Z K,(y)t € Sreely],

sum over all tableaux ¢ with right key = v, v denoting the left key of ¢.
The following statement shows that the elements F, can be generated recur-
sively, in a manner analogous to the generation of the K7 .

Theorem 7.1.2. Let v € N", and @ be such that v; > v;1q1. Then
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Proof. To simplify notations, denote i = 2, i+1 = 3, v = [evyv3e]|. Given a tableau
t, let W(t) = {w} be the set of columns which occurs as left factors of ¢ in the
construction of the left key. If there exists w € W (t) such that 2 € w,3 & w, then
the left key w of t is such that us > wus. If on the other hand 2 ¢ w,3 € w, then
ug < us. Otherwise uy = u3.

The set of tableaux with right key v decomposes into 2-strings or singletons.
Let us write, instead of a tableau, the product of columns which discriminate
between 2 and 3 when it is the case, the first column being put in a box, erasing
all the other letters as well as the pairs 32 not interfering with the first column.
The transformation operates only on the written letters.

The set of tableaux is composed of pieces of the type

e A string

22---22—>22---23_>..._>33---3:>i_>33---33,

hey= [sfas] hey= [safe]

with 8 > «. The corresponding subsum of F, is

Bﬁ%aol!(Zk'+-2k_13_% %_3k _% oaﬁollzﬁ

Its image under ©, is

Kﬂ’m.)(Z’“ o 3B+ K (28 303

+ KU g (—(28+ - +35)3) =0.

(K?

[Ye761)

o A singleton K¥;,,[2]2%. Tts image is
Klop 33" + Klgo[2] (2718 + - +37) .
o A singleton K7, ;,[3]22". Its image is
Ko gd3]2 (2 4+ 4313,

e A singleton Kune, Which is sent to 0.

In all the above cases, one has obtained words such that their left key is the
index of their coefficient KY. Moreover, the commutative diagram

Freely] — Freely]

Ki=1 | | =

Free ——  Free
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where the projection sends all key polynomials in y to 1, shows that all tableaux
having right key vs; have been obtained. QED
For example,

Fosz = K§y9 ;’ ‘;) 2|2|+K3fo2 (

313 313
5121 [I2Te] (i 1|2|>

o (273 213 )
2|2|+ 420 (1 1 2|2|+ 1[1][1]2]

Indeed, the coefficient of K},,, for example, is the sum of the three tableaux which

+ K30

e L I e S
N [\ [SN]

have g g 2|2|as right key and % ? 1|1|as left keys.

The projection on Pol(x) of Foyo is equal to

Yy 0420 Yy 1320 2220 3120 Yy 1410 Yy 2310 3210
Ko 2™ + Ko (27 4+ 27 + 2°%%) + K020 + Ko (2™ 4+ 23)

while the projection K — 1 gives the seven tableaux composing [A(({ZQ.
Notice that the operators ©; induce the operators

0, =107 +7Y ®s°

on Pol(y) @Pol(x). These new operators satisfy the braid relations. Indeed, there
is no difference between computing f(x)g(x)7¥ = f(x)(9(x)77) + g(x)77 f(x)*

and f(y)g(x)0;, as long as f (x) remains left of g(x) when using Leibnitz’ formula
for the image of a product under 7¥ = 0 x;1;.
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7.2 Magyar’s recursion

In this section, we specialize the alphabet y to 0. The following proposition is
due to Magyar [151] (his proof is different) and shows how to generate Schubert
polynomials using the isobaric divided differences instead of those of Newton.

Proposition 7.2.1. Given v € N, let k be such' that vy = 0 and v; > 0 for
i<k. Letu=/[v;—1,...,06-1 — L,0541,...,0,]. Then

Yo=Y, m - mp (g1 x1) = Yo (g - 1) T -+ - Tk (7.2.1)

Proof. 1+ 7 = x,_10,_1 - 10k, but the letters can be moved to the left,
and therefore

Yoot @121 =Yy 12101 -~ O

The product of Y, by the monomial translates, at the level of indices, in the
addition of [1"7!]. The action of 9, 1 --- x40 inserts a 0, decreasing by 1 the
components on its right, thus producing v. QED

Iterating on Magyar’s recursion, one obtains an expression of any Schubert
polynomial Y,(x,0) as the image of 1 under products of operators of the type
Tn—1- Tk (Tg_1---x1). For example, one has

1 Tox1 T, T3T2T1 T4T3T2L]
I—Y1=——=Yo1— Yoo Y1301 Y50301 -

Since multiplication by ay---a; preserve the module Schub, as well as the
operators 7;, the preceding proposition produces the lift of Y, to Gehub.

For example, the proposition gives the chain Ysqo = Yisx1ms, Yio = Y1292,
Yo = o1y

This lifts into Y0 = ay m1 (agay)aqms, i.e.

2 22
B B Pl 1)1 1|+ 1[1

n Ll2l2] 2] |2
L] Jafafa| [tfa] [1]1] [1]1

— ]

Combining this construction with the rule for multipliying, inside Schub, a
key polynomial by ag---a;, one obtains the expression of the lift of Schubert
polynomials in Schub as a sum of K7

For example, supposing known that

F _ g oF F F
}/2124 - K2124 + K3114 + K5112

Lif no component of v is 0, change n — n+1, v — [v,0].
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then
Yosa2a1 = (K?§24+K£14+K5€22+K£12) + (K4€14+K5€13+K£11) + (K£12+K6§11)
and

F F F
Y30000 = Y5104Tam3 a2a1 = Y5i54a0a1 T473
_ F F F F F F F e pe

To describe in a non-recursive manner the key-decomposition of a Schubert
polynomial, we shall need the nilplactic monoid®.

2 In fact, this application was the original motivation, though not stated, to introduce the
nilplactic monoid in [122]. Edelman and Greene’s motivation [34] for the same monoid was to
classify reduced decompositions.
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7.3 Schubert by nilplactic keys

Given a tableau t which is a reduced decomposition of a permutation (, let k& be the
integer such that the first column of ¢ is of the type [k,... 1] or [...,rk, ... 1],
with 7 > k+1. Let () be the tableau obtained from ¢ (in the nilplactic monoid)
by erasing the factor [k,...,1] in the first column of ¢ read by columns. Then
the code of (7! is of the type [v/ + 1%,0,v"], with v € N*, and ¢(t) is a reduced
decomposition of o, the code of =1 being [0,v’,v"]. One can equivalently use the
transposed tableaux and erase in their bottom row a maximal factor of the type
...k, 7 being the minimal letter.
For example, the following tableaux

5 )
3[5 pnEONnEoNE

6 |

are reduced decompositions of the permutations [[3,6,2,1,5,7,4],[1, 3,6,2,5,7, 4],
1,2,3,6,5,7,4],[1,2,3,6,5,7,4],[1,2,3, 4,6, 5]], whose inverses have respective codes
3,2,0,3,1},]0,2,0,3,1], [0,0,0,3,1],[0,0,0,3,1],0,0,0,0, 1].

The following lemma relates the Pieri rule for key polynomials and the recursive
construction of tableaux which are reduced decompositions.

H»h|cn|

2] 5]6]

[~][r q>|cn|

Lemma 7.3.1. Let ¢ be a permutation of code [v' + 1%,0,v"], and o be of code
0,0",v"]. Let t be a tableau which is a reduced decomposition of o', [0,u] be its
key (as a weight). Let F be the set of tableaux T which are reduced decompositions
of (7' and such that o(T) =t. Then

Koy..op= Y K, (7.3.1)

Tw=Key(T)

The following theorem, due to [128], shows that the transition between Schu-
bert and key polynomials is given by the enumeration of tableaux which are re-
duced decompositions.

Theorem 7.3.2. Let 0 be a permutation, T (o) be the set of tableaux which are
reduced decompositions of o', K(c) be the set of their left nilplactic keys (as
weights). Then

Xo(x,0)= > K,. (7.3.2)
uek(o)

Proof. The preceding lemma shows that Magyar’s recursive definition Y, ,» —
Yy 41#,0,07 corresponds to the recursion on reduced decompositions which are
tableaux. QED
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For example, foro = [4,3,1,7,5,2 6] of code [3, 2,0, 3, 1], one has four tableaux
which are reduced decompositions of o= = [3,6,2,1,5,7, 4]
5] 5] 5] 5]
4]5 415 4| 4|
2136 213 21315 213
1]2]3] [1]2]3]6| [1]2]3]6||1]2]|3]|5]6]
keys [3,2,0,3,1] [4,2,0,2,1]  [3,4,0,1,1] [5,2,0,1,1]

Hence

Xu317526(%, 0) = Y39031(X, 0) = K39031 + Ku2021 + K011 + K011 -

One can replace tableaux which are reduced decompositions by usual tableaux
which satisfy the condition to be peelable, cf. the work of Reiner and Shimozono[176].
The preceding decomposition of Xy317506(x, 0) is now given by the tableaux

4
2 )
1[1]4]

N SSE
N SESE
EEEE
EEEE

4
2
1

4 )
1

2[4] 2 ’
1[1]4] 1[1[4]4]

which are the images of the first tableaux under the plaxification map.
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7.4 Schubert by words majorised by reduced de-
compositions

Billey, Jockusch, Stanley show in [9] that one can obtain Schubert polynomials
from reduced decompositions without using keys.

Given a reduced decomposition s, = Sq, - - - Sa,, let R(s,) be the set of weakly
decreasing words w € N" below «, i.e. such that w; < ay,...,w, < «,, satisfying
the constraints that a; > a;41 implies w; > w;y1. Then Billey, Jockusch, Stanley
prove®

Theorem 7.4.1. Let o be a permutation, {s,} be the set of reduced decompositions
of oY, Then the commutative image in Pol of the sum of all words belonging to
the union of the sets R(sq) s equal to the Schubert polynomial X,(x,0).

For example, when o = [3,1,6,2,4,5], then o= = [2,4,1,5,6,3] has nine
reduced decompositions. Six of them

5153545552, 5153525455, 5153545255, 5354515552, 5351545552, 5351545255

give empty sets of words. The other three are such that

R(sss4855180) = {[2,2,2,1,1],[3,2,2,1,1],[3,3,2,1,1],[3,3,3,1, 1]}
R(s3sas15285) = {[2,2,1,1,1],[3,2,1,1,1],[3,3,1,1,1]}
R(8381828485) = {[2, 17 1, ]_, ]_], [3, 1, ]_, ]_, 1]} 5

and the Schubert polynomial Xsig045 is indeed equal to 2320 4 2230 4 2203 4
2302 4 212 L 4220 L 311 L 400 | 410

Billey-Jockusch-Stanley statement is in fact more precise, the (Q-symbol of the
reduced decomposition can be used to furnish a sum in the plactic algebra which
is equal to X7

Reiner and Shimozono [174] show that the preceding decomposition can be re-
fined, grouping reduced decompositions into nilplactic classes, each of them giving
the key polynomial appearing in the decomposition of the Schubert polynomial.
In the preceding case, there are two classes, the class of [3,4,5,1,2] = [3,4,1,2,5]
which gives

Kszsz + 3|+%

3 +

3 *

— |0

213
+111|+

=0
=0
—o
— (o
— Do
— Do
[ 1N
[ 1N
[ 1N

1] 2] 1]

and the class of [3,1,2,4, 5] which gives K, = :'13 1|1|1|+ AT

3We reverse words compared to their convention, hence we use reduced decompositions of
the inverse permutation.
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7.5 Product of a Grothendieck polynomial by a
dominant monomial

We have described in (4.2.1) products of the type G,(x,y)z; ...z, by punching
diagrams. Let us have recourse to softer methods by using the jeu de taquin to
describe more generally the product by a dominant monomial.

The following theorem has been obtained with Fulton [46], and describe prod-
ucts in terms of keys. Given a tableau ¢, denote by y; the monomial image of ¢ by
T — Y.

Theorem 7.5.1. Let o be a permutation in S,,.

o Let k be an integer, k < n. Then, modulo Gym(x,, =y,), one has

Go)(X,y)r) .. .01 = Z Yu G o2 (x,y) . (7.5.1)
(0)u)
uel(o,k)
Let v € N be the vector of components vpi11—o, = 1 fori =1,...,k, and

Unti—o; = 0 for i =k+1,...,n. Then Zueu(a k) Yu 1 equal to the key poly-
nomial K,(y*) in the reversed alphabet y* = [yn, ..., y1].

o Let A € N be a partition, and v be such that n* ...1"" be the reordering of
o' ... oM. Then

Goxy)a* =3 mGy, (X)), (7.5.2)
t

sum over all tableaux of shape A such that the product (o)t be frank. More-
over, the sum Y, y; is equal to the key polynomial K,(y*).

Proof. The first assertion concerns the same case as in (4.2.1). However, instead
of translating punched diagrams in terms of keys, let us rather use the divided
differences in y; ', 9, ', ... to prove it by induction.

The starting point is for ¢ = w, the assertion resulting in that case from
G(w)Xi = Yn+1-iG (). Suppose the theorem to be true for the pair o, %, and let 4

be such that ¢(s;0) < (o). Then, according to (2.2.3), one has the recursion

Gs,0(X,¥)Tk ... 11 = Go(X,y)X) ... 1 WS’V )

The elements in U(o, k) are of three types :

e y contains 7, i+1 or none of these letters. Then y,G ., Y

b
F(E(o)u) (E(o)u)

e pairs of elements v/iu” and u/(i+1)u”. The corresponding subsum is of the
type Yurur (%Gsiﬁ - yi+1G()7 with £(s;¢) < ¢(¢). Thanks to Leinitz’formula,
this subsum is equal to Yy Geyimy v, and therefore invariant under 7riyv.

\4

\%

_ Yy
=G g T T Yu
8]
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e clements u = u/(i+1)u”, such that i € u” and v'iv” & U(o, k). In that case,
¢ = W(E(o)u) is such that £(s;¢) < ¢(¢), and

GC yu7rzy = Géﬂzy Ysju T+ GC Yu = Gsz( Ysiu T+ chu .

In total, U(s;o, k) \U(o, k) is the image under the exchange of i, i+1 of the elements
of the third type, and for those elements, one has s;¢ = %¥(E(s;0)(s;u)) and
¢ = W(E(s;o)u). Hence the summation (7.5.1) is still valid for s;0.

Moreover, when w € {0,1}", the element K7 is the sum of all columns ma-
jorized by a fixed column, and its image under the involution u — wwuw is the
sum of all columns which majorize a given column. The commutative evaluation
of this last element is therefore a key polynomial on a reversed alphabet and one
checks that the index corresponding to o, k is the one stated.

The second part of the theorem results from the associativity of keys: @(tt) =

W (5 ( ‘%’(t)) t’). QED

For example of (7.5.2), let 0 = [4,1,3,5,2] and A = [2,1,1]. Then 4%1'3'5°2°
reorders into 5°42312°1! so that v = [0,2,1,0, 1], and one has to enumerate the
tableaux in Ky, which are

5] [5] [5] [5] [5]
2] 2] .[3] .[3] .3
1] [1]2] 1] [1]2] [2

4]
3
2 11]2][1]1]

4] [4]
2] LB
2] [1]1]

3] [3]
2] .[2
11][1

2111]1] 2112]2] 2112]2]

One then has to take the images of these tableaux under t — wtw, and this
furnishes the following value of G(41350)(x,y) 2*"%, writing the tableaux ¢ instead
of the monomials y; :

5] 5] 5 5]
G(41352)1321100 =[4| Geusy+[4a| Guossy+[4]| Gussiay+[3] G
1]5] 24| 3)4)| 25|
5 5 4 4]
+14 Ga1532) +| 4 G(s3412) +1 3 Gagssy +1 3 G (51342
1]4] 3|5 24| 1]5]
4] 5 5 4
+13 G(52341) +| 4 G (52431) +| 3 Gs1342) +1 3 G (41352) -
25| 25| 1]5] 1]4]

Notice that the product

Kizsor®™ = Keousa + Kroaaz + Kezesz + Krasso
+ Keag12 + Kras12 + Kezas1 + Kr3aa1 + Kesez1r + Krssai
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has only 10 terms, and thus does not allow to describe the product G 41352)(x, y) 1%,

Indeed, according to (4.4.1), one has to take parts differing by at least 2 = A; to
relate the two products. The weight 2 x [4,1,3,5,2] = [8,2,6, 10, 4] is appropriate,
the product

211
Kg261047° " = Ki037104 + Ki13704 + Ki23784 + Ki0311,64 + Ki230964
+K0711,24+Ki27924+K1057102+ Ki15702+ K25 782+ Ki05,11,62+ Ki2596.2

has 12 terms from which one reads the 12 permutations occurring in the product
G(41352) (x,y) 2?1100,
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7.6 ASM and monotone triangles

We have already met a correspondence between Grothendieck polynomials and
key polynomials when describing the multiplication by xy---zj. In fact, this
correspondence was a direct consequence of the commutation relations between
the m;’s and the z,’s.

We describe now a more subtle correspondence, by putting an appropriate
weight on staircase tableaux. The tableaux which have a non-zero weight are the

tableaux of staircase shape which do not contain a subtableau of the type [0l

alc|
with ¢ > b.

Equivalently, they are the tableaux of staircase shape with weakly decreasing
diagonals, which appear in the literature as monotone triangles. These tableaux
are in (easy) bijection with alternating sign matrices (ASM), but tableaux will fit
better in this text.

Let us define a weight on tableaux, as a product of elementary weights on
tableaux of shape [1,2]. The weight of a subtableau of shape [1,2] on columns
j—1, j and consecutive rows is, for three integers a < b < ¢,

c I c (B ]
alb] b[b] blc] alc] .
©% weight yjfL’b_l yjfbb_l -1 1 0

By definition, the weight ©%(T') of a staircase tableau T is the product of these
elementary weights, on all subtriangles. The image of ¢“(T') under the change

of variables x; — (1-x;)7%, y; — (1-y;)~! is denoted npé(T). Explicitely, the
elementary weights are now

c (] ] D]
alb] blb] blc] alcl
Cweight  (2p-1)(y;=1)7" (z=y;)(y;-1) 7" 1 0
For example, pointing out the rightmost box of the elementary tableaux con-
4]
tributing to the weight, the tableau ¢t =[97]3] has weight
1]1]2]
4] .
— 2 z3—1
2 — Oty = s -ty =2 L= -
e o 'l g .

The following property is proved’ in [103], by checking its compatibility with
transitions. It states that any Grothendieck polynomial is obtained by enumerat-
ing all the monotone triangles having a fixed right key, or, equivalently, because

4Keys can be defined directly on ASM. For the correspondence with the keys (of tableaux)
that we use here, see Aval [2].
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the non-monotone tableaux have weight 0, enumerating all the tableaux in some
K7,
Theorem 7.6.1. Let 0 € S,,. Then
(DG xy) = Dk, #OT), (7.6.1)
()G xy) = Y, o, O, (7.6.2)

For example, for 0 = [4,2, 1,5, 3|, there are fifteen tableaux in K 7. Only 4 of
them are monotone triangles, and their respective o weights are

5]
415 ,
K B8 -1)(B-)(E-D(E-1)(E-1)
21212]4
1[1]1]1]4]
5]
4 5 Y3 (Y1 Y1 Y2 Y1 Y2 Y3
g g g . Ba-D(L-D(2-D)(&-D(E-1)(2-1)
1/1]1[1]4]
5]
415 u1 ys 1 Y2 Y3
34[5 (Z-D(2-D(E-D(E-1)(£-1)
212144
1[1]1[1]4]
5]
4 5 Y3 (y1 Y1 Y1 Y2 Y3
g g g ; BA-DE-D(&-1)(2-1)(£-1)
1[1]1]1]4]
Therefore, the Grothendieck polynomial G 42153) is equal to
Y1 Y1 Yo Ys Y1Y2Ys3
G -G = (1-ya-a-Lya-Eya-L2E
(42153)(X: y) 3101 (%, y) = ( él?z)( $1)( $1)( x1>( ToT3ls

while the goé—weight of the same four tableaux furnishes

(5’72 - Z/l) (171 — 3/3) (2131 — 3/2) ($1 — y1)
(1 - 91)3 (1 - y3)2 (1 - y2)2
— Yo+ Y3y1 — Y3 — Y1 — T4T3 + Ty + TyTolz — TyTo + T3 — T3To + Ta) .

Ga101(x,y) = (—Y2ysy1 + Yoy + y1y2

Theorem 5.1.9 gives for this polynomial the expression

63101(Xy) _ Y3101(X7 Y) _ Y:‘nn(X, Y)
(1=go — 1) (1-y)* (1-31)"  (1-32) (1-31)” (1-y3)”

Y3001(X, y) Y3011(%, y)
(1-y1)* (1-y3)* (1-92)”  (1-31)” (1-5)* (1-92)*
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The specialisation z = 0 of (2.9.6) gives the value of the alternating sum of
Grothendieck polynomials, which is also the sum of the weights of all monotone
triangles :

Y. M=) (DG xy) =y (7.6.3)

TeKT oceB,

n...1
The specialisation x = 1 of this last formula is due to Bousquet-Mélou & Habsieger
[13].



Chapter

Generating Functions

8.1 Binary triangles

One can interpret the Cauchy formula for Schubert and Grothendieck polynomials
in many different ways, the Cauchy kernel itself may be thought as the generating
function of the Schubert and Grothendieck basis. To generalize this kernel into
an element of a non-commmutative algebra, one uses planar displays.

Expanding a planar object with n boxes containing a sum a + b of elements
belonging to two families means enumerating the 2" pairs of complementary ob-
jects obtained by choosing either a or b in each box. For example, the expansion

(+l
of O+ N [J+M is equal to
U+H

(ega )+ (o0 %) (mge )+ (gonm )
bt (o B ) (L ama) (o ala),

writing a sum instead of a set of pairs. Each pair can afterwards be read in a
precise manner so as to furnish a pair of words.

We shall essentially use planar objects of triangular shape. Decomposing a
(+H
+m +.
box is filled with either 0 or 1) of a fixed shape. In other words, the set

triangle can be thought as enumerating binary triangles (i.e. each

1 0] [1]
L[1) [1]1) [o]1] [1]0] [of1] [1]0T

1] [o] [o] [1] [0
0l0] [0]0]

codes the same information as the set of pairs

(@ wc o) (mad o) (0 onn

221



222 Chapter 8 — Generating Functions

used previously.
In the following of this chapter, we shall enumerate binary triangles and put
various weights on them.
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8.2 Generating function in the nilplactic algebra

Let us first use the nilplactic algebra with generators vy, vs, ..., v,_1 satisfying
?JZ-Z =0 y  ViUip1V; = UVi+1U;Vi41 (821)
VUL = VR0, UURY; = Ut (1< < k) (8.2.2)

Given a commutative alphabet x,,, define the nilplactic kernel ©™%(x,,) to be

(1 —+ xl?}n,l)
@m[m(xn) _ (1 —+ J?}Un_g) (1 + x'gvn_l)
(1+2v1) (I+move) -+ (14 Tp1v,1)

reading the kernel by columns (downwards) from left to right.
One still has a crystal structure on the terms in the expansion of ©%%(x,,), as
we had in the plactic case (cf. 77).

EXEMPLE

Given a tableau T in vy, vs, ..., which is a reduced decomposition, denote by
B(T) € N" its bottom key (as a weight). Then an analysis of the nilplactic strings
similar to the one performed in ?? gives the following expansion.

Theorem 8.2.1. Given n, the nilplactic kernel expands in the nilplactic algebra
as

0" (x,) = Z Kpm T,
T
sum over all tableaux which are reduced decompositions of permutations of G,,.

For example, for n = 4, there are 25 tableaux (all permutations, except
2,1, 4, 3], have only one tableau as a reduced decomposition), and ©7%(x,) is
equal to

Ko + Ky [1]+ Ko [2]+ Eoor [3]+ K [1]2]+ Ko [1[3]+ EKo2

K K K KBl +K Ko |2 Ky |2
+ 2+ 2+ 011 [2] 3]+ K12 i 2|+ 3+ 201 17 3|+ 21 [19]

3] 3]
+ Koo 121+ Kt [1]2]3]+ Ko 2 + Ko [ 2131+ K01 2] + K31 [2]
2[3] 1]2]3] 1]2 13] 1

2]

Koy |3 Kooy 1213 K.
+ 1121 12|3|+ 221123|+ 311

3]
+ Ko 2
213]

31+ K321 3] -
2 1[2]3]

— (o OJ|

All key polynomials K, of index u < p occur in the expansion of ©7%(x,,),
but with eventual multiplicities (in the example above, Ky occurs twice).
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8.3 Generating function in the NilCoxeter alge-
bra

By projecting the nilplactic algebra to the NilCoxeter algebra, one obtains a gen-
erating function where blocks correspond to all the tableaux which are reduced
of the same permutation. In fact, this projection gives back the expansion of
Schubert polynomials X,(x,0) in terms of keys seen in (7.3.2)".

To recover Schubert polynomials in two alphabets, let us take three alphabets
X,y,z and define

1+ (21-Yn-1)0%_,
07(x.y) = 1+($1*y7—2)35_2 1+($2y?_2)aé_1
1+(x1-y1)0% 1+(z2-v1)05 ... 1+(xp_1-11)07_,

The expansion of such kernel is equal to a sum ) _ s ¢5(x,y)0; that one can
determine by making it act on the monomial 2" %19 but we shall rather take
the function X, (2w, y). Indeed, we have already made this computation in (1.7.2),
up to minor changes including a reversal of alphabet. One has obtained, say for
n = 4, the identity (reading the display by columns)

\24—y1\ \24—y2\ ‘24—y3\ 1+(21-y3)05
|z3-y1] 2342 ] 1+(21-42) 03 | | 1+(22-92) 05
(19005 | |1+ (21-10)05 | | 1+(21-y3)05
Fin) [n) [
~ ] [om

?

using only that
(zir1 =)L+ (@ =9)07)) = (zi1 —y) — (@ —y) = zi1 — @
More generally, for any n, one has
X, (z,y)0%(x,y) = X,(z*,%). (8.3.1)
Using the Cauchy formula

Xo(z¥,x) = Z Xo-1(y, %) Xow(2%,y)

ce6,

'eft and bottom keys are exchanged, because one takes the reduced decompositions of ¢ in
one case, and of ! in the other.
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and comparing with

Xw (Zw’ Y)Ccr (X7 Y)aj - Z(_l)f(a) Co (X’ Y)Xw(waw) (Zw’ Y) )
one finds that
Co(%,y) = (-1)" DX, (y, %) = X, (x,).

In final, one has obtained that ©%2(x,y) is a generating function of Schubert
polynomials.

Theorem 8.3.1. Let n be a positive integer. Then

Ol(x,y) = Y X,(x,y)0:. (8.3.2)

0'6611

For example, for o = [3,1,5,2,4], there are 5 configurations which contribute
to X31504(%x,y). Grouping reduced decompositions according to their nilplactic
class, one has

T1=Y4 T1=Ya -
4
[ ] [ ] [ ] [ ]
X ){7 — + | _'_
31524( y) T17Y2 To~Y2 © T17Y2 ® d % 3]
1= L e & T1-Y1 ® T3~Yy @
[ ] [ ] [ ]
] To=Y3 o To—Ys b o 214
+ + .
T1—Y2 To—Ys @ T1=Y2 ° o T1=Y2 ® T3—Y2 113
T1—Y1 L4 e & T1-U1 L T3—Yypr ® T1-Y1 ® T3~y @

This theorem is given by Fomin and Kirillov in [39, 38], and is also a corollary
of the Hopf decomposition of Schubert polynomials given in [122].

The proof of Fomin and Kirillov is very simple, it consists in noticing that
0207 = ©20;. This property instantly allows to characterize the behaviour of
coefficients with respect to the divided differences in x, and to recognize these co-
efficients to be Schubert polynomials. We have already several times encountered
cases where the action of divided differences is exchanged with another operation
(which is here, multiplication in the algebra generated by the 07’s).

The Cauchy formula (2.10.2) translates into the following multiplicative prop-
erty of generating functions

0%(x,y) = 0% (u,y) ©%(x,u), (8.3.3)

that Fomin and Kirillov prove directly by using the Yang-Baxter equation.
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8.4 Generating function in the 0-Hecke algebra

The preceding considerations can easily be adapted to the Grothendieck world.

This time, one has to use the 0-Hecke algebra, with generators 7f,...,77_,, in-
stead of the 00-Hecke algebra (NilCoxeter algebra).
Let
L(1-2)ms
I+(1-&=2)72_, 1+(1-&=2)72_
orxy)= T v
1+(1-1)7z 1+(1-2)7% 1+(1- 22 )m

Using that

(1 B zz‘+1) <1+( _ gﬁf)) _q_ A ’
y x T

starting with ©%(z,y) = [licicjen(l— zjy; ), one obtains
0% (z,y)0" = 0%(z,x). (8.4.1)

Comparing with the Cauchy formula (2.9.4), one obtains the following generating
function of Grothendieck polynomials.

Theorem 8.4.1. Let n be a positive integer. Then
@i(xv y) - Z G(o‘) (X7 Y) %f; . (842)
oe6,

For example, for n = 3, one has

14 (1-yoz; )75
L+ (Lo af| |14 (-gaas )7

=1+ (12777 + (L-yye(zize) 7T + (T D (125 D77

+ (1*92%_1)(1*91%_1)77271 + (1*92%_1)(1*91371_1)(1*91552_1)%771772

This generating function has been obtained by Fomin and Kirillov in [38], but
is also a corollary of the Hopf decomposition of Grothendieck polynomials given
in [122].

The generating function @)i(x, y) of G-polynomials is obtained by taking a
kernel with factors of the type (z; — y;)(1 — ;)" instead of 1 — y;a;'. For

(2
example,

T17Y2 ~ T1-Y1 ~ T2—Y1 ~ =~ ~
1+ 5 | {1+ T ( 1+ 5 | = G (x,y) 72
( 1-yo 2) ( I-ys 1) ( I-y1 2> Z ( )< y)

ceG3
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8.5 Hopf decomposition of Schubert and Groth-
endieck polynomials

Any polynomial in z1,...,x, can be filtered according to the powers of z;. In
other words, one can use that JPol(x,) ~ Pol(x;) ® Pol(zs,. .., x,) and compare
expansions in the natural bases of the two spaces.

In the case of symmetric functions, the isomorphism

reveals the existence of a Hopf structure on Gym(x,). I kept the same terminol-
ogy with M.P. Schiitzenberger for what concerns polynomials in the Schubert or
Grothendieck bases. In the case of Macdonald polynomials, one filters according
to z,, instead.

From the generating functions (8.3.2) and (8.4.2) one deduces the following
Hopf decompositions given in [122].

Theorem 8.5.1. Let o be a permutation in &, v be its code, xT = {xa, ..., x,}.
Then
Yo(x,,0) = > 2y, (x+,0), (8.5.1)
wy,u

sum over all words wy in the expansion of (1+0,_1) - -+ (1401), all u < [n-2,...,0]

such that 0, = wy0., with ¢ of code [0, u].

Similarly

év(xn7 O) = Z(,1)|u|+€(w%—\U\xau‘*‘f(w%)éu(x-i-’ 0) (852)
Y%, 1) = (-1l (g )W G (x 1) (8.5.3)
sum over all words wz in the expansion of (1+7,_1) -+ (1471), allu < [n-2,...,0]

such that T, = tw, 7., with ¢ of code [0, u).

Statements (8.5.1) and (8.5.2) are strictly equivalent to (8.3.2) and (8.4.2)
(adding the second alphabet y is no problem), though, we agree, much less elegant.

The two expansions (8.5.1) and (8.5.2) involve the same set {u}, but in the
second case, each u may correspond to several words wz. For example, figuring
the words in the expansion, one has

Yoo1(x,0) = Yor (x*,0) + (2102) Yao(x T, 0) + (2195) Y11 (xF, 0) + (2]0502) Yor (x T, 0)

6021 (X, 0) == (1-%1%3-1[’1%24-1’%%3/77\'2)621 <X+, 0) + (J]laT\Q—l'%%g%\g)égo(X—’—, 0)

+ (2173 -237572) Gia (xT, 0) + (237372) Gor (xT, 0)
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the final expansion being

Goz1(x,0) = (1-21)2Gar (xT, 0) + 21 (1-21)Gap(xT, 0)
+ xl(lf:pl)én(xﬂ 0) + ZL‘%@Ol (X—i_7 0) .

For a given pair v,u, one checks that, keeping only the terms contributing
to the Hopf decomposition, the product (1+x17,_1) - - - (1+x17) simplifies into a
product of factors of the type 1,217; or 1+x17;. Therefore, the total coefficient
of éu(x+, 0) is equal to some power of x; multiplied by a power of (1-z1). Thus,
Example 2.6 of [122] reads

é14101(X7 0) = a14él101(x+7 0) + Cl13blé2101 (x*,0) + a12b1é41(x+7 0)
+ a12b153101(x+, 0) + a1b12é4101 (x",0),

putting a; = x;, b; = 1-x;. _

Iterating the Hopf decomposition, one obtains an expression of G,(x,0) as a
positive polynomial in aq, by, as, bo, . ... Interchanging a and b gives the expression
of G2/*(x,1) .

For example,

éQOQ(X, 0) = a3a2b2b1a12 + a3b2a13 + CL22b16L12 + CLQCL13 + b2b1a12a32
G%;{(PQ 1) = bsboasaiby® + byashi® + by’arbi® + babi® + azar by *bs” .
Notice that the specialization b; = 1 in the expression of év(x, 0) gives the Schu-

bert polynomial Y, (x,0). We have not investigated the properties of these poly-
nomials.
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8.6 (Generating function of é-polynomials

We shall use simultaneoulsy several weights on 0-1 triangles T" of shape [1, ..., n-1]
: A triangle T gives rise to a monomial ¢, (1), a product ¢,(T") of factors —y;, a
product ¢.(T) of 7;’s and a product ¢g(T) if 9;’s, as follows :

6:(T) = [z

o (T) = [JC-)"" & é,(T)=]J(1-9)""
6=(T) = [[mn%issn

6o(T) = [[on=i”

reading the successive columns from left to right for ¢.(7), and reading by suc-
cessive rows, each row from right to left, for ¢5(7") (we use matrix coordinates).

1 1
Reading order 2 4 3 2
3 5 6 6 5 4
- for ¢, , 0, for ¢y .
filling T T3 83 82
m Mo T3 O3 Oy O
For example, one has
0] o] EX
for T =1 , | @ & ° |0,
011| 07T27T3| 8300| ’
(bﬂ-(T) = T9TT3 (I)a(T) == 036263
23]
e | T2 = (I)x(T> = I3T2T1 & q)y(T) = (1—y3)<1—y2)(1—y1> .
1| e | ® |

Let {(T") be the permutation such that ¢.(T) = m¢, and o(T") be the permu-
tation such that ¢o(1T") = 0, (if ¢o(T’) is not 0).

Theorem 8.6.1. Givenn and (,0 € S, let T (o) be the set of 0-1 triangles such
that o(T) = 0. Then

XU(X7 y) = Z (by(T) é(Cw) (X7 y) (861)
TeT (o)

Xo1(x,0) = > 6.(T). (8.6.2)

TeT (o)
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o oo oo ol oo ol ol ol ol ol ol ol ol oo oo oo
Proof. TP PPDD

For example, one has eight triangles such that o(7") = [2,5, 1,4, 3]. We list the
resulting triangles in 7;, together with ¢,.(7)¢o(T") and G, with v code of {(T")w.

° ° Ty °
3| @ T3| @ ® |7y 3|74
T | T3 |74 ® (73|74 o | @ |7y o | @ |7y
07T200| 7T17T200| 7T17T200| 7T17720.|
ryx3rd [4,3,1,2,4] myraroxd [4,3,4,1,2] waxsxi[4,3,4,1,2] xyxia? 43412
G1311 G2301 G3301 G2301
T4 ° ° T4
[ N} T3 | T4 [ N ® (74
To| @ [TT4 To| @ |TTy T | T3 | T4 To| @ |TTy
7T17T20.| .7T2.0| 7'('17T20.| .7T2.0|
2 2 3 2.2 3
r5w0x7 [3,4,3,1,2] xywoxt[4,3,1,2,4] xgxiai(4,3,4,1,2] xsxext[4,3,1,2,4]
G33 G2311 G1301 G3311

The eight words [4,3,1,2,4],...,[4,3,1,2,4] are reduced decompositions of
the permutation [2,5, 1,4, 3], whose code is [1,3,0,1,0]. The above enumeration
implies that

Yizo1 = (1—y1)3(1—y4)(1—y3)6’1311 + (1—y2)2(1—y1)2(1—y3)é3301
+ (1-1)°(1-y3) (1-2) Gaann + (1-y1)* (1-ya) (1-92) (2-Yo-y3) Gason
+ (1—y3)2(1—y1)2(1—y4)51301 + (l—yz)(l—y1)3(1—y4)52311
+ (1*91)2(1*3/3)2(1*?/2)633
and that

X[2,5,1,4,3]—1(X7 0) = X31542(X, 0) = Y2,0,2,1(X7 0) = 55437%56% + 51341'333233’%

2 2 3 3 2.2 2 2 3
+ Tax5x] + TaT3T] + T4 T2 + T3T]T2 + X3X507 + T3X [T .

~ Lenart[137, Th.2.16] gives the decomposition of a Schur function in terms of
G-polynomials (see also [107, Prop.1]).
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Key polynomials for type B, C, D

9.1 K&B, K¢ KP

For each type © = B, C, D, we are going to define two families of key polynomials,
indexed by elements of Z", using the divided differences 7T? or %Z-@ , and modifying
the indices using s, .

In more details, in type QO = B,C, we start with all dominant monomials
¥’ v > - > v, >0 and put

=K =K.

The other polynomials are defined recursively by

K)m=K,, & 1?57 = IA(S&_ , when v; > viq1, 1 < n, (9.1.1)
Ky m) =K®, & K)7) =K’ when v, >0, for O = B,C. (9.1.2)

In type D, we would not obtain enough elements to span the space of poly-
nomials. To the set of dominant monomials {z"} used in types A, B, C, we have
to add all ¥, with w = [vy,...,v,_1, —v,]. In short, let us call D-dominant the
vectors [vy, ...,V 1, 20,], v1 > -+ > v, > 0.

We start with

' = KP = KP when v is D-dominant

and define recursively the other polynomials by

KPm =K. & IA(f) = IA(I?& , when v; > viyq, 1 < n, (9.1.3)
KPxP = KP, & KPP = KP v,y + v, > 0. (9.1.4)

The definition is consistent since the operators satisfy the braid relations, and
since the hypotheses used in the recursive steps insure that length increase.

231
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Notice that, when v € N, then all K (resp. [?59), O = A, B,C, D coincide
with each other, since the exceptional generators s? or s are not used.

On vectors in Z", put the following lexicographic order : uw > v if there exists
11 U = V1,...,U_1 = vj_1 and u; < v;. From the explicit action of the divided
differences, one sees that each K/, K has dominant term z'. In fact, one has
used the operators 7, (resp. 7, ) to generate the polynomials K (resp. hK7),
and the action of s? on the indices of the key polynomials. Therefore, one has the
following theorem.

Theorem 9.1.1. The sets {Ky : v € Z"}, {I?ff : v € Z"} constitute six bases
of Pol(xF), which are triangular in the basis of monomials with respect to the
lexicographic order.

For example,

~

K'B -1,-2,1 —-1,-1,0 -1,-1,1 -1,0,—-1 —1,0,0 -1,0,1 0,-2,0

_17_271:'1» ) ) _‘_:L- ) ) _I_x ) ) _l_la sy _|_:L» "y _i_l» "y +:E7 )
0,-2,1 0,-1,—-1 0,—-1,0 0,—-1,1 0,0,—1 0,0,0 0,0,1

+ +x +2z +2z +x +2z +z ,

K€1,72,1 _ xil’*Q’l+x*1’*1’0+x*1’0’*1+:I;*1’0’1—1—1170’72’04—1'0’*1’*1+x0’*1’1—i—mo’o’o,

~

D _ -1
Ko o1 =1

=21 4 =110 41021 420220 4 0-1-1 4 o 0-11 | 0,00

To my knowledge, the relations between the bases for different types have not
been investigated. Continuing with the preceding example, one has

~

K731,72,1 = [?91,72,1 + [?91,71,1 + [?00,72,1 + [?00,71,1
= [?91,72,1 + [?fD1,f1,1 + [??1,0,1 + [?(])?72,1 + [?571,1
[?91,—2,1 = I?—Bl,—Q,l - [?]—31,—1,1 + f?—Bl,o,l - [?5—2,1 + [?5—1,1
= [??1,—2,1 + [??1,0,1
Kf)l,—2,1 = [?5;1,—2,1 - [A(—Bl,—u - [?5—2,1 + [?5—1,1

~

_ c >C
= K—1,—2,1 - K—1,0,1 .

On the other hand, for a given type ©, the relations between K% and K© are
given by the Bruhat order', thanks to Lemma 1.10.4.

Lemma 9.1.2. For any type O, given any weight v, one has the following relation

Ky =Y K (9.1.5)

u<v

'One defines the O-Bruhat order on elements of Z" which are in the orbit of a dominant
weight, by generating the elements of the orbit by successive application of simple transpositions.
For example, for n = 3, type B or C, one has the chain 232! < 2312 < 2312 < 2321 < ... The
length is also defined as the minimum length of a sequence of simple transpositions which reorder
the weight into a dominant weight. Notice that to order the elements of the group, wich are
denoted by the same vectors, one uses the same “Hasse diagram”, but starts with [1, 2, 3] instead
of [3,2,1].
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For example,
B _ 1B 7>B 7>B 7B 7B
Ky _90=Ky_ 20+ Koo+ Kopa+ Koag+ Kypps
but
7>B _ 1B B
Ky _50=Kq 20— Koo _a-

The full Bruhat interval does not occur in the second formula, because the Moébius
function takes values in 0,1, -1 in the case of the orbit of [2,0, 0], contrary to the
case of the orbit of [3,2, 1], which is the case of the group itself (Lemma 1.10.4).
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9.2 Scalar products for type B,C, D

Let AY be the denominator of Weyl character formula. Weyl defined a scalar
product on characters by taking a constant term involving the square of AY. This
is not appropriate in the case of key polynomials, because they are not invariant
under the associated group, contrary to characters. As in the case of the non-
symmetric Cauchy kernel, the solution is to take only half of the factors of the
symmetric kernel, here, to take only A".

Definition 9.2.1. Let p? = [n—%,...,Q—l 1-1], 0 =[n,...,2,1], pP = p* =

n-1,...,1,0]. For QO =B,C,D let
0 = 2¢" A,

Let moreover € = (—1)™ when © = B,C, and ¢ = 1 when Q = D. Then for any
pair of Laurent polynomials f, g in x1,...,x,, define

(f,9)° = CT (efgx’)v A”>. (9.2.1)

For example, taking n = 2, one has

_ _ 1
(£.9)° = OT(fooin @ = a) (s 23" (01 ) (1 = —)

= C’T(fg(l —1)(1 — x9)(1 — 21 /9)(1 — x1x2))7

(fag)c = CT(fgfﬁ@(?cl—i)(@—i)(ﬂfl—@)(l— ! )>,

X T2 XT1T2

= CT<fg (1—af)(1—a3)(1 — 1 /a2)(1 — xlxz)),
1

T1T2

(£.9)” = OT(fga (o1 = a2)(1 = ——)) = CT(fg (1 = a1 /wa)(1 ~ 2122)) .

In the language of root systems, the different kernels are products over all the
positive roots.
To define the scalar product (, ), one could as well give the finite list of all
monomials ¥ such that (2, 1)V # 0.
For example, for type Cy, we need only the list (z¥,1)¢ = 1 forv = [0,0], [-1, —=3],[-3,1], [-4, -2
and (z¥,1)¢ = —1 for v = [0, —2],[-1,1],[-3, 3], [-4, 0].
In fact, the scalar product (, ) is related to the maximal symmetrizer 7730, as
shows the next property.

Lemma 9.2.2. Let Q = B,C,D. Then (z¥,1)° takes values in {0,1,-1}. The

kernel 0 expands as
QY = Z (z°, 1)z,
VEL™
Moreover, a°m,) = +1 if and only if a"my, = (z¥,1)7.
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Proof. That £ occurs with multiplicity ¢ in the expansion of 27" A is is another
way of stating that (z¥,1)% = c. This proves the first statement.

The O-Vandermonde expands as a sum ) ", over all signed permutations
of p”. Therefore, z7 occurs in the expansion of Q if and only if v 4 p¥ is a
signed permutation of p¥. On the other hand, for any v, 2’7 @ is equal to 0, or
there exists a dominant Welght A such that a:”mfo = ix’\ﬂgo. This last function
is equal to &1 if and only if A = [0,...,0], which exactly means that v + p* is a
signed permutation of p°. QED

The crucial property of the scalar products (, )¥ is their compatibility with
the operators generating the key polynomials.

Proposition 9.2.3. Write 7, = 7, &, = 7, for O = B,C,D. Then the
operators 7; and m; (1 < i < n) are self-adjoint with respect to (, )%, i.e. for

every pair of Laurent polynomials f, g, one has

v v ~ v \©
(fﬂ-iag) :(f7g7rz) ) (fﬂ-zvg) :(fagﬂ-z) .
Proof. For i = 1,...,n-1, the proof is similar to the case of type A, except that we
start with fg instead of f(x1,...,z,)g(x; ", ..., 27"). Inthecasei=n, ¥ = B,C,
one first computes the constant term with respect to x,, and writes

(f 9)° = CT(CT, (g 7w — 2.7 A) ).

1+ﬁn

where # is a function invariant under s,, = sg and # =1 for © = B and 8 =0 for
Q = C. Therefore, to evaluate (f7,, 9)¥ — (f, g70)" = (f7n, 9)°¥ — (f, gmn)®
one can first compute

CTy, ((FRug = 9700) T (0 — 27 )W) = CT2, (97 F = [ 9)H)

1+5 Ty,

which is null, because the function under parentheses is alternating under s,,.
Similarly, for © = D, neglecting a function invariant under s, = sy, to deter-

mine (f7,, 9)” — (f, gﬂn) = (fmn, 9)? — (f, gmn)?, one can first compute

CTy, s a0 <(fﬁng — g f)(1 = fcn_lxn)> =CTy, 2 (fs”g - gs”f>

which is also null, because the function f*»g — g f is alternating under s,,. QED
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9.3 Adjointness

Lemma 2.5.1 evidently extends to the case of 77, © = B,C, D. For example, for
O = C, the two equations

(Kng, KI52) =0 & <K15§7 KT52) =1
transfer into R N
(K32, K153) =1 & (K353, Ki535) =0.

To see that, one needs only write
K50 = fi+ fors", K50 =01+ goa3",

with f1, f2, 91, g2 invariant under s§. Then, the statement becomes straightforward
after expliciting K,z5 = f1, Ky 153 = —g2T53 . Once more, computations take place
in a two-dimensional space only.

Since the key polynomials K’ stem from the dominant monomials, we need
only explicit the scalar products of all the K’ with all dominant monomials, to
know all the (K9, K9)°.

We refer to [44] to check the following lemma.

Lemma 9.3.1. Given n, let O = B,C,D. Let v be O-dominant (i.e. v is

a partition A, or, in type D, to the set of partitions A\ one adds the weights
A1, oy Aoty —Anl). Then for all w € Z™, one has

(KY,KY) =0 except (K°, KZ)=1. (9.3.1)

Thanks to Lemma 2.5.1 and Lemma 11.1.2, one determines all scalar products
between the two bases of key polynomials, for each type, and one concludes :

Theorem 9.3.2. Let u,v € Z", and O = B,C, D. Then
(KY,K9) =0 except (K%, KY)=1. (9.3.2)

Contrary to type A, we do not know how to write a kernel involving all the
elements of the two adjoint bases. Nevertheless, there are non-symmetric kernels
generalizing Littlewood’s kernels for types B, C, D. We refer to [44] for the proof
of the next theorem.

Theorem 9.3.3. Let

0B — H1<'L<]<n(]‘ ‘rx])H (1+$z‘)

‘ HZj:l( —ziy;) [ 1H (L =i/y;)
[Licicjen(l — iz))

HZ]‘=1( —xy;) I[- 1H] (L =xi/y;)

(
H1<z<]<n (1 —ziy)
| HJ (1= zy5) Hi;1 Hj:i(l_xi/yj).

Q¢ =
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Then these kernels decompose as follows

OF = > K,(x) K5 (y), (9.3.3)
Q° = Y K,(x)KC(y), (9.3.4)
Q= ) K(x)E®(y), (9.3.5)

where x,, is specialized to O in the last equation.

For example, for n = 3, the term of degree 2 (in x) of the C-kernel

(1 — 2129)(1 — 2123) (1 — 2973)
(1—2)(1 = 2)(1 = 2)(1 - 2)(1 - 2)(1 - 2) T[], (1 — ziy5)

is equal to

kO,OQ(X)KCO,O,—Q(Y) + fA(z,o,o(X)KC—Q,mo(Y) + IA(DQ,O(X)KCO,—ZO(Y)
+ K1,0,1(X)ch1,0,71(}’) + KO,l,l(X)KCO,fl,flb’) + K1,1,0(X)ch1,f1,o(}’) .

Remember that we have also stated in Th. 2.15.2, for what concerns type A,
that

04 =

T = 2 R KL,

Hi+j§n+1(1 — LilYj oeN®
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9.4 Symplectic and orthogonal Schur functions

For v € N antidominant, the functions K are symmetrical in z1,...,7,. As
in the usual theory of symmetric functions, it is profitable to define functions
independently of the number of variables. One cannot use in the present case
projective limits with x,, — 0, because the polynomials K are in general Laurent
polynomials. Thus, one must find polynomials which by specialization of some
variables to z7 ', ...,z gibe back the K.

Following Littlewood, one defines, for A € Pact, the orthognal Schur func-
tion Ox(z) and the symplectic Schur function Spy(z) by the following generating

functions, using a second alphabet y:
Higj(l — YY)

ILi;(1 —yiy;)
2 = sx(y) Spa(z) - (9.4.2)
IL T —wiz) A;;ad

Using that [, [T;(1—v:z;)~" is a reproducing kernel, one can rewrite O, (z) and
Spa(z) with the help of the operators adjoint to multiplication by [[;;(1—;y;) or

IL <j(1 —y;y;) respectively. Explicitly, using the Frobenius notation for partitions,
the above formulas become

ONz) = 3 ()Msy0) (943)

> saly) Oa(z) (9.4.1)

p=(a+1]a)
Spa(z) = > (-1)HPsy(z). (9.4.4)
p=(ala+17)
In particular one has, for r > 2,
Oy =510, Op =58, — Sp_9, Spir = S1r — Syr—2 , Sp, = S, (9.4.5)

In fact, one can avoid decomposing partitions according to their diagonal hooks
of their diagrams, and write, for A € N using (1.6.4) and (1.6.2),

Ox(z) = > (D)5 pe dean2n6, (2) (9.4.6)
e=[e1,...,en]€{0,1}7
Spa(z) = Z Sx/[01,269,...,(2n—2)en] (Z) - (9.4.7)

e=[e1,...,en]€{0,1}7

For example, writing the non-zero terms only, one has

Os3p = $332/000 — 5332/200 — $332/040 T S332/240

81 80 S5
so 0 s4
0 0 s2

83 S0 S5
so 0 s4
so 0 s2

S1 S84 S5
S0 S3 S4
0 s1 s2

83 S4 S5
S92 S3 S4
S0 S1 82

+

= 5332/000 — $332/200 — $332/310 — S$332/330
= 85332 — 833 — S321 + S31 + S22 — S2,
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Spssa = S$332/000 + 5332/020 + S332/004 + 5332/024

83 S84 S5 83 82 S5 53 84 S1 $3 82 S1
= 82 83 S4 S2 S1 S4 82 83 S0 582 S1 SO
S0 S1 S2 sg 0 s9 so s1 O so 0 O

= 5332/000 — S$332/110 1T 5332/211 — S$332/222

= S332 — S222 — S321 + S211 + S22 — S11 -

The sums (9.4.6) and (9.4.7) are the expansions of single determinants of ccom-
plete functions, due to Weyl ([193, th.7.9.A], [193, th.7.8.E]):

0, = det(s,\#j_i—sAi_j_i) (9.4.8)

i,j=1...n

1
Sp)\ = 5 det (5)\¢+17i + S)\Z.fjfl'+2> (949)

i,j=1...n

(the first column is divisible by 2, and simplifies with the outside factor).
For example,

S>\1 - S>\1—2 $>\1+1 - 8/\1+1—4 8)\1+2 - S)\1+2—6
OA1A2A3 = | Sxa—1 — Sxp—1-2 Shg T SXy—4 Sxa4+1 7 Sxy+1-6
Sx3—2 T Sxz—2 Sxz—1 — Sxz—1-4 Sxz 7 SA3—6

S\1 SaiHl T Sn41-2 Sxh+2 T Sx 424
SPAi s = | Saa—1 Sxy T Sxp—2 Sxg+1 T Sxo+1—4
Sx3—2  Sxz—1 T Sxz—1-2 Sx3 T Sxz—4
Notice that (9.4.3) and (9.4.4) are exchanged by transposing partitions. In
other words, the expansion of O, in terms of Schur functions is obtained by
transposing partitions in the expansion of Spy~.
One extends the definition of orthogonal and symplectic Schur functions to
indices in N by requiring the same reordering rules as for Schur functions:

O...,Ui,vi+1,... - _O...,Ui+1—1,1}i+1,... & Sp...,vi,vi_;,_l,... - _Sp...,vi+1—1,vi+1,... .

All linear operators on the space of symmetric functions with basis the Schur func-
tions extend to the spaces with bases orthogonal or symplectic Schur functions,
by just a formal substitution y—o, or sy — Spy. In particular, the notations O,/,
and Spy/, make sense, even in the absence of a determinantal expression:

S\p = Z Cﬁ,usl/ = O)\/M = Z Cﬁ,yol/ & Sp)\/u = Z Ci,yspu .

v v

Formula (9.4.3) can be written with the operator D, _g» adjoint to multipli-
cation by o1(—S5?%) = > 5/(—S5?) :

O)\ = DU1(—82) SH- (9410)
Similarly, (9.4.4) uses the operator adjoint to multiplication by o (—A?):
Sp)\ = Dgl(_A2) S - (9411)
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The inverse operators are respectively D (g2) and D, (z2). Therefore, using
Litllewood’s formulas (1.6.7) and (1.6.8), one has

sx = DyysnOx= > Oy, (9.4.12)
Hevenrows
Sy = DUI(M)SP)\: Z Sp,\/'u (9413)

weven columns

For example,

5433 = Oyzz + Ouyszz/o + Ouzzya + Ouzz oz + Ouzzjao + Oyzz oo + Ouzsjan
= Oyz3 + Ou31 + O3z32 + O33 + O3z91 + Oy11 + O31 + Oz11 + Oy .

5433 = SPasz + Spazsji1 + SPassjee + SPassyss
= Spazs + Sp3z2 + Spaoa + Spsa1 + Spair + Spa1 + Spa -

The Jacobi-Trudi like determinant ‘Sp,\iﬂ-,i‘ is not equal to Spy when £(\) > 1,

but to sy, since Sp, = s,.. However, the determinantal expression of a Schur func-
tion in terms of hooks extends to the symplectic and orthogonal Schur functions,
as shown by Abramsky, Jahn and King.

Lemma 9.4.1. Let («|B3) be the Frobenius decomposition of a partition X\, with
a,3 € N'. Then

0)\ = det(O(ai‘ﬁj))i’jzlmT & SZJ)\ = det(Sp(ai|ﬁj))i,j:1...r-
The proof is straightforward, multiplying the Weyl determinants by the matrix
(*1)j7i81j—i:|. The functions O(q,s,), and Sp(qa,|s,) being explicit sums of hook
Schur functions, one has just to recognize in them the entries of the matrices

obtained by multiplication, up to reordering. For example, for A\ = [7,4,2] =
([6,2]][2,1]), one has

S7— 85 Sg— S84 Sg—s3||l —-s1 sn

Oryg = |83 —81 s4—1 S5 0 1 -s
1 S1 S92 0 0 1
O; -On Om
-0 @
=103 -0 Oz11| = ‘_0(61) 0(6‘2)
O 0 0 (21) (22)

S7 Sg+ Sg Sg -+ Ss 1 =S1  S11
Sprao = |83 S4+S2 S5+s51||10 1 -5
1 S1 S2 0 O 1
Spr =5, S
D7 P71 ©ODP711 '—Sp(ﬁu) Sp(ﬁ\z)

= |Sps —Sps1 Spsu| = ~Spam Spep)

Sp() 0 0
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In A-ring notation, Littlewood’s definitions (9.4.1), (9.4.2) read

oilxy = S*(x)) = > si(x)Ox(y) (9.4.14)
or(xy — A’(x)) = > s:(x)Spaly)- (9.4.15)

Changing y — y,., taking a finite alphabet x,,, these equations become”

o1 (-Xny,=S2(xn)) = [ [ [J(1-iwy) J] (1-izy)

= (-1 n)Spa~(yr) (9.4.16)
o1 (—xy-A*(x)) = H H(l—miyj) H (1-mizy)

=) (D5 (x)Ox-(y) . (9.4.17)

Changing x — x, multiplying by the appropriate power of x;...z,, one
obtains

T @v) T -aitah)
=1 5=1 1<j<n
= (@) Y DMy (x0) Spas (yr)  (9.4.18)
AC(r+n+1)
1 @v) T -aitah)
=1 j=1 i<j<n

= (@)Y (DM sy a(x0)Ox~ () - (94.19)

AC(r+n—1)"

2 Cauchy formula for the expansion of o1(-x,y,) involves only the partitions A C r™. In the
present case, since orthogonal and symplectic Schur functions O, (y), Sp,(yr) do not necessarily
vanish for () > r, one has extra terms. For example, for n = 2, r = 1, putting s) = sx(x1,x2),
Oy = Ox(y1), one has

(1*;E1y1)(1*172y1)(1*$1$2) =1- 5101 + 52011 =+ 51102 — 321021 + 822022
=1—s1y1 + 520 + s11(y7-1) — 521 (~91) + s22(~417) -
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One can eliminate the terms Sp,(y.y, O.(y,) such that ¢(x) > r. Indeed, for
A C (r+a)™ one has r > r — A\ > -« and

T—An e, P — AL

(21 ... %0) “Spqan (X,) =

Symmetrizing under 7y, 1, with N > n+a, annihilates all 27w~ with r-\; <
0. In final, rewriting [, [T;_, (#i-y;) = Y= (x,¥y), one obtains :

Lemma 9.4.2.
K"<X7 y) H (1_'%.;1‘%.;1)7TN...1 = Z<_1>|)\|ST"/>\(Xn)SpAN<YT) (942())
1i<j<n ACrn
Viu(x,y) ] Q-ai'z;)mvea = D ()M s n(x0)Ox~(y) , (9.4.21)
1<j<n ACrm

with N > 2n+1, in the first case, N > 2n-1 in the second.
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9.5 Maximal key polynomials

The image of each operator ﬂgo is the space of polynomials invariant under the

action of the group of type ©. In particular, the images of dominant monomials are
given by the Weyl character formula (1.12.1). In our present notations, they are
the functions, corresponding to all partitions A € N, K, (x) in type A, K ?A(x)
in the other types, adding also the functions K_y, . _x, ,, in type D.

We shall recognize in these functions the symplectic and orthogonal Schur
functions introduced in the preceding section by symmetrizing the kernels QY
using the operator 7, (acting only on x).

Indeed, all K,(x) are sent to 0, except in the case v = A dominant. The RHS
of (9.3.3, 9.3.4, 9.3.5) become

ZKM ) K2\(y) -

On the other hand, all left-hand sides are symmetric functions multiplied
[T [T (1 — xi/yj)_l in type B,C, and [[; H] (1 — x;/y;)"! in type D.

Writing

H H _ | | P Hj<i 1 —xi/y, ’

il joi T %/?/j || P Hj:l..n 1 —;/y;
one has a denominator which is symmetrical, and a numerator which is a sum of
monomials z¥; with v < [0,1,...,n-1]. These monomials are annihilated by m,,
except 2%Y, and therefore the image of the numerator is 1. The same property is
true for type D, and in final one obtains the following identities (still with x,, =0
in the last equation) :

OB — H1§i<j§n(1 T xixj) H:L:1<1 + IL‘Z) B o (x

v 1= (1 = 2ayy) (1 — 2i/y;) - Z A(x) K2,(y), (9.5.1)
so licigen(l — zi)) B U
v [1= (L =2y (1 — xi/y;) - ; A(x) K25(y), (9.5.2)

=p  icicjen(d — 2izy) R
v [T (= wayy) (U= 2fyy) Mznjo Ax) KZ\(y) -

Comparing with Littlewood’s generating functions (9.4.1) and (9.4.2), putting
yt= {yb o 7yn,y;1, . ,yfl}, one obtains

KB\ (y) = O\yt+1) & KO (y)=5nm(y") & KP(y)=0\y"), (9.54)

with A, = 0 in type D.

In particular, when A\, = 0, one passes from type D to type B by “adding 1
to the alphabet”. As in the theory of Schur functions, this means enumerating
all partitions differing by an horizontal strip from a given one. Instead of using
(9.5.4), let us have recourse to Weyl’s determinants to check the following property.

(9.5.3)
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Lemma 9.5.1. Let A € N" be a partition such that N\, = 0. Then

KB (x) = > K (x) (9.5.5)
w: A/ horizontal
KP\(x) = > ((YVHEE (x) (9.5.6)

A/ pvertical

Proof. We use Weyl’s determinants (1.12.4, 1.12.6). Let us show the proof on an
example, taking A\ = [5,2,0]. Weyl determinant for type B is then

‘x”’l/Q _ T2 7 p3TY2 . -3-1)/2 ’ 212 12

T=21,22,T3

Dividing each row by (2'/2 — 271/2), one obtains
‘x7+x6+-~+x*7, R 1‘.
Subtracting each column to the preceding one transforms the determinant into
’ ("4 ) 4+ (2t (@) + (%) (teh) ‘ .
The factor [],(v/z — /x) being equal to AP /AP one reads from the preceding

determinant that
K€5,—2,0(X) = Z KE)M(X) )
o

sum over all partitions p such that 5 > p; > 2 > ps > 0 > p3 > 0, which is just

another way of describing horizontal strips. The second formula results formally

from the first one. QED
In detail, one has

B D D D D D D
KZ5 00=HKZ5 00+ K25 10+ KTy o0+ K500+ K25 00+ K2y 1
D D D D D D
+ K 10t KD 00+ K00+ K00+ K2 10+ K00,
D _ B B B B
Koy 50=KZ5 50— K25 10— K2y 99+ K2y 1.

It is easy to extend (9.5.5) and (9.5.6) to the case of partitions with last part
# 0. Indeed, (1.10.6) shows that

1
M1+ sl = a1+ sO)a" 0= (1 +s7) . (L4 s9) 08
2
a:’\+["_1""’0](1 + sf) (14 sg) a°

1 Ay —na1 _
xi\l'f‘n + :L.l A1—n+ R mi\n _'_ xl An

' ' A(z®)
A1+n—1 —A1—n+1 A A
! +x, "+ x, "
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Hence, Weyl’s determinant describes the sum K7, + K f’/\sg, and the preceding

computation remains valid, at the cost of replacing K, by
K = K" + KP o if A #0 KP = K", otherwise .

In final, one has

K% (x) = > K% (%) (9.5.7)
w: A/ phorizontal
K2 (x) = > ((YVHES (x) (9.5.8)

A/ pvertical
For example,
K§2,—2,—1: (KDQ —2,—  +KP 2, 11)+K 2, 20+(K 2,—1, L+ K7, 1,1)+K—D2,—1,0~
=

Notice that the determinantal expression of K2 ) shows that formula (9.5.4)
extends to all partitions, without the restriction A\, = 0:

KD (x) = O\(xH). (9.5.9)
Thus,
KP4,—2(X) = KP4, 2(X) + K—42( )
= Op(xT) = spa(x™) — 542/2(X+) =+ 842/31(X+) .
Type D is also related to type C' as shows the next lemma.
Lemma 9.5.2. Let A € N be a partition such that A\, # 0. Then

EP\(x) = K2 o(x) =K% [ (27" =) - (9.5.10)

i=1...n

Proof. The left-hand side is the image of (~1)"z =1 (gt — z-Mn) =

n n

(-1)"2*(1 — s§) under w2 . According to (1.10.6),
(1 = OB, = am 01— 6€) (1= $0)L,
and therefore
(1)t (1= s)my, = (S1)ra e O]ch(xlxil) .. ,wf(:cnin)(‘);
A0l O ﬂg(ilxl) e (ifxn)ﬁ;
= e Ol ﬂ,?@;(xilxl) - (xixn)
= 277l @t — ). QED

The two characters K2, (x) and K, (x) come by pair. The following lemma
shows that they are in fact exchanged by any s{'.
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Lemma 9.5.3. Let A be a partition in N*. Then for any i =1,...,n, one has

KP (x)s¢ = Kgsg(x) : (9.5.11)

Proof. Given a constant €, (1+€s¢) ... (1+€s¢) commutes with 9 = (degn(*l)“")a) JA(x®),

because it is symmetrical in xy, ..., x,, and because A(x*) is invariant under any
s¢. Hence, using the expression (1.10.6) of 72 , one has

250, s = (14 0). (L 4s) = (=)o (1= 55 ) s
:a;<<1+sf)...(1+sg)_<1_sf)...(1_sg))s$
:((1+s§?)...(1+sg)+(1 .. (1—s>)a°

and therefore s¢70 s¢ = 1l QED

n “wo 1 wo

For example, K7, _(x) = (:ch + wl—l> <1 + %) (x% + 1,—1%) and
K2 (x) = (L + 1) (1455 ) (e +a3).

A direct corollary of the expression given in Proposition (1.10.3) of 7¢ , by type
A-divided differences is the following description of symplectic Schur functlons in
terms of type A-key polynomials. Indeed, the operator 7, appearing in (1.10.3)
acts only by reordering the index of 2* = K.

Proposition 9.5.4. Let A € N™ be a partition, v = [0, Ay, 0, A\y_1,...,0,A\]. Then

Spa(x) = K%, (x) = K, : (9.5.12)
x—>{$1,x1_1,x2,x2_1,...}
What is remarkable in this formula is that the RHS uses the alphabet {z, r7,
Ty, 75",...} (which corresponds to considering the hyperoctaedral group as a
wreath product), while the LHS is generated using the order xy, x, ..., &, 2,5, . . .,

The general key polynomials K¢, for v # A cannot be related to the type A key
polynomials in the alphabet {z,,z',...}.

-1
.

Since key polynomials have a combinatorial interpretation in terms of tableaux,
symplectic Schur functions inherits from the above proposition such a combinato-
rial description, evaluating 7 in z; and 7 in z; L
Corollary 9.5.5. Let A € N" be a partition. Then K€ (x) is the sum of all

contretableauz of shape \ on the alphabet {1,1,2,2,... n,n}, such that the letters
1,7 can occur only in rows n,n-1,...,n+1-.

For example, for A = [5, 3, 2], the admissible tableaux are those contretableaux
in {1,1,...} of shape [5,3,2] which remain tableaux when concatanating on the
right the column [3,2,1]. Here is one of them :

I

HE

- ~1,. 2
, evaluation x| wox3 .

—_
— =1
N | Qo
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For A = [1,1,0], there are 14 tableaux of shape [1, 1] on the alphabet {1, 1, 2,2, 3,3},

without 3 in the bottom row : I I I I I I I I—l—
+ —|— — + - —|— + and the sum of these tableaux evaluates into

1 T
KC 10—5]911()(3)—x1x2+—+g;2x3+_+ +_1+2+m1x3
T3 T X1 T3 T3
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9.6 Symmetrizing further

One can easily increase the number of variables in a Schur function by using
symmetrizing operators. Indeed, for A € N", r < n, w = [n,...,1], one has
sx (%), = sx(Xp), since w47, = T

Because of the orientation of the Dynkin graph that we have chosen in types
B, C, D, the symmetrization of symplectic and orthogonal Schur functions is not
as straightforward.

For example, for n = 3, one has

ng4 —2 wo Ki 20+K—400+K —10+K2 20+K—2007

K—B4,—2 T = K]—34,—2,0+K—B4,—1,0+K—B4,00+K]—33 —20
B B B
+2K73,71,0+K 00 T K 50+ K2 710+K 2,0,0 -

To describe these symmetrizations, we need the following values, which are a
direct consequence of (1.10.1), (1.10.3), (1.10.6).

Lemma 9.6.1. Givenn, and i : —n+1 <1 <n-1, 1 7é 0, then for the groups of
type Q = B,,, C,,, D,, one has the vanishing of all x' except

’LU07

le

T, T, ——1—x’2 C

Passing from x,,_; to x,, and keepmg the same set y,_1, corresponds, for what
concerns Littlewood’s generating functions®, to division by

== H (1 — yixn)(1 — yiz, ) = oy (—(m,ﬁx‘;l)yn_l) )

Therefore

Zs,\ Y1) K7\ o <E7rf§0> <Z 3)\<Yn1)K?)\70) : (9.6.1)
A

sum over all partitions in N1 (with \,_; = 0 in type © = D).
To evaluate the factor _wf,f , We need, according to the preceding lemma, to
extract the terms 2% 1 and z,? of

=3 W sia(ntay s (@t ) s (Yaot) -

i7j

(1]

Thus, the constant term of = is equal to Zi,j:i+2j§n—1 Soi12i (Yn-1), the coeffi-
cient of x,? is equal to Y, ;..\ oic, 5 S2i12i+2(Ya-1), While the coefficient of z,! is
ZOQQTH $A(Yn-1)-

Using the scalar product on symmetric functions of y,_1, one transforms as in
(9.4.10), (9.4.11), multiplication by its adjoint operation. In final, the preceding
computations give the looked for images of K 3\ under 7.7

3We have exchanged the role of x and y compared to (9.5.1), (9.5.2), (9.5.3).
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Proposition 9.6.2. Let n be an integer > 3, A € N" be a partition (with last part
An—1 =10 in type D). Then

ONREDTE = D L Oud) (962

S T, = D Shaer(xy) (9.6.3)

ONKLD 0y = D s e O30 (9.6.4)
writing x8 = {xy, 27", w27 1) and x§ = xP = {xy, 27t 1, 00}

The examples on which we started the section may be rewritten

Oup (x5 )Ty = Osa(x5) 4+ Ouoj1 (xF) + Ooya(x5) + Ouzj11(x5)
+ Op1(x5) + Ogajaa(xF)

Sp42(x20)7r50 = Sp42(xg) + Sp42/2(x30) + Sp42/22(xg) )

and we complete them, for n = 4, by
K—D4,—1707TD O (x5l K—D4 —900 T K= 4000+2K—3—100

+K—2 200+K—2000
= Op(xY) + Oaapa(xy) + Osoyn1(x7) + Ouzjoa(x7) .
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9.7 Finite symplectic Cauchy identity

In the case of symmetric functions, the two Cauchy identities relative to the ex-
pansion of the resultant R(x,,y.) or of [, .(1-2;y;)~" are equivalent. This was
no more the case in the non-symmetric case. For example, in type A the finite
form involves Schubert polynomials (2.10.1), while the other involves Demazure
characters (2.15.2).

Hasegawa [62] has given a symplectic generalization of the expansion of the
resultant.

Theorem 9.7.1 (Hasegawa). Let n,m be two positive integers. Then

T+ =y = w7 = D (D) Sppna (5%0) Spa(ym) - (9.7.1)

=1 j=1 ACn™m
Proof. Since x’“wc = 2F + 22 + ... + ;% the image of the Vandermonde in
Xp, Uym by 7% . chﬁjc ... Y% is equal to the Weyl determinant of type D:

1 aprayt 2?+xy? 0 atmTlpgmomtd

: : : : =A(x; Uyy,) -

-1 -2 n+m— 1 —n—m+1
Uoyry s yivys g y] B P

However,

A(xp) 82 (x) 770 L w20 = APt rPC9T = Sy (xn)A(XD)A(x,)

n

and therefore the image of

A(XnUYm) = A(Xn)A(Ym)R(XMYm) = A(Xn)A(ym) Z (71)|M5m”/)\w (Xn)sk(ym)

ACn™

under the product of 7¢ gives the required identity

A UYL AT AL = S (1) Spn e (30 Spa(yim)

ACn™

Hamel and King [61] give a bijective proof of this identity. There is no known
analog for the orthogonal Schur functions.
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9.8 Rectangles and sums of Schur functions

As in the case of Schur functions, the characters indexed by rectangles (i.e. par-
titions with all parts equal) play a special role. Instead of type D, we introduce
two formal types DT, D~ such that

+:1+3ic & 7P =1-5sY,i=1,...,n,

1 b

and extend the expression of 7T50 and Wgo to all types B,C,D*, taking p =
n-1,...,0]:

T = afmy Lomy Of = afdimy ...y (9.8.1)
Lemma 9.8.1. For any r >0, any type O = B, C, Di, one has
1
KY o= H - Y., (9.8.2)
(=r)n _,—1,.-1 "1 n
1<i<j<n 1 Ly Xy

Proof. The function is equal to

n 77/
"o Y L wy "9, H 171'?...71'@,

_1 — n
1<J

and 2”10, = ™" allows to conclude. QED
The following proposition shows that the functions K (Qi pyn Can be obtained as
determinants of functions for n = 2.

Proposition 9.8.2. Let n = 2m be an even integer, v > m-1. Then for O =
B,C, D*, one has

1

i=tem Az, 1) A(X, s )
j=m+1l..n

(@i, x5)

= K e (%0) . (9.83)

Proof. The determinant can be written with an alternating sum over &,,, or
with the summation (m!)™'Y" _q mm( 1)49)g over the Young subgroup &,, .
Therefore, putting w’ = [m, ..., 1,n...,m+1], using (9.8.2) for n = 2, one rewrites
the left-hand side as

K® (x1,Tmy1) - KO (2, x,) 0% (m!)

y—— y——
1 1 _
=g e MR TR poee . omy A% (m!) 7!

1_371 Tt Ty Ty

The divided difference 92, commutes with the product 7y ... 7Y because each z?
does. Thus, the expression becomes

1 1 1

T -1 7 11 w’_|
1 —ay w1 —atay; m!

1 1 Q@ 0 e
H P H P e LR ay .

i<j<m ? J m<i<j<n 1 J

x’l’...?”
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Cauchy formula for the determinant det(1/(1 — x;'z; ")) allows to compute the
action of the divided difference, taking inverse variables 1/x; causing an extra

factor (z1...x,)"”™ compared to the usual case. In final the expression becomes
equal to
1
(I‘l . xn>r+1im H PR — W? . WT?
S 1l =z
1<i<j<n ? J
which is equal, thanks to (9.8.2), to K(?Hm_l)n(xn). QED

The determinants with entries K _ (x;,2;) or K2 (2;,2;) can also be de-

: : T 17D . . T 1D . .
scribed. In fact, the matrices [xiij—n—r(x“mJ)L:L..m,j:mH...n and xiij_Tﬂ’(x“x])}izl...m,j:m-l—l.

factorize into

& 1 a

J 1 j=m+1..n j=m+1..n

respectively. From this one obtains

Az, ooy T ATty oy Tp)
D ) s m m~+1» n
det(K—r,—r(xhxj>)z’:l...m,j:m+1...n - T : X

S st i) (984)

AC(2r—m+1)™

det (K—Dr,r($i7 l’])>
) A M)

IT‘...T‘

i=1...m,j=m+1..n

S(QT_m+1)m (./L'l, e ,In) . (985)

The determinants (9.8.3) occur in the computation of Pfaffians. According to
[110, Th. 4.1], given n = 2m, given indeterminates as,...,a,, gi;, i,j = l.n,
with g;; = gj;, then the Pfaffian Pfajf((a;-a;)g;;) is obtained, up to a scalar,
as the image under the alternating sum of permutations, acting on a; and g;;
simultaneously, of

(a1-ami1) - - - (am—an) det (gij)

i=1l..m,j=m+1l..n "’

Taking ¢;; = K¥(x;,z;), one has a summation where the symmetric function
K(@—r—‘,-m—l)”(X”) occurs as a common factor. The initial case is for r = m-1 the

determinant being equal to A(xf, ..., x5, )A(x), 1, ..., 2y). Up to a minor change,

this case corresponds to the Pffafian Bfaff (%) considered by Sundquist[189].
iTj
Indeed, for g;; = (1 — ;2;)~!, the determinant det (gij) is equal,

thanks to Cauchy again, to

A(l‘;, ce 7I:n)A(x:n+17 co 7I:L) xm—l,...,m—l

Hl§i<j§n L — 2,

i=1...m,j=m+1..n
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Proposition 9.8.3. Let n = 2m be an even integer, r > m-1. Let ‘B, =
Praff ( L ) [Lo;(1 = 2izj)A(x,) "' Then for © = B,C, D*, one has

1—z;z;

Poif ((ai-a;) K2, _ (25, 7;)) = K(@_Hm_l)n(xn) B, . (9.8.6)

Specializing a; — x;, ¢ = 1...n, and using that P, becomes equal” to A(x,,) [Tio;(1-
z;x;)"", one obtains

Corollary 9.8.4. Given n = 2m, r > m~1, one has, for type O = B, C, D*
Praff ((2;-z;) Kiﬁr(%, z;)) = K(@—r—&-m—l)"(xn) A(x,) gt (9.8.7)
For example, for n =4, r =2, O = (', one has
K% _y(mi,x5) = sm(mi+ oy + a7 + ;") —su(z+a; + 2 +a;') = fi,7),

and
Praff (2 — ;) f (i, ) h<icjca = K 1 1 (xa)A(xg) /2
with K¢ | | j(x4) = 2+ >, 2", sum over all exponents: v; € {0,1,-1},
vl =2 or 4.
The elementary functions K 3«7_,“ can be written in terms of Schur functions of
x1, 9. From Weyl’s determinants, one finds that

?TKE = Y sy, (9.8.8)
AC[2r,27]

?TKC = > s, (9.8.9)
AC[2r,27], A even

27T KP:_T = Z Sppr + S(2r) - (9810)
i=0...r

KD =Y s = s (9.8.11)
i=0...r

One remarks that the first sum is the sum of all minors of order 2 of the matrix
[sj_i(XQ)L. <2.i<ort2’ This indicates that symplectic and orthogonal characters can
be used to describe some sums of Schur functions, as first shown by Macdonald
[146, p. 83]. The idea to use Pfaffians is due to Stembridge [185].

Indeed, given a matrix M of order 2m x N, with N > 2m, then, according to
92, ?] the sum of all minors of order 2m of M is equal to the Pfaffian Pfaff(z;;),
denoting z;; the sum of all minors of order 2 taken on rows 1, j.

4The value of Pfaff((x; — z;)(1 — z;x;) ') has been obtained by many authors, among which
92, 185] .
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Since a'"(xy — x2) KB, _ (x1,23) is a sum of minors, (9.8.7) gives the first
statement®, due to Macdonald [146, p. 83] in the next theorem. More elaborate
summations on minors lift the restriction that n be even as in (9.8.7). They also
give the second statement, due to Stembridge [185], and the last two which are
due to Okada [156] (going back to type D instead of using D¥).

Proposition 9.8.5. Let n,r be positive integers. Then

K(B_T)n — T Z S)\(Xn> (9812)
AC(2r)™
K&M = x T sx(xy) (9.8.13)
AC(2r)™, even
KPpn = a0 sx(xXn) (9.8.14)
AC(2r)", even cols
K([iT)(nfl),r = a SQT,)\(Xn) (9815)

AC(2r)(n—1), even cols

Remark To evaluate the Pfaffians above, we have only used appropriate factor-
izations of 7, . But to pass from these evaluations to sums of Schur functions,
we had recourse to theorems on sums of minors. One can bypass this step by
following the action on sums of Schur functions of the 7 operators.
For example, K%, , _, is equal to
222, B _ ,222(B

T, = o7 (my Wgﬂfﬂg)(mmﬂfﬂgm) = K21?72772(7T17T27T57T27T1) .

- - B 27,022
By induction on n, one knows that Ky _, o = x1/2% ", sx(¥2,23), and thus

B —9,-2,-2
Ky o omme =K 5 95 = g sax(w1, T2, 23) .
AC44

It remains to show that the image of this sum under w¥mym;, which is K 32772772,
is equal to x> 7237 ), su(21,22,23). This is done using (1.11.5), but not
totally straightforward since cancellations occur.

®Macdonald takes 7 to be a half-integer, and thus (2r)" can be any rectangle of width n. We
have avoided using square roots of variables to handle only polynomials, but the computation
of the Pfaffian is still valid in this more general case. We have also restricted n to be even, but
it is well known how to adapt the theory of Paffians to matrices of odd order.
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Macdonald polynomials

There is an abundant literature about Macdonald polynomials, we shall restrict
ourselves to properties of the type encountered for Schubert, Grothendieck, key
polynomials: recursive generation, multiplication by a single variable, transition
formula, Hopf decomposition, etc. In that respect, there is a strong similarity
between Schubert polynomials and Macdonald polynomials.

To make connections with literature easier, we specialize the parameters t; — t,
ty — -1, though keeping t,t, would reveal more symmetry.

10.1 Interpolation Macdonald polynomials

We have at our disposal three bases of Pol(x,), {Y,, v € N}, {G,, v € N},
{K,, v € N"}, we want to add a fourth one, {M,, v € N"} which relates easily
with the usual symmetric or nonsymmetric Macdonald polynomials.

This basis, the interpolation Macdonald polynomials, has been defined by Sahi
and Knop. It can be defined, up to normalization, by the vanishing in certain inter-
polation points, exactly as Schubert polynomials. These points have coordinates
of the type ¢‘t/, for Schubert we are using points with coordinates a permutation
of independent parameters yq, o, . . ..

The underlying group is the affine symmetric group, instead of only the sym-
metric group. In consequence, though using vectors of n components, it will be
convenient to consider these vectors as the n first components of an infinite vector,
as we do in [102].

For what concerns the indexing of Macdonald polynomials, v € N" is extended
to v € N> such that v;y ., =v; + 7,17 € Z.

Similarly, we shall use an infinite set of indeterminates x; : ¢ € Z, such that
Tiven = ¢"2z;. Now, apart from the simple transpositions s;, 0 < i < n (which
transpose Ty, and T 14, r€SP. Vit and Vi1, for all 7 at the same time),
we also have a translation 7 : x; — 2,41, v; — V41, and its inverse 7 = 77!, that

255
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one can also write

,
[xlw"uxn—laxn] [x27"'7xn7qx1]7
T
(U1, oy Upo1, U] — [U2, .., 0,01 + 1]
Let moreover sqg := 7$7 = Ts,_17. This is the extra generator such that
{s0,51,..,Sn—1} generates the affine symmetric group.

The interpolation points have also an interpretation as spectral vectors (relative
to the Cherednik elements). We shall keep this last terminology, though not using
the Cherednik elements. Given a dominant A € N”, the spectral vector (\) is
[ttt ... t%* ], For a general v € N", such that A = v |, and 0 € &,,, of
minimal length, such that v = Ao, one defines (v) = (\)o. When needed, (v) can
be thought as infinite, by putting (v),; = ¢ (v);.

For example, for v = [2,0,6,2], one has v = [6,2,2,0] s15352, (6,2,2,0) =
(453, ?t2, ¢°t, 1], (2,0,6,2) = (6,2,2,0) 518350 = [¢°t%,1,¢%3, ¢*t]. Moreover, v
must be looked at as the prefix of [2,0,6,2, 3,1,7,3, 4,2,8,4,...].

We need to generalize the inversions of a permutation. We define recursively
m(v) by
Ar) =M(v) & A (vs;) =Mm(v) (ty =)y —1)~"

when v; < v;y1, with 4 = (v);41(v); !, starting with m([0...0]) = 1.

Contrary to the case of Schubert polynomials, the lexicographic order is no
more convenient. We have to combine orders on partitions and on permutations.
Recall that the natural order on partitions is defined as follows. For A, u € Part,
then A >qpaq piff forany i: 1 < <n, Ay +--- 4+ X 2> g + -+ p.

Given v € N denote A(v, ) the decreasing reordering of vy, ..., v;. Then, for
two permutations u, v of the same element of N*, u >g v iff for any i, A(u,i) >
A(v, 1) componentwise.

We can now set : u > v iff

|u| > |v|or (|u| = |v] & A(u,n) >qa A(v,n)) or <)\(u, n)=Aov,n) & u>g "U) :

For example [4,0,0] > [0,0,4] > [2,2,0] > [2,0,2] > [1,2,1] > [3,0,0] is a chain
with respect to this order.

The leading term of a polynomial is the restriction of the polynomial to its
maximal elements with respect to this order, used by Knop.

Definition 10.1.1. Given v € N", then the interpolation Macdonald polynomial
M, is the only polynomial of degree |v| such that

M,((w)) = 0, u#wv, |ul <|v| (10.1.1)
The leading term is zlq > (%) | (10.1.2)



§ 10.2 — Recursive generation of Macdonald polynomials 257

10.2 Recursive generation of Macdonald poly-
nomials

As for Schubert polynomials, the existence and unicity is proved by extracting
from the vanishing conditions a recursion M, — M,,, together with a recursion
M, — M,,.
In the first case, one essentially needs to change the conditions
M,((vsi)) = 0& M,y ({v)) #0 into My, ((vs;)) # 0& Mg, ({v)) =0
and this is done by using the operator T;+c, where c is a specific constant furnished
by the following lemma.

Lemma 10.2.1. Let o, 3, 5 # «, ta, F(x;, xi41) be such that F(a, 5) # 0, F(B,a) =

0. Then G(x;, xiy1) = F(i, xi41) (TZ + ,6;;1) is such that G(a, B) = 0, G(f, ) #
0.

Proof. Write F' = f + x;,19, with f, g € Gym(z;, x;11). Then G = (t+ o) f + (z; +
cxiy1)g. The hypothesis is that

fla, ) + Bgla, B) #0,  fla, B) + ag(e, ) =0

The vanishing of G(«, 3) requires that ¢ = (¢t — 1)(8/a — 1)7!, in which case
G(6,) = (o~ — 1)(Ba~ — 1) F(a, §) £0. QED

Of course, if F(a,3) =0 = F(3, ), then G(z;, x;11)(T; + ¢), for any constant
¢, is such that G(«, 5) = 0 = G(f, a).

From this remark and Lemma 10.2.1, one deduces that if I satisfies (10.1.1)
then G = F(T; + (t — 1)(y — 1)), with 8 = (v)is1, o = (v);, v = B/, also
satisfies (10.1.1).

Vanishing conditions propagate under translation: f((u)) = 0 implies g({ur)) =
0, with ¢ = f7. But the vectors ur are exactly those w such that w, # 0. There-
fore, if f((u)) =0 forall u: |u| < |v|, u # v, then g({w)) = 0 for all w : |w| < |vT|,
w # w, w, # 0. Since (w),, = 1 when w, = 0, the polynomial M,7(z, — 1) sat-
isfies the vanishing conditions (10.1.1) for the index v7, and the coefficient of z*7
is equal to the coefficient of £ in M,, divided by gq.

Finally, one has the following recursive definition of Macdonald polynomials,
due to Knop [77] (who reverses the alphabet x,,, compared to the present defini-
tion):

Theorem 10.2.2. The Macdonald polynomials satisfy the recursions

f—1
Mvsi =M, (T, + — ) s Zf Vi < Vig1, 10.2.1
( O =1 g (1021)
and
My, = My 7 (2 — 1) (10.2.2)

starting with My o = 1.
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One could have chosen to normalize Macdonald polynomials by specifying the
value ||v|| := M,({v)). The theorem implies that, when v; < v;y1, ||vsi]|/||[v]] =
(y—1)/(y — 1), with 4 = (v);11{v);*. Moreover, ||v7||/|[v]| = ¢(v); — 1, and this
suffices to determine ||v|| starting from 1.

Notice that (10.2.1) means that the linear span Vy of the M,, with v such that
v ]= ], is a space of representation of the Hecke algebra with a Yang-Baxter basis
M, (generated from My, taking the spectral vector (v 7)).

When A has equal parts, then the space V), is not of dimension n!, but the con-
struction is still valid! Indeed, if v; = v;11, then (v);41 = t(v);, M, is symmetrical
in x;, 241 and M, (T; + (t-1)/(t-1)) = M, (¢t + 1).

The matrices representing 71, ...,7T,_1 in the Macdonald are easy to write,
thanks to (10.2.1). More generally, the matrix representing any element % of the
Hecke algebra is easy to describe. According to the vanishing conditions, its entries
are

M () [l

We can keep the matrices and specialize the Macdonald polynomials, or replace
them by simpler polynomials. They are many ways to compute in the space V.

Indeed, suppose that there exist v € N" u dominant, a constant C, and a
function f(zy,...,z,) such that

F((w) =CM,((w) Yu:ul=pu.
Then f can be extended to a family {f, : w|= v ]}, such that

t—1
ws; — T‘z_{' 7'f P < Ww; 5
Jus ( <w>i+1<w>ﬂ—1) bots

and
Fu((u) = C My((u)) .

Notice that one can generate the Macdonald polynomials in V) starting from any
(=1)?
ty=1)(v—t
the same operators, starting from f, to generate the f,,, f being renamed f, on

this occasion.

For example, take f such that f((,u)) = 1 and that f((u>) = 0 for all u such
that u|= g, u# p. Then f,((u)) = 0if u # w, and f,,((w)) = [Jw]| ||~

We shall describe in the next section simple polynomials which allow to eval-
uate M, ((u)) when |u| = [v] + 1.

of them, say M, using operators T; + ,ty;_ll, or (Ti + 7f7i1> i 7 We can use

It is shown in [102] that one can generalize Macdonald polynomials by using
other affine operations than (10.2.2). In particular, taking two parameters a, b,
one defines polynomials M, (x, a,b) by using both (10.2.1) and

T, —a
1—bz,

M, (x,a,b) = M,(x,a,b) T (10.2.3)
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These polynomials are related to the BC,-symmetric polynomials of Rains [170]
in the symmetric case. The constants appearing in connection with the polyno-
mials M, (x, a,b) give a better understanding of the constants related to the usual
polynomials M, = M,(x,1,0).

10.3 A baby kernel

Much of the theory of Schubert polynomials can be recovered from the study of the
kernel [ ], ., (yi — ;). We cannot expect a finite kernel for Macdonald polyno-
mials, nevertheless a “baby kernel” similar to the kernel for Schubert polynomials
will already provide properties of Macdonald polynomials.

Define this kernel as

Oxy)= ] (& —w)lei—ty).

1<i<j<n
Then the action of the Hecke algebra on this element is easily described :

Proposition 10.3.1. Let v € N*. Then, with vy = y;11/y;, one has

t—1 ty—1 ,
Ol (x,y (Ti—k >: O (x,y%). 10.3.1
o) (Tt T By (10,

As a consequence, one has the symmetry
O (x,y)Uf =H(x,y) Y, (10.3.2)
Proof. Modulo a factor symmetrical in x;, z;,1,
H(x,y) = (xi — tyir1)(Tit1 — vi)
= ($imi+1 + WiYit1 — Yi%i — y¢$i+1) + (yz — Yig1)Tig1 -

At this stage, we need only know that 17; = ¢, x;.1T; = x; to conclude for the
first equation.

t—1 +yz+1—tyz

,—Ti +1= E + 1 y
Yirry; —1 Yi+1 — Yi

one sees that the second statement is a rewriting of the first one, since

Ox,y)0 = O(x,y)(ty; — yis1)0!

Wi — Yit1 o tYis1 — Ui
= Beoy) s+ O yY)
Yi Yi+1 Yi+1 Y;

QED
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As a consequence, the space generated by the action of H,, on [J(x,y) coincides
with the span of H(x,y?) : ¢ € &, (with rational functions in yy,...,y, as
coefficients). Putting N(y?) = Hﬂeg(tyj vi)(y; — vi)~" , then Eq.10.3.1 tells us
that {N(y?) I (x,y7?) : 0 € 6,} is a Yang-Baxter basis Wlth spectral vector y.

Let now w € N be regular anti-dominant, i.e. 0 < w; < --- < w,. Specializing

= (w), one sees from (10.3.1) that {M, : v T=w} and
{ﬁ(( )) [ (x,(v))} are two Yang-Baxter bases with the same spectral vector.

To study M,, we need one more function F(z,v), which belongs to Shm(x)
and depends only upon X : v]. Let F(\) ;== {t"i¢d T i=1...n,j=1...\ —
Air1 — 1}, putting A\, 11 = 0 for the careful reader. Define

R(x, F(v"))
R(X7tnq 4+ 4 tnqk;) )

F(x,v) =

with k = maz(v), and R(A, B) = [[,c4 [1,ep(a-b) as before.

We moreover notice that, if v has equal components, then the specialization
[(x,v) of (x,y) in y = (v) has a factor which is symmetrical in x, namely
R(x, (v) N (v0)), i.e. the product of all R(x,t'¢’) such that both t'¢’ and t*~'¢’
are components of (v).

For example, if v = [6,1,3,6,0,6,0,3], then, as sets, (6,1,3,6,0,6,0,3) =
{175, 2 1 q3, 155, 11 q°, t9¢°, 1°¢°, 33}, (v0) = (6,1,3,6,0,6,0,3,0) = {t3¢°, t3¢*
53,1765, 12", t°¢5, t1q°, t*¢3, 1%} and the intersection is {t"¢®, t5¢%, t1¢3,t1¢"}.

Define @(X, v) to be the quotient of [J(x,v) by the symmetrical factor.
Following [134] let, for u € N and p = u |,

n pi—1

Bt 1) =) [ []¢- 7t

i=1 j=0

and denote F'(u,v), E(u, v) the respective specializations in x = (u) of F(x,v),
[1(x,v). We can replace N({v)) by M(v), since M((vs;)) = m({(v))(ty — 1)(y —1)~*
when v; < Vi+1, with v = <'U>Z'+1<U>;1.

Proposition 10.3.2. For u,v such that |u| = |v| 4+ 1, then

M, ((u)) = (—qt" Y E(u,v) E,(t,1) @ (v) D(u, v) . (10.3.3)

Proof. The proposition is compatible with v — vs;, thanks to (10.3.1). We have
to check the behaviour of each function with respect to (u,v) — (ur,v7), but this
presents no difficulty. The only specializations which are missing for M,,,, knowing
those of M, are M,.({u)), u : u, = 0, such u having no predecessor under 7. But
in that case M,.((u)) = 0 since (u), = 1. On the other hand, if v7 has a zero
part, then [(u,v) = 0; if not then t°° € F(vr) and F(u,v) = 0. Therefore, the
proposition is true for v7 and all the permutations of u7r. This suffices to make
it valid for any w permutation of v7, and any permutation of ur, and therefore
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the first part of the proposition is proved by induction on |v|. The case |u| = |v|
is treated in a similar manner, the slight difference pertaining to the extra factor
t — 1 occuring indeed for v = [0, ..., 0]. QED

For |u| — [v] > 1, the specialization M, ({u)) does not, in general, factor into

products of the type (tig? — 1)*'. Therefore the function F(u,v)(u,v) cannot
qualify to approximate M, ((u>) We conjecture however that

M,((w)) #0 iff  F(u,v)D(u,v) #0. (10.3.4)

Knop has shown that u™ 2 v™ implies the nullity of M, ((u)). It is a pure
combinatorial problem that we leave to the reader, to check that u™ 2 v™ implies
the nullity of the explicit function F'(u,v)EH(u,v).

The product that we have written in (10.3.3) is not optimal, since F'(u,v) has
terms in denominator which can cancel with other terms. We have given a more
compact expression elsewhere, that we shall not use in this text.

The only reduced evaluation that we shall need is given in the next proposition
(the proof, checking the compatibility with respect to (u,v) — (ur,v7) being
omitted).

Proposition 10.3.3. Given u € N", let k = max(u), i be the leftmost position of
kinu. Letv=1_[..,ui1,k—1,u;1,...], and B be such that (v); = ¢*~1t°. Then

M, () [ful = #0(g — 1) (103.5)

10.4 Multiplication by an indeterminate

Given any polynomial f(x) of degree 1, then f(x)M,(x) vanishes on all u : |u| <
|v|, u # v, and therefore

(F00) = F(() M) = 3 el

u: |ul=|v|+1

The structure constants c; are determined by specializing the equation in every
u, allowing to rewrite it as

M, ((u))
i

(fo) = f(N)) Mu(x) = Y (F({w) = f((v)))

w: [u|=|v|+1

M,(x).

Taking f(x) = x; + --+ + z,, is sufficient to see all non-zero specializations

M, ({u)) occur, since f((u)) # f({v)) when |u| # |v|.
Denote U, V the sum of components of (u), (v). Using (10.3.3), one gets :
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Theorem 10.4.1.
($1++l’n—V)Mv(X)
= (—gqt" (U—V)M F(u,v)E,(t,1) D(u,v) My(x) (10.4.1)

w: |u|=|v|+1 ||U,||

(2 -1) oo

3 ((un ~ 1) NO) b ) By (4, 1) B, v) Ma(x) (10.4.2)

ez N ) Tl

For example, for i = 1, v = [1,0], v = [0,2], then (u),/(v); — 1 = 1/(tq) —
L, @([1,0]) = (qt2 - 11)(tq - 1)_17 HO’QH = t(q - 1) (qzt - 1)7 F([Ov 2]7 [170]) =
(ta(—q+t)(tPq — 1)), Epa(t,1) =t — ¢, [([0,2],[1,0]) = —tq(t — 1)(¢ — 1) and
the coefficient of My, in the product (z;/tq — 1) Mg is (1/t — 1)(tq*> — 1)~

One can write more compactly the coefficients occurring in the preceding two
formulas, in particular with the help of the functions FE,/,(a,b) studied in [134].
The important property of these coefficients is that they are products of factors
of the type (tig’ — 1)*1, as in the case of many of the constants appearing in the
theory of symmetric Macdonald polynomials.

Computing an example, one sees a structure emerge on the set of u : |u| =
lv| + 1, M,({u) # 0 (call such u the successors of v; here v = [5,0,2]) :

503 - — - 206
026 === 062 —— 602 ’
012 —— 521
edges being the simple transpositions sg — —, 51 ——, 5o —.

The statement generalizing the preceding figure (equivalent to the description
of Knop [78], and which results from easy-to-prove combinatorial properties of the
function F(u,v)E,(t,1), is

Proposition 10.4.2. Let u,v € N", |u| = |v|+1. Then u is a successor of v iff
there exist k € {0,...,n-1}, and a subword o of s,_1---s1 such that

ur® = vt o

For example, the above figure decomposes into the (overlapping) strings [0, 2, 6],
2,6,1]o77 1, [6,1,3]0772, with o € {1, 59, 81, 8251 }.

Baratta [4] has also obtained a degree-1 Pieri formula for Macdonald polyno-
mials.
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10.5 Transitions

As for Schubert polynomials, choosing an appropriate i for the product x;M,(x)
provides a recursion on the Macdonald basis, that we shall still call a transition.

Proposition 10.5.1. Given u € N", let k = max(u), i be the leftmost position of
kinu. Letv=1_[..,ui1,k—1,u;1,...], and B be such that (v); = ¢*~1t°. Then

(v)i

summed over the successors w of v such that (w); # (v);, and w # u. Moreover,
for such w, one has w < u.

Mu(X) _ (xiqkarl _ tﬁ)Mv(X) + 48 Z Mﬂi}iﬁ}» <1 — <w>l) Mw<x), (10.5.1)

Proof. We have evaluated M, ({w)) in Prop. 10.3.3. There remains only to check

the statement about the order, that we skip. QED
Notice that the exponent (3 is equal to
n—1—#G:j>tu=k) —#((:j<iu =k-1). (10.5.2)

In other words, representing u by a diagram of boxes of coordinates (1,0), ..
(1L, u1-1),...,(n,0),...,(n,u,~1), then 3 is equal to the number of points (k ,j)
i and (k-1,7),j < i which are not occupied by a box.

One can iterate the transition formula. This gives a canonical decomposi-
tion of any Macdonald polynomial into sums of products of “shifted monomials”
[T(zig~® — t°), the specialization ¢ = 0 of these monomials being of degree |v|.

For example, writing ij for a factor t'¢’ — 1, starting with u = [2, 0, 2], one has
v=11,0,2], (v) = [tq, 1,t*¢*] and the following sequence of transitions :

10
My = (w1q~" —1t) Migs + M022 ;
10 10 10 - 31
M, = —t) M, -
022 (372q ) o1z +1 U oy e T oy oy Mz,

leading to polynomials of degree 3 that one assumes to be known by induction on
the degree.
To reduce the size of the output, let us represent each factor z;/¢"~! — t° by
a black square in the Cartesian plane (row i, column j) ( 3 is determined by i, j,
according to (10.5.2)). Then the final outcome of the transitions for My is
10-10 -+ - 10-10 - - 10 - -10 .10
] ]

EEE []{.9)  HEEE {].2)  HER 11+ ] ﬁ+:== _2+=:=

with leading term = = = (z1q7 ' —t)(zy — t)(w3q™t — t) (23 — 1).
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Haglund, Haiman, Loehr [59] give a combinatorial formula for the component
of degree |u| of M,, which involves, in general, another enumeration than the
one by transition. Still another decomposition is furnished, in the symmetric and
non-homogeneous case, by Okounkov [159, 160, 161].

10.6 Symmetric Macdonald polynomials

In the space V), which has basis {M, : v]= A}, one can build another basis ]/\4\7,,
still starting with J/\/I\,\T = My, but using the spectral vector [0,1,...,¢" '] this
time.

In the case n = 2, we have already used U; = T; + 1 = (tz; — x;41)0;, wich
sends polynomials onto polynomials symmetrical in x;,x;.;. This shows that
M, A is symmetrical in every pair of consecutive variables, hence symmetrical in
x. However, in the space V), there is only one symmetrical polynomial (up to a
scalar): being invariant under each U;/(1+t) determines the expansion in the basis
M, once knowing one coefficient. This polynomial is the symmetrical Macdonald
polynomial of index A, its component of degree |\| being the original Macdonald
polynomial [?].

Thus M. = M AU, is symmetrical, and moreover every M,U,, is symmetrical
and proportional to the symmetric Macdonald polynomial belonging to the space
Vi. As a consequence, one can study the symmetric polynomial by just using U,,.
There are other methods, in particular some operators on symmetric functions
which are described in the book of Macdonald.

As a side remark, let us determine the image of [(x,y) under U,. From
(10.3.2), one obtains that this polynomial G, (x,y) is also symmetrical in y.
Writing the recursion G,, — G, 41, one realizes that G,(x,y) is equal to the
Gaudin-Izergin-Korepin function :

R(x,y)R(x,ty) 1
A(x)A(y) det (xi—yj)(wi—tyj)> ‘

The relevance of this last function to the theory of Macdonald polynomials has
been pointed out by Warnaar [192], as well as physicists [70, 109].
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10.7 Macdonald polynomials versus Key poly-
nomials

The generation of Macdonald polynomials involves operators of the type
Ti+u:7ﬁ;(t—1)—si+u,
71 gl

with some ~’s, which are rational functions in ¢, ¢, given by a spectral vector.

The limits ¢ = 0 or t = oo clearly must have special properties. To study
them, it is better to take the Hecke relation (7; — t1)(7; — t2) = 0 instead of
(T; — t)(T; + 1) = 0, and transform spectral vectors by ¢t — —t;/ty, without
changing the affine induction.

Let us still denote, in this section, by M, the homogeneous Macdonald poly-
nomials with parameters 1, t5, q. The operators to use in the recursion are now

t1+1 t1+1
T+ =2 = mi(ty + ta) — tas; + ——— .
v—1 v—1
The first specialisation that we shall consider is t; = 0,¢; = —1. Let us
denote M, the specialisation t; = 0,f,, = —1 of the normalized polynomial

M, fcoe ff(M,,z").

In that case, the constant v = (v);,1(v); " used in the recursion M, — M,,,
when v; < v;41, is of the type ¢"+17% (~t1/t2)®, with o > 1, and tends towards 0.
The operator T; + (t; + t3)(y — 1)~! tends towards —m; + s; + 1, which sends 1 to
1 and ; + 1 to @; + x;41. Thus this last operator is a divided difference m,,, | .,
for the reversed alphabet. Therefore,

—~

Mys, = My Ty, (10.7.1)

Suppose that we know that M, = N, + ¢*, with N, = K,,(x¥), and x € C[q|(x,,).
Then (10.7.1) shows that, modulo ¢, M,,, is still a key polynomial for the reversed
alphabet x¥.

Let v be antidominant. The affine operation does not imply ¢1,,. The prede-
cessor of M, under the affine operation is M, with u = [v, —1,v1,...,v,-1]. One

has
Mu:Nu—l—qZCwa :x“—l—Zx“/—l—chfvxw

sum over monomials ¥ such that u), < u; (because, by induction, N, is a key
polynomial) and monomials 2% such that w; < wuy, with coefficients which are
polynomials in q.

Therefore

M, = g™ (C]_ull'v + Z q—u’lxu"r + qz CZQ_wI.IWT) ’

and the term of degree 0 in ¢ is the single monomial x".
In conclusion, one has the following specialization property due to B. Ion [66].
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Theorem 10.7.1. Let v € N. Then the normalized Macdonald polynomial M, /(coeff(M,,z")
specializes, for t; = 0,ty = —1,q = 0 into the key polynomial

Ko (x2)

for the reversed alphabet x¥ = {x,, ..., x1}.

One could hope that the specialization t; = 1,#; = 0 be treated exactly in
the same manner. Let us still denote M, the specialization t; = 1,t, = 0 of the
normalized Macdonald polynomials. One computes

Moo = 29

/

M102 — $102 + xlll + %x012 — 1,021 + xlll + %xOIQ

M120 — leO + é(l}lll + %xOQI M201 — leO + %xlll + %x102

\

M210 = leo + %*

./

\

There is no way that one can obtain ]\A/f(m from J\AJOIQ using an operator involving
only xg, z3 !

However, one can read the hexagon upwards. The space {M, : v T} can be
generated starting from Mo, the arrows M, — M,,, being invertible when ¢, t5, ¢
remain generic. Indeed, for any i, any v # 0, 1, one has

t1+t t1+t t1+t t1+t t to)(t1+t
Tt 1tt2 Tt 1tl2 = (t,+ 112 t+ 112 :_(WJF 2)(1+ 27).
7-1 -1 7-1 -1 (y—1)

Taking into account that we use the normalized polynomials M, /coe ff(M,, x),
we have the recursion

1 t to)(t t t t
(t1y + t2)(t1 + 27)<i 1+ 2):CMUS”

coeff " to(y —1)2 v—1
when v; > v, with 7 = (v); 1 (v); ' = ¢ _t—?
¢ # 0. The extra factor —1/t5 is due to the fact that z;,17; = —tox;. The limit
ty = 1,t5 =0 of % is 1 when § > 1 and 1 — ¢~® when ¢ = 1, while
T; + (t1 + t2)(y — 1)7! specializes into m; — 1 = 7;. Therefore, up to a possible
factor 1 — ¢~ ¢, one has

B
) , a, 3 > 0, and some constant

—

My, =|(1—q ) |M,7;.

Hence, if Mv = l?v%—q*l(*), then Mvsi = IA(USi%—q*l(**), with * and x* polynomials
P
in g L.
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It remains to determine Mv for v dominant. If v,, > 0, then M, = M,®, with

u=vr"t=[v,—1,v1,...,0, 1]. However, M, :x“—i-Zc“ v, with wy > uy. By

induction on the degree |u|, one can suppose that M, = K modulo g~'. Since
K, = 2"+ 2% with w; > u, one has M,® = ¢~"12" + ¢~"1~!(x) and therefore
M, = 2° + ¢ (%) as needed.

In the case where v, = 0, one has recourse to another ingredient. For any
u € N1, one has M,y = M, + T,q t(%). Assuming that for u = [v1,..., v, 1]
dominant, one has M, = z" + q (%), this implies that My = 7% + q ().

In final, one has the following specialization theorem due to B.Ion [66].

Theorem 10.7.2. Let v € N. Then the limit t; = 1,t5 = 0,q = oo of the
normalized Macdonald polynomial M, /coeff(M,,x") is equal to the key polynomial
K,.

In both limits (t; = 1,t, = 0) and (t; = 0,t2 = —1), we have eliminated ¢ by
sending it to co or 0. Sanderson [180] shows that the limit ¢ = 0 of the usual nor-
malized homogeneous nonsymmetric Macdonald polynomial is equal to an affine
Demazure character (for us, on the reversed alphabet x*). It would be interesting
to further develop the combinatorics of these affine Demazure characters. In fact,
they are all the polynomials generated from the polynomial 1 using ¢ and the
divided differences m,, 1 4,, no other ingredient is needed. Since m; acts on key
polynomials by sorting indices, one needs only to describe the polynomials Mv
(equal to ¢/l times the specialization ¢ = 0 of the usual homogeneous Macdonald
polynomial) for v antidominant. The polynomials for v dominant are symmetri-
cal, since they are obtained using a maximal product of 7,11 ,,, and in fact are
equal to the Hall-Littlewood polynomials'.

For example, using key polynomials in the reversed alphabet {x3, x5, z1}, one
has

]\7013 = K310 + qKo20 + ¢Kon + ¢ K119

from which one obtains, by sorting indices,
Ms19 = Koz + Koz + ¢K11a + ¢* K1 -

This last polynomial is explained by enumerating all tableaux of evaluation 1123 =
12213 ([2,1,1] is the conjugate of [3,1]) together with their charge :

123+q12 2|3

+ + :
T 11|3|q11|2|

[S]
—[ro]eo]

1

I There are several species of Hall-Littlewood polynomials. The relevant one is here QL =

Do qc(t)s)\(t), sum over all tableaux of evaluation u, A(t) being the shape of the tableau, but one
has to conjugate partitions.
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Reading the conjugate shapes, one obtains
¢’s31+ ¢'s22 + (¢" + ¢%)s211,

which coincides with ]/—\\4/310. A refinement of charge is needed to explain M{ng.

Notice that one can define nonsymmetric Hall-Littlewood polynomials P,, v €

N™ [30], by starting with all dominant monomials and using the spectral vector
[t ..., 1] (with the Hecke relations (T; — ¢)(T; + 1) = 0).

For example one has Psig = %1 = Ky, Pisg = K13 — tKa, Pios = 55 Koz —
tK12 + Koz — H%Kls + 2 Ko11 — tKae, Poig = Koiz — tKpoe — tKi1a.

The last polynomial is, indeed, the Hall-Littlewood polynomial indexed by
the partition [3, 1], and is the specialization ¢ = 0 of the symmetric Macdonald
polynomial, but, except in the dominant or antidominant case, the polynomials
P, are not specializations of Macdonald polynomials, and are not related to the

affine Demazure characters.
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Hall-Littlewood polynomials

Hall-Littlewood polynomials are specializations of Macdonald polynomials. How-
ever we shall study them independently in this chapter. This study is part of a
joint work with Jennifer Morse.

11.1 From a quadratic form on the Hecke alge-
bra to a quadratic form on polynomials

We have defined in (1.8.5) the quadratic form (, )* on the Hecke algebra H,,. Since
we can use linear bases of H,,, as we have used {0, }, {7, }, {7, }, to generate bases
of Pol(x,), a natural problem is to find a quadratic form on JPol(x,) compatible
with (, )™. We propose a t;t5 deformation of the form (, ) defined in 2.4.1.

Let
1

o 1— L%
0= T+tomty tast
1<i<j<n 27t by

Let us use it to define a bilinear form (, )¢, on Pol by
o0 k
- *0) — * T bt
1<i<j<n =0

where & is the automorphism, already met, defined by x; — 1/x,1_; for 1 <i <
n, and where CT(f ©) means

CT(f©):=CT,, (CT,,_, (... (CTy, (f©))...) .

Lemma 11.1.1. For i < n-1, the operator T; is adjoint to T,,_; with respect to

( ) )t1t2'

Proof. Same proof as in the case of m; and (, ) seen in 2.4.1. As usual, one is
reduced to the case of two consecutive variables. QED

269
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As in the case of the form (, ), one has to determine the scalar product of
two monomials. Since (%, %), = (2%, 1)4,4,, the answer is provided by the
following lemma ' for which we refer to [30, Lemma 4.2].

Introduce a partial order on elements of Z" by using right sums (this orders
generalizes the dominance order on partitions in N"):

VU S Uy > Uy & Uy 10, = Uy 1 H Uy, & Vyyot Uy 10y > Uy Uy 1+Up & . ..

Lemma 11.1.2. For any u € Z", then (x*, 1), # 0 if and only if |u| = 0 and
u>[0,...0].

Proposition 11.1.3. Let A\, u € N" be dominant, o, ¢ be two permutations in Sy,.
If X\ # p, then (2T, 27T¢ )14, = 0.
If A\ =, and if o,C are of minimum length in their coset modulo the stabilizer
of A\, then R
(2, 2T ), 0 & ow =w(\)(, (11.1.2)

where w(A) is the element of maximal length of the stabilizer of X. In that case
(ZE)\TO—, 'IATC)tth =1.

Proof. In the case p, A different, suppose that Ay = p1,..., Ar = pir; Argr < g1
Since T} is adjoint to T),_;, the nullity of (27T, , ¢ )4+, results from the nullity
of (x’H,,, ¥")s,1,- Each monomial z* appearing in the expansion of some z*T,
is such that u < Aw. However, (z%, 2*)44, # 0 requires that v > uw, hence
Aw > pw, which is a contradiction.

In the case A = p, the same reasoning shows that (2%, 2});,s, # 0 only in the
case u = \w. The space 2’ H,, has basis {U, : v|= A}, and 2’ occurs only in the
expansion of Uy;. Since (22, 2}),4, = 1, one concludes. QED

When A\ is strict, its stabilizer is reduced to the identity, and in that case, for
any two permutations,

(2T, , 2 )y, 20 < ow=C. (11.1.3)

On the other hand, (T(,,f o)™ is different from 0 if and only if 0 = w¢. Thus in
that case we have a perfect correspondence between the quadratic form on H,,
and the quadratic form on 2*H,,. When X is not strict, the dimension of the space
2 H,, is less than n!. This explains why we have to use the stabilizer of \.

11.2 Nonsymmetric Hall-Littlewood polynomi-
als

We have shown in [30] how to use the two adjoint Yang-Baxter bases {V ..}, {U,}
to generate noncommutative Hall-Littlewood polynomials U, and U,, v € N". Let
us recall the construction. Given v € Z", denote (v) its standardization.

L) =1, to = —t for [30]. By homogeneity, one recovers the case of a general pair t1, ts.
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When A is dominant, then
U,\ = [/]\)\ = :IZ)‘ .
For v and i such that v; > v; 1, then

Uvsi - Uvﬂ(<v>z - <U>i+1) & ﬁvsi - (/]\UE

~—

(~v)i = (~0)is1) (11.2.1)

For example, for v = [2,2,0], one has (v) = [2,3,1], (-v) = [1,2,3]; for
v = [2,0,2], one has (v) = [2,1,3], (-v) = [1,3,2] and for v = [0,2,2], one has
(v) =11,2,3], (-v) = [3,1,2]. Accordingly

Ty Ty (1)
220 2 1
x = Usgo —> Usp2 —Up22 ,

=~ Ta(—1)

= Tl( 2
= UZQO U202 U022

The fact that {V,,} and U, are adjoint bases with respect to (, )™ has its
counterpart at the level of polynomials.

Theorem 11.2.1. The two sets of polynomials {U, : v € N"} and {[/J\U NS
N"} are two adjoint bases of Pol with respect to the scalar product (, )iy, More
precisely, they satisfy

(UU ) (/j\vuw)tltz - 5U,u

Proof. If w | or v | are strict, then the statement results from (11.1.3). One has
just to check that (2T, %), = (2™, 2%)s,s, = 1. In the non strict case, one
has to replace (11.1.3) by (11.1.2). QED

Notice that, we had met the pairing o <+ wo for bases of the Hecke algebra,
while we have now the pairing v < vw.

11.3 Adjoint basis with respect to (, )

Using the quadratic form (, ) instead of (, )4,+,, one obtains a basis, denoted {V,},
v € N adjoint to {U,}. The transition matrix V, — K, is the transpose of the
transition matrix K, — U,, and should be investigated.

For example, the rows of the following matrix describe the expansions of V,,,
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ve N, v =3.

|P‘~

300 |
210 |
201 |
120 |
111 |0
|
|
|
|
|

o~

O O O R O O * O O+

—
|“ o O

o~

O O = O O <+ CDt

-
|W o O O

O O O O = o+ t

102
030
021
012
003

S O O O O o o o+~ O
oS O O O O O o = o O
SO O O O O O = O o O©
O O O O O = O O o O©

~

—~

~
o = O O O + o O O O

—_

~—

~

w

Row 111 reads
Vin = Kuui + tKogr + tKio0 + t (t+1) Koo+ t* Koo -
A bigger example
Vior = Kao1 + tKsi1 + tKuzo + t(t+1) Koo + 2(t+1) Ke1o + t* Koo + t* Koo

shows that the charge of tableaux of commutative evaluation 14223 explains the
terms K,  dominant, the term ¢*Kgp; being apart.

11.4 Symmetric Hall-Littlewood polynomials for
types A, B,C, D

For the remainder of this chapter, take t; = 1,1 = —t, and write (, ); for the
corresponding specialization of (, )¢y,

The polynomials Uy; are symmetrical, being in the image of U,,. More precisely,
taking into account the stabilizer of A, the recursive definition of U, implies

Uy =by'a* ] (0= taya; ), (11.4.1)

1<j<n

where by = [T, ((1-¢) - - - (1-t%)) = 1Uqn), writing A = 0%01*12°2 ... in exponen-
tial form, w(\) being the permutation of maximal length in the stabilizer of A (we
have taken A € N" with eventual terminal 0’s, contrary to the usual conventions).
This equation is precisely the definition by Littlewood [144] of the Hall-Littlewood
function Pky:

[]AT ZZJDA.

Identifying the pairs z;z; ! with the negative roots of the root system of type
A, one naturally extends the definition of Hall-Littlewood polynomials to all types.
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Let RY be the set of positive roots of the root system of type © = A, B, C, D.
Then for any O-dominant weight A\, one defines the Hall-Littlewood polynomial
P)f? by

Py =b' [] @ —te)m (11.4.2)

wo ?
a€ER®

where b, is such that the coefficient of z* be 1 in PS )

For example, for n = 3, one has
t t
=) (75)
I 13

(EATE I

t t
(1ﬁ) (1 ) D
i) ToT3

Notice that [T, cgo (1—te™) 7y specializes, for t = 1, to the operator Y-,y w.
This leads to define, for A dominant, a O-monomial function mf to be the nor-
malized image of z* under >, w.

11.5 Atoms

Instead of using the full set of positive roots, let us delete the simple roots and
use the operator

0= ] —te)my,. (11.5.1)
a€R\S

For n = 3, these operators are

o= (5 0 () ) () ()
T T1T2 13 ToT3 T i)




274 Chapter 11 —  Hall-Littlewood polynomials

t t
uP = <1—ﬁ) (1— ! ) (1— >7r{30.
T 1T 13

With these restricted sets of roots, one defines atoms AE\Q, A dominant, to be

AV = 22U (11.5.2)

We shall show that the functions Af\p and P)? are related by the Moebius
function of the dominance order on dominant weights, but we have first to say a
few words about this order.

In type A, lower intervals for the dominant order can be defined by using the
expansion of Schur functions in terms of monomials. Indeed, for two partitions,
v < A if and only if ¥ occurs in the expansion of sj.

One adopts the same definition in type B, C, D. Given two dominant weights,
then v <o ) if and only if #” occurs in the expansion of 2 7

For example, for n = 3, and the weight A = [3, 1, 1], the different sets {v < A}
are:

type A :{[2,2,1],[3,1,1]}

type B : {[0,0,0],[1,0,0],[1,1,0],[1,1,1],[2,0,0],[2,1,0],[2,1,1],
2,2,0],[2,2,1],[3,0,0],[3,1,0],[3,1,1]}

type C' :{[1,0,0],[1,1,1},[2,1,0],[2,2,1],[3,0,0], 3,1, 1]}

type D : {[1,0,0],[1,1,-1],[1,1,1],[2,1,0],[2,2,1],[3,0,0], [3, 1, 1]}

We have to adapt the definition of |A| and n()) to take into account that in
type D, for n odd, the last component of a dominant weight may be negative.
Thus let ||A]] := >0 [N, n(A) =0\ + -+ (n-2) A1 + (n=1) |\,

Then the expression of Af\? in terms of P{ by a mere summation over the lower
interval of A\, and conversely, the expression of Pf in terms of A7 is given by a
summation involving the Moebius function of the interval.

Theorem 11.5.1. Let © be A, B,C or D, and X\ be a dominant weight for this
type. Then

AE\Q = Z tEAN =D +n(v)—n(X) Pf’ (11.5.3)
v<oA

PP = 37 O, ) KNI Dm0 —n ) 49 (11.5.4)
r<oA

were p”(, ) is the Moebius function of the dominance order, with k = 0 in type
A, nin type B, n — 1/2 in type C, n-1 in type D.
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For example,

t2PL, +1'PL, + " PE, +1°PL + tPE, +t*Ph, + 2 PE,

+t2PE, +tPE +t°PB, +tPE, + PE,

A?]?n =

P:zBll = A3Bll Z514211

A?)Cn =

P3011 = Agn 214%0

A3,D11 =

P3D11 = A3Dll_tAZ’?,00
A;?,l,q
P?f)1,—1 = A£1,—1 tA:soo tA2

ZfA?;lO + 252‘42%0 .

t" Plgy + t°Pi7y + t° Pyg + t Py + 2 Pygy + Py

tAS, +t2AS, .

P 00+t4P1Dl—1+t4P 11+t2P 10+tp2?2,1+tp3?0,0+P:£1,17
tA2D2 1 + t AQ 1,0 -

P g+t PR+t PP+ Py o+t Py +tPy 0+ Py

1+t2A210

Here are the transitions matrices from Atoms to Hall-Littlewood (dominance
order), and from K;Qwo to Atoms, for A € N* and |A| = 3 (in type D, there is the

extra dominant weight [1,1,-1]).
Type B

[ 000 100 110 200 111 210 3007 [ 000 100 110 200 111 210 300 T
1 1
1 1
21 t+t? : 1
o Bt 1 24 : : 1 :
VAT : 1 t2 t : : 1
A R S~ S | B+t24t - . t 1
A S N = B . S | i 24t . : : 1
Type C
[ 000 100 110 200 111 210 3007 [ 000 100 110 200 111 210 300 ]
1 1
1 1
t 1 t? : 1
o t 1 t+t3 - . 1
t2 1 . 1
t 21 t+t2 - : t 1
i to Bt 1 t+t2 - : : . 1
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Type D
[ 000 100 110 200 111 111 210 300 | [ 000 100 110 200 111 111 210 300 |
1 . . . . . . . 1
1 . 1
3 . 1 . . . . . t+t2 . 1
t4 . t 1 . . . . 2 . . 1
t 1 1
t . . . 1 . . . . . . 1
A S S S St - -ttt 1
+ . . 3 3 t 1 IR +2 . . . . . 1

The following property of the specialization in t = 1 of the functions AS\? has
been obtained by Postnikov [168].

Corollary 11.5.2.

_ 0
=2 m

v<oA

For example, AP, [ _ = 2000472004 70204 pLLOY pL0—1 4 g1-10 4 ;=200
2002 20,20 4 P51 1002 4 0-1-1 001 4 p100 | —10,-1 | -1-10
g bmLm2 120 4 12 4 200y 00T 0L 20Ty 121 4 g2y
ab=b2 g pl=2t 4= h=2mh g g b2y B0 4 =101 has indeed no multiplicity.

11.6 (’-Hall-Littlewood functions

By definition the @’-Hall-Littlewood functions are the symmetric functions such
that

(P)\7 QL) = 5/\,u .
We have defined a basis {V,,} which is adjoint to {U,}. Since Py = Uy, one has

(P)\,V>—(5)\H (PA,VTQJ.

Hence
Q’ =V, m,. (11.6.1)

From the expansion of V, in the basis {K }, one obtains the expanswn of Q’ i

the basis of Schur functions, since K +Tw = 0 if v is not dominant, and K AT = Si
if \ is a partition.

This expansion is positive, and coefficients have been interpreted in terms of
charge of tableaux. Denote by Tab” the set of tableaux of evaluation p. Then one
has [119]:
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Proposition 11.6.1. Let u be a partition. For a tableau T, denotes A\(T') its
shape, and ¢(T') its charge. Then

Q= e V5 (11.6.2)

The set Tab" has a structure of rank poset given by the cyclage [118, 116]. If
v < p with respect to the dominance order, then Tab” is canonically isomorphic
to a subposet of Tab”. The complement in Tab” of all the subposets isomorphic
to Tab” : v < p is a poset called atom” and denoted A(u) [98].
Using the Mobius function (~1)®) of the lattice of partition to define functions
", one has [98]

Proposition 11.6.2. Let p be a partition. Then

Q= Z( 1)) =) o Z Mg, (11.6.3)

v<p TeA(u)

For example, for p = [3,2,1, 1], the atom is

—[rofe]]
—[ro

1]

A([3,2,1,1]) =

»—woo|
=0
—[roee]
=N
— [

1]4]

=N
—no
[

3]

and this gives
11 = Q11 — 1Q%90 — 1Q59y 4+ 0Q33; + thim = 53911 + tS491 + tS331 + 12543
In summary, one has

Proposition 11.6.3. With respect to (, ), {Q\} is the basis adjoint to { Py} and
{Q4} is the basis adjoint to {Ax}.

Both scalar products (sx, Q),) and (sx, Q) are equal to sums St over sub-
sets of tableaux of shape X, tableauz of weight p in the first case, tableauz in A(u)
in the second case.

2In [98], one rather takes the image of A(u) into the set of standard tableaux, i.e. tableaux
with weight [1,...,1].
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The following matrices record the scalar products (s, QZ) Rows must be read
as the expansion of Schur functions in the basis Ay, columns give the expansion
of the functions @ in the Schur basis.

4 |1 o
3 |1 - - 31 |- 1 t ot
21 |- 1 t| 22 |- -1 |
111 - 1 211 | 1 241t
1111 | |
5 |1 - |
41 |- 1 - ¢ t* o
32 | 1t to+tt
311 | 1o 24t o+t 418
221 | 1t B+t
2111 | - I A
11111 | - 1 |
T 6 51 42 411 33 321 3111 222 2211 21111 111111
1
1 t t3 16 th
1 t 2 2 o4 AREASE
I o+ttt O+t3+17+t0
1 t2 tt 8446
1 t t t o 28342 B2t 2542044
1 t3+t24t tT+ 1042 o+t 43
1 t? t04t2+1°
1 2+t 2 4515443442
1 tAt3+t2+t
i 1
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Kazhdan-Lusztig bases

We have already used the Hecke algebra H, to generate bases of polynomials
(Macdonald polynomials, Hall-Littlewood polynomials). Kazhdan and Lusztig
have defined a linear basis {C,, : w € &,,} with which we shall build still another
linear basis of Pol(x,,) in this chapter.

12.1 Basis of the Hecke algebra

We take the Hecke algebra of type A with algebraic generators satisfying the Hecke
relations (7; —t1)(T; —t2) = 0. It has a linear basis {7, : w € &,,}. Many families
of interesting elements in the group algebra of G,, are globally invariant under the
inversion of permutations. However T,,-1 # (T,,)"!, when w is not the identity,
the Hecke algebra has more subtle symmetry properties than the group algebra.

Kazhdan and Lusztig [72] defined a basis which is invariant under the involu-
tion

v Ty — (Tyr)™h, t— —ty, ty— 1y,

and has many interesting properties. In particular this basis gives information
about singularities of Schubert varieties and of specializations of Schubert poly-
nomials.

Requiring invariance under ¢ is not enough to characterize the basis. For
example, {1, 71—t} and {1,T}-ts} are two bases of Hs which could be candidate
to replace the basis {1, s} of C[&,].

One has to complete the condition of being invariant under ¢ by a condition
of “positivity*.

Definition 12.1.1. An element Y ¢, Ty, is t-positive if and only if the coefficients
cy belong to the linear span of the monomials t?tg with o > f3.

The following theorem is due to Kazhdan and Lusztig [72].

279
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Theorem 12.1.2. There exist a unique linear basis Cy, of H,, called Kazhdan-
Lusztig basis, such that

Co=Ty+ > Piti,t2)T,

v<w

is invariant under the involution v, with t-positive coefficients PY(t1,t) (the sum-
mation is over the Ehresmann-Bruhat order).

The specializations P (-1,%y) are called Kazhdan-Lusztig polynomials.
Thus, with the positivity condition, we have discriminated between T}-t; and
T1-t9, and must have
Ci = OSz‘ = T%*tl = T‘Z(*l) .

In length 2, one has, for i # j,
Cys; = CiC =TTy — T — 1T + 17 .
However,
C1Co0) = Tagy — t1Toz1 — t1 310 + (85 — tite) Torsz + t3Thize — (15 — t3t9) Thas

exhibits a violation t1t57513. In fact, the absence of symmetry in 7,75 is also a
good reason to exclude CyCyC' . This can be repaired by taking

Cl (02 B t1to ) Cl _ Z (_t1>3f€(w)Tw,

weB3

which satisfies all the requirements to be a Kazhdan-Lusztig element.
However,

C1CoC) = Ty — t1Toz1 — t1 10 + (85 — tite) Torz + 3 T30 — (£ — tits)Thas

exhibits a violation t1t57513. In fact, the absence of symmetry in 7,75 is also a
good reason to exclude it. This can be repaired by taking

tt ]
4 (02 -2 ) C, = Z (—tl)d_g(w)Tw>

tl o t2 weB3

which satisfies all the requirements to be a Kazhdan-Lusztig element.

More generally, once known their existence, the strategy to build recursively
the Kazhdan-Lusztig elements is clear. Knowing C,,, given i such that ¢(ws;) >
{(w), one computes f = C,C;. Enumerating permutations v < w by decreasing
length, one replaces, for each term of the type t{téTv, fby f— t{té(]v, and iterate
till arriving to the identity permutation. The final value of f is equal to C,. In
summary, there exists integers p(v, w) such that

Cuos, = CoCi+ > (v, w)(—t1t) (I OIFN2E, (12.1.1)
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sum over a certain subset! of permutations smaller than w.

For example, the above expression of C;CyC; can be rewritten Csop = Ca31C1+
tthC’l.

Though the preceding algorithm is very simple to implement, it is unsatisfac-
tory because it does not shed much light over the Kazhdan-Lusztig elements and

polynomials.
Notice that all v appearing in (12.1.1) must be such that ¢(v) > ¢(vs;). Indeed,
the image of this equation by right multiplication by C; is

Clus,Cs = (ta—t1)C\C;s — Z 110, w) (~ty o) E@) LD O

and the unicity of the basis implies that for each v appearing in the summation
one has C,C; = (ta—t1)C,.
For example, for w = [3,4,5,1, 2], one has

2,2
C3451209 = Cssa12 — t1t2C3a150 — t1t2C54915 + 1115C1 43,25,

and all permutations v appearing in the right hand side are such that vy > vs.

12.2 Duality

We have introduced in (1.8.5) a quadratic form such that {7, } is the basis adjoint
to {T, : 0 € 6, }. Thus, the coefficients PY(t,t;) may be expressed as

~ H
PY(t1, 1) = (Cw, Tw> .

Taking any total order compatible with the Bruhat order, one has the property
that the transition matrix between {C,} and {7} is unitriangular. It is natural
to invert it, here it is for n = 3 (read by rows):

123 132 213 312 231 321
12/1 0 0 0 0 0
132, 1 0 0
213 7 0 1 0

1
0

312 #2 t
231 2t
321 6% t? 6Pt h

_ o O O
_ o O O O

For this small example, the inverse matrix is obtained by just changing ¢; into ;.
We refer to [65, Prop. 7.13] for the next proposition which describes the inverse
of the matrix of Kazhdan-Lusztig polynomials for general n.

! Kazhdan and Lusztig characterize this subset in terms of a graph which, even in type A,
presents much mystery.
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Proposition 12.2.1. For any pair of permutations: v, such that v < (, one has

t1——t1,ta——1t2

3 (CZ, TW)H <(sz, fC)H) = b, (12.2.1)

z:v<z<(

Equation 12.2.1 can be rewritten, using the KL involution on the second scalar

product, as
3 (CZ, @V)H (((sz, TC)”)tIHtQ =6, (12.2.2)

z:v<2z<(

Define, for any ¢ € G, 54 to be the image of C; under the exchange of ¢; and
to. Then, since {7, } is the basis adjoint to {7,}, Eq. 12.2.2 translates into the
following duality property.

Proposition 12.2.2. The basis {54 s w e 6,} is adjoint to the basis {C,}, i.e
one has

(Cuu. @)H =5, (12.2.3)

Notice that (12.2.3) is a statement about products C’l,6'¢1, while (12.2.2)
involves sums of products of KL-polynomials. For example one has Cys193 =

COefﬁCIQIlt Of T54321 in the expansmn Of (030201040302) (C30402030102) is null.

Relation 12.1.1 can be used to describe the regular representation of the Hecke
algebra, as well as its irreducible representations [72]. The matrix M* representing
T, i.e. describing the multiplication by 7}, in the KL-basis, has special properties
which should be investigated. Its entries are

(2], = (CTs. C)”

The last column of this matrix is the list of the coefficients of C,, in the products
C¢T,,. One has

((JCTW 61,__n)H = (C., T = (((JC, ﬁu)H)tlHtQ ,

using the KL-involution for the last equality. The last expression shows that the
coefficient of C,, in the product C/T,, is equal to the image under the exchange
t1 <> —ty of the coefficient of T3 _,, in C¢. In other words, the last column of M
furnishes the Kazhdan-Lusztig polynomials in the identity. For example,

Csa192Th301 = (t;l - t1t%)04321 + ...
Cagrg = (t] —t3t9)Tiozs + . ..

The inverse of the matrix M“ are described by the following proposition.
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Proposition 12.2.3. Let N be the matriz with entries

NC,I/ = (_tZ)ie(C) (CCTW ) 5wu)t;Z(wy) .

Then the inverse of N is the image of N under the exchange t; < —ts, and N

possesses the symmetry

t1—t2

Proof. The entries of N~! are obtained by taking the adjoint bases in the scalar

products:

[N7]

Exchanging the role of ¢, v, one has

Ve = (—tg)é(o (awgfw(—tﬂa)*f(w)’ Cy) tf(wy) .

[N71],, = (~ta)~10 <5Wﬁ, (J<> 710

Using the KL-involution to transform the scalar product, one obtains

(N7

C?l/

~ t1—=—t
— () (CM,TM cg) R

~ t1——t
_ [tl—z(wu) (wa CgTw> (_t2)_g(<)] 2 ’

and this proves the required property about N ~1. The second statement results
from the fact that C', is obtained from C, by the exchange of ¢, ?5; the scalar

products (C’CT W aw)H are homogeneous polynomials in 1, 5, so that taking their
image under t; <+ —ty or by t; <>ty just introduces an eventual sign that we took

12.3 Peeling out canonical factors

into account. QED
For n = 3, the matrices M and N are

123 132 213 312 231 321 ] [ 123 132 213 312 231 321
t? tr? t1? tv tp 1 ™ _t2%13 _t2213 t2211513 t221t13 _t1311523
0 0 0  tta 0 0o 0 0 = 0
0 0 0 0 tity to 0 0 0 0 o e
0 -’ 0 0 0 i 0 £ 0 0 0 &
0 0 ~t1%t* 0 0 o 0 0 ﬁ 0 0 —ﬁ
0 0 0 0 0 & ][ 0o o0 0 0 0 £

Let us recall that, according to 1.9.12, the quasi-idempotent Zwegn(—tl)e(ww)Tw
can be written as a product of factors of the type

Ti(-k)

=T, +

t1 + 1t

(~ta/t1)k =1

- C,L — tltg— =

[k-1]
(K]

Ci(k-1),




284 Chapter 12 —  Kazhdan-Lusztig bases

with [k] = 571 — 572ty + o+ (<to)* ' and [-k] = tht — b 4o ()R
for £ > 0. The last expression is invariant under the KL involution, and therefore,
for the permutation of maximal length of the symmetric group, one recognizes an
element already met several times,

Co= Y _ (-t)™T, =V,. (12.3.1)

’LUeGn

In other words, all Kazhdan-Lusztig polynomials P*(-1,t5) are equal to 1. By
exchange of t1,t,, one has

Co= Y (-t)'“T, =u,. (12.3.2)

wGGn

More generally, given a Young subgroup G,xpx..., let wyxpx... be the permuta-
tion of maximal length of this group. Then, by direct product, one has

Owaxbx_u — Z (7t1)€(waXbXA.Aw)Tw )

WES xpx..

Under certain conditions on w, one can factor out from C,, some C,__, . .
Let us just give a case that we shall need in the sequel. Given m,r : 1 <
m < r < n, denote by O,,,, = C and by U, ,, the idempotent

wlm,rfm,ln_r’
Oprnl2) ™t [r-m+1] 71

Lemma 12.3.1. Let w € &,,, m,r: 1 < m < r <n be such that w,, > w41 >
-+« > w,. Then there exists h € 'H,, such that

Co=hD0 . (12.3.3)

Proof. The preceding lemma has shown that C, is invariant under right multipli-
cation by the idempotent C;/(ty—t;) for each i = m, ... ,r—1. Therefore, it must

be invariant under the idempotent U, , ,,.
Thus one can write

Ow = (Z QZ(tly tZ)Tu> Dm,r,n )

sum over permutations u which are of minimum length in their coset
US1m ypy1n—r. The coefficients QU (¢1,%2) must be polynomials in ¢y, s, and not
rational functions, and invariant under ¢, otherwise the RHS would not be a
Kazhdan-Lusztig element. QED
The left factor h is not necessarily a Kazhdan-Lusztig element. For example,

one has the factorizations

2

g >> G,

t1 —to

Cyor = (T — 6Ty +17) Co = ((Tz —t1) (T —

but the first left factor is not invariant under ¢, being different from Cj3;5, and the
second left factor does not have polynomial coefficients.
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Corollary 12.3.2. Let w € &,, be such that there exists m < n : w, = n, and
Wiy > Wiy > -+ > Wy Let v = [wy, ..., Wy 1, Wpni1,- .., Wy|. Then

Cw = CU (Tn—l R Tm — tlTn—l . Tm+1 + -4 (*tl)n_m)
= O Ty (m-n) - Tp(-1). (12.3.4)

Proof. From the hypothesis on w, there exists h € H,, such that C, = hU,, 1,
Cy = h0,, . The result follows from
On =0mn1Tho1(m-—n) - T (-1). QED

If the preceding corollary can be applied to w, or w™!, or www, or ww™'w, say
that the permutation is peelable. allows to peel right or left factors from C,,. In
the contrary case, and if w is not the identity, say that w is irreducible.

For example, let w = [4,1,7,6,2,3,5]. Then 1 is the first valley, one extracts
T1(-1) from the right, and obtains w’ = [1,4, 7,6, 2, 3,5]. Taking the inverse w” =
[1,5,6,2,7,4,3], one sees that 7 is the last peak, and this allows the factorization
of T5(-1)T6(-2). One is left with [1,4,6,5,2,3,7]. Erasing the fixed points 1 and
7, one sees that the ensuing permutation [4, 5, 1, 3, 2] cannot be reduced any more.
The corollary has given

C4176235 = T5<_1>T6(_2) C'1465237 TI(_l) = (T5T6_t1T6 + t%>CI465237(T1_t1) .

In fact, Cyy76235 factorizes totally, but this requires more work to be proved !
Curreass = Ts5(-1)T5(2) <T3(—1)T2(—1)T5(—1)T4(_2)T3<_2)T5(—1)T4(_1)) Ti(-1).

Let us call totally reducible a permutation such that there exists a chain of
reductions leading to the identity permutation.

12.4 Non-singular permutations

Let us call non-singular’ a permutation w such that

Cy, = z:(_tl)g(w)—f(v)Tv7

v<w

i.e. such that all PY(-1,t3), v < w, are equal to 1.

Lakshmibai and Sandhya [90] have proved that a Schubert variety w is non-
singular if and only if the indexing permutation avoids the patterns 3412 and 4231.
Notice that in that case ww avoids 2143 and 1324, the first condition being that
ww be vexillary.

The following proposition [100] shows that the two notions, being non-singular,
or being totally reducible, coincide.

2They are the permutations such that the corresponding Schubert varieties are non-singular.
The relations between Kazhdan-Lusztig polynomials and Schubert varieties are explained in [73].
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Proposition 12.4.1. A permutation w is such that all P’(-1,ts) are equal to 1
when v < w iff it is totally reducible.

Proof. With the hypotheses of the last corollary, the set {P%(-1,t2), u € S,}
coincides with the set {P*(-1,t2), u € &,}. Therefore, if v is non-singular, then
w is so. The same reasoning is valid when the reduction applies to w™!, or www,
or ww'w, instead of w.

Conversely, let w be irreducible and such that n is not a fixed point. If w
avoids the pattern 3412, then one checks that w contains a subword of the type
[...n...b...c...a], with a = w,, a < b < ¢. If w avoids the pattern 4231,
then one checks that w contains a subword of the type [...c...n...a...b], with
b=w,, a<b<ec. QED

Thus, non-singularity can be controlled by looking for patterns 3412 and 4231,
or testing recursively a condition on n and 1 inside w.

In the non-singular case, the preceding proposition gives a factorization [100]
of Cy, and by specialization, of the Poincaré polynomial of the interval [1, w].

For example, w = [4, 1,6, 5, 3, 2] is non-singular, C,, factorizes as

Cligsss = ((Tg(—l)Tg(—Q)(TQ(—l)Tl(—l))>T4(—2)T3(—1))T5(—3)T4(—2)T3(—1) .

Sending T; — t, transforms T;(-k) into —[k+1]/[k]. Therefore the image of C,, =
Y Sw(ﬂfl)f(“’)_g(”)T v, using the preceding factorisation, is equal to

(B e\ Bl BB
() Bl ) gt Bl = -tepisr.

Notice that we thus recover the fact that C, factorizes into simple factors1.9.10:
Csaz21 = C1(0)C(1)C1(0)C5(2)Co(1)C1(0)Cy(3)C3(2)Co(1)C1(0) -

The factorization of the Poincaré polynomial in the non-singular case is due
to Carrell and Peterson [18]. The specialisation T; = 5 of C,, has a geometrical
interpretation in terms of some sophisticated cohomology theories [73]. Notice
that, from a combinatorial point of view, using Kazhdan-Lusztig elements instead
of intervals with respect to the Ehresman-Bruhat order regularizes the special-
ization. For example, the Poincaré polynomial for w = [3,4,1,2] is equal to
(ty — t1)(t2® — 3ta2ty + 2toty? — £13), while Csq19 specializes to (ty — t;)%.
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12.5 Kazhdan-Lusztig polynomial bases

We have used the pair {V,,}, {U,} of adjoint bases of H,, to generate a pair
{U,}, {[/]\W} of adjoint bases of Pol(x,). We shall see that the same construction
works when starting from the pair of Kazhdan-Lusztig elements {Cy,},{C,}.
Take t; = 1,15 = —t in this section.

As in the case of nonsymmetric Hall-Littlewood polynomials, some care is
needed when indices have equal components. Standardization provides the link
between elements of N and permutations. We have already used v — (v) the
standardization® , reading from left to right, by increasing values. We need a
second one, the standardization by decreasing values, reading from right to left,
that we denote ((v)). For example,

v = 20320230
2 1

8 7 6
(W)= 582473 16

Then, for any v € N with A = v |, one defines

53 = T 5((1,)) ) (12.5.1)
b
and
o)
Co=7Clv, (12.5.2)
b

where the constant by has been defined in (?77?).
For example, for v = [2,2,0],[2,0,2],]0,2,2], one has ((v)) = [2,1,3], [2,3,1],
3,2,1], and (-v) = [1,2,3],[1,3,2],[3,1,2]. Therefore

220 1,220 $220

1+t

~ x o~ o~ ~ o~
x 220 x x
Coo=—7—Coaz=12"", Cyy= 1ot Coz1, Chyy =

C
1+¢ 321

T 220 = 220 z 220
Copo =277, Cop=2""Ciz2, Cpp=1a""Cs12.

Using the explicit values of the Kazhdan-Lusztig elements, one finds

" 2220 220 " 2220 ¢

05620 = 1_+tT1(1) =T = Usyp, Cfoz = 1_+tT1(1)T2(1> = Usp2 + 1—+tU220,
N 2220
Coaz = T1(1)T2(2)T1(1) = Upaz,

1+t

3We also standardize —v, that is, we standardize v from left to right by decreasing values.
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x 220 7y x 220 73
Copp =27 =Uz, Cyp=2 T2(—1) = Usp2,

~ t ~
Ciap = e To(-1)(T1-1) = Upas — 1ot Uso2 -
+
In the case where v = AT is antidominant, then a"f = a:’\b;1 au = x’\b;1 u,,
and therefore is equal to the Hall-Littlewood polynomial Py(z1,...,x,). When A
is strict (i.e. all parts are different), then

C. = 2C, =2V, =209, H(xjftxi) = 5)_p(xn) H(ajjfta:i) )

1<j 1<J

The same proof as for the bases {U, }, {U.} (Theorem ??) gives the following
duality between {CZ}, {CZ }:

Theorem 12.5.1. The two sets of polynomials {C* : v € N"} and {C* : v € N"}
are two adjoint bases of Pol with respect to the scalar product (, );. More precisely,
they satisfy B

(€Y, Cuw)t = b -
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12.6 Kazhdan-Lusztig and Hall-Littlewood

We have already seen that 5;” = U, when v is antidominant. In fact, one may
consider the Kazhdan-Lusztig basis to be a deformation of the Hall-Littlewood
basis. R
Let A € N be a partition. Then the H,-module z*H,, has bases {U,}, {U,},
{Cr}, {55 }, where v varies over all permutations of A\. The transition matrices
between these different bases seem to present some interest.
Here is the transition matrix C¥ — U, for A = [4,2,2,0], the rows of which

describe the expansion of the successive C%:

4220 | 1

4202 | & 1

4022 | 1

2420 | & 1

2402 ‘ ﬁjjf - L1

2240 | 1

2204 | (I

2042 | 2 . L . MeD oo

2024 | 4t 4L 1

0422 | e
0242 | o . . Co A
0224 | 1

From the recursions defining the different bases, one sees that the transition
matrices do not depend on the parts of A, but only on multiplicities. The same
matrix as above is obtained for A = [2,1, 1, 0].

An example with bigger multiplicities:

~ Us 02,02t

Co2o02 = Un 2,202 + + 125000 ( ) 12,2,2,

t+1 2+t+1 2+t+1
t?Us 0220 2 (t+1)Uzn020  t3Uz2200
2 +t+1 (2 +t+1)° ?+1

_|_
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12.7 Using key polynomials

We have seen that, then C,, for a nonsingular permutation w, is a sum over an
interval for the Ehresmann-Bruhat order. On the other hand, a key polynomial
K, is also a sum of polynomials K, over an interval for the same order. It is thus
natural to try to relate Kazhdan-Lusztig elements to key polynomials.

Let, for this section only, p = [1,...,n|, and let V, be the linear span of
monomials of exponents w € &,,. Notice that =T, NV, = (~t5)*®z* Hence one
has

2Coy NV, =Y (=) M Oty 1) () 2

Define a linear morphism ¢ from V, to Pol(x,,) by
(x?) = (1) @™ if v is a permutation , p(z¥) = 0 otherwise, (12.7.1)

with p(t1) = -1, ¢(t2) = to. The preceding equation reads now

p(2°Cy) = Py(-1,ty)a™. (12.7.2)

v<w

In particular, when w is non-singular, the image of the Kazhdan-Lusztig element
reduces to a single key polynomial:

p(2°Cy) = Y ¥ = KNV, (12.7.3)

V>Ww

For n = 4 there are only two singular permutations, which satisfy

Cang = CoCsC1Cy ,  @(2'1Chy12) = Kouaz + t2Kaoz
Caoz1 = 030201(1)0203 ) 90(35123404231) = Kigoq +t2K3412.

For n = 5, there are 32 singular permutations. Taking into account sym-
metries, eliminating those permutations coming from [3,4,1,2] or [4,2,3, 1], one
is left with only 8 permutations to study. We give a factorisation of C,, writ-
ing C", Ct" instead of Cy(1),C;(2). Only Cys312 does not factorize into simple
elements C;(k). It can however be written

_ + + v+ til))t% +
Clomz = RO C (C“ N e t%)) e

Cis123 C30,C1C4C3C, K3p150+t2 K50341 +12 K53149 12 K 35041 ~t2 K 53041
Cssa12 C1C5C5 C5C4C CrCs Ko1435+ta Ka1503+t0 K ya315 0 Koy513-12 K 40513
Csa3m C1C5Cy 0 CyC3CYy Kiazos+ta Kas123+ta Ksasio+t5 Kass12
Cys132 C3CyCY CF C1C1Cy Ko3154 + t2 Kas341

C35142 CrC1C4CF CyCy Kosis3 + ta Kyso31

Csuz C1C,CF Cf 0,05 CoCy Ki3425 + t2 K34512

Csioz1 C4CF CLCF C3CTCF C3Cy Ki3945 + 12 K34125

2
045312 see above K21354 + t2K52341



§ 12.7 — Using key polynomials 201

From the table, by summation of the coefficients in the last column, one obtains
the Kazhdan-Lusztig polynomials P}234%(-1,¢,) :

P35 = Pigis = 1+ 2ty, Pigid = 1+ 2ty + 13,
Pistsy = Py = Pagisy = Paiosy = L +t2, Piggiy = 1 +185.
The permutation [4,5,3,1,2] belongs to the family {[n-1,n,n-2,...,3,1,2|}

which give rise to the Kazhdan-Lusztig polynomials equal to 1+t~ '. These per-
mutations are used by Polo [166] to build arbitrary Kazhdan-Lusztig polynomials.
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12.8 Parabolic Kazhdan-Lusztig polynomials

Taking the action of Kazhdan-Lusztig elements on a weight space V), when A has
repeated parts, produce polynomials with coefficients which, in general, are linear
combinations of Kazhdan-Lusztig polynomials (see Deodhar [29]).

Let A € N"be a partition, v = A\ T. Since (2;x;41)*C; = 0, then 2°C, = 0 if
there exists ¢ : v; = v;41 and £(s;0) < {(0). To avoid this nullity, given v, one has
to take any o such that for any i : v; = v;;1, then ¢ contains the subword 7, i+1.

One has

LClQCl = 1312(T21 — tlTlg) = —t2x2l — t1$12

To identify the action of C; on z'? to the expression of C; in the T, basis, one has
to normalize monomials by length*:

g — ' —tg((—tg) 1 21) 4 (( )" oxm).

More generally, given a partition A\, and an element in x"H,, with v = AT, one
defines ¢, to be the morphism

Z Cux" + Z Cpx? — Zcu —ty) "W
w: Ul =v w: wl #v
One checks that for any o € &,, one has
U (2°T,) = "7, (12.8.1)

so that the action of the Hecke algebra on x¥ projects on the usual action of the
symmetric group.

Given a partition A € N*, v = AT and 0 € G,, such that 2C, # 0, let w = vo.
Then

w(vc — v +Z E(w u)Pu( )

and the polynomials Py (ty)z* are called parabolic Kazhdan-Lusztig polynomi-
als. The next proposition relates these polynomials to the usual Kazhdan-Lusztig
polynomials.

Given a composition « = [aq, ..., ], let § = 0122 ... (k-1)*. The projec-
tion of &,, onto 6,\S,, can be identified with the morphism

S, > J—>ﬁgl...ﬁgn

from the symmetric group to words which are permuted of j3.

“the length of an exponent u is defined to be the number of pairs such that u; > u;,i < j, by
extension of the case of a permutation.
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Proposition 12.8.1. Given a partition A € N*, v = AT and 0 € &,, such that
x'Cy # 0, let w =wvo. Then

P/{L’U(t2> = Z (_1)@(0)*€(V)P:(_1’ t2> ) (1282)

vEGL: py(V)=u

Proof. The statement is a direct consequence of (12.8.1). QED

For example, let 0 = [3,4,1,2], v = [0,0,1,1]. The correspondence between
2VClappg = M0 — 21010 4 ¢, 20100 ¢ 20011 and the expansion of Caiupe in the T,
basis is shown in the following enumeration (writing v instead of T,,):

2143 —2413 1432 3214
—1243 —2143 2314 1423 —3142 3412
(1—t2)1234 + (t2—1)1234 + —1342 + —3124
_t2$0011 t2x0101 05(]0110 01’1010 —5131010 xllOO



204 Chapter 12 —  Kazhdan-Lusztig bases

12.9 Graflmannian case

The Kazhdan-Lusztig polynomials corresponding to Schubert subvarieties of Graf3-
mannians have been described in terms of increasing labelling of trees [120, 100].
The relevant permutations are the coGraffmannian permutations, i.e. w € &,
issuch that there exists r: wy > -+ > w,; w1 > -+ > w,.

Let G(r,n) be the module C,._ 1, ,+1H,. It has a linear basis {C,,}, where the
w are coGrafmannian with a rise in r. Recall that, as an operator on polynomials,

tat tat
Cr...ln...rJrl == ar...ln...rJrlA 2 1(.%'1, ce . ;xr>A ? l(errl; <. ,$n>

where A% (2, .. 2,) = [[ i jc, (o + tizj).
In particular, putting p,,,—, = [r-1,...,1,0,n-r,...,1,0], one has

B tot tot
xPrn TOT...ln...T+1 = A ? l(xla s 7x7")A 2 1<w7’+17 o ,I’n) :

The space A2 (... 2 )A2" (2,1 1,..., 29, )Ha, is in fact a representation
of the Temperley-Lieb algebra®, and together with its Kazhdan-Lusztig basis, has
been the object of numerous articles in the physics literature [43, 56, 70]. It has
also a basis of Macdonald polynomials degenerated in ¢ = —(t5/t;). The relations
between the Kazhdan-Lusztig basis and the Macdonald basis are described in [57].

Instead of computing in the space C;. 1. ,+1Hn, let us show that one obtains
more simply the same Kazhdan-Lusztig polnomials using the dual basis {C, : v |=
170""}. The elementary elements that one has to use are C; = C;(0) = T} — t,
and their shifted versions:

~ ~ t1 + to ~ t1ts
Cr=c(1) = T+ ————=0C;— —=
W) ENES 2
~ ~ t1 4+ to ~ tita [2]
Cit=0Ci2) = Ti+—212 _Ci—
@) Ch/L) —1 3
~ i+t =~ tita[k]

( ) (—tl/tg)k—H —1 []{H‘]_]

The description of the dual basis is made easier by interpreting the indices v as
describing the border of the diagram of a partition. The correspondence between
GraBmannian permutations w (with descent in r), v: v = 170""" and partitions
A is

W = vV = [011)171’ 1’Ow2*w171’ 1, o ’Onfwr] — A= [’LUT—T, ce, W, — 1} .

Given a partition A € N, label recursively the boxes of the diagram of A (using
matrix conventions) as follows. Corners have label / = 0. Erase them. The new
corners have labels ¢ = 1. &c. Iterate till exhausting all boxes.

0] 1[0} [[2[1fo] [3
0 » [1]0 » [1]0 )

1
0 0 0 0]

® quotient of H,, by the relations T;(1)T;+1(2)T;(1) = 0.

1{0]

2
0
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Let C,.» be the product of the elements érﬂ-,i(ﬁ(D)), i, j being the coordinates
of the box [J, reading the boxes of the diagram of A by successive rows. With

r = 3, the preceding diagram gives Cf3 421] =

C3(3)[C4(2)|C5(1)|C6(0)

C(1)|C3(0) = C5(3)C4(2)C1 (1)C6(0)Ca(1) C5(0) G (0)

The following theorem is given in [70]
Theorem 12.9.1. Let r < n be two integers. Then
{z1-- -xrém :AC (n-r)"}
coincides with the dual basis {(75 c v |=1"0""T"}. The coefficients of the ele-

ments of the basis in the basis of monomials are the Kazhdan-Lusztig polynomials

corresponding to pairs of coGrafimannian permutations.

For example, for » = 2, n = 4, the space x;29H, is 6-dimensional, with basis
{IH, ZL’1152, I116;63, J]Hé;_él, 17116;6351, l‘nég——i—é;—éf—ég} .

The element Cs yg1) = Co1001 has coefficient in 2! equal to (t) — t5)?. This
implies that the Kazhdan-Lusztig polynomial P27 is equal to (1+t)?, the Gra$-

mannian permutation corresponding to [4,2, 1] being w = [2,4,7,1, 3,5, 6].
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12.10 Dual basis and key polynomials

In a preceding section, we have used that z*"T, NV, _, = (—tg)e(w)xw to relate
the Kazhdan-Lusztig basis to key polynomials.

On the other hand, the space x; - - - x,’H,, has linear basis the monorgials with
exponent v : v |= 170""", and thus has linear basis {K,} as well as {K, = z"}.
In that case we can directly use the key polynomials without having to pass to a
quotient space. _ _

Under the specialization ¢; to 1 and ¢ to 0, the action of C; becomes: 2100, =
ty(x1+32) is sent to z1+xg, 2°1Cy = —ty(x1+12) is sent to 0, and z"Cy = (t;—to)x"
is sent to z%. In other words, 51 acts like ;. Thus the dual Kazhdan-Lusztig
basis in the weight space Vjrqn—r may be considered as a deformation of the basis
of key polynomials.

For example, for r = 2, n = 5, the Kazhdan-Lusztig basis is indexed by
partitions contained in [3, 3] and has the following expansion in terms of the key
polynomials K11, Kio1, Kioo1, K100, Koit, Koot Kootr, Kotoor, Kootor, Kooorr :

[1] | t) |
2] | b’ |
3] | t? |
[171] ‘ 12 . . . . . ‘
2,1) | —t%t - - - S |
2,2] | t* |
[3.1] [ —t:%t t* |
3,2] | —tyty* - - S|
3,3] | £ |

Row [3,2], for example, has to be read 52 32) = 5 Koo1o1 — tat1 Kor1.

The Kazhdan-Lusztig polynomials Py (-1 tg) themselves are equal to the image
under t; — 1,t5 — —t5 of the coefficients in the basis Kv. For example, the
expansion

C3 301 = S Koo101 — tat} Koi11 — tot) Kiiooo1 + —t3t1 K101

furnishes the » Kazhdan-Lusztig polynomials 1, 1 +- ta, 1 + 2t, + t2, the expansion
of Cg [321 = 0010101 in the basis of monomials z° = K, being

t1* (ti-t2)® 2111000 + 11 (t1- t2) 110100 + t1° ((1=t2) o100 + ¢1° ((1-t2) Z101100 +
t1° (t1-t2) T110010 +1%@101010 1011010+ 11° (£1-12) Z110001 +1° 2101001 + 18T 011001 +
1% 100110 + t1°To10110 + t1°Z010101 + t1°T100101-

The rule to read Kazhdan-Lusztig polynomials from a partition is given in
[120, 100].
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13.1 The symmetric group

13.1.1 Permutohedron

Given v € N™, one generates a directed graph Z(v) by iterating sorting operations
u — us; if u; if v; > v;;. This graph is in fact a rank lattice, with extremal
elements v and v . The rank ¢(u) is the number of inversions (as for permutations,
an inversion is a subword ji with j > 7).

The set Z(v) can be generated recursively by using a restricted shuffle ) defined
as follows. For v € N", k € N, let ¢ be such that v;---v, be the maximal left
factor of v such that v; > k, j =14,...,n. Then

v®k = {[v1, ., Vi1, kUi ) (U1 U R Uity e Uy 01, o, K

It is clear that
Iw) =v1Qv:® -+ vy .

When v = [n,...,1], the poset Z(v) is called the (right) permutohedron, and
the underlying order on the symmetric group is called, unfortunately [11], the
(right) weak order.

Another approach to intervals for the weak order is to replace sets of elements
of &,, by sums in the group algebra Z[&,,] or in the algebra Z[0y,. .., 0p_1].

Let O, = >, ce, 9-- We have already used that
Z o = Z ol (14814 Sn-1Sn—2+ -+ Su_1---51) (13.1.1)
O'GGn 0'6677,71
= (14+Sp1+Sp2Sp- 1+ +51Sy_1) Z o (13.1.2)
0'6677.71

Correspondingly, one has

Oy = Oy (1401 + 0p1Opg+ -+ Oy - 0y) (13.1.3)
(1 + 8n_1 + (9n_25n_1 + -+ 81 cee 8n_1) Dn—l . (1314)

Factorizing further 13.1.1 requires using the Yang-Baxter relations ?7. This is
in fact easier in Z[D, ..., 0p_1]. Indeed

14+0,_1+0,-10h—9+++0,_1---0;
= (14 0p-1)(1 4 0,-10n—2) -+ (L + 0p—10p—2- - - O1)

because all products (0,—1 - -+ 0;)(0p—1 - - - 0;) vanish. Therefore, one has

Dn == anl (14—8”,1)(1+8n,13n,2)~~~(1—i—@n,lan,g«Hal) (1315)
= (14800 1) (1480900 1)1+8n_1)0uy.  (13.1.6)
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The inverse of 1+0,,_1 - - - 0; being 1-0,,_1 - - - 0;, the element [J, has an inverse €2,
which is equal to

Qn - (1 - @L,lan,g te 81) v (1 - Gn,l) anl (1317)
= Q1 (1= 08 1) (1 =8 0p). (13.1.8)

One can in fact check by induction on n that

n

Q=) (-)"* Y o, (13.1.9)

k=1 vEN’jr, |v|=n

sum over the maximal elements of all the Young subgroups of G,,. This expression
encodes the Mobius function of the permutohedron [11, Cor. 3.2.8].
Thus,

Q3 = D193 — Oo13 — O132 + 0321
— 1 - (91 - 82 —|— 828182 - (1 - 81)(1 - 82)(1 - 8182) .

The Grothendieck polynomials are a deformation of Schubert polynomial: one
obtains G,(x,y) from Y,(x,y) by adding terms of degree > |v|. Intervals in the
permutohedron furnish another deformation, but this time adding terms of lower
degree. Define L,(x,y) = X,(x,y) 0,, 0 € &,.

Divided difference in y commute with divided differences in x, and therefore,
when {(s;0) < {(0),

Lsia(xa Y) = _XO'(X7 y)aly U, = _LO'(X7 y)aly .
In other words, the basis {L,(x,y)} is generated from L, (x,y) by using the
divided differences in y. Taking intervals of the left permutohedron, one would
obtain a basis {X, Y .(-1)"“dY : ¢ € &,} generated from its top element by

using divided differences in x.
Since J,€2,, = 1, the relations (2.6.6)

(Xa(xa }’) ) XC<Xw7 y)>a = (_1)£(C)60,Cw

are equivalent to
o
(Xo (6, ¥)00, Xe(x,3)%) " = (-1, (13.1.10)

and therefore, the basis adjoint to { L, (x,y)}, with respect to (, )2, is {(-1)%) X (x*, y)2, }.
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13.1.2 Rothe diagram

A permutation o can be represented by a matrix M (), which describes its action
on the vector space with basis 1,2,...,n. Explicitly, M (o) has entries 1 in po-
sitions [i,0;], and 0 elsewhere (taking the usual coordinates of matrices, not the
Cartesian plane).

Rothe[177] found in 1800 a graphical display of the inversions of o, starting
from M (o) (though, of course, matrices had still to wait 50 years to appear),

which leads to many combinatorial properties of permutations.
0 1

For each pair of 1’s in M(o) in relative position 1 write a box [J at the

iélterfection of the top row and left column containing these entries, thus obtaining
i

The planar set of such boxes is called the Rothe diagram of o. The list of the
number of boxes in the successive rows is the code of the permutation, One can
also read the canonical reduced decomposition of o (defined in section 1.1) from
the Rothe diagram: number boxes in each row by consecutive numbers, starting
from the number 7 in row i. Reading rows from right to left, from top to bottom
gives the canonical reduced decomposition.

For example, the code of o = [4,2,6,5,8,1,3,7] is [3,1,3,2,3,0,0,0], the
canonical reduced decomposition of o is (s35281)(S2)(S55483)(S554)(S78685), and
the numbered Rothe diagram is (the 1’s in the matrix representing the permuta-
tion are replaced by e)

413 |11 [2] [3] o
210--

63 |[38] - [4] - 5 e
52......
8| 3 |[5] - [6] - - [7] e
110 e -
31 0 e e
7o - - . . . . e
0 | code

To build the Rothe diagram, instead of considering pairs of 1’s in the matrix
representing a permutation, one can use the fact that there is no box right of a 1
in its row, and no box below a 1 in the same column. The Rothe diagram occupies
the places which are not eliminated and which do not contain a 1.

00O 1 mEEN

AN AN Dl AEEEEN
| [N NEN REESEN N |
: HN EEN iy N N
" ORCEENE([1
) ) 1IN EEENEDN
forbidden region AN EEEER
EEEEEN 1 N
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The simplest non trivial Rothe diagram is [ P§]. Instead of putting a box,
one can use a parameter z, and consider [ ¢ { |, or more generally, for i: 1 <1i <mn,
replace the matrix representing s; by

o .
1
r 1
Ti(w) = 10
1
L 1]

Let r be an integer and I = [iy,...,4,] € {1,..., n-1}", such that s/ :=
Si, »++ 8. be a reduced decomposition of a permutation . Define Tj(xy,..., ;)

to be the product
T;(x) =T (x1,...,2.) =T;, (x,) - Ty, (1) .

The matrix 77(x) depends on the choice of the reduced decomposition of o.
When specializing all z;’s to 0, one recovers the matrix representing o. The
combinatorial properties of the matrix 77(x) are studied in [74]. In particular,
removing in the matrix all monomials of degree different from 1, one obtains a
balanced labelling of the Rothe diagram [37], the concept of being balanced first
appearing in the work of Edelman and Greene [34] about reduced decompositions.

For example, for o = [3,4, 2, 5, 1], the canonical reduced decomposition [2, 1, 3, 2, 3, 4]
and the reduced decomposition [1,2, 1,3, 2, 4] give the following matrices:

zo 1 1 0 O Tx3+2x9 23 1 0 0
ry 3 0 1 0 T1xs+ x4 x5 0 1 0
T 0 0O , 1 1 000
xzg 0 0 0 1 Tg 0 001

i 1 0 0 00 ] i 1 0 000 |

13.1.3 Ehresmann-Bruhat order

The most elementary order is the inclusion order of sets. We shall argue in this
section that ordering finite sets can be formulated in terms of inclusion of sets.
For example, Schubert cells in a Gramannian are indexed by partitions. The
order associated to a cellular decomposition of the Graimannian corresponds to
teh inclusion of diagrams of the corresponding partitions. Ehresmann [35] gave
more generally a cellular decomposition of the flag variety. Cells are indexed by
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permutations (Ehresmann was instead taking the left factors of a permutation,
viewed as a word, and considered them as a flag of subsets of {1,...,n}):

c€6,—{o} C{o,o0}C---C{or...,0.}={1,...,n}.

Writing a set of k integers as a decreasing vector, and subtracting [k, . . ., 1], one ob-
tains from a permutation a sequence A\ (0), A2(0), ..., An(0) of partitions. Ehres-
mann defined an order on cells by requiring that

o< C e M0) S M), Aa(0) CSA(C), .o A(0) SA(C) . (13.1.11)

This definition amounts to the componentwise order of the corresponding Ehres-
mann tableaux, using partitions instead of sets of integers. Equivalently, a per-
mutation gives a sequence of Grafimannian permutations

p1(0), p2(0), .. Pn(0),

where py (o) is the permutation of minimal length in the coset oG-

Notice that comparing a permutation ¢ to a Grafmannian permutation g with
descent in k requires only the comparison of pi(g) and o. Associating to o the
set G(o) = {g, g < o} of GraBmannian permutations smaller than it, one can
rephrase the Ehresmann order :

0<¢ e G(o) SG(Q).

One can think of using the same type of construction for any finite ordered
set. Given a poset X, find an “optimal® subset B of X such that X — 27 be
a morphism of posets (27 is the set of subsets of B, ordered by inclusion, the
morphism being + — B(z) = {b € B, b < z}). Given two subsets C,C’ having
this property, then the intersection C'NC" also satisfies it. Therefore, there exists
an optimal subset, that is called the basis of the order, such that X — 27 be a
poset morphism.

In the case of the symmetric group, the basis is the set of biGraffmannian
permutations (i.e. permutations whose code is of the type [026°09], bc # 0), which
is a subset of the set of Grafmannian permutations. Hence, the basis of &,
is of cardinality (”H) and provides an efficient way of coding intervals in the

3
Ehresmann order. Geck and Kim [51] describe the basis of every finite Coxeter

group.

As a consequence, the symmetric group &, is embedded into a lattice (obtained
by taking unions of B(c)), which is called its enveloping lattice , or Mac Neille
completion. The enveloping lattice, which happens to be distributive, is also easily
obtained by replacing permutations by their Ehresmann tableaux, and taking the
supremum or infimum of tableaux componentwise: given two tableaux ¢t = {t[i, j|},
u = {uli, 7]} of the same shape, then t A u is the tableau {maz(t[¢, j|, u[i, j]}. The
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vertices of the enveloping lattice are, in this interpretation, tableaux of staircase
shape made of elementary pieces of the type

with a < b < c € {1,...,n} (in other words E

C

C

a

b]’

ala|

Y

c|

)

a is forbidden). These tableaux

(also called monotone triangles) are in bijection with alternating sign matrices.

For n = 3, one has

123

Permutohedron

132

Ehresmannoedre

Enveloping lattice

The enveloping lattice is obtained by adding one element to S3, this red ele-

3 010

ment being interpreted as the tableau [9]3] , or the matrix [1—11}
For n = 4, there are 42 — 24 = 18 tableaux not coming from permutations:

4] 4] 4] 4] 4] 4]
314 314 314 314 314 313
21213 2133 21313 21213 21213 21213
TII[afa] [afaf2]2) [111[1]2] [1[1]2]2] [1]1]1[2][1]1]1]2]
4] 4] 4] 4] 4] 4]
314 314 314 314 314 314
21214 21314 21314 21314 21214 2134
Tlafa]2) [afaf1f2) (afaf2f2] (afafal3] (1f1]1[3][1]2]2]3]
4] 4] 4] 4] 4] 4]
314 314 314 314 314 314
21214 21314 21213 21313 21213 21314
11[2[3] [1][1]2]3] [1]1]1]3] [1[1]2]3] [1]1]2]3] [1]1][2][4]

The symmetric group &,,, with its generators S = {s, ..
system [11]. Given a Coxeter system (W,S), one usually defines a Bruhat order
on W by having recourse to reduced decompositions. Let s;, ---s;, be a reduced

., Sn_1} is a Cozxeter



304 Chapter 13 — Complements

decomposition of w € W. Then v < w with respect to the Bruhat order if and
only if there exists a reduced decomposition of v which is a subword of s;, - - s;, .

It is easy to check that two permutations o, ( are consecutive with respect to
the Bruhat order if and only if o¢~! is a transposition. Therefore the Bruhat
order for the symmetric group coincides with the Ehresmann order. We shall use
the terminology FEhresmann-Bruhat order for it, and refering to [11] for more
properties.

We have seen in Lemma 1.10.4 that 0-Hecke algebras give an easy way of gen-
erating lower intervals for the Ehresmann-Bruhat order on classical Weyl groups.
Stembridge [187] gives more generally a short derivation of the Mébius function
for the Bruhat orderings of Coxeter groups and their parabolic quotients by using
the 0-Hecke algebra.
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13.2 {-Schubert polynomials

The spectral vectors for Macdonald polynomials specialize, in ¢ = 1, into a per-
mutation of [t ¢} ... t"1]. Let us show that one can similarly generalize the
spectral vectors for Schubert polynomials by multiplying the components by a
permutation of [t%,¢1, ... ¢"71].

Let v € N™ be the code of a permutation . Let 7 € N" be such that
Bi = #(0; < 04,1 # j), that is, § and [oy,...,0,] are two copies of the same
permutation in &({0,1,...,n-1}) and &({o1,...,0,}) respectively. Let more-
over

(W) = [Py, s 7]

One defines the ¢-Schubert polynomial Y;!(x) by the condtions

{th(<ut>) —0forall u: |u < |v|, u#wv, (13.2.1)

Vi) = Yalx,y)

These polynomials specialize, in ¢ = 1, into the usual Schubert polynomi-
als Y,(x,y), share many of their properties and constitute still another basis of

Pol(x,,).
Proposition 13.2.1. The family {Y!(x), v € N"} is stable under 01, ...,0_1.

Let v =u+ k", with k € N. Then Y}(x) = Yin(x,y) (YJ(X)’yHyM).
Proof. Let v and i be such that v; > v; 41, and let uw = [...,v;_1,v;11, v;—1,
Vit1,---]. Then (u') = (v')s;, and the proof that Y'x) is equal to Y'x)d; is the

same than in the case t = 1.

As for the factorization property of Y,/ ,.(x), the polynomial Y’(x) does have
to satisfy more vanishing properties than Y!(x), but the factor Yi»(x,y) takes
care of all the points w € N” having at least one component not greater than k.
Thus, one is left with the vanishing in all points w C k", |w| < |v|, w # v, and
this is insured by the image of ¢-Schubert polynomial Y(x) under the uniform
translation of indices y; — v;yk- QED

As a consequence, t-Schubert polynomials are determined by the dominant
ones. However, contrary to the case of the usual Schubert polynomials, when
v is dominant, Y(x) is not a product of linear factors in general. ¢-Schubert
polynomials indexed by antidominant weights are symmetrical in z, ..., x,, since
they belong to the images of 0y, ..., 0,_1.

Monk’s formula extends smoothly.

Lemma 13.2.2. Let w € N", ¢ be such that w; > 0, v be the image of w under
w; — w;—1. Then there exists rational functions c, in t,yy,y2,... such that one

has
(g — (1)) Vi) .
oty — () Yitwr)

X+ Y aYix). (13.2.2)

u: |u|=|w|, u#w
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Proof. Both sides of the equation are polynomials of degree |w| which vanish in all
points (u’) : |u| < |w|. One can therefore determine the required coefficients ¢,
by specializing the LHS in (u') : |u| = |w|,u # w, to insure the equality of both
sides of the equation in maximal degree. QED

In the case of Schubert polynomials, the specialization Y,((v),y) is equal

to the inversion polynomial M(v) = []icom()(¥; — ¥i), with o of code v. Let
g, ... an] =lo1,...,0,] T, and

y”U = [yb s 7ya17tya1+17 s 7ty0t27 s utn_lyan71+17 s 7tn_1yan7
tnyoanrla s 7tnyoo] .

Then we conjecture that

viw)= J] o'-y). (13.2.3)
(i) (o)

Instead of expanding the basis {Y!(x)} in the basis {Y,(x,y)}, one rather
choose the bases {Y,(x,y")} or {Y,(x,y")} to obtain more compact expressions.
For example

(t—1) (Pys +tys — tyo — y1)

Y2 012
Y;
(ys — y1) (tys — y1) 06y,

Vi (%) = Yoo (x, y*'?) +

with y"'% = [y, tys, tys, t2ya, t2ys, t>ys, . . . |, while the expansion of Y{;,(x) in the
Schubert basis involves

YEJIQ (Xa y)? Y'Hl(Xa y)7 YE)02 (Xa y)a YE)ll(Xa y)a %01 (X7 y)a }/OOO(Xa y) .

Contrary to the case of Schubert polynomials, one cannot concatanate 0 to
the right of v, since in general Y/ (x) # Y!(x). In fact, concatanating sufficiently
many 0’s gives back the Schubert polynomials, as shows the next lemma.

Lemma 13.2.3. Let v € N", k > |v|. Then
Y (%) =Y, (x,y") -

Proof. One has to test vanishing in all u € N"**_ |u| < |v|, u # [v,0%]. The
permutation o of code u belongs to &, and the spectral vector (u') is the image
of (u) under y; — t"~'y;. Thus, the set of vanishing conditions is the set defining

Y06 (%, ¥°). QED

For example, Y3 (x) = (z1-y1) (21-v2), Vi (%) = YF(x) + 222 (3 ) (wp-tys),

ty3=y1
Yi0o(x) = (1-y1)(z1-1y2).
One can reduce the number of equations in the determination of Y, v domi-
nant, and avoid testing all u : |u| < |v|, u # v, as show the next factorization.




§ 13.2 — t-Schubert polynomials 307

Lemma 13.2.4. Let v be dominant, v = [vy,...,v,,0,...,0] with v, > 0. Then
there exist a polynomial P,(x) of degree |v| — r such that

Y;)t(x) = (xlfyl) s ($r*yr) PU(X) )

which is determined by the conditions

{Pv((ut>) =0 forallu: u>[170"""], |u] < |v|, u # v, (1324

Px)| = Vil y)/Yie ().

Proof. One notices that (x1-yi)...(x,—y,) vanishes in all points (y*) such that
0 € {uy,...,u,}, because if u; = 0 is the first occurrence of 0 in u, then (u'); = y;.
Therefore, it remains to satisfy the vanishing conditions for all points u >>
[17, 0" "], points that one can write w+[1", 0" "], with |w| < |v|-r, w # v-[1",0"""].
QED

For example, Y5, = (21-v1)(2a—ya) Pa1o(X), with

t-1 ya—
Pyo(x) = 2'% + _y;( ) oo _ wxmo ’
t“Ya=1 t*ys—1

determined by the conditions

Po1p({110")) = 0 = Pyyo((111%)) = Pyy((120")),

P210(X) _ = Y210<X, Y)/Yno(xy Y) =T1—Y2.

Notice that Y{,(x) is determined by similar conditions

Yltoo(<000t>) =0= Y1t00(<001t>) = Yltoo<<010t>> ) ono(x) = Yioo(X,y)

but there is no change of variables which allows to pass from one system of equa-
tions to the other.

It is interesting to specialize the variables y; to 1, but the specialized equations
(13.2.4) are not sufficient to determine the specialization of Y!(x). For example,
all the polynomials th(x)|y v € N? v #[0,0],[1,0] vanish in the points [1,]
and [t, 1].

One computes

=17

thoz(xﬂyi:l = (z1+motzy — 1-t-1%)?
Yo12(%) yo1 = (@rrmatrs — 1=-t—t) Sy(x1+ao+23 — 1-t)
Yo (X) e G G e 1-1))* .

This leads to the conjecture that the specialization y; = 1 of the symmetric poly-
nomial Y/(x), v anti-dominant, coincides with the specialization ¢ = 1 of the
Macdonald polynomial M, seen in (?7).
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The non-symmetric case is more subtle. Let us write that a sum of Y is
equivalent to a sum of Macdonald polynomials if they become equal after special-
ization y; — 1, ¢ — 1 and reversal of the alphabet x; — x,,.1_; in the Macdonald
polynomials. Then one has Yy, ~ Mooz, Yine ~ Moz, Yagq ~ Mosa, Yias ~ M3,
but

t*—t

Y2to3 ~ Mo & %tgz ~ Masg + mMzw .
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13.3 Polynomials under C-action

We have seen that Pol(x,,) is a free Sym(x,,)-module. More generally, the ring of
Laurent polynomials in x,, is a free module over the invariants of the Weyl groups
of type B,, C,, D, respectively. For a basis of monomials, in the more general
case of a symmetrizable KacMoody group, in relation with the K-theory of the
associated flag variety, see the article of Griffeth and Ram [58, Th.2.9].

Let us give in this section an explicit description of Jol(x,) as a free module
under the action of the Weyl group W of type C,,.

As usual, we have to start with the smallest possible case, which is here, in
disagreement with Bourbaki, n = 1.

We thus have polynomials in 1, 2", and the operator s{ : z; — 2. To
understand the underlying structure, we may rather use two indeterminates x,y
satisfying the relation xy = 1. Any polynomial f(z,y) can be written

flx,y) = fi+afe, fi,fo € Gm(z,y).

Indeed, fo = f0,, and fi = —yf0,,.

In our case, this means that f(x1) = f1 + x1 fo, with fi, fo invariant under s?.
But a polynomial invariant under s{ is a polynomial in the variable 2% := 2, +a] ",
and one may rephrase the preceding construction as

Lemma 13.3.1. Pol(zF) is a free-module over Pol(x?) = Gym(x}) with basis
171'1.

As a corollary, one deduces

Lemma 13.3.2. Pol(x,) = Pol(zy,...,2F) is a free module over the ring of

usual polynomials Pol(x?) := Pol(x3, ..., xt), with basis {z¥ : v € {0,1}"}.

In other words, the ring of Laurent polynomials, say in coefficients in C, may
be identified with the tensor product of the two-dimensional spaces (1,x;), i =
1,...,n, with the ring of polynomials in z3,...,z}.

Choosing furthermore a basis of Pol(x?) as a free Sym(x? )-module and using
the preceding lemma, furnishes a basis of ol(x) as a module over its W-invariants.
For example, one can take the Schubert polynomials' X, (x*,0), o € &,,, which,
by definition, are all the different images of X,,_1(x*,0) := (z$)"'--- (2*)" under
products of divided differences

1 1
0 = (1=s8) 37— =0——
Ti = Tipq L=y

In summary, one has the following structure.

I Tt is more convenient to index the polynomials by permutations in &,, rather than by their
code.
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Proposition 13.3.3. The ring of Laurent polynomials Pol(x,,) is a free module
over Sym(x?), with basis

{2 X, 1(x*,0): ve€{0,1}", 0 €6,}.

Since one has taken Schubert polynomials in x, it is natural to use the
quadratic form .

(f,9)" = Fgdf - 0705 = fga™ my,. (13.3.1)

Since 2;0° = 1, 10 = 0, and X,(x*,0)9% = 0, except X,,(x*,0)0° = 1, it is

immediate to evaluate the scalar product of all the elements of the basis with 1 :

Lemma 13.3.4.
c c
(:c”XU(X',O), 1) =0 except <m1"'1Xw(x',O), 1) =1. (13.3.2)

Having a basis and a quadratic form, we have now to look for the adjoint basis,
or equivalently, to look for a reproducing kernel.

Back to the case n = 1, this is achieved by taking an extra indeterminate ;.
Then one instantly checks that {1,2; — 4} and {1,751 — 2;'} are adjoint bases
with respect to (f,9)¢ = fgo<.

Thus it is appropriate to introduce indeterminates 1, ..., y,, to use the poly-
nomials (z1 — y1)" -+ (2, — yn)'", v € {0,1}", instead of the monomials z",
and to use the Schubert polynomials X, (x®,y®) in the two alphabets x*, y* =
{(yi+yiH)s -, (yn+y; Y} These polynomials are, by definition, all the different
images of

Xy =[] @-v)= ][] @+a"—y—-y"
i,J:1+i<n ,7:1+i<n
under products of divided differences 07 (which act only on x*).
Let us choose an indexing compatible with the tensor product structure of

Pol(x,). Any element w of W is identified with a bar permutation (or signed
permutation). In other words, we write w € W as

w=[(-1)%0y,...,(-1)"0,], withe € {0,1}", 0 € &, .

Let, for any w € W, o = [Jwn], ..., |w,|], v € {0,1}" such that v; = 1 whenever
-1 € w. Define
XO(xy) = (w1 —y)" - (2 — )" Xo(x",¥°), (13.3.3)
~ 1 U1 1 Un
XS(xy) = (*1)6(0) (y1x—1) (yn;) X, ((x%)“,y*). (13.3.4)

Notice that in the last Schubert polynomials, we have reversed the alphabet
x* and used (x*)¥ = [z2,..., 23]

Knowing that, in the case of the usual ring of polynomials, {(~1)“") X, (x*,y)}
is the basis adjoint to the basis {X,(x,y)}, with respect to the scalar product

(f,9)? = fg0.,, combining with the analysis for n = 1, one obtains
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Theorem 13.3.5. The ring of Laurent polynomials Pol(x,,) is a free module over
Sym(x®), with pairs of adjoint bases {XC(x,y) : w € W} and {XS(x,y) : w €
W}, More precisely, let write —ww for [—w,,...,—wi]. Then, for any w € W,
one has

~ c
(XS(X’ y> ) ngw(x7 y)> =1
and the other scalar products are 0.

For example, for n = 2, the two adjoint bases are

{X[?—l)ql,(—l)ezg] = (xl - yl)el (ZL’Q — y2)€2 ,

Xf_1)6227(_1)611] = (21— y1)" (22 — 12) (33; - y;); €1,€ € {0,1} } )

~ 1 !
C . . .
{X[(—1)€117(_1)622] = (yl — $_1) 1 (y? o x_2) 9 :
xX¢ e a11] — (yl - i)el (y2 — i)fz (y' _ .CE') €1,€2 € {0 1} } .
[(=1)<22, (=1)<11] X1 X9 1 2)s €1y )

The second alphabet y may be thought as a set of arbitrary parameters. One
may “specialize” it to 0, i.e. specialize all y; to 0 in the linear factors occurring in
the expression of X¢(x,y) and X¢(x,y), as well as specializing all y? to 0 inside
the Schubert polynomials.

Notice that Weyl’s character formula for type C' uses the operator Wgo which
is equal to @ - - -z} 8 - - - 05 9%, Weyl’s formula 2* 75 = Spy(x,,) may be written
(2, 2 xl) = Spa(xy).

Key polynomials for type C' may be written as linear combinations of X¢(x,, 0)
with coefficients expressed in terms of symplectic Schur functions. For example,
for n = 2, writing X,, instead of XS (x»,0), and Sp, instead of Spy(xs), one has

K93,1 = Spy (X—2,1 - X2,71 - X71,72) - Sp11X1,2 + Sp15p2X71,2 .

As in the case of type A, it is not difficult to reformulate the preceding con-
struction of pairs of adjoint bases in terms of a kernel.

Theorem 13.3.6. Let
L 1 1 1
O, (x,y) = (l“i——) ($i+——y‘——)-
)= I (5= ) T (4 50

Then ©,(x,y) is a reproducing kernel, modulo the identification Sym(x*) = Sym(y*),
i.e. one has

Vf € Pol(x) (f@;l, e T) s On(x, y))

= [y, Yn) - (13.3.5)

X=y
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Proof. Writing the scalar product as a summation over W, thanks to (1.10.4), the

LHS becomes )
(Sero) 2

X=y

However, all ©,,(x"*,y) vanish under the specialization x = y,i.e. x1 =y, ..., 2, =
Yn, but when w is the identity, in which case 0, (y,y) = A%(y). QED

The quadractic form takes values in Sym(x°®) and is Gym(x®)-bilinear, this
forces the identification of Gym(x*) with Sym(y*).

The kernel diagonalizes into any pair of adjoint bases. For example, given any
z = {21, »}, writing X, for X¢(x, z) and writing X,, for X¢ (y, z), one may check
directly for n = 2 that

1 1 1 1
Y1 Y2 T Y2

= X1,2X22,71 + X71,2)’Z72,1 + X1,72§2,71 + Xfl,ijZQ,l + X2,1)?71,72
+Xo 1 X1 o+ X 91 X 1o+ X 9 1X10.
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13.4 Polynomials under D-action

There are more functions which are invariant under D-action than C-action. For
example, for n = 2, x1 + x5 " is invariant under s, s, hence is a D-invariant, but
it is not invariant under s§'.

To describe Pol(x,) as a module over the ring Gym” (n) of D-invariant, one can
start from the C-basis {X¢(x,,0)}. However, we shall see that polynomial coef-
ficients are not sufficient. Thus, one defines Gym” (n) to be the ring of symmetric
rational functions in ...,z which are invariant under s>

Adapting the type C-case, one takes the quadratic form

(£.9)7 = fga™"" m, = [90,005 . (13.4.1)
using the notation of (1.10.6).

The Weyl group of type D may be considered as the subgroup of signed per-
mutations with an even number of signs. This embedding WP — W does not
preserve the pairing:

(X§2,—1(Xm 0)7 jzl%(xm 0>>C =1, (XE’Z,—l(Xm 0)7 XSI,—Q(Xnv 0))0 =0,...
but
(XS (%, 0), X5(%, 0))P = mywatar a3, (X 1 (%0, 0), X _5(%,,0)P =2,...

To show nevertheless that {XS(x,,0) : w € WP} is a Gym” (n)-basis, one uses
another quadratic form

((f7 g))D = (fa g)D N (K—Dl -1 KPl,...,—l,l) )

gooey

the notation meaning that, after expressing (f,¢)” in the K basis, that is,
(f, )" = G’K—Dl,...,fl + beDl,...,fl,l + -+, one puts ((f,9))” =a—b.

The next lemma, which is immediate to verify, shows that the two special
key-polynomials K7, |, K” | occur in the images of monomials under 67

Lemma 13.4.1. Letv € {-1,0,1}", m(k) be the number of components of v equal

tok. Let u=[|vi],..., |va]], e = (-1)"*™(=DFL Then
090 — {K(lzl)nl,eK(lzl)n%(J?*K(lzl)”%‘1 e ifm(0) =0 (13.4.2)
" 2m(0) =L (g*)u if m(0) > 0.
Proposition 13.4.2. For w,w' € W<, one has
(XS (%0, 0), (-1)"XC (%, 0)))” = O - (13.4.3)

Consequently, the set {X¢(x,,0): w € WP} is a Gym® (n)-basis.
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Proof. The product of the two polynomials X¢, X, is equal to the product of
two Schubert polynomials in x* times a monomial z¥, with v € {-1,0,1}". If v
has at least a component equal to 0, then its image under 2 is a monomial in
x°*. This monomial, multiplied by the two Schubert polynomials belongs to the
span of monomials (in x°*) of exponent < [n,...,n|. It image under 97 belongs
to the span of Schubert polynomials Ygn—i 1i(x®,0). If i # n, then Ygn-i;i(x*,0)
has no component in the KP-basis of index [(-1)""!, &1]. Moreover Y;»(x*,0) =
af-ap = K2 + K(qyn-11 + -+ Therefore, to avoid nullity, v must have
no component equal to 0. But in that case z°0Y is D-invariant and commutes
with 9°. One is reduced to the case of two Schubert polynomials (2.6.6), and this

allows to conclude. QED

To express X (x,,0), when w € WE\WPL  in the above basis is not immediate.
For example, for n = 2, writing w instead of X¢(x,,0), K, instead of K, putting

v = (2129 — 27 25 1)?, one has the following expansions

| [12] [12] [21] [21]
v[12] Koy —2K7g -Ki1-Koy  Kit+Koo
v[12] —2K7 Ka1 Kii+Kop -Kii—Koo
v[21]) | -K53-Kz0- K11+ Koo K3+ Kz0+K11- Koo K31 —2K7g
v21] | Ko+ K50+ K11-Koo  —Kss—Kso-K11+Ko9  —2K79 Koz
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13.5 Hecke algebras of types B,C, D

In type A, we have obtained the Hecke algebra by replacing the simple trans-
positions s; by T; = (t; + to)m; — tos;. Having at our disposal 7y and s? for
O = B, C, D, we have therefore candidates for V. One can in fact take indepen-
dent parameters for types B and C. We prefer to rename the parameters for type
A, and define for i > 1,

T = (q1+q)m — q28; & T = (Li+ta)nl — tas? & TE = (t1+ta)7 — tosy

and, for ¢ > 2,
Tz‘D = (QI+Q2)7TiD - QQSzD'

These operators satisfy the braid relations, together with

(TF —t)(TF —t2) =0, (TF —t.)(TF —t2) =0, (T — q)(T” — q2) = 0.

)

The collection Tt, ..., T, 1, T generates the Hecke algebra of type © = B, C, D.

One can order differently the Dynkin graph. In type C, instead of using
the divided difference relative to the pair x,, 7!, one takes the pair 27, z1, and,
correspondingly, 7§’ = Tyt oy and s§ = s¢. In type B, one takes 7 = (S IEIRVEY

and s§ = sP. In type D, one puts s’ = s?,

flxy,z,... )70 = (33'1’1:1:2’1]” - fs(?)(xflxgl — 1)t
Thus
TOB = (t1+t2)7TOB — t2SOB & TC = (tl“’t?)ﬂ—g — tQSg & TD = (q1+QQ)’/T(? — QQS(? .

The operators TP, T¢ are characterized by the fact that they commute with
the functions of 23 = x; + 7', and by the images of 1,z;, which are

1T0B = tl = 1TOO, xfle = —tl—tg—tgl'fl, x;ng = tQIEIl .

The operator TP is characterized by the fact that it commutes with functions
which are invariant under s, and by the images of 1,1, xs, zox ", which are

D D —1 D —1 —17mD —1
1Ty = qu, viTy = —qxy -, 1y = —qay -, vy Ty = qasx; .

The set {TOQj ,T1,...,T,_1} generates another realization of the Hecke algebra
of type ©, as an algebra of operators on polynomials. This is this realization that
we shall retain in this section.

One can, of course, combine both realizations, or use simultaneously the op-
erators for the different types. From the explicit images of 1,2y, z, 792", one
discovers that TP coincides with the specialization t; = 1, ty, = -1 of T{'TyTE.
Thus, the Hecke algebra of type D may be obtained as a subalgebra of the Hecke
algebra of type C' for t; =1, t = 1.
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As for type A, inserting parameters in the braid relations is a powerful way
of obtaining interesting elements of the Hecke algebra. We refer to the work
of Cherednik [21, 22, 23] for a Yang-Baxter philosophy and its application to
mathematical physics. For our part, we shall restrict to the construction of Yang-
Bazxter graphs for the Hecke algebras of the Weyl groups, wich allow to insert
parameters inside reduced decompositions in a coherent way.

A Yang-Bagzter graph is a graph with vertices labelled by pairs ),,, v, w in the
Weyl group WY, v a vector of length n, satisfying the following conditions.

The starting point is the pair consisting of 1 = Y5, and of an arbitrary
spectral vector. The other elements are recursively defined by the same rule than
in type A, which is, for ¢ > 0,

(Y, v) — (yw <T + %) ,Usi> when f(ws;) > f(w),  (13.5.1)

1
Vit1v;  — 1

the rule for type D being

(Vs v) — (yw <T0D + M) ,USOD> when ((wst) > ((w), (13.5.2)

V1V — 1

and finally, the rule for type © = B, C being

th+1
(Y, v) — ()}w <TOQQ + v%(—titz_)i — 1) ,vsg) when ((wsy) > (w), (13.5.3)

with vsf = vs§ = [~titovy ', ve, .. ] and vsf = [vy ', vt v, .. .

The fact that the elements ), are well defined translates algebraically in the
Yang-Bazter equations for types B,C,D. The relation s syst = 5355 s corresponds
to an embedding of &3 into WP+, thus comes from type A. Thus, there is only
one new relation, which is for type C (or B). On the following graphical display,
this relations translates into the fact that the two paths from top to bottom give
equal elements in the Hecke algebra (each path being evaluated as the product of
the labeling of its edges).

: : : c ty+t -
\Zfrlte pairs w, T;(7y) instead of Y, E—Fﬁ, for the vertices of the Yang-Baxter
graph.
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12, [a, b]
Tl(s’/ \Tf(;@
21, [b, d 12, [Fatz p]
_p2 —a
0(5t,) 1(55)
A 4 4
21, [Z42, q] 21, [b, =22]
—a _p2
T (z2) To(:2)
Y Y
157 [a’ 7tgt2] ﬁ7 [7%1527 7tal‘t2]
—a?
To(53) Ti(¢)

75 [=tite —tito
i3, [, —12]

Notice that the labelings of edges are reversed when exchanging the two paths from
top to bottom. In other words, the Yang-Baxter equation equals two products
obtained by reversal of each other. To simplify the picture, we could have taken
—t1ty = 1. However, keeping the two parameters t;,t, instead of using ¢, —t~! is
essential in some problems.

The construction of a Yang-Baxter product corresponding to the choice of a
reduced decomposition of w(? , which is obtained by choosing a path from top to
bottom in the Yang-Baxter graph, amounts to list inversions in the order that they
are created, exactly as when computing the Poincaré polynomial. This remark
is clear when starting with the spectral vector [yi, ..., y,]. For example, for type
C, the Yang-Baxter expression is obtained from the case n—1 to the case n by
multiplication by the factor

+ + +
T+ it ) (ppdite)(pe, afe
St 1 “his b L

1t2

+ +
(T1+ q1 71Q2 ) (Tn—1+ Q171QQ > 7
Ynlr -1 YnYp_1—1

the negative roots of the root systems of type C' being encoded as

o YnYn—ts o Yl Yoy Ynls s ey UnYn

(we have changed the orientation of the Dynkin graph, compared to when we were
computing the Poincaré polynomial).
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The alternating sum ﬁ > (1) ®w on a Weyl group is a fundamental idem-
potent. We have seen (1.9.10 ) how fruitful it is in type A to factorize the corre-
sponding element of the Hecke algebra. Let us do the same for types B,C, D.

In type © = B, C, instead of the usual length, one defines ¢o(w) (resp. ¢1(w))
to be the degree in s(? (resp. in 1, S9, . ..) of any reduced decomposition of w. Let

vonr  — Z EW(ftl)n_ZO(w)(7ql)n(n_l)_€1(w) T,, O=B,C, (13,5.4)

von Zwew(_ql)n(nfl)*f(m T, (13.5.5)

The description of the canonical reduced decompositions of the elements of the
Weyl groups of type O = B, C, D entails the following factorizations of the sums
\VASLE

voOn — v@,n—1<Tn_1 T Ty = Ty T Tpg 4 - -
()" Ty Ty = ti(—q)" Ty T+
—t(~q)*" T — tl(—q1)2"*2> , O=B,D. (13.5.6)

VO = O (T BTPTy T o4 () Ty - TTPT,
+ (_Q1>n_1Tn—1 tee TQT()D + (‘Ql)n_lTn_l - T
@) T Tot o (-q)™ ) (135.7)

However, V¥ is a Yang-Baxter element, as shows the following proposition.

Proposition 13.5.1. For types B,C, D, VY™ is the bottom element of the Yang-
Bagter graph corresponding to the spectral vectors [ta, (~qaq; ita, . . ., (~qaqy )" Hy]
for types B,C, and [1,-q2q; ", ..., (~q2q; )" '] for type D.

In particular, one has the following factorizations, for types © = B, C,

_ + +
v(?,n _ V@,n 1 Tn,1 + q1 2q72l_3 . Tl + q1 (512_1
—ty (;qz) 1 —ty (—_qz) 1
t1 q1 t1 q1
TOC + 1+ @2

2n—2
—l2 [ Zq2 -1
t1 q

Tt | <Tn_1 + 4 +qu) . (13.5.8)
1

n—1 -
—q2 L _
q1

q1
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and for type D,

von — et | 1 Jancg T+ Q1 +7§]2
@) e
q1 q1
+ +
L s = el B AR
SR
q1 q1
+ +
Ty + — ( 1+ Q2) (13.5.9)
(32) -1 W

Proof. Using the Yang-Baxter relations, one can factor on the left of the right
hand-side of the two above expressions each of the simple factors (11-¢1), ...,
(T1-q1), and TP~q) or (T()B/Cftl). Moreover, the term of maximal length is
T . Therefore these factorized expressions are equal to the quasi-idempotents
von QED

For types B, C, there are other factorizations which do not correspond to the
choice of a spectral vector, but present the advantage of having the parameters
t1,t, appear in only the factors containing 7.

Recall the notation (1.9.1) Ti(-k) = T; — ¢¥/[k] for type A, with [k] = ¢¢ " —
G2+ (~q2)" . Let

(K]

By =11 + [ }(t1q2+t2q1), Ty (-k) =Ty B fork>1, Q=DB,C. (13.5.10)

Then one proves as above the following factorization of V5/¢.

Proposition 13.5.2. For type O = B, C, one has
VO = VO (cntl) - T (D TY (-n)Ty(-n+1) - - - Ty (-1) . (13.5.11)
For example,

t +t
Ve = (T -t)(Th-q) <Toc — tl‘%) (T1-q1)
1— Q2

= TochToCT1 — Q1TOCT1TOC — t1T1TOCT1 + 751Q1TOCT1 + t1Q1T1TOC
All V¥ QO = A, B,C, D, are quasi-idempotents. As in the case of Weyl’s

character formula, they send 2#” to a generalization of the Vandermonde.
Let

yAn — H (q2xz’+91$j) & VPn = H (QQxi+QIxj) <QI+ oz ) )

e Py Xy
1<i<j<n 1<i<j<n
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vEn=yPr ] (\/fc_ + tl\/$_i> & ver=vir]] (_2 + tl‘”i) '
i—1 ) i=1 !

The following theorem shows that V%™ is a right factor of V.

Theorem 13.5.3. With the notations of Propositions 1.10.1, 1.10.2, one has, for
©=B,C,D,
VO = g g% yon (13.5.12)

wo

_ (Z(_l)f(w)w> yon (A@:")_l (13.5.13)

w

Moreover, for O = B,C, one has

D)(TIVOn = 9P 9% e VO = g2 % ... 90 YO (13.5.14)
Proof. For each type, the different assertions are equivalent, thanks to the different
factorizations of the maximal divided difference. Let us test (13.5.8), for type C,
on the basis {P,, = 2"X,(x},0) : v € {0,1}",0 € &,} of Pol(x,) as a free
module over the invariant under C, defined in (13.3.3).

If v, = 0, then P,, is sent to 0 by 9Y, as well as by T — t;, which is a
left factor of V™. Since oV = (-1)49VY" for any permutation o, non-
vanishing implies that v = [1,...,1]. Since d, is a left factor of V4" hence
of of V& as well as of 9%, non-vanishing requires that ¢ = w. The image
of #1+1X,,(x?,0) under the right-hand side of (13.5.8) is V", The image under
V™ is a polynomial f which belongs to the linear span of monomials of exponents
u such that [Jui],...,|un|] 1< [n,...,1]. Since moreover V"I, = Vg, for
i=1,...,n-1, and VOT{ = V", then f must be equal to V", up to a
non-zero constant. One finds this constant by computing, in the image of z!%",
the coefficient of 1/z", which is (—2)¢a" " under TS (hence under V™),

and (—1)(3)t§q3 =1 under the right-hand side. This settles the case of type C,
the case of type B being similar. The case D requires checking only the images
of P,, for v having an even number of components equal to 1. QED

For example,

° q t t
V2O = 9050, (g1 + qrva) (q1 + = ) (—2 + t1x1) (f + mz) :
2

172 T

Exchanging t1,%s, q1, ¢2, one obtains another family of quasi-idempotents
yon _— g \n—Llo(w)(_, \n(n—1)—f1(w) _
Y Zwew( t2) (—a2) T., ©=B,C, (13.5.15)
ybmn _\n(n—1)—4(w)
Y Zwew( %) T, . (13.5.16)

This exchange of parameters give for W™ relations corresponding to (13.5.6),
(13.5.7), (13.5.8), (13.5.9), taking factors Tj(k) = T; — q5(qs "+ -+ +(—q)F 1) ~*
instead of T;(-k).
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However, change of parameters is not sufficient for what concerns the expres-
sion of WY in terms of divided differences. One must also change the order of
operations, as we have seen in type A. Let V" be the image of V" under the
symmetry ¢, < ¢o, t; <> to. Then one has

n+1

Theorem 13.5.4. Given n, let € =1, ¥ = ¢ = (—1)( ), el = (—1)(3) Then

WO = POy 79 - POy (0t (13.5.17)

For example,

¢ 131 2! 1
U = — (qu1+goas) (CJ2+ ) (—+t2x1) (—+t2$2) T M) T
T12o 1 T2 L1T2

We have used the simultaneous transposition of ¢, ¢, and ¢1,qs. In type C
(or B), one has two other ways to produce a quasi idempotent from V¢, using

a single transposition. Let (VC’")(tQ’tl) (resp. (VC’")(qQ’QI)) be the image of V&
under the transposition (t,%;) (resp. (g2, q1)). Write VO(qy, g0, t1,t0) = VO™,
VO (qr, qo,0) = VP VO 1y, 1) = ], (jﬂ—?+t1xi>. We have just seen that

Yo = YV (qy, qu, ta, 151)3(:_"O ﬂgo. The following proposition shows that the two
other quasi idempotents similarly factorize in terms of divided differences.

Proposition 13.5.5. Defining ¢ = (—1)<n;1> as in (15.5.17), using the factor-
ization (1.10.3) of ©< , one has

wo?

(VO @~ Oy Onig, g, 0)0C - 000 VO, by, ty)  (13.5.18)
(Vom0 = OyOn( 1y 1) 0 - 00 VO (1, g0, D). (13.5.19)

For example,
(vcg)(tzytl) = (Toc_t2)(T1ToC+t2Q1)(T1 —q1)

= (TOC —t2)(Th — q1) <TOC — —(h(tﬁtz)

q1~G2 ) T~ a)

; ; .
== (I_l + tﬂl) (x_l + t2$2) L0503, (g1 + quv2) (Ch + & > .
1 2

X1T2

Thus

2,01 t t ®
a0 () ) (&5 00) )
1

x 2
= (ta(x1 + a1 ) (ts — 1)V (a1, 42, 0) = talts — 1)V (qr, 02, 0)

value which would be more complicated to obtain using the definition (VQQ) (b2it1) _
3 e ()00 (g D6 T,
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The Hecke algebra H2 contains two copies of HZ, one generated by {17, Ts, . . .,
Tn_1}, the other by {T?, Ty,..., T, _1}. However, these two copies act differently
on polynomials. In fact, the identity s§T{’s§ = Ty exchanges the two actions.
Thus,

VA = Ty (-1)Ty(-2)T1(-1) = D321 (@1 +q172) (@1 +q173) (T2t q103)

entails

T(?(*l)Tz(*Q)T(?(*l) = 300332188] <i—2+Q1$2) (z—zﬂlﬂs) (qoxo+qiz3)
1 1

Since the work of Young, one knows that 1-dimensional idempotents are the
elementary bricks with which to build representations of the symmetric group,
and, by extension, of the Hecke algebras of the classical groups.

Due to the factorization (13.5.12), one can also use polynomials of the type
V¥n (cf. [111] in type A). We have seen in the preceding chapters the im-
portance of Yang-Baxter graphs to generate families of polynomials or bases of
representations. Essentially, to describe a representation of the group algebra, or
of the Hecke algebra of the fundamental groups, one needs a starting element. An
appropriate graph will take care of generating a basis from this element.

For example, in the case of the group algebra of the symmetric group, one
can start from a product of Vandermonde determinants on blocks of consecutive
variables to generate a “Specht module”. Standard Young tableaux index the
elements of the Specht or Young basis, the starting element being indexed by the
tableau having its columns filled with consecutive integers. Thus, one has to find
similar “first elements” to generate representations of the different Hecke algebras
associated to the classical groups.

Young orthogonal bases are nowadays characterized as eigenvectors of Jucys-
Murphy elements [69, 154, 163]. In that respect, the fundamental property of
the polynomial A*? encoutered in (1.9.14) is that it is an eigenvector of the
Jucys-Murphy elements &' = 1, &' = T'Th/(-q1q2), &5 = LTV T/ (1g2)%, - - -

Jucys-Murphy elements are recursively defined [172] by

G =1, =T, C =T1C, 2 =TPT, & =T 1&" \Ti1(~q1q0) ™"

Irreducible representations of the Hecke algebra of type C' are indexed by
pairs of partitions, and, correspondingly, bases are indexed by bitableaux (pairs
of standard tableaux). Representations may be realized as subspaces of the Hecke
algebra, the elements corresponding to bitableaux being eigenvectors of the Jucys-
Murphy elements with special eigenvalues [172]. According to what we have said,
to obtain irreducible polynomial representations of the Hecke algebra HS, we need
only to exhibit, for each pair of partitions (A, u) : |A|+|u| = n, a polynomial which
is an eigenvector of the Jucys-Murphy elements, with the same eigenvalues as the
bitableau of shape (A, p1) filled with consecutive numbers in columns.
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We do not have a solution in general, but only in the case where [\, u| is a
partition. We give without proof these polynomials, to prompt a reader to describe
the general case.

Given three positive integers a, b, k, with a < b, let

ola,b.k) = ] (@ +az) <q’f—(_%)k> (13.5.20)

T2
a<i<j<b v

b
¢ (a,b,k) = ¢labk) [ (tor;* + trz:) (13.5.21)

1=a

Thus ¢(1,n,1) = Vo,
To a pair of partitions A\ = [A,...,\], u = [p1,..., L], one associates a
content-vector of length A|+|u|

e\ p) = [[0, e T PR | N O A O o] I Ui IR WA
0,-1, ..o, =g +1],[1,0, oy —pat2], .o [0-1, o = Al

(this vector is made of blocks that we have figured, one should erase the inside “[”
and “] ?7) .

Claim. Let A = [A,...,\], p = [p1,..., e be two partitions, with || = m
Al+|p| = n, such that A, > py. Let ¢ = ¢(\, i) be the content-vector, and

U= [ A, A1 A, o A A A A, A ]
Then the polynomial
(1,01, 1)0% (141,09, 2) - - - ¢ (U141, U, )PV 41, Vg1, 741) - - P(Vppp— 1, Vppp, 74L)
is an eigenvector for the Jucys-Murphy elements £, ... ¢ with eigenvalues

ta, ta(—q1/q2), .. ta(—q1/q2) ™ t1, ti(—qu /q2) ™2, .t (—q1 [ q2)

For example, for A = [3,2], u = [2], the content-vector is ¢ = [0, -1,-2,1,0,0, -1]
and the polynomial

(q221 + q122) (Ql + e ) (g221 + q123) (Ch + e ) (g222 + q123)
T1Z2 123

t t t
(Ch + & ) (—2 + t1931> (—2 + t1$2> <—2 + t1$3> (224 + q15)
ToX3 T To T3
2 3
q 4 4 q
(%2 . ) (—2 + t1$4) (—2 + tﬂs) (226 + q1v7) (CJ13 + =2 > .
T4Ts Ty Ts Tel7

is an eigenvector of the Jucys-Murphy elements, with eigenvalues

to, ~taqa/q1, taqs /qi, —taqi/ o, ta, t1, —t1Ga/q1 -
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13.6 Noncommutative symmetric functions

We have already used noncommutative methods in the theory of symmetric func-
tions, by embedding the ring Sym into Plac. Since Gym(x,, ) is a ring of polynomi-
als in S1, 55, ..., one can use another approach to noncommutativity by deciding
that Si,Ss,... do not commute any more, and look for the bases analogous to
the bases of Gym other than products of complete functions.

Instead of using quasi-determinants as in [52], let us adopt a more down-to-
earth point of view, and use a combinatorics of compositions”.

Given a composition v of n, let D(v) = [v1,v1+vg, ..., V1+Vs+ ... +U_1| =
[dy,...,d,_1] be the list of descents of v, and (v) € N"! be the exponent of
the monomial z4, ... 24, ,.

Let Pol' be the vector space with basis {{"} indexed by all compositions,
and Pol} the subspace corresponding to compositions of n. Define the product

Pol! x Poll > fxg
— f(x1, . Ta1) (L4+2) 9(T1an, -+ - Tppm-1) € ’Bo[iwn )
Let Sym be the free associative algebra generated by S[1], S[2],.... Given any
composition v = [vy, ..., v,], denote S[v] the product S[vy]- - - S[v,], and let Sym,,
be the linear span of {S[v] : |v| = n}.
Other bases of Sym,, have been defined in [52] through generating functions.
Let o(t) = Y450 t*S[k]. Then one defines L[k], ¥[k], ®[k] by

> LK = o(—t)! (13.6.1)

o
kZZIt O] = —log(a(t)) (13.6.2)
SN = o) o). (18,69

By product, one obtains three linear bases of Sym:

Liv] = Ljvi]L[vg] ... , @[v] = [vq]P@[vy]... , Y]v] = U[vy]U[vg]. .. .
Another important basis, the basis of ribbon functions R[v], is recursively defined
by R[k] = S[k],

R[v,a] R[b,w] = R[v,a,b,w] + R[v,a+b,w] , a,b € NT.
One can identify Sym and JBol' by sending S[k] to 1, and requiring the com-

patibility with the product. In more details, let # : Sym — Pol' be defined by
0(S[k]) =1 for all k € N, and, for any two compositions v, w,

0(S[vlSTw]) = 0(S[wl) (1 + @) 6(S[w]) -

2In [52], one mostly uses quasi-determinants of almost triangular matrices (i.e. null under
the subdiagonal), in which case the theory is simpler than the general theory.
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Thus, given v = [vy,...,v,], let D(v) = [dy,...,d,_1] be the descents of v. Then

0(Slvr,...,v]) = (I+zq)1+ag)...(1+z4_,) (13.6.4)
O(R[vi,....v]) = TaTay...T4_, = ) (13.6.5)
It is easy to check that

O(LKk) = z...x5 (13.6.6)
9(\11[]{3]) = 1- T+ XLy — -+ (*1)k_1$1 o i Llpp—q1 - (1367)

A little more effort is required to show that

O(D[k]) =1 — <k11) _161 + (k;) _162 — e (1) ey, (13.6.8)

where ey, ..., ex_1 are the elementary symmetric functions in x, ...z 1.
The above values induce 6(L[v]), O(¥[v]), 8(P[v]). For example, for n = 3, the
polynomial images of the different bases are given by the following table :

basis 3 21 12 111
0(R) 1 T T T1T9
6(S) 1 T+ 1+xq (1+2q) (1+29)
O(L) 1Ty x1 (1+x2) (1+x1) 2 (1+mq) (1+x9)
o(W) 1-21+2129 (1+xg) (1-x1) (1-2o) (1+x1) (1+x7) (1+x2)
(D) | 1-1/2x9-1/2 x1+x122  (1429) (1-21) (1-m9) (14z1) (14x1) (1+29)

Notice that the expression of any element f of Sym in the basis R[v] can be
obtained by expanding 6(f) in terms of monomials, and that the expression in
the basis S[v] as the same coefficients as the expansion of the image of §(f) under
the translation z; — ;,-1. For example 0(Ps[4]) = 290 — 100 4 110 — 211 This
polynomial becomes under the translation 4x%%0 — 27919 — 32100 4 9110 4 5101 4

20 — g1t — 2901 and therefore

W[4] = 45[4] — S[31] — 25[22] + S[211] — 35[13] + S[121] + 25[112] — S[1111].

Some other linear bases of Gym have been introduced, for example, the multi-
plicative basis K[v] of [52, p. 279] which is such that

O(K[k]) = (1 4+ qo1)(1 4 ¢z ... (1 4+ ¢" Lay_y).

Florent Hivert [63] defined a deformation of the ribbon functions, the noncom-
mutative Hall-Littlewood functions H[v], which are such that, using descents as
above, one has

0(H[v]) = (za, + ¢)(@a, + %) .- (2a,., +¢"7).
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The space Sym,, is dual to the space Qsym,, of noncommutative quasi-symmetric
functions, the basis { M[v]} dual of {S[v]} being the basis of quasi-monomial func-
tions. The basis { E[v]} is dual to the basis { L[v]}. Another basis, the quasi-ribbon
functions {F[v]}, has been defined by Gessel [53].

The space Qsym,, can also be identified with ol. Under this identification
that we still denote 6, one has, in terms of the descents D(v) = {vy, v1+vg, v1+vg+v3 . ..}
of v,

0(F[v]) = HieD(v) zi =2 (13.6.9)
0ER) =TI, 5 @D (13.6.10)
basis 3 21 12 111
G(F) 1 T2 1 T1T2

O(F) | (z1-1) (22-1)  (21-1) (x9-1) 1
Q(M) (]_*1’1)(1*‘@2) (].*ZL‘l)JZQ .171(1*1‘2) 1T

The pairing between Sym,, and Qsym,, induces a quadratic form on ‘Bo[il. In
fact, the space ‘,Bo[i being the tensor product of 2-dimensional spaces with bases
1, x;, there is not much choice to define a pairing compatible with this structure.
Given f, g € JPol., one puts

(f,9) = C’T(f(xl, ooy mp) gzt ,x;ﬁl)) )

Because (1,1-x (1+xl,x2) and (1+z;, 1-x;) = 0 = (1, x;), one has indeed

l-z;) =
that (6(S[v]), 6(M[u]

) = 0, as required by the definition of the pairing. The
monomials #(R[v]) and #(F[v]) being both equal to 2} | the basis F[v] is dual to
the basis R[v].

As usual, it is convenient to use a Cauchy kernel, having two alphabets 1, ..., z, 1

and y1,...,Yn_1, and two morphisms 6§ = §* and 6. Let

Qn = (1 + 51713/1) . (1 + l’nflyn,1> .

Then the duality between the bases R[v], F[v] (resp. S[v], M[v]) reads now as
Q=Y 0" (R[])) 0" (Flv]) = 6"(S[v]) 0¥ (M[v]) (13.6.12)

sum over all compositions of n.
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One can determine (6(®[v]), 8(M[u])) without writing ®[v] in the S-basis, by
applying recursively the property

oT,, (9((1)[k:+1]) (1— z;l))

k+1 -1\ ! E-1\ !
- % (1_( 1 ) 61+< 9 ) 62_"'+(_1)k_1€k1> . (13.6.13)

where e, ..., ex_1 are the elementary symmetric functions in {1, ..., xx} \ {z:}.

Computations in Bol} are usually simpler than in Sym, and Qsym,, and
allow to recover all the transition matrices given in [52]. Let us illustrate the

advantage of the polynomial point of view by determining the basis adjoint to
{®[v]}, denoted {®*[v]} (compare to [52, Prop. 4.29]).

Lemma 13.6.1. For k = 1,2,3,..., let hy(xy,...,23) be equal to O(®[1FH1]).
Then for any composition v of n, with descents D(v), one has

0(d*[v]) = % IT Q=) hi(a,, ... 2a,,) - (13.6.14)

i=1% jap()

Proof. Let {f[v]} be a multiplicative basis of Sym,, and g, € Pol. be such
that g, = ¢'[lizp(,)(1-7:). Then (0(f[u]),g0) = 0 if D(u) € D(v). Thus,
(6(®[u]),9,) = 0 if D(u) € D(v). Let us now impose that (6(®[u]),g,) = 0
for the other compositions u different from v. One can use (13.6.13) to eliminate

the factors (1-z;) in g. Renaming ,...,2,_; the remaining variables, one is
left with the equations (A(®[w]),g’) = 0 for all compositions v’ of r, v’ # 1".
Therefore ¢'(x1,...,2z,_1) is equal, up to a scalar, to 9(®*[1"]). QED

For example, 2k (1) = 1+x1, 6hs(x1, x0) = 1 4 201+229 + 129,
ANhg(z1, 9, 23) = 1 + 3x1+bx2+3x3 + 3w 29+5T123+32923 + T12223. Hence, for
v =1[2,4,3], one has D(v) = [2,6] and

0(9*[243]) = 2—14(1xl>(1xg)(1x4)(1x5)(1m7)(1x8> (éixﬁéwém%) .

We hope that the reader will be willing to show that the polynomials r!A,_;
are the descent polynomials filtering permutations according to their descents:

r!ﬁr_l(ml’ Y ;xr—l) - ZO‘GG HiEDeSC(J) i

One method is to use Cauchy formula

Q.= 3 0(@[)I@ o)),

supposing by induction that all ®*[v] are known, except ®*[1"].
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The ring Sym is a Hopf algebra. As such, it possesses an antipode A which
may be characterized, for v = [vy,...,v,] and vw = [vy, ..., v1], by

A(S[]) = ()P L[vw].
Therefore, A induces on ‘BOI}L the transformation
Tt — (*1)”'{13'1”71_”“) _ (,1)”x1—un—1,-..71—u1 .

For example, one has

S[2,4,3 2% —L[3,4,2]
0] I
(Lwa)(L4ar) = ~(z1...210)(1+2)(1+1)

Using 6, one sees instantly that
APR]) = (1) w] & A(QR]) = (1) D[vw].
Ribbon functions are exchanged, up to sign, by the antipode :
A(R[v]) = (-1)" R[],

denoting by v~ the conjugate composition (obtained by reading the number of
boxes of the diagram of v by columns, from the right).

|
A(R[243]) = —R[1121121] <« | ]
1211211

Requiring the compatibility with €, one has no choice for extending the an-
tipode to QSym :
A(FI]) = (-1 P

The formula for (®*[v]) shows that
A(2*0]) = (1) [ow] .
This extends the property of the commutative power sums that

p(=X) = (-1)"Vpa(X).
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There are other ways to use tableaux in relation with Sym, and QSym,,.
Indeed, the sum of all the tableaux in 1,..., N which standardize to a given
tableau ¢ has a commutative image which is clearly quasi-symmetric. More pre-
cisely, if ¢ has (maximal) subwords in consecutive letters [1, ..., dy|, [di+1, ..., ds],
o de+1, 000 n], let v(t) be the composition of n with descents dy, ..., d,. Then

ev (Zstm:t T) = Flu(t)].

For example, the tableaux which standardize to 34125 are all the tableaux
bibaajasbs with a3 < ag < by < by < by, and their sum evaluates to F[2,3] =

uv
Zu,v: |u|=2, |v|=3 z.

Let v € N, n = |v|, N > r. Following Haglund, Luoto, Mason, Willigenburg
[60], define the quasisymmetric Schur function QK, to be the sum

QK, = Zw:w\ozv K, . (13.6.15)

If two tableaux T}, Ty have the same standardization, with T}, € K. Fand Ty € K7,
then o\0 = (\0, as is seen from the construction of the right key. Therefore, one
has that [60, Th.6.2]

QK, = > Flo®)], (13.6.16)

sum over all standard tableaux belonging to some IAQ{' with w\0 = v. The image
of this identity under 6 is

o (QIA{U> - Zt Hz tie (13.6.17)

over the same set of standard tableaux®.
Since the Schur function s)(x,) of index A € N™, with n = ||, is equal to the
sum » |=x I8, the preceding formula gives

UOVEDDN | IS (13.6.18)

sum over all standard tableaux of shape A, as stated in [113].

It is clear that the transition matrix between {QK,} and { F[v]} is uni-triangular
(for the lexicographic order from the right), the terms on the diagonal correspond-
ing to the tableaux congruent to the words st(...2"21").

Instead of giving the transition matrix, one can as well write the generating

function 3 0(QK,)QK,.
For n = 3,4, 5, these generating functions are

Qf??, + szfAﬁ,l + $1Qf(1,2 + $1$2Q—f(1,1,1

3the integers i such ¢ contains the subword [i+1,4] are called the recoils of the tableau.
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QK4 +A$3QK3,1 + (xlm?s/‘\"'$2) QK59 + (T1+22) QK 3 + 2322QK01 1 + 123QK1 21 +
T129QK 1 12 + T31172QK 1 111

QK5 + $4QK4 1+ (T3+ai04 + IE2$4) QK?, 2+ ($1$3+$2) QKQ 3+ ($1+$2+$3) QK1 4+
$3$4QK3 1 1+(I2$4+$1$3$4) QKz 2 1+$3$2QK2 1 2+($1I4+$2I4) QKl 3, 1+($1$3+$1I2$4) QKl 227+
($1l’2+1’1$3+l’3$2) QKl 1,3+ $2IL’3$4QK2 1,11 T 1’1$3$4QK1 21,1 T 9513321’4QK1 121 T
$3$1$2QK1 112 + 9611‘2$3!E4QK1 1111 -
For example, the coefficient of QK32 is x3 + x1x4 + xoxy4, due to the three
tableaux

5] _[0A5le p7.. 25| —[2[3[5]e RF
3051 —[1[3]5]c R~
1 2 4|_ 2 4 < 00032 *

Permutations occur in many different ways in the theory of Sym and Qsym.
In fact, Solomon [183] has shown that the subspace of C[S,,] generated by Sol, :=
S {o: Desc(o) = D(v)} is a sub-algebra’ of C[&,,]. The space Sym,, is isomor-
phic, as a vector space, to Solomon’s sub-algebra of C[&,], and thus inherits a
product which is called the internal product.

Under this correspondence, R[v] is sent onto Sol,, that is, on the sum of
permutations which can be displayed as a ribbon tableau of shape v. For example,
for v[2,1,2], one has

[4]5 (3[4 [4]5 [3[5 [2]5
SOl212: 3 + 2 + 2 + 2 + 3
115] 15] 15] 15] 115]
(274 215 1315 (1[5 [1]4 NE
+ 131 + 141 + T[4 + 141 + 31 + 131 .
1]5] 1[5] 1[5] 215] 215] 2(5]

Plactic considerations can also be used. Twist the previous morphism between
Sym,, and C[&,] by inversion of permutations, that is use the morphism

Symn = R[U] - Zo’: Desc(o)=D(v) 0_1 '

Then S[v] is sent over all permutations having subwords [i+1,i] for all i € D(v),
and the image of €, is

ﬁn - ZO'GGn (H[Hl,i]ea yz) 7

Therefore, (Nln is a sum of plactic classes of all standard tableaux of n boxes.

2] 3]
= Cl([I2r3] +ylcl(§ 3|> +yzcz(§ 2|> +y2ylcz<
1

4His construction is valid for any Coxeter group.



§ 13.6 — Noncommutative symmetric functions 331

Projecting the plactic class of a tableau to the Schur function of index the shape
of this tableau, one finally obtains a symmetric function

Z (H[iJrl,i]eT yi) ()

T

sum over all standard tableaux.
Let us mention that one can define non-commutative Macdonald polynomials
indexed by compositions [6, 135].

Quasisymmetric functions may be used to study problems in the classical the-
ory of symmetric functions. For example, the plethysm (i.e. the composition) of
symmetric functions is a fundamental issue (it is the third axiom in the definition
of a A\-anneau).

In [115], the plethysm of power sums and products of complete functions is
studied using ribbon tableaux, this allowing to introduce an extra parameter g
pointing the connection of plethysm with representations of U, (sl,,). Let us restrict
to the ¢ = 1 case and consider the plethysm of a power sum p, with a Schur
function s,. In plain words,

pk(s,\(xn)) = sy(ah, ... 2k,

The observation that for a quasimonomial function, one has
pr(Mvy, ... v]) = M[kvy, ..., kv,

shows that the image under 6 of the plethysm with p; is the morphism

Poll 5 f(a1,..., 00 1) — H (1 =) | flzk, 2ok, Ton—r) -

i=1..kn—1
i#0 mod k

As a consequence, one has the following description of the plethysm of a power
sum with a Schur function.

Proposition 13.6.2. Let A be a partition of n. Then

0(pi(s))) = [T a-= Zt Hz’:[iJrl,i]etxki’ (13.6.19)

j=1..kn—1
j£0 mod k

sum over all standard tableaux of shape .

For example, one reads from the two tableaux % 3] i’ 5 lthat 0(s91) = T+
and that

9(])2(321) = (1 — [El)(l — 1’3)(1 — 1‘5)(1'2 + 1'4) .
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This last polynomial determines the explicit expansion

P2(S21) = —Sa11 + S222 — S2211 + Sa2 — S33 + S3111 -

The plethysm of p, and any Schur function is described by Carré and Leclerc
in terms of domino tableaux in [17].

The space Pol} has dimension 2"~!, number bigger than the number of parti-
tions of n. One can use a projection of Pol’ onto a space of monomials in bijection
with partitions. Indeed, for each partition A, the tableau st ( .. 2’\21>‘1) has tallest

shape among the tableaux having recoils A1, A\j+Xa, AMi+Ao+As... : [4[5] is taller
1[2]3]
6] .
than [ and [ 416 Therefore the morphism
1121375] 1[2]3][5]

A
Sx — I< ) = LA LA+ A2 LA+ A2+ A3 - - -

is unitriangular, and any symmetric function f in Gym, is determined by the
restriction 0(f) of (f) to the linear span (zV, A € Part,,).

For example, for n = 6 one has the following correspondence between mono-
mials and Schur functions.

|6 51 42 411 33 321 3111 222 2211 21111 111111
00000 |1
00001 [- 1 -1 - - 1 -1 -1
o010 [- - 1 - -1 -1 - 2 1
o001 |- - - 1 - -1 . 11
00100 |- - - - 1 - |
o010t |- - - - - 1 |
ool |- - - 1 A |
01010 ‘ . . . . . . 1
01011 ‘ . . . . . . . 1
01111 ‘ . . . . . . . . 1
11111 ‘ . . . . . . . . . 1

The row of index 00100 « %1% = 23 must be interpreted as x5 = 0(s33 — S292).

Going back to our example, instead of using 6 (p2(s21)), one takes 6 (pa(s21)) =
200010 _ 00001 4 001l — ) — 245 + 232475, to determine po(sa;).
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