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§ 0.0 — CONTENTS 

Abstract.
We give eight1 linear bases of the ring of polynomials in n indeterminates : Schubert

polynomials, Grothendieck polynomials, flag elementary/complete functions, Demazure
characters (key polynomials) for types A,B,C,D, Macdonald polynomials.

All these bases are triangular in the basis of monomials, with respect to appropriate
orders. We introduce different scalar products and compute the adjoint bases of the
previous polynomials.

We provide recursions (transition formulas) which allow to cut these polynomials
into smaller ones of the same family.

We recover the multiplicative structure of the ring of polynomials by describing the
multiplication by a single variable.

In type A we lift the Schubert polynomials and Demazure characters to the free
algebra.

We recover by symmetrisation Schur functions and symmetric Macdonald polyno-
mials in type A, and symplectic and orthogonal Schur functions in types B,C,D.

1In fact, counting adjoint bases and deformations, many more, but the next lucky number,
88, seems out of reach for the moment.
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Polynomials appeared since the beginnings of algebra, and it may seem that
there is not much to say, nowadays, about the space of polynomials as a vector
space. In the case of a single variable x, many linear bases of Pol(x) other than
the powers of x have been described, starting with the Newton’s interpolation
polynomials. The theory of orthogonal polynomials flourished during the whole
XIXe century, providing many more bases.

In the case of symmetric polynomials, Newton, again, gave a basis of products
of elementary functions. The transition matrices between these functions and the
monomial functions were already considered in the XV IIIe century by Vander-
monde in particular. Later, the chevalier Faa de Bruno, Cayley, Kostka spent
much energy computing different other transition matrices. It happens in fact
that there is a fundamental basis, the basis of Schur functions. A great majority
of the classical problems in the theory of symmetric functions involve this basis,
and leads to a combinatorics of diagrams of partitions and Young tableaux.

The picture is not so bright when one relaxes the condition of symmetry and
consider Pol(x1, . . . , xn) in full generality. In fact, computer algebra systems like
Maple or Mathematica do not know the ring of polynomials in several variables
with coefficients in Z, but only the ring Z[x1] ⊗ Z[x2] ⊗ · · · ⊗ Z[xn]. Since 40
years, geometry and representation theory provided a new incentive for describ-
ing linear bases of polynomials. The cohomology theory and the K-theory flag
manifolds lead to different bases related to Schubert varieties: Demazure charac-
ters, Schubert polynomials, Grothendieck polynomials. Independently, the theory
of orthogonal polynomials, in conjunction with root systems, developed in the di-
rection of several variables, with the work of Koornwinder, Macdonald and many
others.

In these notes, we shall mostly restrict to Schubert polynomials, Grothendieck
polynomials, Demazure characters (key polynomials), Macdonald polynomials. These
objects will be obtained using simple operators such as Newton’s divided differ-
ences and their deformations. Such operators act on two consecutive variables at
a time, say xi, x+1, and commute with multiplication with symmetric functions
in xi, xi+1. Therefore, they are characterized by their action on 1, xi+1 (which is
a basis of Pol(xi, xi+1) as a free Sym(xi, xi+1)-module). In type A, computations
will not require more than the rules figuring in the following tableau, which ex-
presses the images of 1, xi+1 under different operators, and indicates the related
polynomials.
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operator si+∂i ∂i πi π̂i (1−xi+1)∂i Ti

1
xi+1

1
xi−1

0
−1

1
0

0
−xi+1

1
xi+xi+1−1

t
xi

polynoms Jack Schubert Demazure Demazure G̃ Macdonald
Grothendieck Grothendieck Hall−Littlewood

To be complete, we have to add to this list the operators πBn , πCn and πDi in the
case of key polynomials for types B,C,D, and the translation f(x1, . . . , xn) →
f(xn/q, x1, . . . , xn−1)(xn−1) in the case of Macdonald polynomials, but this does
not change the picture: it is remarkable that such simple rules suffice to gen-
erate interesting families of polynomials. As a matter of fact, one also needs
initial polynomials. In the case of Demazure characters, one starts with dominant
monomials xλ = xλ1

1 . . . xλnn , λ1 ≥ λ2 ≥ · · · ≥ λn. For Schubert polynomials, one
introduces another set of variables, and one takes Yλ :=

∏
i=1..n,j=1..λi

(xi−yj). For
Grothendieck polynomials, one takes Gλ :=

∏
i=1..n,j=1..λi

(1−yjx−1
i ), still with the

requirement that λ1 ≥ · · · ≥ λn. In the case of Macdonald polynomials, one needs
only one starting point, which is 1, because the translation operator increases
degree and allows to generate polynomials of any degree.

Schubert and Macdonald polynomials can also be defined by interpolation
properties. Indeed, to each v ∈ Nn, one associates a spectral vector 〈v〉y (which is
a permutation of y1, y2, . . .), and another spectral vector 〈v〉tq (with components
which are monomials in t, q). Now the Schubert polynomial Yv and the Macdonald
polynomial Mv are the only polynomials, up to normalization, of degree d = |v| =
v1+ . . . +vn, such that

Yv
(
〈u〉y

)
= 0 & Mv

(
〈u〉tq

)
= 0 ∀u : |u| ≤ d, u 6= v .

it is easy to check that the vanishing conditions imply a recursion on poly-
nomials, the image of a Schubert polynomial under ∂i being another Schubert
polynomial (when it is not 0), and the image of a Macdonald polynomial un-
der Ti+c being another Macdonald polynomial (when choosing appropriately the
constant c).

Divided differences are discrete analogues of derivatives. One can thus expect
a discrete analogue of themultivariate Taylor formula. In the case of functions of a
single variable, this discrete analogue is the Newton interpolation formula. In the
multivariate case, the universal coefficients appearing as coefficients of products
of divided differences are precisely the Schubert polynomials, and this is a direct
consequence of their vanishing properties.

In these notes, we have put the emphasis on Grothendieck polynomials, be-
cause the literature on this subject is rather scanty , apart from the Graßmannian
case, which is the case where the polynomials are symmetric and can be treated
as deformations of Schur functions. We do not touch the subject of Schubert
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polynomials for types B,C,D (see [10, 47, 49, 41, 132, 133]). They require intro-
ducing the operation xn → −xn, while, for Demazure characters and K-theory,
one must use xn → x−1

n . In type A on the contrary, cohomology and K-theory
can be mixed, operators like πi + ∂i make sense.

Schubert, Grothendieck polynomials and Demazure characters are directly as-
sociated to the basis {∂σ : σ ∈ Sn} of the Nil Hecke algebra, and to the basis
{πσ : σ ∈ Sn} of the 0-Hecke algebra. We give two more bases, and their ad-
joint, of Pol(x1, . . . , xn), corresponding to the basis {∇σ : σ ∈ Sn}, and to the
Kazhdan-Lusztig basis {Cσ : σ ∈ Sn} of the Hecke algebra.

Linear algebra is not enough, the ring Pol(x1, . . . , xn) has also a multiplicative
structure that one needs to describe. We mostly restrict to multiplication by a
single variable, which is enough to determine the multiplicative structure in each
of the bases that we consider. Already this simple case involves fine properties of
the Ehresmann-Bruhat order on the symmetric group (or on the affine symmetric
group in the case of Macdonald polynomials). It is clear, however, that more
work should be invested in that direction, the product of two general Schubert
polynomials or two Grothendieck polynomials having, for example, many geomet-
rical consequences . Fomin and Kirillov [40] have introduced an quadratic algebra
to explain the connections between the Ehresmann-Bruhat order and Schubert
calculus.

Having different bases, one may look for the relations between them. We con-
sider the relations between Schubert and Grothendieck, Schubert and Demazure,
Macdonald and key polynomials, but this subject is far from being exhausted.

Polynomials can be written uniquely as linear combination of flag elementary
functions) (products of the type . . . ei(x1, x2, x3)ej(x1, x2)ek(x1)). Since the nat-
ural way to lift an elementary function of degree k in the free algebra is to take
the sum of all strictly decreasing words of degree k, one has therefore a natural
embedding, as a Z-module, of Pol(x1, . . . , xn) in the free algebra on n letters. We
shall rather use a distinguished quotient of the free algebra, the plactic algebra
Plac(n), quotient by the relations

cab ≡ acb, bac ≡ bca, baa ≡ aba, bab ≡ bba, a < b < c .

The lift of Sym(x1 . . . , xn) in Plac(n) has now recovered its multiplicative struc-
ture, compared to the lift in the free algebra where one must have recourse to
operations like shuffle instead of concatanation of words. In others words, one has
an embedding of Sym(x1 . . . , xn) into a non-commutative algebra, and therefore
any identity on symmetric polynomials translates automatically into a statement
in the non-commutative world. Combinatorists will have no difficulty in going
one step further in the translation and use Young tableaux, Dyck paths or non-
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intersecting paths instead of mere words. In short, the diagram

Sym

Plac

Pol

sλ →
∑
T Ev

where the left arrow sends a Schur function sλ onto the sum of all tableaux of shape
λ in the alphabet {1, . . . , n}, and Ev is the commutative evaluation, allows to pass
from algebraic identities on symmetric functions to statements about words and
tableaux.

Simple transpositions can be lifted to the free algebra, inducing an action of
the symmetric group on the free algebra. The isobaric divided differences πi can
also be lifted to the free algebra, but they do not satisfy the braid relations any
more. This does not prevent using them on the lifts of Schubert polynomials and of
Demazure characters. In particular, this is the most sensible way of understanding
the decomposition of Schubert polynomials as a positive sum of key polynomials.
One still has a commutative diagram, identifying the Demazure characters {Kv :
v ∈ Nn} with the “free” Demazure characters {KFv : v ∈ Nn}. However, one has
lost multiplication, Pol(x1, . . . , xn) is considered as the free module with basis the
Demazure characters.

Schub = 〈KFv 〉 Free

Pol

Ev Ev

We use two structures on the ring of polynomials in x1, . . . , xn, with coefficients
in y: as a module over Z[y] with basis the infinite family of Schubert polynomials
{Yv(xn,y) : v ∈ Nn}, or as a free module of dimension n! over Z[y] ⊗Sym(xn),
with basis {Yv(xn,y) : v ≤ ρ = [n−1, . . . , 0]}. We show in the appendix how to
extend this finite Schubert basis in types C,D so as to obtain a pair of adjoint
bases for Pol(x±1 , . . . , x

±
n ) as a free-module under the invariants of the Weyl group.
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1.1 A,B,C,D

What are the simplest operations on vectors ?

• add

• concatanate

• transpose two consecutive components

• multiply a component by −1

Thus, acting on vectors v ∈ Zn one has the following operators (denoted on
the right) corresponding to the root systems of type A,B,C,D :

v si = [. . . , vi+1, vi, . . .] , 1 ≤ i < n,

v sBi = v sCi = [. . . ,−vi, . . .], 1 ≤ i ≤ n,

v sDi = [. . . ,−vi, −vi−1, . . .], 2 ≤ i ≤ n .

The groups generated by s1, . . . , sn−1 (resp. s1, . . . , sn−1, s
B
n , resp. s1, . . .,

sn−1, s
D
n ) are the Weyl groups of type A,BC,D. We shall distinguish between B

and C later, when acting on polynomials.
The orbit of the vector [1, 2, . . . , n] consists of all permutations of 1, . . . , n for

type A, all signed permutations for type B,C, and all signed permutations with
an even number of “-” in type D. The elements of the different groups can be
denoted by these objects.

The generators satisfy the braid relations (or Coxeter relations)

sisi+1si = si+1sisi+1 & sisj = sjsi , |i− j| 6= 1 , (1.1.1)

7
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sn−1s
B
n sn−1s

B
n = sBn sn−1s

B
n sn−1 & sis

B
n = sBn si, i ≤ n− 2 , (1.1.2)

sn−2s
D
n sn−2 = sDn sn−2s

D
n & sis

B
n = sBn si, i 6= n− 2 . (1.1.3)

An expression of an element w of the group as a product of generators is called
a decomposition, and when this product is of minimal length, it is called a reduced
decomposition, the length being called the length of w and denoted `(w).

By recursion on n, it is easy to write reduced decompositions of the maximal
element w0 of the group for type An−1, Bn, Cn, Dn. Write 1, . . . , n for s1, . . . , sn−1

and sBn or sDn . Then w0 admits the following reduced decompositions (that we
have cut into self-explanitory blocks; read blocks from left to right)

• type A ∅ n−1 n−2 n−1 · · · 1 2 · · · n−1

• type BC n
n−1 n

n−1
· · ·

1 2 . . . n

...
2

1

• type D
(
n− 1

n

)
n−2

(
n− 1

n

)
n−2 · · · 1 2 · · ·n−2

(
n− 1

n

)
n−2 · · · 2 1

In the case of type D we have written
(
n−1
n

)
for the commutative product

sn−1s
D
n .

Erase in each block a right factor1. The resulting decomposition is still reduced,
and the group elements are in bĳection with these decompositions. Therefore, the
sequence of lengths of the remaining left factors codes the elements for type A
and B. In type D, one has to use an extra symbol to distinguish between a factor
sk · · · sn−2sn−1 and a factor sk · · · sn−2sn.

Many combinatorial properties of permutations are more easily seen by taking,
in type A, another decomposition. Instead of reading the successive rows of

1In type D3, for example, the right factors of the block 1
(
2
3

)
1 are ∅, 1, 21, 31,

(
2
3

)
1, 1

(
2
3

)
1.



§ 1.1 — A,B,C,D 

n−1

n−2 n−1

· · · · · · · · ·

1 2 · · · n−1

one takes the successive columns,
and thus chooses the decomposition

(n−1, . . . , 1)(n−1, . . . , 2) . . . (n−1) ↔

n−1

...
2

1

n−1

...
2

· · · n−1 .

It is easy to check that the decompositions obtained by taking arbitrary right
factors of the successive blocks (= bottom parts of the columns) are reduced and
in bĳection with permutations.

For example, for n = 5,

(• 3 2 1) (• • •) (• 3) (4) ()

3 0 1 1 0
code

⇔
•
3 •
2 • •
1 • 3 4
reduced

decomposition

⇔
diagram

is a reduced decomposition, that we shall call canonical reduced decomposition, of
the permutation s3s2s1s3s4 = [4, 1, 3, 5, 2], and the sequence [3, 0, 1, 1, 0] of lengths
of the right factors is called the code of the permutation (one can represent the
code by a diagram of boxes piled on the ground).

Given σ in the symmetric group Sn, its code c(σ) can also be described as
the vector v of components vi := #{j : j > i & σi > σj}, which describes the
inversions of σ. The sum |v| = v1 + · · ·+ vN is therefore the length `(σ) of σ.

Having groups, one has also group algebras. Instead of enumerating the ele-
ments of the group W , together with their lengths one can now write a generating
series which is called the Poincaré polynomial∑

w∈W

q`(w) .

From the preceding canonical decompositions, denoting by [i] the q-integer
(qi − 1)/(q − 1), one obtains the following Poincaré polynomials :

• type A [1] [2] · · · [n] ,

• type BC [2] [4] · · · [2n] ,
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• type D [2] [4] · · · [2n− 2] [n] .

One can embed a Weyl group of type Bn, Cn, Dn into S2n, as a subgroup, by
sending si to sis2n−i, 1 ≤ i ≤ n−1, sBn and sCn to sn, and sDn to snsn+1sn−1sn.
This amounts transforming a signed permutation v by vi → σi = vi if vi > 0,
and vi → σi = 2n+1+vi if vi < 0, i = 1, . . . , n, and completing by symmetry:
σ2n−i = 2n+1− σi, thus obtaining a permutation in S2n.

An inversion of a permutation σ ∈ Sn is a pair (i, j) such that i < j and σi >
σj. One inherits from the embedding into S2n, taking into account symmetries,
inversions for type B,C,D. If w is sent to σ, then an inversion is a pair i, j : 1 ≤
i < j ≤ n such that σi > σj or such that σi > σ2n+1−j. In type B,C, the indices
i : 1 ≤ i ≤ n such that wi < 0 (equivalently, σi > σ2n+1−i) are also inversions. It
is easy to see by recursion that the length coincides with the number of inversions.

1.2 Reduced decompositions in type A
In type A, we shall use graphical displays to handle more easily the braid relations.
A column is defined to be a strictly decreasing sequence of integers. Any two-
dimensional display of integers must be read columnwise, from left to right, each
integer i being interpreted as si (or some other operators indexed by integers,
depending on the context). A display is reduced if the corresponding product of
si’s is reduced. For example, 1 3

2 3
1 2

must be read (1)(321)(32) and interpreted as
s1s3s2s1s3s2 (which happens to be a reduced decomposition of the permutation
[4, 3, 2, 1]). With these conventions, the braid relation s1s2s1 = s2s1s2 becomes
1 2

1 = 2
1 2 . More generally, one has the following commutation lemma.

Lemma 1.2.1. Let u, v be two columns such that uv is reduced and each letter of
u also occurs in v. Then uv = vu+, where u+ is obtained from u by increasing
each letter of u by 1.

Proof. By induction on the size of u, the statement reduces to the case where u = i
is a single letter. Because iv is reduced, v must be of the type v = v′ i+1 i v”, with
all the letters of v′ bigger or equal to i+2, and all the letters of v” less or equal to
i−1. In that case,

iv = v′ i i+1 i v” = v′ i+1 i i+1 v” = v′ i+1 i v” i+1 ,

as wanted. QED
For example, starting from the canonical reduced decomposition of ω = [5, 4, 3, 2, 1],

one obtains the decompositions

4
3 4
2 3 4
1 2 3 4

=
3 4
2 3
1 2 4

1 3 4
=

3
2 3 4
1 2 3

2
1 4

=
2 3 4
1 2 3

1 2
1 4

=

2 3
1 2

1 3 4
3
2
1

=
2
1 2 3 4

2 3
1 2

1

=
1 2 3 4

1 2 3
1 2

1
.

(these are 7 among the 28 × 3 reduced decompositions of ω).
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1.3 Acting on polynomials with the symmetric
group

Of course, considering vectors as exponents of monomials: xv = xv11 x
v2
2 · · · , we get

operators on polynomials: v → vsi induces the simple transposition of xi, xi+1 :
xv → xvsi , and similarly for types B,D. No need to point out that addition of
exponents corresponds to product of monomials, and that concatenation corre-
sponds to a shifted product that we shall use when considering non-commutative
symmetric functions:

u ∈ Zn, v ∈ Zm → xu,v = xu1
1 · · ·xunn x

v1
n+1 · · ·xvmn+m .

If v is such that v1 ≥ · · · ≥ vn, then v is called dominant (we also say that
v is a partition, terminal zeros being allowed). When v1 ≤ · · · ≤ vn, then v
is antidominant. The reversed vector [vn, . . . , v1] is denoted vω. Reordering v
increasingly (resp. decreasingly) is denoted v ↑ (resp. v ↓).

Instead of vectors in Nn, one may use permutations. We have just to reverse
the correspondence seen above between permutations and codes2. One identifies
σ ∈ SN and [σ,N+1, N+2, . . .]; this corresponds to concatenating 0’s to the right
of the code of σ. For example, one identifies the two permutations [2, 4, 1, 5, 3] and
[2, 4, 1, 5, 3, 6, 7, . . .], as well as their codes [1, 2, 0, 1, 0] and [1, 2, 0, 1, 0, 0, 0, . . .].

Let us consider in more details the space Pol(x1, x2) of polynomials in x±1 , x±2 ,
with the simple transposition s of x1, x2. One remarks that s commutes with multi-
plication with symmetric functions in x1, x2 (whose space is denoted Sym(x1, x2)).

Every f ∈ Pol(x1, x2) can be written

f =
f + f s

2
+
f − f s

2
=
f + f s

2
+ (x1 − x2)

(
f − f s

2(x1−x2)

)
.

This means that every polynomial in Pol(x1, x2) can be written uniquely as a linear
combination of the polynomials 1 and (x1−x2), with coefficients in Sym(x1, x2).
In other words Pol(x1, x2) is a free Sym(x1, x2)-module of rank 2, and one can
choose as natural bases {1, x1−x2} , {1, x2} or {1, x1} .

The last choice corresponds to writing f as

f = x1

(
f − f s

x1−x2

)
+

(
x1f

s − x2f

x1−x2

)
,

the action of s being determined by

{1, x1} −→ {1, x2 = −x1 + (x1+x2)}
2This correspondence is in fact due to Rothe (1800), who defined a planar diagram repre-

senting the inversions of a permutation.
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and represented by the matrix [
1 x1 + x2

0 −1

]
.

Since a 2 × 2 matrix has 4 entries, this is not a big step to consider more
general actions, such as

{1, x1} −→ {0, 1} ,

which, for a general polynomial f , translate into

f −→ (f − f s) 1

x1 − x2

:= f ∂1 ,

and is called Newton divided difference.
Similarly

{1, x2} → {1, 0} induces f → (x1f − x2f
s)

1

x1 − x2

:= f π1 ,

{1, x1} → {0, x2} induces f → (f − f s) x2

x1 − x2

:= f π̂1 ,

{1, x2} → {t, x1} induces f → fπ1(t− 1) + f s := f T1 ,

{1, x1} → {1, tx2} induces f → fπ̂1(t− 1) + f s := f T̂1 ,

which are, respectively, two kinds of isobaric divided differences, and two choices
of a generator of the Hecke algebra H2 of the symmetric group S2.

Of course, for every pair of consecutive variables xi, xi+1, one defines similar
operators ∂i, πi, π̂i, Ti, T̂i. The following table summarizes their action on the basis
{1, xi+1} of Pol(xi, xi+1) as a free Sym(xi, xi+1)-module :

operator si ∂i πi π̂i Ti T̂i
equivalent form (1−si)

1
xi−xi+1

xi∂i ∂ixi+1 πi(t−1) + si π̂i(t−1) + si

1
xi+1

1
xi

0
−1

1
0

0
−xi+1

t
xi

1
xi+xi+1−txi+1

Equivalently, these different operators are represented, in the basis {1, xi+1}
of the free module Pol(xi, xi+1), by the matrices

si =

[
1 xi+xi+1

0 −1

]
, ∂i =

[
0 −1
0 0

]
, πi =

[
1 0
0 0

]
,

π̂i =

[
0 0
0 −1

]
, Ti =

[
t xi+xi+1

0 −1

]
, T̂i =

[
1 xi+xi+1

0 −t

]
.
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All these operators are of the type

Di = 1P (xi, xi+1) + siQ(xi, xi+1) , (1.3.1)

with P,Q rational functions, that is to say, they are linear combination of the iden-
tity operator and a simple transposition with rational coefficients. The operators
∂i, πi, π̂i, Ti, T̂i all satisfy the type A-braid relations

DiDi+1Di = Di+1DiDi+1 & DiDj = DjDi , |i− j| 6= 1 .

One discovers that these operators also satisfy a Hecke relation

sisi = 1, ∂i∂i = 0, πiπi = πi, π̂iπ̂i = −π̂i, (Ti−t)(Ti+1) = 0, (T̂i+t)(T̂i−1) = 0.

Let us check for example the relation ∂1∂2∂1 = ∂2∂1∂2. These two operators
commute with symmetric functions in x1, x2, x3, and decrease degree by 3. We
can take as a basis of Pol(xn) (as a free module over Sym(x3)) the 6 monomials
{xv : [0, 0, 0] ≤ v ≤ [2, 1, 0]}. The first five are sent to 0 by ∂1∂2∂1 and ∂2∂1∂2 for
degree reason, there remains only to check that x210∂1∂2∂1 = x210∂2∂1∂2 = 1 to
conclude that, indeed, ∂1∂2∂1 = ∂2∂1∂2.

As a consequence of the braid relations, there exists operators ∂σ, πσ, π̂σ, Tσ,
indexed by permutations σ, which are obtained by taking any reduced decompo-
sition of σ and the corresponding product of operators Di.

1.4 Commutation relations
Divided differences satisfy Leibnitz3 formulas4, as easily seen from the definition:

fg∂i = f (g∂i) + f∂i g
si = g (f∂i) + g∂i f

si . (1.4.1)

Iterating, one obtains the image of fg under any product of divided differences :

fg ∂i∂j . . . ∂h

=
∑

εi,...εh∈{0,1}

(
f∂εii ∂

εj
j · · · ∂

εh
h

)(
gsεii ∂

1−εi
i s

εj
j ∂

1−εj
j · · · sεhh ∂

1−εh
h

)
. (1.4.2)

It may be appropriate to use a tensor notation, the above formula being the
expansion of

f ⊗ g (∂i ⊗ si + 1⊗ ∂i)(∂j ⊗ sj + 1⊗ ∂j) . . . (∂h ⊗ sh + 1⊗ ∂h) .
3For fear of being called Leinisse, Leibnitz chosed the spelling “Leibnitz” in his letters to the

Académie des Sciences. We shall respect his choice.
4Notice that formulas are disymmetrical in f, g, one has two expressions for the image of a

product.
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In particular, when g = xi, relations (1.4.1) may be seen as commutation
relations :

xi∂i = ∂ixi+1 + 1 & xiπi = πixi+1 + xi & xiπ̂i = π̂ixi+1 + xi+1 , (1.4.3)

the relations xiTi = Tixi+1+(t−1)xi together with the trivial commutations xjTi =
Tixj, when |j − i| 6= 1, being taken as axioms of the affine Hecke algebra5.

Since π̂i = ∂ixi+1, one has also π̂ixi = ∂ixi+1xi = xi+1xi∂i = xi+1πi, and by
iteration, reading the objects by successive columns,

π̂n
π̂n−1
...
π̂i xi

=

xn+1 πn
πn−1
...
πi

,

π̂j · · · π̂n
... ...

π̂i+j−n · · · π̂i xi

=

xj+1 πj · · · πn
... ...

πi+j−n · · · πi

We shall need some more commutation rules. For example,

π1π2π3x1x2x3 = x2x3x4π1π2π3 + x1x2x3x4π1π2 + x1x2x4π1π3 + x1x3x4π2π3

and to iterate such relations, we prefer to represent them graphically as

1 2 3
x1 x2 x3

=
x2 x3 x4

1 2 3
+

x2 x3

x1 1 2 •

+
x2 x4

x1 1 • 3
+

x3 x4

x1 • 2 3

In general, given an antidominant v ∈ Nk, the v-diagram V is the array with
columns of length v1, . . . , vn filled by decreasing integers as follows :

V =

uk
u2 · · · ...... · · · ...

u1 ... · · · ...... ... · · · ...
1 2 · · · k

,

where u = v + [0, 1, . . . , k−1], and πV , π̂V , are the columnwise-reading of V , inter-
preting i as πi or π̂i respectively.

Iterating the preceding commutation rules, one obtains the following lemma.

5 For the double affine Hecke algebra for the type A, omnipresent in the work of Cherednik,
one needs also to define T0 or an affine operation.
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Lemma 1.4.1. Let v ∈ Nk be antidominant, V its associated diagram, n be an
integer such n > vk+k. Then

πV
1

x1 · · ·xk
=

1

xv1+1 · · ·xvk+k

π̂V .

Equivalently, multiplying by the factor x1 . . . xn which commutes with πi, π̂i for
i < n, one has

πV xk+1 . . . xn =

(
x1 . . . , xn

xv1+1 · · ·xvk+k

)
π̂V . (1.4.4)

A punched v-diagram U is what results after punching holes in a v-diagram, in
such a way that there are no two holes in the same row or same column, and such
that no two holes occupy the South-West and North-East corner of a rectangle

contained in the diagram. We forbid • • ,
•

•
,

•

•
.

Label the rows of a v-diagram by the first entry of each row, and the columns
by v1+1, . . . , vn+n. The weight of a punched v-diagram U , that we denote xU ,
is the product

∏
rows xi

∏
columns xj, keeping the indices of punched rows, and of

full columns. By πU we mean the reading of U columnwise, from left to right,
interpreting each i as πi and ignoring the holes.

Let us give an example of a punched diagram for v = [2, 2, 4, 4, 4].

x3 x4 x7 x8 x9

6 7 8

5 6 7

2 3 4 5 6

1 2 3 4 5

x6

x5

x2

x1

coordinates and filling

x3 x8

• 7 8

5 6 7

2 • 4 5 6

1 2 3 4 •

x6

x2

x1

weight of a punched diagram

The punched 133-diagrams with two holes, together with their weights, are

• 5

3 4
• 2 3
x1 x4 x6

4 5
• 4

• 2 3
x1 x3 x6

4 •
3 4

• 2 3
x1 x5 x4

4 5

3 •
• 2 3
x1 x5 x3

• 5

3 •
1 2 3
x2 x4 x3

• 5

3 4

1 2 •
x2 x4 x1

4 5
• 4

1 2 •
x2 x3 x1

.

We shall need more commutation relations.
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Lemma 1.4.2. For any positive integer n, one has

1

x1 · · ·xn+1

π1 · · · πn x1 · · ·xn =
1

x1

π1 · · · πn+
n∑
i=1

1

xi+1

π1 · · · πi−1πi+1 · · · πn , (1.4.5)

π1 · · · πn x2 · · ·xn π1 · · · πn−1 = x3 · · ·xn+1 π1 · · · πnπ1 · · · πn−1 . (1.4.6)

Given v ∈ Nn antidominant, V its associated diagram, then

πV x1 · · ·xn =
∑
U

xU πU , (1.4.7)

sum over all the punched v-diagrams.

Proof. The first two assertions are obtained by iterating the relation πixi = xi+1πi+
xi. Let us check the last one by recursion, adding a top row to the diagram V .

One therefore has to evaluate a product of the type πr · · · πmxU πU , where the
restriction of xU to {xr, . . . , xm+1} is a subword of xr · · ·xm which points out full
columns in U .

Let us first examine the case where xr 6∈ U . Taking specific values to simplify
the exposition, ignoring the left part figured by hearts, one has to evaluate

π15 π16 π17 π18 π19

· x16 x17 · x19

♥

♥ ♥

♥ ♥

♥ ♥

14 15 16 17 18

• 14 15 16 17

12 13 14 15 16

11 12 13 • 15

By commutation of the incomplete columns with the complete ones, one obtains

π15 π16 π17 π18 π19

· x16 x17 · x19

♥

♥ ♥

♥ ♥

♥ ♥

· 15 16 · 18

• 14 15 16 17 18

12 13 14 · 16 17

11 12 13 • 15 16

,

from which one extracts the left factor (π15π16π17 x16x17 π15π16)(π18π19 x19 π18),
which, thanks to (1.4.6), is equal to x17x18x20 (π15π16π15π17π16)(π18π19π18). We



§ 1.4 — Commutation relations 

therefore have transformed xU πU into xU+
πU

+ , where U+ is obtained from U by
adding a top row.

Let us consider now the case where xr ∈ xU . Still with the same example, one
has to evaluate

π15 π16 π17 π18 π19

x15 x16 x17 · x19

♥

♥ ♥

♥ ♥

♥ ♥

14 15 16 17 18

13 14 15 16 17

12 13 14 15 16

11 12 13 • 15

Thanks to (1.4.5), the factor π15π16π17 (x15x16x17) is equal to the sum

x16 x17 x18

π15 π16 π17
+

x17 x18

x15 • π16 π17
+

x16 x18

x15 π15 • π17
+

x16 x17

x15 π15 π16 •
.

Adding a top row to the diagram V has resulted in adding a top row to U , or
adding a row with only one hole, in all possible manners such that the new hole
is left of the already existing holes in the last block of columns. This finishes the
proof of the lemma. QED

For example, for v = [1, 2, 2], one has

3 4

1 2 3
x1x2x3 = x2x4x5

3 4

1 2 3

+ x1x4x5
3 4

• 2 3
+ x2x3x5

• 4

1 2 3
+ x1x2x5

3 4

1 • 3

+ x2x3x4
3 •

1 2 3
+ x1x2x4

3 4

1 2 •
+ x1x3x5

• 4
• 2 3

+ x1x3x4
3 •

• 2 3
+ x1x2x3

• 4

1 2 •
.

Comparing the relations π1x2 = x1π1−x2 and x1(−π̂1) = (−π̂1)x2−x2, one ob-
tains a symmetry between commuting any πσ with a polynomial f , and commuting
fω and π̂ωσ−1ω :

Lemma 1.4.3. Given n, σ ∈ Sn, and a polynomial f(xn), suppose known the
commutation

πσf(xn) =
∑

ζ
gζ(xn) πζ .

Then one has

f(xωn) π̂ωσ−1ω =
∑

ζ
(−1)`(σ)−`(ζ)π̂ωζ−1ω gζ(x

ω
n) . (1.4.8)
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Similarly,
π̂σf(xn) =

∑
ζ
gζ(xn) π̂ζ

implies
f(xωn) πωσ−1ω =

∑
ζ
(−1)`(σ)−`(ζ)πωζ−1ω gζ(x

ω
n) . (1.4.9)

For example, for n = 3, one has

π1π2x2 = x3π1π2 + x1π1 − x1 ,

x2π̂1π̂2 = π̂1π̂2x1 − π̂2x3 − x3

and

π̂1π̂2x
2
2 = x2

3π̂1π̂2 + x3(x1+x3)π̂1 + x3x2 ,

x2
2π1π2 = π1π2x

2
1 − π2(x1(x1 + x3)− x1x2 .

Punched diagrams can also be used to describe the commutation of a product
π̂V with a monomial. For an antidominant v ∈ Nk, n = vk+k, V associated to v, let
us take the monomial xk+1 . . . xn. Transposing diagrams along the main diagonal,
and introducing signs exchange the two cases. For example, for v = [2, 2], one has

2 3
1 2
x1 x2

=

x3 x4

2 3
1 2

+

x2 x4

• 3
1 2

+

x3 x2

2 •
1 2

+

x1 x4

2 3
• 2

+

x3 x1

2 3
1 •

+

x2 x1

• 3
1 •

,

that is,

π2π3π1π2x1x2 = x3x4π2π3π1π2 + x2x4π3π1π2 + x3x2π2π1π2

+ x1x4π2π3π2 + x3x1π2π3π1 + x1x2π3π1 ,

while

π̂2π̂3π̂1π̂2x3x4 = x2x1π̂2π̂3π̂1π̂2 − x3x1π̂3π̂1π̂2 − x4x1π̂2π̂1π̂2

− x2x3π̂2π̂3π̂2 − x2x4π̂2π̂3π̂1 + x3x4π̂3π̂1

can be displayed as

2 3
1 2

x4

x3
=
x2

x1

2 3
1 2

− x3

x1

• 3
1 2

− x4

x1

2 •
1 2

− x2

x3

2 3
• 2

− x2

x4

2 3
1 •

+
x3

x4

• 3
1 •

.

The operators of the type (1.3.1) and preserving polynomials are character-
ized in [125]. They are essentially deformations of divided differences, though
their explicit expression can look more frightening. For example, the operators
(depending on the parameters u1, . . . , u4, p, q, r)

f → f
((qu1 + pu3)xi + (qu2 + pu4))(u3xi+1 + u4)

u1u4 − u2u3

∂i + rf si := f Di

do satisfy the braid relations.
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1.5 Maximal operators for type A
The operators associated to the maximal permutation ω = [n, . . . , 1] play a
proeminent role. In fact, they all come from the projector onto the alternating
1-dimensional representation of Sn, already used by Cauchy and Jacobi :

f →
∑
σ∈Sn

(−1)`(σ) fσ .

Indeed, writing ∆ for the Vandermonde det(xj−1
i )ni,j=1 =

∏
1≤i<j≤n(xi−xj), with

ρ = [n−1, . . . , 0], and thus xρ = xn−1
1 xn−2

2 · · ·x0
n, one has the following proposition.

Proposition 1.5.1. Given x of cardinality n, the divided differences ∂ω, πω and
π̂ω verify :

∂ω =
∑
σ∈Sn

(−1)`(σ)σ
1

∆
, (1.5.1)

πω = xρ
∑
σ∈Sn

(−1)`(σ)σ
1

∆
, (1.5.2)

π̂ω =
∑
σ∈Sn

(−1)`(σ)σ
(xρ)ω

∆
. (1.5.3)

Proof. As in the case n = 2, we prefer to characterize operators by their action on
a basis. The monomials xu : u ≤ ρ are a basis of Pol(n) as a free Sym(n)-module.
They all are sent to 0 by ∂ω as well as by

∑
±σ∆−1 for degree reasons, except xρ

which is sent to 1 (this is the only computation to perform) by both operators.
This proof can be adapted for πω and π̂ω. QED

We have not mentioned Tω in the proposition, because this is not a sym-
metrizer, since, for n = 2 for example, x2T1 = x1. However, x2(T1 + 1) = x1 + x2

and 1(T1 + 1) = t+ 1. This indicates that one has to take the Yang-Baxter defor-
mation of Tω for v = [1, t, . . . , tn−1] if one wants a symmetrizer. Indeed one has,
as we shall see in more details in (1.9.9), the following symmetrizer in the Hecke
algebra (as shows the last expression):

(T1 + 1)

(
T2 +

t− 1

t2 − 1

)(
T3 +

t− 1

t3 − 1

)
· · · (T1 + 1)

(
T2 +

t− 1

t2 − 1

)
(T1 + 1)

=
∑
σ∈Sn

Tσ =
∏

1≤i<j≤n

(txi − xj) ∂ω .

We shall frequently use the action of ∂ω on a product f1(x1) · · · fn(xn) of func-
tions of a single variable. In that case, the sum

∑
σ∈Sn

(−1)`(σ)
(
f1(x1) · · · fn(xn)

)σ
is equal to the determinant

∣∣∣fi(xj)∣∣∣, and one may view

f1(x1) · · · fn(xn) ∂ω =
∣∣∣fi(xj)∣∣∣

i,j=1...n
∆−1 (1.5.4)
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as the discrete Wronskian of the functions f1, . . . , fn. .
Schur functions correspond to the case where f1, . . . , fn are powers of a variable,

factorial Schur functions arise when taking instead modified powers x(x−1) . . . (x−
k), while q-factorial Schur functions stem from q-powers (x−1)(x−q) . . . (x−qk).
More precisely, for any v ∈ Nn, the Schur function sv(xn) is equal to xv+ρ ∂ω, the
factorial Schur function of index v is equal to(

x1(x1−1) . . . (x1−v1−n+2)
)
. . .
(
xn(xn−1) . . . (xn−vn+1)

)
∂ω

and the q-factorial Schur function of index v is equal to(
(x1−1)(x1−q) . . . (x1−q

v1+n−1)
)
. . .
(

(xn−1)(xn−q) . . . (xn−q
vn)
)
∂ω .

For example, when n = 3 and v = [5, 2, 1], then the corresponding factorial Schur
function is equal to

(x1 − 1) . . . (x1 − q6)(x2 − 1)(x2 − q)(x2 − q2)(x3 − 1)∂321

=
1

∆

∣∣∣∣∣∣
(x1−1) . . . (x1−q

6) (x2−1) . . . (x2−q
6) (x3−1) . . . (x3−q

6)
(x1−1) . . . (x1−q

2) (x2−1) . . . (x2−q
2) (x3−1) . . . (x3−q

2)
x1−1 x2−1 x3−1

∣∣∣∣∣∣ .
We shall interpret it later as the specialization y1 = 1, y2 = q, y3 = q2, . . . of the
Graßmannian Schubert polynomial Y125(x,y).
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Divided differences can be defined for any pair xi, xj, and not only consecutive
variables :

∂i,j : f → (f − f τij)(xi − xj)−1 ,

τij being the transposition of xi, xj. We shall need these differences to factorize
∂ω.

Lemma 1.5.2. Let n = 2m, ω′ = [m, . . . , 1, 2m, . . . ,m+1], ω = [2m, . . . , 1]. Then

∂ω′ ∂1,m+1∂2,m+2 . . . ∂m,2m ∂ω′ = (−1)(
m
2 )m! ∂ω . (1.5.5)

Proof. The left-hand side commutes with multiplication by elements of Sym(xn),
and decreases degree by

(
m
2

)
. It is therefore sufficient to test its action on xρ to

characterize it. One has xρ∂ω′ = xm
m,0m , xρ∂ω′ ∂1,m+1 . . . ∂m,2m =

∑
xv, sum over

all v ∈ Nn such that vi + vm+i = m−1, i = 1, . . . ,m. Each such monomial has a
non-zero image under ∂ω′ if and only if v1, . . . , vm is a permutation of [m−1, . . . , 0].
There are m! such monomials, which each contribute to xm−1,...,0,0,...,m−1∂ω′ =

(−1)(
m
2 ) to the right-hand side. QED

For example, for n = 4, one has ∂2143∂13∂24∂2143 = −2∂4321. Many other
decompositions are possible, e.g.

∂12∂14∂34∂23∂13∂24 = ∂4321 = ∂14∂13∂24∂23∂24∂13 = ∂23∂13∂24∂14∂34∂12 .
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1.6 Littlewood’s formulas
One can combine the above operators with change of variables xi → ϕ(xi). The
maximal divided difference ∂ω becomes

∑
(±σ) ∆(ϕ(x))−1 = ∂ω∆(x)∆(ϕ(x))−1,

and it remains to find functions ϕ furnishing an interesting Vandermonde ∆(ϕ(x)).
Notice that if ϕ(xi) = g(xi)/f(xi), then∣∣∣f(xi)

n−1 f(xi)
n−2g(xi) · · · g(xi)

n−1
∣∣∣
i=1..n

=
∏
i

(f(xi)
n−1 ∆(ϕ(x)) .

Taking f(xi) = xi, g(xi) = 1 + xki , k ≥ 0, and remarking that (1 + xki )/xi − (1 +
xkj )/xj = (x−1

i − x−1
j )
(
1− xixjsk−2(xi+xj)

)
, one obtains that

∣∣∣xn−1
i xn−2

i (1+xki ) · · · (1+xki )
n−1
∣∣∣
i=1...n

∆(x)−1

= (1 + xk2)(1 + xk3)2 . . . (1 + xn)n−1 πω

=
∏

1≤i<j≤n

(
1− xixjsk−2(xi+xj)

)
, (1.6.1)

the first equality resulting from the definition of πω.
In the case k = 2, the preceding determinant can be transformed into∣∣∣xn−1

i xn−2
i (1+x2

i ) xn−2
i (1+x4

i ) · · · (1+x2n−2
i )

∣∣∣
i=1...n

.

Since the operator πω sends xv, v ∈ Nn onto the Schur function sv(x), the
preceding identity, still in the case k = 2, can be written as∏

1≤i<j≤n

(
1− xixj) = (1 + x2

2)(1 + x2
3)2 . . . (1 + x2

n)n−1) πω

= (1 + x2
2)(1 + x4

3) . . . (1 + x2n−2
n ) πω

=
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|s[0ε1,2ε2,...,(2n−2)εn](x) = 1 + s02(x) + s004(x) + s024(x) + . . .

= 1− s11(x) + s211(x)− s222(x) + . . .

= 1 +
∑
r,α

(−1)|α|s(α|α+1r)(x) , (1.6.2)

sum over all r, all α = [α1, . . . , αr], α1 > α2 > . . . αr ≥ 0, using the Frobenius
notation6 for partitions.

Similar identities, known to Littlewood [143], [146, p. 78], can be obtained as
easily, the reordering of the indices of the Schur functions being translated into

6
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properties of diagonal hooks.∏
i

(1− xi)
∏

1≤i<j≤n

(
1− xixj) = (1− x1)(1− x3

2) . . . (1− x2n−1
n ) πω

=
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|s[ε1,3ε2,...,(2n−1)εn](x)

= 1− s1(x)− s03(x) + s13(x)− s005(x) + s105(x) + s035(x)− s135(x) + . . .

= 1− s1(x) + s21(x)− s22(x)− s311(x) + s321(x)− s332(x) + s333(x) + . . .

= 1 +
∑
α

(−1)|α|s(α|α)(x) . (1.6.3)

∏
1≤i≤j≤n

(
1− xixj) = (1− x2

1)(1− x4
2) . . . (1− x2n

n ) πω

=
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|s[2ε1,4ε2,...,2nεn](x)

= 1− s2(x)− s04(x) + s24(x)− s006(x) + s206(x) + s046(x)− s246(x) + . . .

= 1− s2(x) + s31(x)− s33(x)− s411(x) + s431(x)− s442(x) + s444(x) + . . .

= 1 +
∑
r,β

(−1)|β|s(β+1r|β)(x) . (1.6.4)

n∏
i=1

(1− xi)
∏

1≤i≤j≤n

(
1− xixj)

= (1− x1)(1− x2
1)(1− x2

2)(1− x3
2) . . . (1− xnn)(1− xn+1

n ) πω

=
(
1− s1(x) + s11(x)− s111(x) + . . .

) ∑
εi∈{0,1}

(−1)|ε|s[2ε1,4ε2,...,2nεn](x) . (1.6.5)

One can generalize these formulas by adding letters to the alphabet x. For
example, using x ∪ {1} in (1.6.2), one obtains∣∣∣∣∣∣∣∣∣
xn1 xn−1

1 + xn+1
1 . . . 1 + x2n

1
... ... ...
xnn xn−1

n + xn+1
n . . . 1 + x2n

n

1 1 . . . 1

∣∣∣∣∣∣∣∣∣
1

∆(x)
=

n∏
i=1

(1− xi)2
∏

1≤i<j≤n

(
xixj − 1) , (1.6.6)

the factor
∏

(1−xi)
2 being due to s11(x + 1) = s11(x) + s1(x) and ∆(x+1) =

∆(x)
∏

(1−xi). More variations of this type can be found in [105].
All the preceding formulas can be interpreted, in terms of λ-rings, as describing

the plethysms Λi(S2) or Λi(Λ2), and have counterparts describing Si(S2) or Si(Λ2).
Let us show that the symmetrizer πω still allow to describe the generating function
of this last plethysms.
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Proposition 1.6.1. For a given n, one has∏
i≤j

(1− xixj)−1 =
1

(1−x2
1)(1−x2

1x
2
2) . . . (1−x2

1 . . . x
2
n)
πω (1.6.7)

=
∑

even rows

sλ(x)

∏
i<j

(1− xixj)−1 =
1

(1−x1x2)(1−x1 . . . x4)(1−x1 . . . x6) . . .
πω(1.6.8)

=
∑

even columns

sλ(x)

∏
(1−xi)

−1
∏
i<j

(1− xixj)−1 =
1

(1−x1)(1−x1x2) . . . (1−x1 . . . xn)
πω (1.6.9)

=
∑

sλ(x)∏
(1−xi)

−2
∏
i<j

(1− xixj)−1 =
1

(1−x1)2(1−x1x2)2 . . . (1−x1 . . . xn)2
πω(1.6.10)

=
∑

(λ1−λ2+1)(λ2−λ3+1) . . .(λn+1)sλ(x).(1.6.11)

Proof. One can use induction on n, factorizing πω = πω′πω, with ω′ = [n−1, . . . , 1].
Thus one is left with computing the image under πω of the quotient of the two
successive denominators appearing in the left-hand sides. For the first formula, it
means computing

(1− x1xn) . . . (1− x1xn−1)(1− x2
n)(1− x1 . . . xn)−1πω

= (1− xne1 + · · ·+ (−xn)nen))(1− x1 . . . xn)−1πω ,

e1, . . . , en being the elementary symmetric functions in xn, and therefore com-
muting with πω. Since xn, . . . , xn−1

n are sent to 0, and (−xn)nπω = −x1 . . . xn, the
above expression is equal to 1, thus proving (1.6.7). The other formulas require no
more pain. Moreover, the rational functions in the right-hand sides expanding as
sums of dominant monomials, the expressions in terms of Schur functions follow
immediately. QED

One should try expressions more general than products of factors (1 ± u)±1,
with u monomial. I shall give a single example.

Lemma 1.6.2. Given n, then

1

(1−x1−x2)(1−x22)(1−x111−x222)(1−x2222) . . .
πω

=
∏
i

1

1− xi − x2
i

∏
i<j

1

1− xixj
. (1.6.12)
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Proof. Let Gn be the right-hand side. Using induction on n, one has to compute
Gn−1/Gnπω. This depends on parity, and taking n = 4, 5 will be generic enough
to follow the proof.

G3/G4π4321 = (1−x1x4)(1−x2x4)(1−x3x4)(1− x4 − x2
4) π4321

=
4∏
i=1

(1− xix4)π4321 − x4(1−x1x4)(1−x2x4)(1−x3x4)π4321 .

One has already seen that
∏

(1 − xix4)π4321 = 1 − x2222, and one checks that
all the monomials appearing in x4(. . . ) are sent to 0 under π4321. In the case of
G4/G5π54321 on the contrary, the monomial −x11003 is such that −x11003π54321 =
−x11111, and thus, G4/G5π54321 = 1 − x22222 − x11111. In both cases, the resulting
factor is what is required by the left-hand side of (1.6.12) to ensure equality. QED

The left-hand side of (1.6.12) expands as a positive sum of Schur functions,
which multiplicities that are easily written in terms of the multiplicities of parts
in the conjugate partitions.
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1.7 Yang-Baxter relations

With a little more work, one can construct operators offering still more parameters.
The uniform shift Di → Di + 1, i = 1, . . . , n−1, destroys in general the braid

relations7. For example,

(1 + s1)(1 + s2)(1 + s1) = 2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s1

6= (1 + s2)(1 + s1)(1 + s2) .

However

(1 + s1)(
1

2
+ s2)(1 + s1) = (1 + s2)(

1

2
+ s1)(1 + s2) ,

because both sides expand (in the group algebra of S3) into the sum of all per-
mutations.

Therefore, one abandons uniform shifts, but how to find compatible shifts like
1, 1/2, 1 ?

The solution is due to Young [195], and called Yang-Baxter equation [194, 5]
because Young-Yang-Baxter would be confusing.

One chooses an arbitrary vector of parameters v = [v1, . . . , vn] (called spec-
tral vector), and each time one operates with Di, i = 1, . . . , n−1, one modifies
accordingly the spectral vector by v → vsi.

Now, the shift to use depends only on the difference of the spectral values
exchanged, with similar rules for the different varieties of operators Di.

More precisely, given i, let a = vi, b = vi+1 the corresponding components of
the spectral vector. Then, instead of si, ∂i, πi, π̂i, Ti respectively, one takes

si +
1

b− a
, ∂i +

1

b− a
, πi +

1

b/a− 1
, π̂i +

1

b/a− 1
, Ti +

t− 1

b/a− 1

(the careful reader adds “provided b 6= a”).
For n = 3, the Yang-Baxter relations for si, ∂i, πi and Ti, and a spectral vector

v are, writing v2−v1 = a, v3−v2 = b, v2/v1 = α, v3/v2 = β,

7it only works for π̂i → π̂i + 1 = πi.
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123

213 132

231 312

321

s1 + 1
a

s2 + 1
b

s2+ 1
a+b

s1+ 1
a+b

s1 + 1
b

s2 + 1
a

123

213 132

231 312

321

∂1 + 1
a

∂2 + 1
b

∂2+ 1
a+b

∂1+ 1
a+b

∂1 + 1
b

∂2 + 1
a

123

213 132

231 312

321

π1 + 1
α−1

π2 + 1
β−1

π2+ 1
αβ−1

π1+ 1
αβ−1

π1 + 1
β−1 π2 + 1

α−1

123

213 132

231 312

321

T1 + t−1
α−1

T2 + t−1
β−1

T2+ t−1
αβ−1

T1+ t1−1
αβ−1

T1 + t−1
β−1 T2 + t−1

α−1

The fact that each hexagon closes means that the two paths from top to bottom
give equal elements when evaluated as products of the labels on the edges.

Thanks to the Yang-Baxter relations, to each spectral vector v, is associated
a family of operators Dv

σ : σ ∈ Sn, obtained by taking products corresponding to
reduced decompositions.
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For example, for S3, and v = [y1, y2, y3], one has the operators

∂v123 = 1 , ∂v213 = ∂1 +
1

y2 − y1

, ∂v132 = ∂2 +
1

y3 − y2

,

∂v231 = ∂1∂2 + ∂2
1

y2 − y1

+ ∂1
1

y3 − y1

+
1

(y2 − y1)(y3 − y1)
,

∂v312 = ∂2∂1 + ∂1
1

y3 − y2

+ ∂2
1

y3 − y1

+
1

(y3 − y2)(y3 − y1)
,

∂v321 = ∂1∂2∂1 + ∂1∂2
1

y3 − y2

+ ∂2∂1
1

y2 − y1

+ ∂1
1

(y2 − y1)(y3 − y1)

+ ∂2
1

(y3 − y2)(y3 − y1)
+

1

(y2 − y1)(y3 − y1)(y3 − y2)
.

One recognizes that the product (1 + s1)(2−1 + s2)(1 + s1) corresponds to the
choice Di = si, σ = [3, 2, 1], v = [1, 2, 3]. The reader will guess, and prove, that
for any n, the choice Di = si, σ = ω :== [n, . . . , 1], v = [1, 2, . . . , n] gives

(1 + s1)

(
(
1

2
+ s2)(1 + s1)

)
· · ·
(

(
1

n− 1
+ sn−1) · · · (1

2
+ s2)(1 + s1)

)
=
∑
σ∈Sn

σ .

One can also twist the action of the symmetric group, and useDi = ∂i+si. The
operators Di still satisfy the braid relations, together with the relations D2

i = 1.
Therefore, the operators D1, . . . , Dn−1 provide a twisted action of the symmetric
group on Pol(xn). Since the Yang-Baxter shifts are the same for ∂i and si, they can
also be used for ∂i+si. In particular, one can take the spectral vector [1, 2, . . . , n].

123

213 132

231 312

321

∂1 + s1+1 ∂2 + s2+1

∂2 + s2+ 1
2

∂1 + s1+ 1
2

∂1 + s1+1 ∂2 + s2+1

Let us show that the maximal Yang-Baxter element for this choice of spectral
vector is still a symmetrizer. In the case n = 2, one has indeed

∂1 + s1 + 1 = (1 + x1 − x2) ∂1 .
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Lemma 1.7.1. Given n, let

�ω =

(
(D1+1) . . . (Dn−1 +

1

n− 1
)

)(
(D1+1) . . . (Dn−2 +

1

n− 2
)

)
. . .
(
D1

)
.

Then
�ω =

∏
1≤i<j≤n

(1 + xi − xj) ∂ω . (1.7.1)

Proof. Both sides of (1.7.1) commute with multiplication with symmetric func-
tions, it is therefore sufficient to test their action on a basis of Pol(xn) as a free
Sym(xn) module. But instead of the basis of monomials {xv : v ≤ ρ} used above,
we shall use a basis of homogeneous polynomials {Yv : v ≤ ρ} in their linear
span, such that each Yv has a least one symmetry8 in some xi, xi+1, except for
Yn−1,...,0 = xρ. But using symmetric rational functions in xn instead of elements of
Sym(xn), we can take the polynomials Yv

∏
1≤i<j≤n(1+xj−xi) as a test cohort. All

these elements, except in the case v = ρ, are sent to 0 by
∏

1≤i<j≤n(1 +xi−xj) ∂ω
because the factor

∏
i 6=j(1 + xi − xj), being symmetrical, commutes with ∂ω, and

because Yv∂ω = 0 for degree reasons.
On the other hand, if Yv has the symmetry xi, xi+1, then, by commutation,

Yv
∏

1≤i<j≤n

(1+xj−xi)(∂i + si + 1) = Yv

( ∏
1≤i<j≤n

(1+xj−xi)

)
(1+xi−xi+1) ∂i

= Yv∂i

( ∏
1≤i<j≤n

(1+xj−xi)

)
(1+xi−xi+1) = 0 .

Since, thanks to Yang-Baxter equation, one can factorize on the left of �ω any
Di + 1, the image of Yv

∏
(1 + xj − xi) under �ω is 0 when v 6= ρ. Thus, both

sides of (1.7.1) coincide up to multiplication by a rational symmetric function. To
determine this constant, it is sufficient to see that

1(∂1+s1+1)(∂1+s1+2−1) · · · = n! =
∏

1≤i<j≤n

(1+xi−xj) ∂ω ,

and this ensures the required equality. QED
The Yang-Baxter rules do not exhaust the realm of interesting factorized ex-

pressions. Let us take9

((1− y1∂1)(1− y1∂2) · · · (1− y1∂n−1))

((1− y2∂1)(1− y2∂2) · · · (1− y2∂n−2)) · · · ((1− yn−1∂1))

8tTo show that such a basis exists is easy by induction on n, we shall see later that the
Schubert polynomials Yv(x,0) satisfy such properties.

9This product of divided differences is the generating function of Schubert polynomials in the
pair of alphabets y,0, in the algebra of divided differences, also called the Nil-Coxeter algebra
[39] see (8.3.2).
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and show that this element can be used to transform the staircase monomial xρ,
with ρ = [n−1, . . . , 0], into a product of factors of the type xi − yj.

Let us make the step-by-step computation for n = 4, displaying the factors of
the polynomials planarly.

x3

x2 x2

x1 x1 x1

1−y1∂1−−−→

x3

x2 x2

x1 x1 x1−y1

1−y1∂2−−−→

x3

x2 x2−y1

x1 x1 x1−y1

1−y1∂3−−−→

x3−y1

x2 x2−y1

x1 x1 x1−y1

· · · 1−y3∂1−−−→

x3−y1

x2−y2 x2−y1

x1−y3 x1−y2 x1−y1

.

Each step is of the type f xi(1 − y∂i) = f (xi − y), with f symmetrical in
xi, xi+1. In final, we have obtained the function

∏
i+j≤4(xi − yj) by using only

that 1∂i = 0, xi∂i = 1. This function, together with the “staircase monomial”
x3210, will play a key role in all the sequel. This identity can be written more
compactly, still reading the planar arrays by columns (reading by rows still works
in the present case), as

x3

x2 x2

x1 x1 x1

1−y1∂1 1−y1∂2 1−y1∂3

1−y2∂1 1−y2∂2

1−y3∂1

=

x3−y1

x2−y2 x2−y1

x1−y3 x1−y2 x1−y1

. (1.7.2)

1.8 Yang-Baxter bases and the Hecke algebra
The Yang-Baxter relations constitute a powerful tool to define linear bases with
an explicit action of the Hecke algebra (or of the different algebras obtained by
specialization, the first interesting one being the group algebra of the Weyl group).

In this section we shall change the conventions for the Hecke algebra, compared
to the preceding section, to bring into prominence some symmetries.

The Hecke algebra Hn of the symmetric group Sn is the algebra generated by
T1, . . . , Tn−1 satisfying the braid relations together with the Hecke relations

(Ti − t1)(Ti − t2) = 0 , i = 1, . . . , n−1 ,

for some fixed generic parameters t1, t2. For Macdonald polynomials, one takes
t1 = t, t2 = −1. The 0-Hecke algebra is the specialisation t1 = 0, t2 = −1 of
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the Hecke algebra (that one can realize as the algebra generated by π̂1, . . . , π̂n−1).
The 00-Hecke algebra, also called NilCoxeter algebra, is the specialisation t1 = 0,
t2 = 0. It can be realized as the algebra generated by ∂1, . . . , ∂n−1. .

From the point of view of operators, the Hecke algebra is the algebra gen-
erated by operators Ti such that each Ti acts on xi, xi+1 only, commutes with
Sym(xi, xi+1), and acts on {1, xi+1} by

1Ti = t1 & xi+1 Ti = −t2xi .

One has therefore Ti = πi(t1 + t2)− sit2.
The general Yang-Baxter equation10 depends on two generic parameters α, β :(
T1 +

t1+t2
α−1

)(
T2 +

t1+t2
αβ−1

)(
T1 +

t1+t2
β−1

)
=

(
T2 +

t1+t2
β−1

)(
T1 +

t1+t2
αβ−1

)(
T2 +

t1+t2
α−1

)
. (1.8.1)

Graphically, it reads

123

213 132

231 312

321

T1 + t1+t2
α−1

T2 + t1+t2
β−1

T2+ t1+t2
αβ−1

T1+ t1+t2
αβ−1

T1 + t1+t2
β T2 + t1+t2

α

Given n, one takes an arbitrary spectral vector [γ1, . . . , γn] of indeterminates.
The Yang-Baxter basis {fγ

σ : σ ∈ Sn} corresponding to [γ1, . . . , γn] is defined
recursively, as follows, starting from fγ

σ = 1 for the identity permutation:

fγ
σsi

= fγ
σ

(
Ti +

t1 + t2
γσi+1

/γσi − 1

)
for σi < σi+1 . (1.8.2)

The consistency of the definition is insured by the Yang-Baxter equation (1.8.1).
Notice that arrows are reversible in the generic case. Indeed, for any i, any

10The Yang-Baxter relations for the group algebra of Sn, for the algebra of divided differences,
and for the algebra of isobaric divided differences are the limits t1 = 1, t2 = −1, t1 = 0, t2 = 0,
t1 = 1, t2 = 0 of (1.8.1 respectively.
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γ 6= 0, 1, one has(
Ti+

t1+t2
γ−1

)(
Ti+

t1+t2
γ−1−1

)
=

(
t1+

t1+t2
γ−1

)(
t1+

t1+t2
γ−1−1

)
= −

(t1γ+t2)(t1+t2γ)

(γ − 1)2
.

It is clear that the set {fγ
σ : σ ∈ Sn} constitute a linear basis of Hn, be-

cause fσ = Tσ +
∑

v:`(v)<`(σ) c
v
σTv. Since this basis is generated using the Ti’s,

it is immediate to write the matrices representing the Hecke algebra in this ba-
sis. The matrices representing each Ti are made of 2 × 2 blocks corresponding
to the spaces 〈fγ

σ,fγ
σsi
〉. They generalize the semi-normal representation of the

symmetric group due to Young11.
Indeed, for S2, and the spectral vector [1, γ], the Yang-Baxter basis is {1, T1 +

(t1+t2)(γ−1)−1}, and the matrix representing T1 is given on the left, while Young’s
matrix (which is the limit for γ = (−t1/t2)g, (−t1/t2) → 1) is given on the right
[163] :[

−(t1+t2)(γ−1)−1 −(t1γ+t2)(t1+γt2)(γ−1)−2

1 (t1+t2)(γ−1−1)−1

]
,

[
−g−1 1− g−2

1 g−1

]
(1.8.3)

One could write the similar matrices for the other types B,C,D, once the
Yang-Baxter relations have been written for these types.

Irreducible representations can be obtained by either degeneration of the spec-
tral vector, or by making the Hecke algebra act on polynomials. For example, in
the case of the symmetric group, a Specht representation is obtained by acting
on a product of Vandermondes on consecutive variables. Similarly, acting on a
product of t-t Vandermondes

∏
a≤i<j≤b(xi−txj) on blocks of consecutive variables

produces an irreducible representation of the Hecke algebra.
Yang-Baxter bases possess many symmetries. Let f → ω ? f ? ω be the auto-

morphism of Hn induced by Tσ → ω ? Tσ ? ω = Tωσω. Then one has
Lemma 1.8.1. The Yang-Baxter bases associated to the spectral vectors [y1, . . . , yn]
and [y−1

n , . . . , y−1
1 ] satisfy the relations

fy−1
n ,...,y−1

1
σ = ω ? fy1,...,yn

ωσω ? ω , σ ∈ Sn . (1.8.4)

Proof. In the case n = 2, this is the identity

T1 +
t1 + t2

y−1
1 /y−1

2 − 1
= ω ?

(
T1 +

t1 + t2
y2/y1 − 1

)
? ω = T1 +

t1 + t2
y2/y1 − 1

.

For a general σ and i such that `(σsi) ≥ `(σ), putting γ = y−1
n−i/y

−1
n+1−i, one has

fy−1
n ,...,y−1

1
σ

(
Ti +

t1 + t2
γ − 1

)
= (ω ? fy1,...,yn

ωσω ? ω)

(
ω ?

(
Ti +

t1 + t2
γ − 1

)
? ω

)
= ω ?

(
fy1,...,yn
ωσω

(
Ti +

t1 + t2
yn+1−i/yn−i − 1

))
? ω ,

11We have taken generic parameters. To build general representations, one also needs blocks
of size 1!.



§ 1.8 — Yang-Baxter bases and the Hecke algebra 

and this proves the statement by induction on length. QED
We also need another involution f → f̂ induced by

Ti → T̂i = Ti − (t1+t2) , t1 → −t2 , t2 → −t1 .

Notice that T̂1, . . . , T̂n−1 satisfy the braid relations, together with the Hecke rela-
tions (

T̂i + t2

)(
T̂i + t1

)
= 0 ,

and that TiT̂i = −t1t2.
Let now f → f∨ be the anti-automorphism induced by (Tσ)∨ = Tσ−1 . Define

a quadratic form ( , )H on Hn by

(f , g)H = f g∨ ∩ Tω , (1.8.5)

i.e. by taking the coefficient of Tω in the product f g∨.
The basis {T̂σ} is clearly the adjoint of {Tωσ}, i.e. one has(

Tωσ , T̂ζ

)H
= δσ,ζ , σ, ζ ∈ Sn .

Testing the statements on the pairs Tσ, T̂ζ , one checks :

(Ti f , g)H = (f , Tn−ig)H & (fTi , g)H = (f , gTi)
H . (1.8.6)

The quadratic form can be restricted to two-dimensional spaces, for which one
has the following property of a Yang-Baxter basis.

Lemma 1.8.2. Let f, g ∈ Hn, i, γ be such that(
f , g

)H
= 0 &

(
f(Ti +

t1 + t2
γ − 1

) , g

)H
= 1 .

Then(
f , g(Ti +

t1 + t2
γ−1 − 1

)

)H
= 1 &

(
f(Ti +

t1 + t2
γ − 1

) , g(Ti +
t1 + t2
γ−1 − 1

)

)H
= 0 .

Proof.One transfers the factor (Ti+•) to the left, and uses that (Ti+(t1+t2)(γ−1)−1)(Ti+
(t1+t2)(γ−1−1)−1) be a scalar. QED

In other words, the two Yang-Baxter bases associated with the spectral vectors
[1, γ] and [1, γ−1] are adjoint of each other with respect to ( , )H.

Combining the Yang-Baxter relations and the preceding lemma, one can eval-
uate scalar products of factorized elements. For example(

(T1 +
t1+t2
α−1

)(T2 +
t1+t2
αβ−1

)(T1 +
t1+t2
β−1

) , (T1 +
t1+t2
1
α
−1

)(T2 +
t1+t2
1
αβ
−1

)

)H

=

(
(T1 +

t1+t2
α−1

)(T2 +
t1+t2
αβ−1

)(T1 +
t1+t2
β−1

)(T2 +
t1+t2
1
αβ
−1

)(T1 +
t1+t2
1
α
−1

)

)
∩ T321
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can be computed by reducing the length of the expression, replacing some factors
Ti + (t1+t2)(γ−1−1)−1) by a sum of two terms (Ti+c1) + c2 to fit the parameters
in the Yang-Baxter relations. But it is simpler to move the RHS of the scalar
product to the left, obtaining(

(T2 +
t1+t2
1
αβ
−1

)(T1 +
t1+t2
1
α
−1

)(T1 +
t1+t2
α−1

)(T2 +
t1+t2
αβ−1

)(T1 +
t1+t2
β−1

) , 1

)H

which reduces to a scalar multiple of (T1 + (t1+t2)(β−1)−1, , 1)
H

= 0.
This example is some instance of a general orthogonality of Yang-Baxter bases.

Let us write Ti(a, b) = Ti + (t1+t2)(yby
−1
a − 1)−1, yω = [yn . . . , y1], and first settle

the case of the maximal Yang-Baxter element.

Lemma 1.8.3. The element fy
ω satisfies the n! equations(
fy
ω , fyω

σ

)H
= δ1,σ . (1.8.7)

Proof. One takes a reduced decomposition si1si2 . . . sir of σ. Then there exists
integers such that

fyω
σ = Ti1(a1, b1)Ti2(a2, b2) . . . Tir(ar, br) .

One can factor ω = σ−1(σω), and correspondingly write the maximal element as

fy
ω = Tn−i1(b1, a1)Tn−i2(b2, a2) . . . Tn−ir(br, ar) • • • .

Tanks to (1.8.6) ,

(
fy
ω , Ti1(a1, b1) . . . Tir(ar, br)

)H
=
(
Tn−ir(ar, br) . . . Tn−i1(a1, b1)Tn−i1(b1, a1) . . . Tn−ir(br, ar) • •• , 1

)H
is a scalar multiple of

(
• • • , 1

)H
, and therefore null if σ is not the identity

permutation. QED
The following duality property of Yang-Baxter bases is given in [114, Th.5.1].

Theorem 1.8.4. The Yang-Baxter bases associated to the spectral vectors [y1, . . . , yn]
and [yn, . . . , y1] satisfy the relations(

fy
σ , fyω

ζ

)H
= δσ,ωζ , (1.8.8)

that is, they are adjoint of each other.
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Proof. When σ = ω, this is property (1.8.7). One proves the general statement by
decreasing induction on `(σ), using Lemma 1.8.2. QED

Given any product(
Ti + α(t1+t2)

)
. . .
(
Tk + γ(t1+t2)

)
=
∑
ζ

cζTζ ,

then the product (
T̂i − α(t1+t2)

)
. . .
(
T̂k − γ(t1+t2)

)
is equal to

∑
ζ ĉζ T̂ζ . This remark allows to rewrite the orthogonality relation

(1.9.5). Define the coefficients cησ by fy
σ =

∑
cησ(y)Tη, and recall that the involu-

tion c→ ĉ acts by t1 → −t2, t2 → −t1.

Corollary 1.8.5. Let σ, ζ ∈ Sn. Then∑
η∈Sn

ĉησ(y−1
n , . . . , y−1

1 ) cωηζ (y) = δωσ,ζ (1.8.9)∑
η∈Sn

ĉησ(y) cηωζ (y) = δσ,ζω (1.8.10)

Proof. One uses that
fyω
ζ =

∑
η

ĉηζ(y
−1
n , . . . , y−1

1 ) T̂η ,

and that the symmetry (1.8.4) translates into cησ(y−1
n , . . . , y−1

1 ) = cωηωωσω(y1, . . . , yn).
QED

Each of the relations (1.8.9) or (1.8.10) can be used to describe the inverse of
the matrix of Yang-Baxter coefficients

[
cησ
]
.
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1.9 t1t2-Yang-Baxter bases

For k > 1, write

[k] = tk−1
1 − t2tk−2

1 + · · ·+ (−t2)k−1 , [−k] = tk−1
2 − t1tk−2

2 + · · ·+ (−t1)k−1 ,

with the convention that [0] = 0, [1] = 1 = [−1]. Define, for all k ∈ Z, k 6= 0,

Ti(k) = Ti +
t1 + t2

(−t1/t2)k − 1
=

{
Ti − tk2 [−k]−1 , k > 0

Ti − t−k1 [k]−1 , k < 0
, (1.9.1)

adding Ti(0) = Ti.
Thus

Ti(1) = Ti−t2, Ti(2) = Ti −
t22

t2 − t1
, Ti(3) = Ti −

t32
t22 − t1t2 + t21

, . . . ,

Ti(−1) = Ti−t1, Ti(−2) = Ti −
t21

t1 − t2
, Ti(−3) = Ti −

t31
t21 − t1t2 + t22

, . . .

We denote di = Ti(1) and ∇i = Ti(−1) the two factors of the Hecke relation for
Ti. Acting on {1, xi}, one checks that

∇i = ∂i(t2xi + t1xi+1) & di = (t1xi + t2xi+1)∂i . (1.9.2)

Notice that for k > 0 one has

Ti(k)Ti(−k) = −t1t2
[k−1] [k+1]

[k]2
, (1.9.3)

so that, for k 6= ±1, Ti(k) and Ti(−k) are inverse of each other up to a scalar.
More generally, the Yang-Baxter equation (1.8.1) implies that, for any i > 0, any
k, r ∈ Z such that k, r, k+r 6= 0, one has

Ti(k)Ti+1(k+r)Ti(r) = Ti+1(r)Ti(k+r)Ti+1(k) (1.9.4)

Taking the spectral vectors [tn−1
1 , −tn−2

1 t2, . . . , (−t2)n−1], and [tn−1
2 , −t1t

n−2
2 , . . . , (−t1)n−1],

one obtains a pair of adjoint Yang-Baxter bases which are exchanged by the in-
volution exchanging t1, t2. We shall denote these two bases {∇σ : σ ∈ Sn} and
{dσ : σ ∈ Sn} respectively. Here is the basis associated to the spectral vector
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[t22, −t1t2, t
2
1]

d123 = 1

gggggggggggggggg

WWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWW

d213 = T1 − t2 d132 = T2 − t2

d231 = T1T2−t2T2

− t22
t2−t1T1 +

t32
t2−t1

RRRRRRRRR

d312 = T2T1−t2T1

− t22
t2−t1T2 +

t32
t2−t1

lllllllll
lllllllll

d321 =
T1T2T1−t2T2T1−t2T1T2

+t22T1 + t22T2 − t32

and the basis associated to the spectral vector [t21, −t1t2, t
2
2]

∇123 = 1

gggggggggggggggg

WWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWW

∇213 = T1 − t1 ∇132 = T2 − t1

∇231 = T1T2−t1T2

− t21
t1−t2T1 +

t31
t1−t2

SSSSSSSSS

∇312 = T2T1−t1T1

− t21
t1−t2T2 +

t31
t1−t2

kkkkkkkkk
kkkkkkkkk

∇321 =
T1T2T1−t1T2T1−t1T1T2

+t21T1 + t21T2 − t31

One notices that∇213,∇132,∇321, as well as d213,d132,d321 are quasi-idempotents.
This is due to the choice of the spectral vectors.

As a special case of (1.9.5), one has

Corollary 1.9.1. The bases {dσ : σ ∈ Sn} and {∇σ : σ ∈ Sn} are adjoint of
each other. Precisely, one has (

dσ , ∇ζ

)H
= δσ,ωζ . (1.9.5)

The preceding corollary furnishes in particular the transition between {dσ}
and {∇σ} :

dσ =
∑
ζ≤σ

(
dσ,dωζ

)H∇ζ .

The inverse of the transition matrix is obtained by conjugation with the diagonal
matrix [(−1)`(σ), σ ∈ Sn]. Non-zero entries correspond to pairs ζ, σ such that
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ζ ≤ σ with respect to the Ehresmann-Bruhat order. Thus this matrix may be
considered as “weighing” the order. We shall see later another weight given by
the Kazhdan-Lusztig polynomials.

The case where σ is a Coxeter element is specially interesting since then the
interval [1, σ] is boolean. Let us just describe the expansion of dσ when σ =
[2, . . . , n, 1].

Define a function ϕ on permutations as follows, starting from ϕ([1]) = 1. For
σ ∈ Sn, if σn 6= n, then ϕ(σ) = ϕ(σ \ n)), else

ϕ(σ) = ϕ(σ \ n)
[1] [2n−σn−1−1]

[n−1] [n−σn−1]
.

For example, ϕ([1, 3, 4, 2, 5]) = ϕ([1, 3, 4, 2]) [1][10−2−1]
[4][5−2]

= ϕ([1, 3, 2]) [1][7]
[4][3]

= ϕ([1, 2]) [1][7]
[4][3]

=
[2]
[1]

[1][7]
[4][3]

.

Proposition 1.9.2. For any integer n one has

d2...n1 =
∑

ζ≤[2...n1]

ϕ(ζ)∇ζ .

Proof. Supposing known the expansion d[2,...,n−1,1,n] =
∑
cν∇ν , one obtains

d[2,...,n,1] = d[2,...,n−1,1,n] Tn−1(n−1) =
∑

cν∇ν

(
Tn−1(νn−1−n) +

[1][2n−1−νn−1]

[n−1][n−νn−1]

)
=

∑
cν

(
∇νsn−1 +

[1][2n−1−νn−1]

[n−1][n−νn−1]
∇ν

)
,

which is the required property. QED
For example,

d231 = ∇231 +
[2]

[1]
∇132 +

[1][4]

[2]2
∇213 +

[3]

[1]
∇123 ,

d2341 =

(
∇2341 +

[2]

[1]
∇1342 +

[1][4]

[2]2
∇2143 +

[3]

[1]
∇1243

)
+

(
[1][6]

[3]2
∇2314 +

[1][4]2

[3][2]2
∇2134 +

[5]

[3]
∇1324 +

[4]

[1]
∇1234

)
.

The maximal elements dω, ∇ω can be expressed in terms of the maximal
divided difference ∂ω, according to [33] :
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Theorem 1.9.3. Given n, let ω = [n, . . . , 1], ω′ = [n−1, . . . , 1]. Then the maximal
elements dω and ∇ω have the following expressions

dω = dω′ Tn−1(n−1) . . . T2(2)T1(1) (1.9.6)
= dω′

(
1− t2Tn−1 + t22Tn−1Tn−2 − · · ·+ (−t2)n−1Tn−1 . . . T1

)
(1.9.7)

=
∑
w∈Sn

(−t2)`(wω)Tw (1.9.8)

=
∏

1≤i<j≤n

(t1xi + t2xj) ∂ω (1.9.9)

∇ω = ∇ω′ Tn−1(1−n) . . . T2(−2)T1(−1) (1.9.10)
= ∇ω′

(
1− t1Tn−1 + t21Tn−1Tn−2 − · · ·+ (−t1)n−1Tn−1 . . . T1

)
(1.9.11)

=
∑
w∈Sn

(−t1)`(wω)Tw (1.9.12)

= ∂ω
∏

1≤i<j≤n

(t2xi + t1xj) (1.9.13)

Proof. The first expression for dω and ∇ω result from the definition of a Yang-
Baxter element, choosing the factorization ω = ω′ sn−1 . . . s1.

By recursion on n, one sees the equivalence of (1.9.11), (1.9.12), products being
reduced.

All the operators occurring in the above formulas commute with multiplication
with symmetric functions in Sym(n), one can characterize them by their action
on the Schubert basis {Xσ(x,0), σ ∈ Sn} (see [108]).

Since ∇i, i = 1, . . . , n−1, can be factorized on the left from the RHS of
(1.9.12), (1.9.13), these two RHS annihilate all Schubert polynomials, except
Xω = xn−1

1 . . . x0
n. Therefore ∂ω is a left factor of them.

Every element of Hn can be written uniquely as a sum
∑

w∈Sn
∂wPw with

coefficients Pw which are polynomials in x1, . . . , xn. The RHS of (1.9.11) and
of ∇ω′(−t1)n−1 Tn−1(−1) 1

−t1 . . . T1(−1) 1
−t1 have same coefficient in ∂ω. This coeffi-

cient is obtained by mere commutation : f∇i = f∂i(t2xi + t1xi+1) ∼ ∂if
si(t2xi +

t1xi+1), the extra term (f∂i)(t2xi + t1xi+1) imposed by Leibniz formula cannot
contribute to a reduced decomposition of ∂ω. Therefore, formula (1.9.11) is true
if it is true for n−1. The same reasoning applies to the factorization ∇ω =
∇ω′ Tn−1(1−n) . . . T1(−1) which has the same coefficient in ∂ω than∇ω′∇n−1 . . .∇1.
By symmetry, the properties of ∇ω imply similar properties of dω. QED

Let λ ∈ N` be a composition. Put v = [0, λ1, λ1+λ2, . . . , λ1 + · · ·+ λ`],

∆t1t2
λ =

∏̀
k=1

∏
vk−1+1≤i<j≤vk

(t1xi + t2xj) (1.9.14)

∆t2t1
λ =

∏̀
k=1

∏
vk−1+1≤i<j≤vk

(t2xi + t1xj) . (1.9.15)



 Chapter 1 — Operators on polynomials

Let ωλ be the maximal element of the Young subgroup Sλ = Sλ1×Sλ2×· · ·×Sλ` .
Then, by direct product, one gets from the preceding theorem

dωλ = ∆t1t2
λ ∂ωλ (1.9.16)

∇ωλ = ∂ωλ ∆t2t1
λ . (1.9.17)

For example, for λ = [3, 2], and µ ∈ N5, the image of xµ under

∇32154 =
∑
σ∈S32

(−t1)`(σ)Tσ = ∂32154∆t2t1
32

is equal to the Schur function sµ−43210(x5) times ∆t2t1
32 .
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1.10 B, C, D action on polynomials
As for type A, one transfers operations on vectors to operations on polynomials
by acting on the exponents of monomials.

Thus, sBi = sCi acts on xi only by xi → x−1
i , and sDi acts on xi−1, xi by

xi → x−1
i−1, xi−1 → x−1

i .
We also have divided differences, this time with a difference between types B

and C :

∂Bi := (1− sBi )
1

x
1/2
i − x

−1/2
i

, πBi = x
1/2
i ∂Bi , π̂

B
i = ∂Ci x

−1/2
i , i = 1 . . . n .

∂Ci := (1− sCi )
1

xi − x−1
i

, πCi = xi ∂
C
i , π̂

C
i = ∂Ci x

−1
i , i = 1 . . . n .

∂Di := (1− sDi )
1

x−1
i−1 − xi

, πDi =

(
1− sDi

1

xi−1xi

)
1

1− 1
xi−1xi

,

π̂Di = (1− sDi )
1

xi−1xi − 1
, i = 2 . . . n .

As in type A, the above operators can be characterized in a simple manner,
taking into account symmetries. For example, in type C, the divided differences
∂Ci , π

C
i , π̂

C
i commute with multiplication with functions symmetrical in xi, 1/xi

(which are functions of the variable x•i = xi + x−1
i ). It suffices to give their action

on the basis {1, xi} of Pol(x±i ) as a free Pol(x•i ) module :

∂Ci πCi π̂Ci
1 0 1 0
xi 1 xi + x−1

i x−1
i

.

For type D, say for i = 2, the space Pol(x±1 , x
±
2 ) is a free module of rank 4 over

the D-invariants. One can take as a basis 1, x1, x2, x2x
−1
1 , on which the divided

differences act as follows :

∂D2 πD2 π̂D2
1 0 1 0

x1 x1x
−1
2 x1 + x−1

2 x−1
2

x2 1 x2 + x−1
1 x−1

1

x2x
−1
1 0 x2x

−1
1 0

.

For type ♥ = B,C, the divided differences for two consecutive indices, say
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1, 2, satisfy braid relations12 :

π1 π
♥
2 π1 π

♥
2 = π♥2 π1 π

♥
2 π1

π̂1 π̂
♥
2 π̂1 π̂

♥
2 = π̂♥2 π̂1 π̂

♥
2 π̂1 ,

but
∂C2 ∂1∂

C
2 ∂1 6= ∂1∂

C
2 ∂1∂

C
2 .

In type D, for i 6= n− 2, then πDn commutes with πi, and π̂Dn commutes with
π̂i, and

πDn πn−2 π
D
n = πn−2 π

D
n πn−2 & π̂Dn π̂n−2 π̂

D
n = π̂n−2 π̂

D
n π̂n−2 .

Notice that the squares satisfy the same relations than in type A :

∂♥i ∂
♥
i = 0 & π♥i π

♥
i = π♥i & π̂♥i π̂

♥
i = −π̂♥i , ♥ = B,C,D .

Choosing as generators s1, . . . , sn−1, s
♥
n , ♥ = B,C,D, one obtains by reduced

products operators π♥w and π̂♥w indexed by the elements of the group. Of special
importance are those corresponding to w♥0 .

Proposition 1.10.1. Let n be an integer, ρ = [n−1, . . . , 0], x•i = xi + x−1
i ,

i = 1, . . . , n. Write ∂•i for the divided differences relative to the alphabet x• =
{x•1, . . . , x•n}. Then

πBw0
= xρ πB1 · · · πBn ∂•ω = xρ ∂•ω π

B
1 · · · πBn (1.10.1)

π̂Bw0
= π̂B1 · · · π̂Bn ∂•ω x−ρ = ∂•ω π̂

B
1 · · · π̂Bn x−ρ (1.10.2)

πCw0
= xρ πC1 · · · πCn ∂•ω = xρ ∂•ω π

C
1 · · · πCn (1.10.3)

= xρ+1n
(∑

(−1)`(w)w
) ∏

1≤i<j≤n

(x•i − x•j)−1
∏

1≤i≤n

(xi − x−1
i )−1(1.10.4)

π̂Cw0
= π̂C1 · · · π̂Cn ∂•ω x−ρ = ∂•ω π̂

C
1 · · · π̂Cn x−ρ (1.10.5)

Notice that ∂•ω = ∂ω
∏

i<j≤n(1 − x−1
i x−1

j )−1 commutes with πB1 · · · πBn and
πC1 · · · πCn because x•i commutes with πBi and πCi .

Consequently, images of πwB0 and πwC0 can be written as symmetric functions
of x•n. For example, for n = 3, the image of x310 under πCw0

is equal to(
x5

1π
C
1

)(
x2

2π
C
2

)(
x0

3π
C
3

)
=
(
(x•1)5 − 4(x•1)3 + 3x•1

) (
(x•2)2 − 1

)
∂•321

= s310(x•3)− 4s110(x•3)− 3s000(x•3) ,

12One has extra relations, like

∂C1 π1∂
C
1 π1 = π1∂

C
1 π1∂

C
1

∂C1 π̂1∂
C
1 π̂1 = π̂1∂

C
1 π̂1∂

C
1

.
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since x310xρ = x520, and x5
1π

C
1 = (x•1)5 − 4(x•1)3 + 3x•1, x2

2π
C
2 = (x•2)2 − 1.

Let
ΘD
n =

1

2
(1 + sB1 ) · · · (1 + sBn ) +

1

2
(1− sB1 ) · · · (1− sBn ) .

Proposition 1.10.2. The maximal divided differences for type Dn satisfy

πDw0
= xρ ΘD

n ∂
•
ω (1.10.6)

=

(
xρ
∑
w

(−1)`(w)w

) ∏
1≤i<j≤n

(x•i − x•j)−1 (1.10.7)

π̂Dw0
= ΘD

n ∂
•
ω x
−ρ = x−ρ πDw0

x−ρ (1.10.8)

In type B or C, an alternating sum
∑

w∈W (−1)`(w)(xv)w may be represented
as the determinant

det
(
x
vj
i − x

−vj
i

)
i,j=1...n

.

In type D, this alternating sum is equal to half of the sum of two determinants :

det
(
x
vj
i − x

−vj
i

)
i,j=1...n

+ det
(
x
vj
i + x

−vj
i

)
i,j=1...n

,

the first determinant being null when some vi is equal to 0. In particular∑
w

(−1)`(w)(xρ)w = 2−1 det
(
xn−ji + xj−ni

)
i,j=1...n

=
∏

1≤i<j≤n

(x•i − x•j) . (1.10.9)

The groups of type Bn or Dn can be embedded into S2n. However, relations
between type B,C,D divided differences and divided differences relative to S2n

are not straightforward. The next proposition describe πCw0
in terms of S2n, using

the specialization x2i−1 → xi, x2i → x−1
i , 1 ≤ i ≤ n.

Proposition 1.10.3. Given n, let ζ = (s1 · · · s2n−1)(s1 · · · s2n−3) · · · (s1s2s3)(s1).
Then

πCw0
= πζ

∣∣∣
x→{x1,x

−1
1 ,x2,x

−1
2 ,...}

,

as operators on Pol(xn).

Proof. The ring Pol(x2n) is a free-module over Sym(x2n), with basis {xv : [0, . . . , 0] ≤
v ≤ [2n−1, . . . , 0]}. The submodule Pol(xn) has basis {xv : [0, . . . , 0] ≤ v ≤
[2n−1, . . . , n, 0, . . . , 0]}. One can as well take {xv : [0n] ≤ v ≤ [2n−1, . . . , n]}, or,
our present choice,

{xv : [1−2n, . . . , −n] ≤ v ≤ [0n] } .
Specializing symmetric functions of x2n into symmetric functions of x1, x

−1
1 , . . . , xn, x−1

n ,
one sees that the same set of monomials13 span Pol(xn) as a Sym(x•n)-module.
Therefore it is sufficient to test the proposition on these monomials.

13 but they are no more independent. For example, for n = 2, x0,−2 = x−3,−1 − ax−2,−1 +
bx−1,−1 − x0,0, with a = x1 + x2 + x−1

1 + x−1
2 , b = x1x2 + x1x

−1
2 + x2x

−1
1 + 1 + x−1

1 x−1
2 .
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Since both πCw0
and πζ admit the symmetrizer πω, ω = [n, . . . , 1] as a left factor,

the test can be restricted to all Schur functions of x∨ := {x−1
1 , . . . , x−1

n } indexed
by partitions contained in nn.

Instead of enumerating partitions, one can introduce y = {y1, . . . , yn} and test
the single function

R(x∨,y) =
n∏

i,j=1

(x−1
i − yj) .

Let us first consider R(x∨,y)πCw0
. The monomials xu in the expansion of

R(x∨,y) which give a non-zero contribution are those such that u + ρ, with ρ =
[n, . . . , 1], has all its component different in absolute value. Since [0, . . . , 1−n] ≤
u + ρ ≤ ρ, the vector u + ρ must be a signed permutation of ρ, in which case
xuπCw0

= ±1. Therefore, the sum
∑

w±
(
xρR(x∨,y)

)w
(∆C)−1, which expresses

R(x∨,y) πCw0
, is independent of x. Specializing x = y, only the subsum∑

w∈Sn

±
(
xρR(y∨,y)

)w
(∆C(y))−1 =

∑
w∈Sn

±
(
xρ
)w
·R(y∨,y)(∆C(y))−1

survives. After simplification, this subsum appears to be equal to

y1 · · · yn
∏
i<j≤n

(1− yiyj) .

Let us now treat πζ = πω(πn · · · π2n−1)πη, with πη = (πn−1 · · · π2n−3) · · · (π2π3)(π1).
The symmetrizer πω preserves R(y∨,y) , the operator (πn · · · π2n−1) acts only on
the factor R(x−1

n ,y) and sends it to (−1)ny1 · · · yn. One is left with the computa-
tion of

R(x′,y) πη

∣∣∣
x2i=x

−1
2i−1

,

with x′ = {x−1
1 , . . . , x−1

n−1}. Assuming by induction the validity of the proposition
for n− 1, this last function is equal to R(x′,y)πw′0 , with w

′
0 relative to Cn−1.

The monomials xu appearing in the expansion of R(x′,y) being such that
[−1, . . . , −n+1] ≤ u + ρ′ ≤ ρ′, with ρ′ = [n−1, . . . , 1], then for the same reason as
above, the sum ∑

w

±
(
xρ
′
R(x′,y)

)w
(∆C(x1, . . . , xn−1))−1

does not depend on x. Specializing x1 = y1, . . . , xn−1 = yn−1, the sum reduces to∑
w∈Sn−1

(
yρ
′
)w
R(y′,y)

1

∆C(y1, . . . , yn−1)
= y1 · · · yn−1

∏
i<j≤n−1

(1− yiyj)R(y′, yn) ,

with y′ = {y−1
1 , . . . , y−1

n−1}. In final, the two operators send the test function
R(x′,y) to the same element, and therefore are equal. QED
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For example, for n = 2, one has

x1100(π1π2π3)(π1) = (x1+x2)(x3+x4) + x1x2

and this polynomial is transformed, by x→ [x1, x
−1
1 , x2, x

−1
2 ], into

x11π1π
C
2 π1π

C
2 = (x1+x−1

1 )(x2+x−1
2 ) + 1 ,

which is equal, as we shall see later, to KC
−1,−1.

The two families of divided differences π♥i , π̂♥i are related by the equations

πi = 1 + π̂i , i = 1, . . . , n−1 & π♥n = 1 + π̂♥n , ♥ = B,C,D .

For any element w of the Weyl group of type ♥, by taking any reduced decomposi-
tion of it and the corresponding products of πi’s or π̂i’s, one obtains an expansion
of πw in terms of π̂v, and conversely, of π̂w in terms of πv. From a simple property
that followers of Bourbaki call the exchange lemma, which describes the growth of
intervals for the Bruhat order with respect to w → wsi, one obtains the following
relations between the two families of divided differences (given for type A in [99]).

Lemma 1.10.4. For any element w of a Weyl group of type ♥ = A,B,C,D, one
has the following sums over the Bruhat order :

πw =
∑
v≤w

π̂v (1.10.10)

π̂w =
∑
v≤w

(−1)`(w)−`(v)πv . (1.10.11)

For example, for type C, and w = [2, −3, −1], then w = sC3 s1s2s
C
3 and

πw = (1 + π̂C3 )(1 + π̂1)(1 + π̂2)(1 + π̂C3 ) = π̂123 +
(
π̂213 + π̂132 + π̂123̄

)
+
(
π̂231 + π̂213̄ + π̂132̄ + π̂13̄2

)
+
(
π̂231̄ + π̂23̄1 + π̂13̄2̄

)
+ π̂23̄1̄ .

On the other hand, for type D, w = [2, −3, −1] = s1s
D
3 , and

πw = (1 + π̂1)(1 + π̂D3 ) = π̂123 + π̂213 + π̂13̄2̄ + π̂23̄1̄ .

As a matter of fact, Stembridge [187] shows that the 0-Hecke algebra furnishes
the easiest way to compute the Möbius function relative to the Bruhat order of
Coxeter groups14.

14 the operators πi and π̂i give two realizations of the 0-Hecke algebra, since (πi−0)(πi−1) = 0
and (π̂ − 0)i(π̂i + 1) = 0.
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1.11 Some operators on symmetric functions
Divided divided differences commute with multiplication with symmetric func-
tions. They can nevertheless be used to build operators on symmetric functions,
after breaking the initial symmetry, say for example, by sending x1 to x−1

1 , or to
qx1, or using derivatives, then symmetrizing.

As a first example, let us use isobaric derivatives δi : f → xi
d
dxi

(f), and
more conveniently, symmetric functions in the alphabet � = {�1= δ1 − 1

2
, �2=

δ2 − 3
2
, . . . , �n= δn + 1

2
−n}.

The following lemma shows that symmetric functions in �, followed by πω, act
diagonally on Schur functions.

Lemma 1.11.1. Let g ∈ Sym(xn), λ ∈ Nn be a partition, Aλ be the alphabet
{λ1−

1
2
, λ2−

3
2
, . . . , λn+ 1

2
−n}. Then sλ(xn)g(�) πω = g(Aλ)sλ(xn).

Proof. Writing πω = xρ∂ω, one can commute xρ with g(�), at the cost of changing
� into �′= {λ1+ 1

2
−n, λ2+ 1

2
−n, . . . , λn+ 1

2
−n}, due to the fact that (δi − a)xi =

xiδi − a − 1. Factorizing ∂ω =
(∑

σ∈Sn
±σ
)

∆(xn)−1, one can commute
∑
±σ

with the symmetric function in �′, thus obtaining

sλ(xn)g(�) πω = sλ(xn)xρ
∑
±σg(�′)∆(xn)−1 = sλ(xn)∆(xn)g(�′)∆(xn)−1 .

The action of g(�′) on sλ(xn)∆(xn), written as a determinant of powers of x1, . . . , xn
is immediate, furnishing the result. QED

Since p1(�) acts by multiplication by d − n2/2 on homogeneous symmetric
functions of degree d, the first interesting operators occur in degree 2. Indeed the
operator p2(�)πω − 1

4

(
2n+1

3

)
may be found in different places, as a Hamiltonian. It

can be written, in terms of derivatives with respect to power sums, as the operator

Sym 3 f →
∑
i>0

∑
j>0

ijpi+j
d

dpi

d

dpj
(f) + (i+ j)pipj

d

dpi+j
(f) .

As a second example, let us introduce two parameters α, β and consider the
Sekiguchi operator

Ω = (αδ + β) . . . (αδn + β−n+1) πω ,

on symmetric functions of x = xn. To explicit the action of Ω, we shall take as a
linear basis of Sym(x) the Schur functions in the alphabet xα = 1

α
x. Equivalently,

we introduce a second alphabet y of cardinality n, and compute

σ(xαy)Ω =
∏
i

∏
j

(1− xiyj)−1/α Ω .

Since (1 − xiy)−1/α(αδi + γ) = xiy(1 − xiy)−1/α−1 + γ(1 − xiy)−1/α, one sees
that there exists a function F (x,y) independent of α such that σ(xαy)Ω =
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F (x,y)σ
(
(1 + 1

α
)xy

)
. This function may be determined by putting α = 1, and

is thus equal to σ(xy)Ω
∣∣
α=1

σ(−2xy). We have seen just above that Ω
∣∣
α=1

may
be written ∆(x)(δ1 + γ) . . . (δn + γ), with γ = β + 1 − n. Thanks to Cauchy,
σ(xy)∆(x) = 1

∆(y)
det
(

1
1−xiyj

)
, and therefore

σ(xy)Ω
∣∣
α=1

=
1

∆(y)
det

(
γ + (1− γ)xiyj

(1− xiyj)2

)
1

∆(x)
,

and F (X, Y ) is the numerator of this last function.
As in the case of Gaudin determinant det ((1− xiyj)−1(1− xiyj + γ)−1), or

Izergin-Korepin determinant det ((1− xiyj)−1(1− qxiyj)−1), one can write the
quotient of the numerator of σ(xy)Ω

∣∣
α=1

by the two Vandermonde as a prod-
uct of two rectangular matrices [101, 109]. Explicitly, let M e(xn) be the matrix

M e(xn) =
[
(−1)j−iej−i(x)(β − n+ 2i− j)

]
i=1...n
j=1..2n

. (1.11.1)

Then F (x,y) is the determinant of the product of this matrix with
[
hi−j(y)

]
i=1..2n
j=1..n

.

For example, for n = 2, F (x,y) is the determinant of the product

[
e0(β − 1) −e1(β − 2) e2(β − 3) 0

0 e0β −e1(β − 1) e2(β − 2)

]
h0 0
h1 h0

h2 h1

h3 h2

 ,

where, by symmetry between x and y, the hi are the complete functions of one
alphabet, and the ei, of the other alphabet. In terms of products of Schur functions
of x2 and y2, one has

F (x2,y2) = β(β−1)− (β−1)2s1s1 + 2s11s11 + (β−1)(β−2)(s2s11 + s11s2)

− (β−2)2s21s21 + (β−2)(β−3)s22s22 .

The function σ(xαy) expand as
∑
Sv(x

α)Sv(y), sum over all (increasing) par-
titions in Nn. Therefore, the image of Sv(xα) under Ω is equal to the coefficient
of Sv(y) in F (x,y)σ((1 + α−1)xy), that is equal to

∑
u↑

M e
uSv/u

(
(1+

1

α
)x)
)

= det

(
M e ·

[
Svj+j−i((1+

1

α
)x)
]
i=1...2n
j=1...n

)
, (1.11.2)

denoting by M e
u the minor of M on columns u1+1, . . . un+n. The matrix M e is in

fact the sum of the two matrices[
(−1)j−i(b− n+ i)ej−i(x)

]
and

[
(−1)j−i(i− j)ej−i(x)

]
.
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Let Mp(xn) be the n×∞ matrix of power sums

Mp(xn) =


β+1−n p1(x) p2(x) p3(x) · · ·

0 β+2−n p1(x) p2(x) · · ·
... . . . . . .
0 · · · β p1(x) · · ·

 .

Since
∑

(−1)iei(x)σ((1 + α−1)x) = σ(xα), and
∑

(−1)iiei(x)σ((1 + α−1)x) =
(p1(x) + p2(x) + . . . )σ(xα), the product (1.11.2) can be transformed into the
product

Mp(xn) ·
[
Svj+j−i(x

α)
]
i=1...∞
j=1...n

. (1.11.3)

Using Newton’s relations
∑∞

i=1 pi(x)σ(x) =
∑∞

i=0 iSi(x), one obtains that Sv(xα)Ω
is equal to the determinant of[(

α(vj + j − i) + β − n+ i
)
Svj+j−i(x

α)
]
i,j=1...n

. (1.11.4)

For example,

S136(xα)Ω =

∣∣∣∣∣∣
(1α + β − 2)S1(xα) (4α + β − 2)S4(xα) (8α + β − 2)S8(xα)
(0α + β − 1)S1(xα) (3α + β − 1)S3(xα) (7α + β − 1)S7(xα)

0 (2α + β)S2(xα) (6α + β)S6(xα)

∣∣∣∣∣∣ .
The shifts β−n+i in (1.11.4) are constant by rows. The expansion by rows of the
determinant expressing Sv(xα)Ω, starting from the bottom, may be written∑

σ∈Sn

(−1)`(σ)ϕ
(
(λ+ ρ)σ − ρ

)
S(λ+ρ)σ−ρ(xα) ,

with λ = v↓, where, for u ∈ Nn, Su(xα) denotes the product of complete functions
Su1(x

α) . . . Sun(xα), and ϕ(u) = (αu1 + β) . . . (αun + β+1−n).
Introduce another alphabet z, and denote S2z the linear morphim

Sym(x) 3 sλ(xα)→
∑
±z(λ+ρ)σ−ρ ∈ Pol(z) ,

by z2S the linear morphism sending zu onto the product Su(xα).
The preceding computation may be interpreted as the following factorization

of the Sekiguchi operator:

Sym
S2z−−−→ Pol(z)

zv→ϕ(v)zv−−−−−→ Pol(z)
z2S−−−→ Sym .

Let � = {�1= αδ1 − 1
2
, �2= αδ2 − 3

2
, . . . , �n= αδn + 1

2
−n}. The Sekiguchi

operator may be written
∑

(β+ 1
2
)n−iei(�)πω, and therefore determines the action

of each elementary function ei(�)πω. Since e1(�) acts as a scalar on homogeneous
polynomials, one more generally knows the action of any linear combination of
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e1(�)kei(�), for example e1(�)2−e2(�) = p2(�), e1(�)3−3e1(�)e2(�)+e3(�) = p3(�),
e1(�)e2(�)− e3(�) = s21(�).

Explicitly, for any polynomial f in �, any v ∈ Nn, let ϕf (v) =
f(αv1−

1
2
, . . . , αvn+ 1

2
−n). Then the description of the action of the Sekiguchi op-

erator entails

Lemma 1.11.2. Let f = p2, p3 or s21. Then the action of f(�)πω on Sym fac-
torizes as

Sym
S2z−−−→ Pol(z)

xv→ϕf (v)xv

−−−−−−→ Pol(z)
z2S−−−→ Sym .

The Sekiguchi operator preserves degrees. Expression (1.11.4) shows that is
triangular in the basis {sλ(xα), `(λ) ≤ n}. Since ϕ takes distinct values on Nn,
the eigenspaces of Ω are 1-dimensional, their generators being the Jack symmetric
polynomials. Since these polynomials are specializations of Macdonald polynomi-
als, we postpone at this point any further comments about them. The operator(
p2(�)− 1

4

(
2n+1

3

))
πω is also diagonal in the basis of Jack polynomials, with eigen-

values
∑

(αλi + 1/2 − i)2 − 1
4

(
2n+1

3

)
= α2

∑
λ2
i + α

∑
(1−2i)λi. It is in fact a

rewriting of the Calogero-Sutherland Hamiltonian, and has been considered by
physicists [67], see also [16]. To my knowledge, the operators corresponding to
p3(�) and s21(�) have not been used, though they also diagonalize in the basis of
Jack polynomials. Beware that the operator p4(�)πω does not act diagonally on
Jack polynomials15.

It is easy to transform isobaric factorized operators into degree-raising opera-
tors, by introducing inside the factorization of the operator the multiplication by a
fixed polynomial. For example, let us see how to transform the first operator that
we saw in this section into an operator deforming the product of Schur functions.

Let λ be a partition in Nn. Then the operator Ωλ = xλ(δ1 + β) . . . (δn +
β+1−n)πω acting on Sym(xn) may be rewritten

xλxρ(
∑
±σ)(δ1 + β+1−n) . . . (δn + β+1−n)πω

= sλ(xn)∆(xn)(δ1 + β+1−n) . . . (δn + β+1−n)πω ,

and therefore the image of a Schur function sµ(xn) under Ωλ is equal to∑
ν

(sλsµ, sν)(ν1 + β) . . . (νn + β+1−n)sν(xn) ,

where the coefficients (sλsµ, sν) are the structure constants appearing in sλ(xn)sµ(xn) =∑
ν(sλsµ, sν)sν(xn). We shall meet similar operators in the case of Macdonald

polynomials.
One can also use the divided differences associated to types B,C,D to define

operators on Sym.
15This is compatible with the fact that p4 = e41 − 4e21e2 + 4e1e3 + 2e22 − 4e4, the term e22

preventing to apply the preceding considerations.
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Let us first consider the action of −x−k1 πB1 x
k
1, k ∈ Z, on functions of x1.

Since Sr(x1+1)x
−r/2
1 is invariant under sB1 , one has

−Sr(x1+1)x−k1 πB1 x
k
1 = −[r+1]x

r/2−k
1 πB1 x

k
1 =

{
x1[r+1][2k−r−1] if k > r/2

−x2k−r
1 [r+1][r+1−2k] if k ≤ r/2

,

with [j] = 1+x1+ . . . +xj1.
One notices that the same functions can be obtained by combining ∂1 with the

specialization x2 = 1. More precisely, one checks that for all r ≥ 0, all k ∈ Z, one
has

−Sr(x1+1)x−k1 πB1 x
k−1
1 = Sr((x

−1
1 + x2)x2k−1

1 ∂1

∣∣∣
x2=1

.

The next proposition shows how to extend this observation to any n, and will
constitute our last example for this section.

Proposition 1.11.3. Let λ ∈ Nn be a partition. Then one has, for any k ∈∈ Z,

(−1)nsλ(xn + 1)x−kn πBn x
k
nπn−1 . . . π1(x1 . . . xn)−1 = sλ s

B
n x

2k−1
1 ∂1 . . . ∂n

∣∣∣
xn+1=1

.

(1.11.5)

Proof. By recurrence on n, one sees that, for any symmetric function f(x1, . . . , xn),
one has

f(x1, . . . , xn)x−kn πBn x
k
nπn−1 . . . π1

=
n∑
i=1

f(. . . ,
1

xi
, . . . )

x2k−1
i

R(xi,xn \ xi)(1−xi)
+ f(x1, . . . , xn)

1

R(xn, 1)
.

This is a Lagrange-type sum ([108, Th. 7.8.2]) which can be written

f(x1, . . . , xn)sB1 x
2k−1
i (1−x1)−1∂1 . . . ∂n−1 + f(x1, . . . , xn)

1

R(xn, 1)
,

but one can make this expression more symmetrical by considering the alpha-
bet x1, . . . , xn+1, and by supposing16 that f is the specialization xn+1 = 1 of a
symmetric function of x1, . . . , xn+1, thus obtaining the stated identity. QED

For example, for n = 3, λ = [1, 0, 0], k = 3, one has

−s1(x3+1)x−3
3 πB3 x

3
3 = (1+x1+x2)(x3 + + · · ·+ x5

3) + (x3+x2
3+x3

3) ,

whose image under π2π1 is
(
s1(x3+1) + s21(x3+1)

)
x1x2x3.

On the other hand,

(x−1
1 + x2 + x3 + x4)x5

1 ∂1∂2∂3 = s1(x4) + s21(x4) ,

and this agrees with the proposition.
16This is no restriction: sλ(xn) = sλ(xn+1 − 1)

∣∣
xn+1=1

.



§ 1.12 — Weyl character formula 

1.12 Weyl character formula
Irreducible characters for type ♥ = A,B,C,D have been described by Weyl. For
λ ∈ Nn dominant17, Weyl’s character formula reads

χ♥λ =

∑
w(−1)`(w)

(
xλ+ρ

)w∑
w(−1)`(w) (xρ)w

, (1.12.1)

where ρ = [n−1, . . . , 0] in type A,D, ρ = [n, . . . , 1] in type C and ρ = [n− 1
2
, . . . , 1

2
]

in type B.
Using the factorization of the alternating sum of the elements of each group,

one recognizes that the characters χ♥λ are equal to the image of xλ under π♥w0
:

xλ π♥w0
= χ♥λ . (1.12.2)

Each π♥w0
has ∂ω as a right factor. Since, for any functions f1(x), . . . , fn(x),

one has
f1(x1) · · · fn(xn) ∂ω = det(fi(xj))/ det(xn−ji )

one may write the numerators of Weyl character formula as the following deter-
minants (still with λn = 0 for type D) :

det(x
λj+n−j
i ) type A (1.12.3)

det(x
λj+n−j+1/2
i − x−λj−n+j−1/2

i ) type B (1.12.4)
det(x

λj+n−j+1
i − x−λj−n+j−1

i ) type C (1.12.5)
1

2
det(x

λj+n−j
i + x

−λj−n+j
i ) type D (1.12.6)

Let ∆(x) =
∏

1≤i<j≤n(xi − xj). Then the denominators ∆A,∆B,∆C ,∆D of
Weyl character formula are respectively equal to

∆A = ∆(x), ∆B =
∏
i

(
√
xi−

1
√
xi

)∆(x•), ∆C =
∏
i

(xi−
1

xi
)∆(x•), ∆D = ∆(x•),

still using the notation x• = {x•1, . . . , x•n}, with x•i = xi + x−1
i .

The numerators of Weyl’s formula may also be written as determinants, so
that the right hand side of Weyl’s formula for type A,B,C,D, say in the case
λ = [3, 1, 0], would look like∣∣∣∣∣∣

x5
1 x2

1 1
x5

2 x2
2 1

x5
3 x2

3 1

∣∣∣∣∣∣∣∣∣∣∣∣
x2

1 x1 1
x2

2 x2 1
x2

3 x3 1

∣∣∣∣∣∣
,

∣∣∣∣∣∣∣
x

11/2
1 − x−11/2

1 x
5/2
1 − x−5/2

1 x
1/2
1 − x−1/2

1

x
11/2
2 − x−11/2

2 x
5/2
2 − x−5/2

2 x
1/2
2 − x−1/2

2

x
11/2
3 − x−11/2

3 x
5/2
3 − x−5/2

3 x
1/2
3 − x−1/2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x

5/2
1 − x−5/2

1 x
3/2
1 − x−3/2

1 x
1/2
1 − x−1/2

1

x
5/2
2 − x−5/2

2 x
3/2
2 − x−3/2

2 x
1/2
2 − x−1/2

2

x
5/2
3 − x−5/2

3 x
3/2
3 − x−3/2

3 x
1/2
3 − x−1/2

3

∣∣∣∣∣∣∣
,

17For simplicity, we impose λn = 0 in type D, but we shall lift this restriction later.
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∣∣∣∣∣∣∣∣
x1

6 − x1
−6 x1

3 − x1
−3 x1 − x1

−1

x2
6 − x2

−6 x2
3 − x2

−3 x2 − x2
−1

x3
6 − x3

−6 x3
3 − x3

−3 x3 − x3
−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1

3 − x1
−3 x1

2 − x1
−2 x1 − x1

−1

x2
3 − x2

−3 x2
2 − x2

−2 x2 − x2
−1

x3
3 − x3

−3 x3
2 − x3

−2 x3 − x3
−1

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣
x1

5 + x1
−5 x1

2 + x1
−2 1

x2
5 + x2

−5 x2
2 + x2

−2 1

x3
5 + x3

−5 x3
2 + x3

−2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1

2 + x1
−2 x1 + x1

−1 1

x2
2 + x2

−2 x2 + x2
−1 1

x3
2 + x3

−2 x3 + x3
−1 1

∣∣∣∣∣∣∣∣
.

When λ is an integral multiple of ρ, the numerator in Weyl’s character formula
is the image of the denominator under raising the variables to some power. Writing
k(ρ) for [kρ1, kρ2, . . . , kρn], and hk(a+b) for the complete function of degree k in
the variables a, b, one has

χAk(ρ) =

∏
1≤i<j≤n(xk+1

i − xk+1
j )∏

1≤i<j≤n(xi − xj)
=

∏
1≤i<j≤n

hk(xi+xj) ,

χDk(ρ) = χAk(ρ)

∏
1≤i<j≤n

(
1− x−k−1

i x−k−1
j

)∏
1≤i<j≤n 1− x−1

i x−1
j

=
∏

1≤i<j≤n

hk(xi+xj)hk(1+x−1
i x−1

j ) ,

χBk(ρ) = χDk(ρ)

n∏
i=1

x
(k+1)/2
i − x−(k+1)/2

i

x
1/2
i − x

−1/2
i

=
n∏
i=1

hk

(
√
xi +

1
√
xi

) ∏
1≤i<j≤n

hk(xi+xj)hk(1+x−1
i x−1

j ) ,

χCk(ρ) = χDk(ρ)

n∏
i=1

xk+1
i − x−k−1

i

xi − x−1
i

=
n∏
i=1

hk

(
xi +

1

xi

) ∏
1≤i<j≤n

hk(xi+xj)hk(1+x−1
i x−1

j ) .

For example, for n = 2, k = 2, one has

χC42 =

(
x2

1 + 1 +
1

x2
1

)(
x2

2 + 1 +
1

x2
2

)
(x2

1 + x1x2 + x2
2)

(
1 +

1

x1x2

+
1

x2
1x

2
2

)
.
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1.13 Macdonald Poincaré polynomial
The length of a reduced decomposition of an element w of a Weyl group is equal,
using standard notions from the theory of root systems, to the number of roots in
the intersection of R+ and −wR+.

Instead of enumerating inversions, let us define an inversion weight as follows.
Embed the Weyl group of type Bn, Cn, Dn into S2n. Given w ∈ W and the
corresponding σ ∈ S2n, to a pair (i, j) : 1 ≤ i < j ≤ n, such that σi > σj
associate a factor hji. To a pair such that σi > σ2n+1−j associate a factor hij.
Moreover, to all i : 1 ≤ i ≤ n such that wi < 0 associate a factor hi in type B,
and a factor hii in type C. The inversion weight I(w) of w ∈ W is the product
of these factors.

One can also define I(w) recursively by left multiplication by simple transpo-
sitions. Given w, sk such that `(skw) > `(w), then w and skw either differ in two
positions i, j or (skw)i = −wi. In that last case (which do not occur for type A
or D), one has I(skw)/I(w) = hi in type B and = hii in type C. In the first
case, if wiwj > 0 and [. . . wi . . . wj . . .] → [. . . wj . . . wi . . .], then I(skw)/I(w) =
hji. Otherwise, if wiwj < 0, then [. . . wi . . . wj . . .] → [. . . − wj . . . − wi . . .] and
I(skw)/I(w) = hij.

For example, for type C4, one has the following chain of inversion factors :

[2, 4, 1, 3]
sC4 h22←−−−[2, 4, 1, 3]

s3 h42←−−−[2, 3, 1, 4]
s1 h13←−−−[1, 3, 2, 4]

s2 h23←−−−[1, 2, 3, 4]
s3 h34←−−−[1, 2, 4, 3]

sC4 h33←−−−[1, 2, 4, 3]
s3 h43←−−−[1, 2, 3, 4]

The inversions are more straightforward to read when writing the inverse ele-
ments :

[3, 1, 4, 2]−1 sC4 h22←−−−[3, 1, 4, 2]−1 s3 h42←−−−[3, 1, 2, 4]−1 s1 h13←−−−[1, 3, 2, 4]−1

s2 h23←−−−[1, 2, 3, 4]−1 s3 h34←−−−[1, 2, 4, 3]−1 sC4 h33←−−−[1, 2, 4, 3]−1 s3 h43←−−−[1, 2, 3, 4]−1

For each Weyl group of type ♥ = An−1, Bn, Cn, Dn, Macdonald defined the
following kernel18 M♥, introducing formal parameters hji :

MA =
∏

1≤i<j≤n

(1− hjixjx−1
i )

MD = MA
∏

1≤i<j≤n

(1− hijx−1
i x−1

j )

MB = MD
∏

1≤i≤n

(1− hix−1
i )

MC = MD
∏

1≤i≤n

(1− hiix−2
i )

18 Of course, Macdonald does not mix types, but taking a pure combinatorial point of view
leaves us this freedom.
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For example, for A2 and D3, one has

MA =

(
1− h21 x2

x1

)(
1− h31 x3

x1

)(
1− h32 x3

x2

)
,

MD =MA

(
1− h12

x1 x2

)(
1− h13

x1 x3

)(
1− h23

x2 x3

)
.

The following theorem, due to Macdonald [147, Th.2.8], generalizes the enu-
meration of elements of a Weyl group according to their length.

Theorem 1.13.1. For a Weyl group of type ♥ = A,B,C,D, with maximal ele-
ment w0, one has

M π♥w0
=
∑
w∈W

I(w) .

Proof. Each kernel, multiplied by xρ♥ is a sum of monomials xv, where the expo-
nents respectively satisfy the conditions (componentwise comparison) : for type
A, [0, . . . , 0] ≤ v ≤ [n−1, . . . , n−1],
for type B, [1−n, . . . , 1−n] ≤ v + [ 1

2
, . . . , 1

2
] ≤ [n, . . . , n],

for type C, [−n, . . . , −n] ≤ v ≤ [n, . . . , n],
for type D, [1−n, . . . , 1−n] ≤ v ≤ [n−1, . . . , n−1].

Under the operator
∑

w(−1)`(w) 1
∆♥

, such monomials are sent to 0, or to ±1
if they appear in the expansion of ∆♥. One checks that in that last case, the
coefficient is indeed the inversion weight I(w). QED

For example, for type C2, the contributing terms are

x2,1 − x2,−1h22 + x1,−2h12h22 − x−1,−2h11 h12 h22 − x1,2h21

+ x−1,2h21 h11 − x−2,1h21 h11 h12 + x−2,−1h21 h11 h12 h22 .

One could have decided19 to denote the elements of the group by the element
of the orbit of ρ♥. In type A, one would have permutations of [n−1, . . . , 0], in
type B, signed permutations of [n− 1

2
, . . . , 1

2
], in type C, signed permutations of

[n, . . . , 1], and finally, in type D, signed permutations of [n−1, . . . , 0].
The usual Poincaré polynomial is obtained by specializing all hi, hij to q and

thus is obtained by symmetrizing the “q-Vandermonde”.
One could have taken an arbitrary subsum of the expansion of M♥. Mac-

donald’s theorem states that the only terms surviving after symmetrization are
those having for coefficient the inversion weight of an element of the group. The
following theorem shows how to apply this property to generate intervals for the
weak order.

For v, w ∈ W , write w ≥L v if the product (wv−1) v is reduced, i.e. if `(w) =
`(wv−1) + `(v). In that case I(v) is a factor of I(w). In the following statement,

19In type A, Cauchy considered the Vandermonde determinant, that he in fact introduced,
as the generating function of permutations together with their signs, and consequently, the
Vandermonde determinant as the “generic” determinant.
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we shall use the same notation I(w) for the set of inversions and the inversion
weight of w ∈ W .

Let hxji = hjixjx
−1
i , j > i, and hxij = hijx

−1
i x−1

j , i ≤ j, hxi = hix
−1
i .

Theorem 1.13.2. Given a pair w, v such that w ≥L v, then∏
α∈I(w)\I(v)

(1− hxα)
∏

α∈I(v)

(−hxα) π♥w0
=

∑
u:w≥L u≥L v

I(v) . (1.13.1)

Proof. We already remarked that we have only to extract the products of hji which
are inversion weights of elements ofW . But u ∈ W is such that w ≥L u if and only
if I(u) divides I(w), thus u in the RHS if and only if it belongs to the left-order
interval [w, v]. QED

It is interesting to notice that the interval [1, w] for the Bruhat order can be
obtained, thanks to Lemma 1.10.4, by taking any reduced decomposition w =
si · · · sj and evaluating the product (1 + π̂i) · · · (1 + π̂j). On the other hand, the
preceding theorem gives the interval [1, w]L for the weak order by symmetrizing a
factor of degree `(w).

For example, for w = [3, 4, 1, 2] ∈ S4, the initial interval for the Bruhat order
is given by

π3412 = π2π3π1π2 = (1 + π̂2)(1 + π̂3)(1 + π̂1)(1 + π̂3)

= π̂3412 + π̂3214 + π̂3142 + π̂3124 + π̂2413 + π̂2314 + π̂2143

+ π̂2134 + π̂1432 + π̂1423 + π̂1342 + π̂1324 + π̂1243 + π̂1234 ,

while the initial interval for the left order is obtained by computing(
1− h31

x3

x1

)(
1− h32

x3

x2

)(
1− h41

x4

x1

)(
1− h42

x4

x2

)
π4321

= 1 + h32 + h31h32 + h32h42 + h31h32h42 + h31h41h32h42 ,

which translates, passing from the inversion weights to the permutations, into

[1, 2, 3, 4], [1, 3, 2, 4], [1, 4, 2, 3], [2, 3, 1, 4], [2, 4, 1, 3], [3, 4, 1, 2] .

The Poincaré polynomial is obtained by specializing all hα to q. For example,
let w = [5, 2, 4, 6, 1, 3], v = [3, 1, 2, 5, 4, 6] in S6. Then

I([5, 2, 4, 6, 1, 3])/I([3, 1, 2, 5, 4, 6] = h51h52h53h61h63h64 , I([3, 1, 2, 5, 4, 6]) = h21h31h54

and the polynomial of the interval is equal to(
1− h51

x5

x1

)(
1− h52

x5

x2

)(
1− h53

x5

x3

)(
1− h61

x6

x1

)(
1− h63

x6

x3

)(
1− h64

x6

x4

)
×
(
−x2

x1

)(
−x3

x1

)(
−x5

x4

)
π654321

∣∣∣
hji=q

= q6 + 2q5 + 2q4 + 3q3 + 2q2 + 2q + 1 .
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We end by giving an example in type C, for n = 3, writing the interval and
the inversions in the order they are created.

123

213 123̄

213̄ 132̄

312̄ 231̄

3̄12̄ 321̄

3̄21̄

h21 h33

h33 h21 h23

h13 h13

h11 h21

h23 h11

Thus, the Poincaré polynomial for this interval is equal to 1 +h21 +h33 +h23h33 +
h21h33 + h13h23h33 + h21h13h33 + h21h13h11h33 + h21h13h23h33 + h21h13h23h11h33.
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1.14 Poincaré with descents
For a Coxeter group W , the usual Poincaré polynomial is

∑
w∈W q`(w). We have

already mentioned, for the classical Weyl groups of type A,B,C,D, the fol-
lowing factorizations of the Poincaré polynomial, denoting by [i] the q-integer
(qi−1)/(q−1):
• type A [1] [2] · · · [n] ,

• type BC [2] [4] · · · [2n] ,

• type D [2] [4] · · · [2n− 2] [n] .
The Poincaré polynomial is obtained from Macdonald’s generating function

M♥π♥w0
, in type ♥ = A,B,C,D, by specializing all parameters to q. But one can

use more elaborate specializations. In particular, descents correspond to param-
eters hi+1,i in type A, together with hn in type B, hnn in type C, hn−1,n in type
D, and can be treated differently than the other parameters.

Reiner [173] gives a generating function for the q-Euler distribution
∑

w∈W tdes(w)q`(w),
for an infinite family of affine Coxeter groups.

In this section, we examine the question of introducing a function ψ(w) de-
pending on the set of descentsD(w) of w, such that

∑
w∈W q`(w)ψ(w) still factorizes

into simple factors.
Iwahori and Matsumoto [68] give a solution to this problem, choosing proper

specializations of the parameters di into powers of q in the function∑
w∈W

q−`(w)
∏

i∈D(w)
di .

Stembridge and Waugh [186] use the corresponding affine groups to give a proof
of Iwahori-Matsumoto formula which does not rely on the classification of root
systems. For types A,B,C,D, the formula given by these authors20 reads as
follows.
Theorem 1.14.1. For ♥ = A,B,C,D, the sum

∑
w∈W q−`(w)

∏
i∈D(w) di is equal

to
n−1∏
i=1

(1− qi(n−i))(1− qi)−1 in type A , for di = qi(n−i) (1.14.1)

2
n∏
i=1

(1− qi(2n−i))(1− q2i−1)−1 in type B , for di = qi(2n−i) (1.14.2)

2
n−1∏
i=1

(1− qi(2n+1−i))(1− q2i−1)−1(1− qn(n+1)/2)(1− q2n−1)−1

in type C , for di = qi(2n+1−i) except dn = qn(n+1)/2 (1.14.3)
20Stembridge and Waugh write a formula which is valid for all finite Weyl groups in terms of

the coefficients bi appearing in the decomposition 2ρ = b1α1 + · · ·+ bnαn.
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4
n−2∏
i=1

(1−qi(2n+1−i))(1−q2i−1)−1(1−qn(n−1)/2)2(1−q2n−3)−1(1−qn−1)−1

in type D , for di = qi(2n−1−i) except dn−1 = dn = qn(n−1)/2 . (1.14.4)

We give a more general formula for types A,B,C,D, specializing appropriately
the Macdonald kernels defined in the preceding section.

For type A, we introduce parameters y0, y1, . . . , yn−1, and take

NA
n =

∏
i+1<j≤n

(
1− yi−1

yi

xj
xi

) ∏
1≤i<n

(
1− yi−1y

n−i−1
i

xj
xi

)
(1.14.5)

For example, for n = 4, one has

NA
4 =

(
1− y0x3

y1x1

)(
1− y0x4

y1x1

)(
1− y1x4

y2x2

)
(

1− y1
2y0x2

x1

)(
1− y2y1x3

x2

)(
1− y2x4

x3

)
Introducing parameters a, z, dn−1, dn, we define

NB
n =

n−1∏
i=1

(
1− aiqi(n−i)xi+1

qxi

) ∏
i<j−1

(
1− xj

qxi

)
n−1∏
i=1

(
1− z

qxi

)(
1− zan

qxn

) ∏
1≤i<j≤n

(
1− 1

qxixj

)
(1.14.6)

NC
n =

n−1∏
i=1

(
1− aiqi(n−i)xi+1

qxi

) ∏
i<j−1

(
1− xj

qxi

)
n−1∏
i=1

(
1− z

qx2
i

)(
1− zdn

qx2
n

) ∏
1≤i<j≤n

(
1− 1

qxixj

)
(1.14.7)

ND
n =

n−2∏
i=1

(
1− aiqi(n−i)xi+1

qxi

) ∏
i+1<j≤n

(
1− xj

qxi

) ∏
1≤i<j≤n−1

(
1− 1

qxixj

)
∏

1≤i≤n−2

(
1− 1

qxixn

)(
1− dn−1

xn−1

qxn

)(
1− dn

1

qxn−1xn

)
(1.14.8)

Theorem 1.14.2. The kernels NA
n , NB

n , NC
n give the following generating func-

tions:

NA
n πω =

∑
σ∈Sn

n∏
i=1

(
yi−1

yi

)ci(σ) ∏
i∈D(σ

yn−ii

= (1 + y0 + · · ·+ yn−1
0 )(1 + y1 + · · ·+ yn−2

1 ) · · · (1 + yn−2) , (1.14.9)
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c(σ) being the code of σ.

NB
n πBw0

=
∑
w

q−`(w)zm(w)
∏

i∈D(w)

aiqi(n−i)

= (1+a+ · · · +an−1)(1+aq+ · · · +(aq)n−2)

(1+aq2+ · · · +(aq2)n−3) · · · (1 + aqn−2)
n∏
i=1

(1 + zaq−i) , (1.14.10)

m(w) being the multiplicity of sBn in any reduced decomposition of w.

NC
n π

C
w0

=
∑
w

q−`(w)zm(w) dε(w)
n

∏
i∈D(w)\{n}

aiqi(n−i)

= (1+aq+ · · · +(aq)n−2)(1+aq2+ · · · +(aq2)n−3) · · · (1 + aqn−2)(
an−1Sn−1(1+

1

a
− z̄(q−1+ · · · +q−n+1)

+ dnz
nq−n(n+1)/2Sn−1(1+a− 1

z̄
(q+ · · · +qn−1)

)
, (1.14.11)

with ε(w) = 1 if n ∈ D(w), and = 0 otherwise, m(w) being the multiplicity of sCn
in any reduced decomposition of w. 21

Specializing yi to qi, which corresponds to taking di = qi(n−i) for a descent i,
one obtains Iwahori-Matsumoto generating function for type A:∑

σ∈Sn

q−`(σ)
∏
i∈D(σ

qi(n−i) = n (1 + q + · · ·+ qn−2)

(1 + q2 + · · ·+ q2(n−3)) · · · (1 + qn−2) (1.14.12)

In type B, the specialization a = qn, z = 1 gives Iwahori-Matsumoto function.
For example,

NB
3 π

B
w0

= (1 + a+ a2)(1 + aq)(1 + azq−1)(1 + azq−2)(1 + azq−3)

specializes to
2(1 + q + · · ·+ q7)(1 + q3 + q6)

and, for n = 4,

(1+a+a2 +a3)(1+aq+a2q2)(1+aq2)(1+azq−1)(1+azq−2)(1+azq−3)(1+azq−4)

21we use λ-rings notations. For any two alphabets A =
∑
a, B =

∑
b, one has Sk(A− z̄B) =∑k

i=0(−z)iSk−i(A)Si(−B), where the Si(A) are the complete functions of A and (−1)iSi(−B)
are the elementary symmetric functions of B.
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specializes to

2 (1− q12)(1− q15)(1− q16)
(
(1−q)(1−q3)(1−q5)

)−1
.

In type C, the specialization a = qn+1, dn = qn(n+1)/2, z = 1 gives Iwahori-
Matsumoto function. For example, for n = 3, the generating function NC

3 πw0 ,
which is equal to

(1 + aq)

((
a2

q4
+
a2

q5
+
a2

q3

)
z2+

(
a2

q
+
a2

q2
+
a2

q3
+
a

q2
+
a

q3
+
a

q

)
z+a2+a+1

+ d3

((
a2

q6
+
a

q6
+q−6

)
z3+

(
q−4+

a

q3
+
a

q4
+
a

q5
+q−5+q−3

)
z2+

(
q−3+q−1+q−2

)
z

))

specializes to
2 (1− q6)2(1− q10)

(
(1−q)(1−q3)(1−q5)

)−1
.

The theorem is proved by factorizing appropriately the operator π♥w0
, details

may be found in the note [].



Chapter 2
Linear Bases for type A
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2.1 Schubert, Grothendieck and Demazure
To interpolate a function f(x1) at points y1, y2, . . . ,, Newton [155] chose the basic
polynomials Y0 = 1, Y1 = (x1−y1), Y2 = (x1−y1)(x1−y2), . . . and found that the
coefficients of f(x1) in this basis could be obtained by divided differences.

One can add the remark to Newton’s computations that the Newton basis
Y0, Y1, Y2, . . . is invariant under the divided differences ∂y

i . Indeed, Yk∂
y
k = −Yk−1,

and Yk∂y
i = 0 for i 6= k. It is therefore natural to generate bases of polynomials

using the different operators ∂i, πi, π̂i, Ti that are at our disposal. However, we also
need starting points, i.e. polynomials such that them together with their descent
will constitute a basis. In the case of non symmetric Macdonald polynomials,
because one also has “raising operators” which increase degree, we need only one
starting point, which is 1. For the other families of polynomials, the starting
points will be associated to the diagrams of partitions, to the cost of having to
check compatibility conditions between the different starting points.

Given λ ∈ Nn a partition (i.e. λ1 ≥ · · · ≥ λn ≥ 0), then

Yλ :=
∏

i=1..n,j=1..λi

(xi − yj) & Gλ :=
∏

i=1..n,j=1..λi

(1− yjx−1
i )

are the dominant Schubert polynomials and the dominant Grothendieck polynomial
respectively, of index λ, and

Kλ = xλ = K̂λ

are the dominant Demazure characters for type A. We shall rather say key
polynomials instead of Demazure characters [27] in reference to their combinatorial
interpretation in terms of keys.

61
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x3−y1 x3−y2

x2−y1 x2−y2

x1−y1 x1−y2 x1−y3

x3 x3

x2 x2

x1 x1 x1

1− y1
x3

1− y2
x3

1− y1
x2

1− y2
x2

1− y1
x1

1− y2
x1

1− y3
x1

Y322 K322 G322

We define Schubert polynomials to be all1 the non-zero images of the dominant
Schubert polynomials under products of ∂i’s and Grothendieck polynomials2 to
be all the images of the dominant Grothendieck polynomials under products of
πi’s. Similarly, the two types of key polynomials are defined by taking all images
under products of πi’s or of π̂i’s respectively.

Since the operators satisfy relations, we cannot index the polynomials by the
choice of the starting point and the sequence of operators used. In fact, all these
polynomials can be indexed by weights in Nn, the recursive definition being

Y...,vi+1,vi−1,... = Yv ∂i & G...,vi+1,vi−1,... = Gv πi when vi > vi+1 (2.1.1)

Kv πi = Kv si & K̂v π̂i = K̂v si , when vi > vi+1 . (2.1.2)
Thus, the operators act on the indices just by sorting increasingly in the case of
key polynomials, and by sorting and decreasing the biggest of the two components
exchanged, in the case of Schubert and Grothendieck polynomials3.

It is clear that these four families constitute linear bases of Pol(n), because Yv,
Kv, K̂v have leading term4 xv, and Gv has leading term x−v. However, it is un-
satisfactory to have mere bases, one must be able to express a general polynomial

1 There are dominant polynomials in the images of a dominant polynomial, in the Schubert
and Grothendieck cases; therefore, one has to check consistency, as we already mentioned, but
this easy.

2As a natural continuation of my work about syzygies of determinantal varieties, I had de-
termined the classes, as polynomials, of the structure sheaves of the Schubert subvarieties of
a flag manifold. It was a time where Grothendieck had some complaints about the world of
mathematicians. I proposed to M.P. Schützenberger to call these classes Grothendieck polyno-
mials, to which suggestion he readily agreed. They appear under the label G-polynomials in
the paper[123] introducing them, the referee having disagreed with the terminology. The said
referee fortunately forgot to extend his ban to future work. Moreover, Alexandre Grothendieck
did not protest against this appellation.

3Choosing permutations as indexing sets, then the action is simply sorting. We did not give
the case vi ≤ vi+1 because it is determined by the relations ∂2

i = 0, π2
i = πi, π̂2

i = −π̂i. Thus in
that case,

Yv∂i = 0, Gvπi = Gv, Kvπ = Kv, K̂vπ̂i = −K̂v .

4Notice that xji∂1 = xj−1,i+xj−2,i+1+· · ·+xi,j−1 and that xjiπ1 = xj,i+xj−1,i+1+· · ·+xi,j .
From this, it is easy to prove by induction that the monomials xu appearing in Yv,Kv are such
that un ≤ vn, un + un−1 ≤ vn + vn−1, . . . . In particular, u ≤ v for the right lexicographic order,
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in term of these bases. We shall see how to do it in the next section, by defining
a scalar product.

As examples of Schubert and Grothendieck polynomials, one obtains the fol-
lowing polynomials starting from the dominant ones Y210 and G210.

Y210 =
(x2 − y1)
(x1 − y1) (x1 − y2)

llllllll
SSSSSSSS

SSSSSSSS

Y110 =
(x2 − y1)
(x1 − y1) • Y200 =

•
(x1−y1) (x1−y2)

Y100 =
•

x1 − y1 •

TTTTTTTTTTTT

Y010 = x1+x2−y1−y2

iiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiii

Y000 = 1

G210 =
(1− y1

x2
)

(1− y1
x1

) (1− y2
x1

)

mmmmmmm
RRRRRRRR

RRRRRRRR

G110 =
(1− y1

x2
)

(1− y1
x1

) • G200 =
•

(1− y1
x1

) (1− y2
x1

)

G100 =
•

1− y1
x1
•

SSSSSSSSSSS

G010 = 1− y1y2
x1x2

jjjjjjjjjjjjjjj

jjjjjjjjjjjjjjj

G000 = 1

For these two families, only the polynomial indexed by 010 is not dominant.
However, in general Schubert and Grothendieck polynomials do not factorize,
though they still have the same type of vanishing properties than the dominant
ones.

Our starting Schubert polynomials are products of linear factors xi − yj. We
shall be able to express general Schubert or Grothendieck polynomials as sums of

i.e. the order such that if u < v then there exist k such that ui = vi for i = k+1, . . . , n and
uk < vk. Similarly, all monomials xu appearing in the expansion of Gv are such that −un ≤ −vn,
−un−un−1 ≤ −vn−vn−1, . . . .
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products of linear factors5. For example, using Leibnitz’ formula, one obtains the
sequence of polynomials

Y320 =

x2−y1 x2−y2

x1−y1 x1−y2 x1−y3

, Y301 =

x3−y2

x1−y1 x1−y2 x1−y3

+

x2−y1

x1−y1 x1−y2 x1−y3

,

Y021 =

x3−y2

x2−y2 x2−y3

+
x3−y2

x1−y1 x2−y3

+
x2−y1

x1−y1 x2−y3

+
x3−y2

x1−y1 x1−y2

+
x2−y1

x1−y1 x1−y2

,

and the last polynomial, Y021, does not factorize anymore.

2.2 Using the y-variables
Some properties of Schubert and Grothendieck polynomials are easier to follow
using permutations for the indexing. Given a permutation σ of code v, then one
uses both notations Yv(x,y) and Xσ(x,y) for the same Schubert polynomial, as
well as Gv(x,y) and G(σ)(x,y) for the same Grothendieck polynomial.

Both families satisfy a fundamental symmetry in x,y. Indeed, given i ≤ n−1,
denoting as usual ω = [n, . . . , 1], then it is immediate, because the statement
reduces to compute the image of (xi−yn−i) or (1−yn−ix

−1
i ), that

Xω(x,y) ∂x
i = −Xω(x,y) ∂y

n−i (2.2.1)
G(ω)(x,y) πx

i = G(ω)(x,y) π
1/y
n−i , (2.2.2)

where π1/y
n−i denotes the isobaric divided differences relative to y∨ = {y−1

1 , y−1
2 , . . . }.

By iteration, noticing that the symmetry is valid for Xω(x,y) and G(ω)(x,y),
one obtains the following proposition.

Proposition 2.2.1. The Schubert and Grothendieck polynomials satisfy the re-
cursion

Xsiσ(x,y) = −Xσ(x,y) ∂y
i & G(siσ)(x,y) = G(σ)(x,y) π

1/y
i , (2.2.3)

for i such that `(siσ) ≤ `(σ), as well as the symmetry

Xσ(x,y) = (−1)`(σ)Xσ−1(y,x) & G(σ)(x,y) = G(σ−1)(y
∨,x∨) . (2.2.4)

Symmetry in consecutive variables can be seen on the indexing. Indeed, if i
and v are such that vi ≤ vi+1, then Yv and Gv are symmetrical in xi, xi+1, because
they are equal to Yu∂i and Guπi respectively, with u = [. . . , vi+1 + 1, vi, . . .].
Consequently, one has the following lemma.

5these expressions are not unique.
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Lemma 2.2.2. Let i, j, v be such that vi ≤ vi+1 ≤ · · · ≤ vj. Then Yv, Gv, Kv are
symmetric in xi, . . . , xj.

In the case where v ∈ Nn is antidominant (i.e. v = v ↑), then Yv, Gv, Kv are
therefore symmetric in x1, . . . , xn. In fact, let λ = v ↓ be the decreasing reorder-
ing of v. Then Kv = xλπω = xλ+ρ∂ω is equal to the Schur function sλ(xn), and
Yv = Yλ+ρ∂ω specializes to sλ(xn) for y = 0, because Yλ+ρ specializes to xλ+ρ.
The polynomial Gv, v antidominant, can also be considered as a deformation of
a Schur function. It still possesses a determinantal expression. Geometrically,
it is interpreted as the class of the structure sheaf of a Schubert variety in the
Grothendieck ring of a Graßmannian and I described it in [94] by pure manipula-
tion of determinants without using divided differences.

Let us call Graßmannian Schubert (resp. Grothendieck) polynomials. the
polynomials indexed by antidominant v.

2.3 Flag complete and elementary functions
Both Schubert, Demazure and Grothendieck polynomials are non symmetric gen-
eralizations of the fundamental basis of symmetric functions that are Schur func-
tions. In fact, the present notes will illustrate that many properties of the Schur
basis can be extended to properties of the Yv, Kv, Gv bases. But there are other
bases of Sym(x), particularly the products of elementary functions ei(x) and the
products of complete functions hi(x). Let us generalize these into flag elementary
functions and flag complete functions.

Definition 2.3.1. For any r, any v ∈ Nr, v ≤ [r−1, . . . , 0], let

Pv = ev1(xr−1) · · · evr(x0)

and, for any n, any v ∈ Nn, let

Hv = hv1(x1) · · ·hvn(xn) .

It is clear that {Hv : v ∈ Nn} is a linear basis of Pol(xn), which is triangular
in the basis of monomials. Identifying v and 0v, one checks that ∪r{Pv : v ∈ Nr}
is also a linear basis of the space of polynomials in x1, x2, . . .. Notice that the
restriction on v eliminates the elementary functions which are null because of
degree strictly higher than the cardinality of the alphabet. Beware that Pv0 is
different from Pv, because of the order we write the flag of alphabets. This change
of convention for the indexing of the basis of flag elementary functions will be
justified by the non-commutative extension of Pv.

It is not straightforward to express monomials in these two bases. For example,

x2
2 = P1,1,0,0 − P2,0,0,0 − P1,1,0

= (x1 + x2 + x3)(x1 + x2)− (x1x3 + x1x2 + x2x3)− (x1 + x2)x1
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x2
2 = H0,2 −H1,1 = (x2

1 + x1x2 + x2
2)− x1(x1 + x2) .

We shall obtain such expansions by using a scalar product on polynomials.
More generally, monomials can be written as flag Schur functions. Let v ∈ Nn,

u = [vn, . . . , v1]. Then [108, 1.4.10]

xv = Su(xn, . . . , x1) =
∣∣∣huj+j−i(xn+1−j)

∣∣∣ . (2.3.1)

For example,

x0,3,1,2 = S2,1,3,0(x4,x3,x2,x1) =

∣∣∣∣∣∣∣∣
h2(x4) h2(x3) h5(x2) h3(x1)
h1(x4) h1(x3) h4(x2) h2(x1)
h0(x4) h0(x3) h3(x2) h1(x1)

0 0 h2(x2) h0(x1)

∣∣∣∣∣∣∣∣ .
Expanding by columns (but from the right!), one finds the expression of the mono-
mial in the H-basis :

x0,3,1,2 = H0,3,1,2 −H1,2,1,2 −H0,4,0,2 +H2,2,0,2 −H0,3,2,1

+H1,2,2,1 +H0,5,0,1 −H3,2,0,1 +H0,4,2,0 −H2,2,2,0 −H0,5,1,0 +H3,2,1,0 .

The following proposition illustrates that Schur functions in xn can also be
easily expressed in these two bases, using flags of alphabets6 in the Jacobi-Trudi
determinants.

Proposition 2.3.2. Let v be the increasing reordering of a partition λ, u ∈ Nr be
the reordering of the conjugate λ∼. Then the Schur function sλ(xn), also denoted
Sv(xn), is equal to both determinants

Sv(x1/x2/ . . . /xn) =
∣∣∣hvj+j−i(xi)∣∣∣

and Λu(xn+r−1/xn+r−2/ . . . /xn) =
∣∣∣euj+j−i(xn+r−i)

∣∣∣ . (2.3.2)

The expansions of these determinants furnishes the required expressions of
sλ(xn). For example, for n = 3, λ = [4, 2], one has λ∼ = [2, 2, 1, 1] and

s42(x3) = S024(x1/x2/x3) =

∣∣∣∣∣∣
h0(x1) h3(x1) h6(x1)

0 h2(x2) h5(x2)
0 h1(x3) h4(x3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e1(x6) e2(x6) e4(x6) e5(x6)
e0(x5) e1(x5) e3(x5) e4(x5)

0 e0(x4) e2(x4) e3(x4)
0 0 e1(x3) e2(x3)

∣∣∣∣∣∣∣∣ = Λ1122(x6/x5/x4/x3) ,

6but this time, flags are constant by rows.
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which entails

s4,2(x3) = H0,2,4 −H0,5,1 = P1,1,2,2,0,0,0 − P1,1,3,1,0,0,0 − P2,0,2,2,0,0,0

+ P4,0,0,2,0,0,0 + P2,0,3,1,0,0,0 + P1,4,0,1,0,0,0 − P1,3,0,2,0,0,0 − P5,0,0,1,0,0,0 .

Given i, there is at most one component of the function Pv and of the function
Hv which is not symmetrical in xi, xi+1. Since

ek(xi)∂i =
(
ek(xi−1) + xiek−1(xi−1)

)
∂i = ek−1(xi−1)

and
hk(xi) πi = hk(xi+1) ,

the image of Pv = · · · ek(xi)e`(xi−1) · · · under ∂i is a flag · · · ek−1(xi−1)e`(xi−1) · · ·
which is not permitted if (k−1)` 6= 0. Similarly, the image ofHv = · · ·hk(xi)h`(xi+1) · · ·
under πi,which is · · ·hk(xi+1)h`(xi+1) · · · , is also illegal if k` 6= 0.

But, from the case of order 2 of (2.3.2), one has, with α = min(k−1, `) and
β = max(k−1, `),

ek−1(xi−1)e`(xi−1) =
(
eα(xi)eβ(xi−1) + eα−1(xi)eβ+1(xi−1) + · · ·

+ e0(xi)eβ+α(xi−1)
)
−
(
eβ+1(xi)eα−1(xi−1) + · · ·+ eβ+α(xi)e0(xi−1)

)
,

and, with α = min(k, `), β = max(k, `),

hk(xi+1)h`(xi+1) =
(
hα(xi)hβ(xi+1) + · · ·+ h0(xi)hβ+α(xi+1)

)
−
(
hβ+1(xi)hα−1(xi+1) + · · ·+ hβ+α(xi)h0(xi+1)

)
.

This entails the following actions of ∂i and πi.

Lemma 2.3.3. Let n, i be two positive integers, 0 < i < n, v ∈ Nn being such
that v ≤ [n−1, . . . , 0], α = min(vn−i− 1, vn−i+1), β = max(vn−i− 1, vn−i+1). Then

P••vn−i,vn−i+1•• ∂i =
α∑
j=0

P••α−j,β+j•• −
α∑
j=1

P••β+j,α−j•• . (2.3.3)

For v ∈ Nn, α = min(vi, vi+1), β = max(vi, vi+1), one has

H••vi,vi+1•• πi =
α∑
j=0

H••α−j,β+j•• −
α∑
j=1

H••β+j,α−j•• . (2.3.4)

For example,

P52 03210 ∂6 = P24 03210 + P15 03210 + (P06 03210)− P51 03210 − P60 03210 ,

H9 26 99 π2 = H9 26 99 +H9 17 99 +H9 08 99 −H9 71 99 −H9 80 99 ,

the term P0603210 being null because e6(x5) = 0.
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2.4 Three scalar products
Let us first look for a scalar product on Pol(n) compatible with the product
structure and with degree.

When n = 1,

(f(x1), g(x1)) = CT

(
f(x1), g(

1

x1

)

)
,

where CT means “constant term”, is a good candidate. Generalizing to (f, g) =

CT
(
f(x1, . . . , xn), g( 1

x1
), . . . , 1

xn
)
)

means considering the ring of polynomials as
a tensor product of rings of polynomials in 1 variable, a rather poor structure.
Reversing the order of variables in the function g is not enough, one needs a
kernel to link the variables.

We define

(f, g) = CT
(
f(x1, . . . , xn)g(x−1

n , . . . , x−1
1 )

∏
1≤i<j≤n

(1− xix−1
j )
)
, (2.4.1)

and write Ωn =
∏

1≤i<j≤n(1− xix−1
j ) for the kernel.

Explicitely, for two monomials, (xu, xv) = (xu1−vn,...,un−v1 , 1) and (xv, 1) 6= 0
only when x−v appears in the expansion of Ωn. In that case (xv, 1) = ±1 according
to the sign x−v has in Ωn.

Similar definitions and properties hold for the root systems of type B,C,D
(see later sections) with appropriate kernels ΩB

n ,Ω
C
n ,Ω

D
n .

For n = 3, one has

Ω3 = x000 − x1,−1,0 − x0,1,−1 + x2,−1,−1 + x1,1,−2 − x2,0,−2

and therefore

(x000, 1) =1= (x−2,1,1, 1) = (x−1,−1,2, 1) & (x−1,1,0, 1) = −1= (x0,−1,1, 1) = (x−2,0,2, 1),

the other monomials being orthogonal to 1 (one has enumerated the positive and
negative roots for type A2).

Notice that, for symmetric functions, Weyl has defined the scalar product

(f, g)Weyl =
1

n!
CT
(
f(x1, . . . , xn)g(x−1

1 , . . . , x−1
n ) Ω2

n

)
.

We shall see that in the case of Schur functions

(sλ, sµ) = (sλ, sµ)Weyl = δλ,µ ,

so that the restriction of all these scalar products to symmetric functions coincides
with the usual scalar product with respect to which Schur functions constitute an
orthonormal basis.
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However, we have also to use the structure of Pol(n) as a free Sym(n)-module.
We define for f, g ∈ Pol(n),

(f, g)∂ := fg ∂ω & (f, g)π := fg πω .

These quadratic forms take values in Sym(n) and are Sym(n)-linear.
The main properties of all these quadratic forms is the compatibility with the

operators used to define the different bases.

Proposition 2.4.1. For i : 1 ≤ i ≤ n−1,

• πi is adjoint to πn−i with respect to ( , ) ,

• ∂i is self-adjoint with respect to ( , )∂ ,

• πi is self-adjoint with respect to ( , )π .

Proof. Let us check that all these statements reduce to the case n = 2.

(f∂i, g)∂ =
(
(f∂i)g

)
∂ω = (f∂i g)∂i∂siω =

(
(f∂i)(g∂i)

)
∂siω .

The last expression being symmetrical in f, g, one has, indeed, (f∂i, g)∂ = (f, g∂i)
∂.

The same computation applies to the case ( , )π.
The kernel Ωn can be written Ω′ (1− xix−1

i+1), with Ω′ symmetrical in xi, xi+1,
and one can first compute the constant term in xi, xi+1. Let us write f = f1 +
xi+1f2, g(x−1

n , . . . , x−1
1 ) = h(x1, . . . , xn) = g1 + xi+1g2, with f1, f2, g1, g2 invariant

under si. The difference fπih− hπif = fπ̂ih− hπ̂if is equal to (f1g2 − g1f2)xi+1.
Therefore the constant term

CTxi,xi+1

(
(fπih− hπif) (1− xi/xi+1)Ω′

)
= CTxi,xi+1

(
(fπ̂ih− hπ̂if) (1− xi/xi+1)Ω′

)
= CTxi,xi+1

(
(xi+1 − xi) (f1g2 − g1f2)Ω′

)
is null, because the function inside parentheses is antisymmetrical in xi, xi+1. Tak-
ing into account the transformation xi → x−1

n+1−i, this nullity proves that πi is
adjoint to πn−i. QED

Thanks to Proposition 2.4.1, the scalar products (f, sλ(xn)) can be rewritten as
scalar products with dominant monomials. Indeed sλ(xn) = xλπω, and therefore(

f, sλ(xn)
)

=
(
f, xλπω

)
=
(
fπω, x

λπω
)

=
(
fπω, x

λ
)
.

On the other hand,(
f, sλ(xn)

)∂
=
(
f, 1)∂sλ(xn) &

(
f, sλ(xn)

)π
=
(
f, 1)πsλ(xn) ,

since these last two scalar products are Sym(xn)-linear.
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2.5 Kernels
With a scalar product and a basis defined by self-adjoint operators, it is easy to
find the adjoint basis. Once more, it is sufficient to understand the case n = 2.

Lemma 2.5.1. Let i ∈ {1, . . . , n−1}, Di = πi, D̂i = π̂i (resp. Di = ∂i = D̂i).
Let f, g ∈ Pol(n), f ′ = fDi, g′ = gD̂i. Then the two equalities (f, g)D = 0,
(f ′, g)D = 1 imply that (f ′, g′)D = 0 and that (f, g′)D = 1.

Proof. Consider first the case Di = πi and write f = f1 + xi+1f2, g = g1 + xi+1g2.
Then f ′ = f1, g′ = g(πi − 1) = g1 − g. Consequently,

(f, g′)π = (f1, g1)π − (f, g)π = (f ′, g)π = 1 & (f ′, g′)π = (f1, g1)π − (f1, g)π = 0 .

The computation is similar for Di = ∂i. QED
This lemmma will allow propagating orthogonality relations. But to produce

a hen, we need an egg, or conversely.
Let

ΘY
n :=

∏
1≤i<j≤n

(yi − xj) & ΘG
n :=

∏
1≤i<j≤n

(1− xjy−1
i ) .

Lemma 2.5.2. Let v : 0 ≤ ρ = [n−1, . . . , 0]. Then

(Yv,Θ
Y
n )∂ = 0 = (Gv,Θ

G
n )π ,

except for v = 0, in which case

(Y0,Θ
Y
n )∂ = 1 = (G0,Θ

G
n )π .

Proof. By definition, (f(x),ΘY
n )∂ = f(x)ΘY

n ∂ω for any polynomial f(x). If this
polynomial belong to the span of xv : v ≤ ρ, then f(x)ΘY

n belong to the span
of xv : v ≤ [n−1, . . . , n−1] and its image under ∂ω is a symmetric polynomial
of degree 0 (only the monomials which are a permutation of xρ have a non-zero
image). On the other hand, the scalar product can also be written as a sum :

(Yv,Θ
Y
n )∂ =

∑
σ

(−1)`(σ)
(
YvΘ

Y
n

)σ 1

∆(x)
.

Since this is a function of degree 0 in x, one can specialize x = y without changing
its value. However, all (ΘY

n )σ then vanish, except for the identity, in which case
ΘY
n specializes to ∆. Therefore,7 (Yv,Θ

Y
n )∂ = Yv(y,y) = δv,0.

The proof is similar for Grothendieck polynomials. QED
7The vanishing of Yv(y,y), which is evident for dominant v, is proved following an induction

which in fact furnishes more specializations. Thus we do not prove it at this point, but refer to
Corollary 3.1.3 below.
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2.6 Adjoint Schubert and Grothendieck polyno-
mials

The ring Pol(n) is a free Sym(n)-module with bases {xv : v ≤ ρ} and {x−v : v ≤
ρ} (one takes Laurent polynomials in the second case). Therefore {Yv : v ≤ ρ}
and {Gv : v ≤ ρ} are two linear bases. Starting with Ŷρ := ΘY

n and Ĝρ := ΘG
n ,

instead of Yρ and Gρ, one generates recursively two other bases

Ŷ...,vi+1,vi−1,... = Ŷv ∂i & Ĝ...,vi+1,vi−1,... = Ĝv π̂i when vi > vi+1 . (2.6.1)

Here are these bases for n = 3.

Ŷ210 =
(y1 − x3) (y2 − x3)
(y1 − x2)

kkkkkkkkkkkkk
QQQQQQQQ

QQQQQQQQ

Ŷ110 = (y1 − x3)(y2 − x3) Ŷ200 =
(y1 − x3)
(y1 − x2)

Ŷ100 = y1 + y2 − x2 − x3

VVVVVVVVVVVVVVVV
Ŷ010 = y1 − x3

iiiiiiiiiiii

iiiiiiiiiiii

Ŷ000 = 1

Ĝ210 =
(1− x3

y1
) (1− x3

y2
)

(1− x2

y1
)

llllllllllll
QQQQQQQQ

QQQQQQQQ

Ĝ110 = x2

y2
(1− x3

y1
)(1− x3

y2
) Ĝ200 = x3

y2

(1− x3

y1
)

(1− x2

y1
)

Ĝ100 = x3

y1

(
1− x2x3

y1y2

)
UUUUUUUUUUUUU

Ĝ010 = x2x3

y1y2

(
1− x3

y1

)
jjjjjjjjjjj

jjjjjjjjjjj

Ĝ000 =
x2x2

3

y21y2

Lemmas 2.5.1, 2.5.2 give the following pairs of adjoint bases.
Theorem 2.6.1. The bases {Yv : v ≤ ρ} and {Ŷv : v ≤ ρ} are adjoint with
respect to ( , )∂. The bases {Gv : v ≤ ρ} and {Ĝv : v ≤ ρ} are adjoint with
respect to ( , )π.

More precisely, the pairing is

(Yv, Ŷu)
∂ = δv,ρ−u = (Gv, Ĝu)

π . (2.6.2)
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The two bases {Ŷv} and {Ĝv} can in fact be easily obtained as images of {Yv}
and {Gv} respectively. Indeed, Ω is obtained from Yρ by reversing the alphabet
x, but divided differences satisfy

ω ∂i ω = −∂n−i . (2.6.3)

Similarly, let ♣ be the involution xi → x−1
n+1−i. Then

♣ πi♣ = πn−i & ωx−ρ πi x
ρω = −π̂n−i . (2.6.4)

Extend the involution to codes of permutations : u♣ = v if and only iff the
corresponding permutations σ, ζ, are such that ωσω = ζ. Then, the relations
(2.6.3, 2.6.4) induce

Lemma 2.6.2. The adjoint polynomials Ŷv and Ĝv are related to the original ones
by (

Ŷv

)ω
= (−1)|v| Yv♣ &

(
Ĝv

)ω
= (−1)|v|Gv♣

xρ

yρ
. (2.6.5)

As a consequence, for any σ, ζ ∈ Sn, one has(
Xσ(x,y) , Xζ(x

ω,y)
)∂

= (−1)`(ζ)δσ,ζω (2.6.6)(
G(σ)(x,y) ,

(
xρ

yρ
G(ζ)(x,y)

)ω)π
= (−1)`(ζ)δσ,ζω (2.6.7)

The decomposition of any polynomial in the Schubert or Grothendieck basis
can easily be computed using the scalar products with their adjoint bases. Here
is the matrix of change of basis between monomials xv : 0 ≥ v ≥ [−2, −1, 0] and
Grothendieck polynomials :

000 100 010 200 110 210

1/x000 1 0 0 0 0 0

1/x100 1
y1

− 1
y1

0 0 0 0

1/x010 1
y2

1
y1

− 1
y2

0 − 1
y1

0

1/x200 1
y21

−y2+y1
y12y2

0 1
y1y2

0 0

1/x110 1
y1y2

0 − 1
y1y2

0 0 0

1/x210 1
y12y2

− 1
y12y2

− 1
y12y2

1
y12y2

1
y12y2

− 1
y12y2

2.7 Bases adjoint to elementary and complete
functions

Expanding the kernels ΘY
n and ΘG

n , one finds the bases adjoint to monomials, for
the two scalar products ( , )∂ and ( , )π.
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Proposition 2.7.1. Given n, let x∨ = {x−1
1 , . . . , x−1

n }. Then for any u, v : u ≤
ρ, v ≤ ρ one has(

Pρ−v(x) , xuω
)∂

= (−1)|v|δv,u =
(
Pv(x

∨) , xuω
)π
. (2.7.1)

The basis adjoint to {Hv : v ≤ ρ} requires a little more work, because the
monomials appearing in the expansion of Hv do not respect the condition that
their exponent be majorized by ρ. We first some technical properties of divided
differences.

Lemma 2.7.2. Let a, b, k, n ∈ N be such that 1 ≤ k < n, 0 ≤ a, b ≤ n−k. Then

S1b(xn − xk)Sa(xk)∂k . . . ∂1 =

{
(−1)b if a+b = n−k

0 otherwise
(2.7.2)

Proof. One expands S1b(xn − xk) = S1b(xn) − xkS1b(xn) + · · · + (−xk)
b. On the

other hand, xikSa(xk) = Sa+i(xk) −
∑
xu, sum over monomials xu, u ∈ Nk such

that uk ≤ i−1. The initial function is therefore equal to(
S1b(xn)Sa(xk)− S1b−1(xn)Sa+1(xk)− · · ·+ (−1)bS0(xn)Sa+b(xk)

)
−
∑

cux
u ,

with cu ∈ Sym(xn) and uNk such that uk ≤ b−1 < n−k. The extra monomials xu
are sent to 0 by ∂k . . . ∂n−1 for degree reason. The sum inside parentheses is sent
to

S1b(xn)Sa−n+k(xk)− S1b−1(xn)Sa+1−n+k(xk)− . . .
+ (−1)bS0(xn)Sa+b−n+k(xk) = (−1)bSa+b−n+k(xn − xn) .

This last function is different from 0 only in the case S0(xn−xn) = 1, that is only
for a+b = n−k. QED

Proposition 2.7.3. Given n, for any v ≤ ρ, let Ĥv = S1v1 (xn − x1)S1v2 (xn −
x2) . . . S1vn−1 (xn − xn−1). Then(

Ĥv , Hu

)∂
= (−1)|v|δv,ρ−u , u, v ≤ ρ . (2.7.3)

Proof. Factorize ∂ω = (∂n−1)(∂n−2∂n−1) . . . (∂1 . . . ∂n−1). By decreasing induction
on k, one has to compute(

S1v1 (xn − x1) . . . S1vk (xn − xk)
)(
Sv1(x1) . . . Svk(xk)

)
∂k . . . ∂n−1

= f (S1vk (xn − xk)Svk(xk)) ∂k . . . ∂n−1 ,

with f symmetrical in xk, . . . , xn, and therefore commuting with ∂k . . . ∂n−1. Eq.
2.7.2 forces the equality vk+uk = n−k, to have non nullity, and we can proceed
with k−1. QED
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For example, for n = 3, one has the following pair of adjoint bases.

H210 = x2
1(x1+x2)

H110 = x1(x1+x2) H200 = x2
1

H100 = x1 H010 = x1+x2

H000 = 1

Ĥ000 = 1

Ĥ100 = −x2−x3 Ĥ010 = −x1−x3

Ĥ110 = (x2+x3)(x1+x3) Ĥ200 = x2x3

Ĥ210 = −x2x3(x1+x3)

2.8 Adjoint key polynomials

The two families {Yv : v ∈ Nn}, {Gv : v ∈ Nn} are bases of Pol(n) (as a vector
space). We have also given two other bases, {Kv : v ∈ Nn} and {K̂v : v ∈ Nn},
that are in fact adjoint with respect to ( , ), as states the next theorem.

First, one checks that for any partition λ, then (Kv, x
λ) = 0, except when

v = λω = [λn, . . . , λ1], in which case (Kλω, x
λ) = 1 (cf. [44, Cor 12]). Using that

πi is adjoint to πn−i, this allows to compute any (Kv, K̂u). For example, writing
in a box the non-zero scalar products, the knowledge of all (Kv, K̂361)

(K631, K̂361)

llllllll
SSSSSSSS

SSSSSSSS

(K361, K̂361) (K613, K̂361)

(K316, K̂361)

QQQQQQQQQ
(K163, K̂361)

llllllll
llllllll

(K163, K̂361)
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determines all (Kv, K̂316)

(K631, K̂316)

mmmmmmmmm
RRRRRRRR

RRRRRRRR

(K316, K̂316) (K613, K̂316)

(K316, K̂316)

RRRRRRRR
(K163, K̂316)

kkkkkkkk
kkkkkkkk

(K163, K̂316)

In conclusion, one has the following property (cf. [44, Th 15]) :

Theorem 2.8.1. Given u, v ∈ Nn, then (Kv, K̂u) = 0, except (Kv, K̂vω) = 1.

In particular, if λ is dominant, then (Kv, x
λ) = 0, except if v = λω, in which

case Kv is a Schur function.
Notice that the pairing, for Schubert and Grothendieck polynomials, is also

the reversing σ → σω, when indexing these polynomials by permutations, but not
when using codes.
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2.9 Reproducing kernels for Schubert and Groth-
endieck polynomials

In the theory of orthogonal polynomials in one variable one finds it convenient
to make use of reproducing kernels Kn(x, y) = P0(x)P0(y) + · · · + Pn(x)Pn(y),
associated to a family of polynomials P0(x), P1(x), . . . of degree 0, 1, . . ., which are
orthonormal with respect to a linear functional f →

∫
f . The name “reproducing”

comes from the property that∫
f(x)Kn(x, y) = f(y)

whenever f is a polynomial of degree ≤ n.
The Cauchy kernel

∏
x∈x,y∈y(1 − xy)−1 plays a similar role in the theory of

symmetric polynomials. It does not require much effort nor imagination to deduce
from the preceding section kernels corresponding to the bases {Yv}, {Gv} or {Kv}.
Write Sym(xn) = Sym(yn) for the identification of any symmetric function of xn
with the same symmetric function of yn.

Theorem 2.9.1. For any v : 0 ≤ v ≤ ρ, one has(
ΘY
n , x

v
)∂

= yv &
(
ΘG
n , x

−v)π = y−v . (2.9.1)

For any Laurent polynomial f in xn, one has, modulo Sym(xn) = Sym(yn),(
ΘY
n , f(x)

)∂ ≡ f(y) &
(
ΘG
n , f(x)

)π ≡ f(y) . (2.9.2)

The two kernels expand as follows

ΘY
n (x, z) =

∏
1≤i<j≤n

(zi − xj) =
∑
v≤ρ

Yv(z,y) Ŷρ−v(x,y) (2.9.3)

ΘG
n (x, z) =

∏
1≤i<j≤n

(1− xjz−1
i ) =

∑
v≤ρ

Gv(z,y) Ĝρ−v(x,y) (2.9.4)

There is no real need of a proof. The reproducing property has been obtained
in the course of proving Lemma 2.5.2. Taking coefficients in Sym(xn), one obtains
(2.9.2) from (2.9.1). The function ΘY

n (x, z) belongs to the span of {zuxvω : u, v ≤
ρ}, and therefore can be written

ΘY
n (x, z) =

∑
u,v

cu,v(y)Yu(z,y)Ŷρ−v(x,y) .

Therefore, for any v ≤ ρ, one has
(
ΘY
n (x, z), Yv(x,y)

)∂
=
∑

u cu,v(y)Yu(z,y).
However, the reproducing property shows that this is also equal to Yv(z,y) and
this proves (2.9.3), the case of Grothendieck polynomials being similar. QED
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For example, for n = 2, one has

ΘG
2 (x, z) = 1− x2/z1 = G00(z,y)Ĝ10(x,y) +G10(z,y)Ĝ00(x,y)

= 1 ·
(

1− x2

y1

)
+

(
1− y1

z1

)
· x2

y1

.

For n = 3, Maple computes

ΘY
3 (x, z) = (z1 − x2) (z1 − x3) (z2 − x3) = − (−y1 + x2) (−y1 + x3) (−y2 + x3)

+ (z2 − y2 + z1 − y1) (−y1 + x3) (−y1 + x2)− (−z1 + y2) (z1 − y1) (y1 − x3)

+ (z1 − y1) (−y2 + x3) (−y1 + x3) + (−y1 + z2) (z1 − y1) (−x2 + y2 + y1 − x3)

− (−z1 + y2) (z1 − y1) (−y1 + z2) .

The essential property of ΘY
n (x,y) and ΘG

n (x,y) is that ΘY
n (yσ,y) and ΘG

n (yσ,y)
both vanish when σ is different from the identity. Along the same lines as for ΘY

n

and ΘG
n , one sees that the kernels Yρ(x,y) and Gρ(x,y) satisfy a twisted repro-

duction property :(
Yρ(x,y) , f(x)

)∂ ≡ f(yω) &
(
Gρ(x,y) , f(x)

)π ≡ f(yω) , (2.9.5)

modulo Sym(xn) = Sym(yn), the equivalence being replaced by an equality when
f belongs to the span of {xv : [0, . . . , 0] ≤ v ≤ [0, . . . , n−1]}. For example,

(G210(x,y), x2
3)π =

(
1− y1

x1

)(
1− y2

x1

)(
1− y1

x2

)
x2

3 π321 = y2
1 .

Notice that, using (2.2.4) and (2.6.5), exchanging the role of y and x, one can
rewrite (2.9.4) into∑

v≤ρ

(−1)|v|Gv(x, z)Gρ−v(x,y) = Yρ(z,y)x−ρ . (2.9.6)

By taking the image of (2.9.3) under products of ∂i’s and the image of (2.9.4)

under products of π̂i’s, one obtains decompositions of general Ŷv or general Ĝv,
and by involution, of general Yv and Gv. Let us detail these decompositions in the
next sections.

2.10 Cauchy formula for Schubert
Given u, v, w ∈ Nn, majorized by ρ, write w = u� v iff and only the permutations
σ(w), σ(u), σ(v) of which they are the codes, are such that σ(w) = σ(u)σ(v) and
the product is reduced8. With this notation one has the following Cauchy formula
for Schubert polynomials (given in [97] for y = 0).

8 i.e. such that lengths add: `(σ(w)) = `(σ(u)) + `(σ(v)). Notice that the product of two
permutations η, ν is reduced if and only if ∂η∂ν = ∂ην .
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Theorem 2.10.1. Let σ be a permutation in Sn, w ∈ Nn be its code. Then

Yw(x, z) =
∑

u,v:u�v=w

Yu(y, z)Yv(x,y) (2.10.1)

Xσ(x, z) =
∑

η,ν: ∂η∂ν=∂σ

Xη(y, z)Xν(x,y) . (2.10.2)

Proof. One starts from the formula in the case σ = ω, which is a rewriting of (2.9.3)
using (2.6.5). Supposing (2.10.2) to be true for σ, let i be such that `(σsi) < `(σ).
The terms in the RHS are of two types: either `(νsi) < `(ν), or not. These last
terms are such that Xν(x,y)∂i = 0. Therefore the image of (2.10.2) under ∂i is

Xσsi(x, z) =
∑

η,ζ: ∂η∂ζ=∂σsi

Xη(y, z)Xζ(x,y) ,

with ζ = νsi. QED
For example, for w = [0, 3, 1], one has the following expansion of Y031(x, z),

writing Yu Yv for Yu(y, z)Yv(x,y)

Y031(x, z) = Y0000Y031

ssssss
K

K
K

Y0100Y030

K
K

K
Y0001Y021

ssssss
JJJJJJ

JJJJJJ

Y0101Y020 Y002Y011

Y012Y010

KKKKKK
Y03Y001

tttttt
tttttt

Y031Y000

,

or, indexing by permutations,

X15324(x, z) = X12345X15324

ooooooo
PPPP

X13245X15234

PPPP
X12354X14325

ooooooo
PPPPPPP

PPPPPPP

X13254X14235 X12534X13425

X13524X13245

PPPPPPP
X15234X12435

ooooooo
ooooooo

X15324X12345

.

In these last conventions, the edges are simple transpositions: XηXsiζ → XηsiXζ .
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Notice that the above decomposition of Yρ(x, z) =
∏

i+j≤n(xi − zj), becomes
similar, when specializing y = 0, to the Cauchy expansion of the resultant∏

i,j≤n(xi − zj) in terms of Schur functions in x and in z. In fact, let m, r be
two integers such that r + m < n. Then the special case of (2.10.1) for w = rm,
y = 0 is

Yrm(x, z) =
∑

u,v:u�v=w

Yu(0, z)Yv(x,0) =
∑
λ≤rm

(−1)|µ|sµ(zr)sλ(xm) , (2.10.3)

sum over all pairs of partitions λ, µ such that the conjugate of µ is [r−λm, . . . , r−λ1].

2.11 Cauchy formula for Grothendieck
The analogous formula for Grothendieck polynomials is not more complicated.
Instead of taking reduced products, i.e. products ∂η∂ν 6= 0, one has to use products
in the 0-Hecke algebra, of the type πηπν .

Theorem 2.11.1. Let σ be a permutation in Sn, ω = [n, . . . , 1].

Ĝ(σ)(x, z) =
∑
ζ∈Sn

G(ζ)(z,y)Ĝ(ωζ)(x,y) π̂ωσ (2.11.1)

yρ

zρ
G(σ)(x, z) =

∑
ζ

(−1)`(ζ)G(ζω)(z,y)
(
G(ζ)(x,y)π(ωσ)

)
(2.11.2)

Proof. The first formula is the image of (2.9.4) under π̂ωσ, the second is the image
of the case σ = ω, which is a rewriting of (2.9.6), under πωσ. QED

For example, for n = 3, writing Gv for Gv(z,y) and Ĝv for Ĝv(x,y), the image
of Ĝ210(x, z) =

∑
v GvĜ210−v under π̂1 is

Ĝ110(x, z) = (G110 −G210) Ĝ000 + (G010 −G200) Ĝ010 + (G000 −G100) Ĝ110 ,

then under π̂2,

Ĝ100(x, z) = (G010 −G200 −G110 +G210) Ĝ000 + (G000 −G100) Ĝ100 .



 Chapter 2 — Linear Bases for type A

2.12 Divided differences as scalar products
Since the ∂i’s are self-adjoint with respect to ( , )∂, and the πi’s are self-adjoint
with respect to ( , )π, one can use (2.9.1) to express any ∂σ, πσ, π̂σ.

Proposition 2.12.1. Let f ∈ Pol(xn,yn), σ ∈ Sn, and z = zn be an extra
alphabet. Then

f ∂σ =
(
f , Xωσ(z,xω)

)∂∣∣∣
z=x

(2.12.1)

f πσ =
(
f , G(ωσ−1)(x, z)

)π∣∣∣
z=xω

(2.12.2)

f π̂σ =
(
f , Ĝ(ωσ−1)(x, z)

)π∣∣∣
z=x

(2.12.3)

Proof. The proofs of the three assertions are similar, let us consider only the first
one.

(−1)`(ωσ)Xωσ(z,xω) = Xσ−1ω(x, z)ω = Xω(x, z)∂ωσ−1ω ω

= Xω(x, z)ω
(
ω∂ωσ−1ωω

)
= Xω(xω, z)∂σ−1(−1)`(σ)

and therefore one has(
f , Xωσ(z,xω)

)∂
=
(
f , (−1)`(ω)Xω(xω, z)∂σ−1

)∂
=
(
f∂σ, , Xω(z,xω)

)∂
.

Specializing z = x and using the reproducing property (2.9.1), one gets (2.12.1).
QED

For example, for n = 3, σ = [2, 3, 1], one has ωσ = [2, 1, 3], ωσ−1 = [1, 3, 2],
and

f∂231 = f∂1∂2 =
(
f , X213(z,xω)

)∂∣∣∣
z=x

=
(
f , z1−x3

)∂∣∣∣
z=x

fπ231 = fπ1π2 =
(
f , G(132)(x, z)

)π∣∣∣
z=xω

=
(
f , 1− z1z2

x1x2

)π∣∣∣
z=xω

fπ̂231 = fπ̂1π̂2 =
(
f , Ĝ(132)(x, z)

)π∣∣∣
z=x

=
(
f ,

x2x3

z1z2

(
1− x3

y1

))π∣∣∣
z=x

.
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2.13 Divided differences in terms of permuta-
tions

Let D =
∑

ζ∈Sn
ζcζ(xn) be a sum of permutations with coefficients which are

rational functions in xn. Any function f(xn,yn) which vanish in all specializations
xσn = yn, except in xn = yn, can be used to determine the coefficients cζ(xn).
Indeed, putting g(xn,yn) = f(xn,yn)D, one has g(xn,yn) =

∑
ζ f(xζn,yn) cζ(xn),

and therefore
g(xn,x

ζ
n) = f(xζn,x

ζ
n) cζ(xn) . (2.13.1)

The kernels ΘY
n ,Θ

G
n have the required vanishing properties. In consequence

the operators ∂σ, πσ, π̂σ can be expressed in terms of specializations of Schubert or
Grothendieck polynomials, and one obtains the following expansions (the expres-
sion of the coefficients are not unique, due to the many symmetries of Schubert
and Grothendieck polynomials).

Proposition 2.13.1. Given σ ∈ Sn, the divided differences ∂σ, πσ, π̂σ are equal
to the following sums of permutations :

∂σ
∏
i<j≤n

(xi − xj) =
∑
ζ≤σ

(−1)`(ζ)ζ Xωσ(xn,x
ζ−1ω
n ) (2.13.2)

πσ =
∑
ζ≤σ

ζ fσ(xζ
−1

n ,xωn) (2.13.3)

π̂σ
∏
i<j≤n

(
1− xi

xj

)
=

∑
ζ≤σ

ζ G(σω)(x
ω
n,x

ζ−1

n ) , (2.13.4)

with fσ(xn,yn) = G(ωσ−1)(xn,yn)
∏

i<j≤n(1− xjx−1
i )−1.

For example

∂1∂2 =
(
s1s2 (x1−x2)− s2 (x1−x2)− (x1−x3) s1 + (x1−x3)

) 1

∆(x3)

π1π2 = s1s2
x2

3

(x1−x3)(x2−x3)
− s2

x1x3

(x1−x3)(x2−x3)
− s1

x2
2

(x1−x2)(x2−x3)

+
x1x2

(x1−x2)(x2−x3)

π̂1π̂2 = (s1s2 − s2)
x2

3

(x1−x3)(x2−x3)
+ (1− s1)

x2x3

(x1−x2)(x2−x3)
.

One can compare these expressions to those given in the preceding section. In
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fact, they can be obtained by mere expansion of

∂1∂2 = (1− s1)
1

x1 − x2

(1− s2)
1

x2 − x3

π1π2 =

(
s1

x2

x2 − x1

+
x1

x1 − x2

)(
s2

x3

x3 − x2

+
x2

x2 − x3

)
π̂1π̂2 = (s1 − 1)

1

1− x1x
−1
2

(s2 − 1)
1

1− x2x
−1
3

.

This is essentially the method followed by Kostant and Kumar [83, 84], but with
this method properties of the resulting coefficients are more difficult to extract
than when specializing polynomials in two sets of variables. For example we shall
see later that the inverse transition matrices, from permutations to the different
types of divided differences, involve the same coefficients as the transition matrices,
and this fact can easily be obtained from properties of Schubert and Grothendieck
polynomials.

The leading term of πσ and π̂σ, i.e. the coefficient of σ, is obtained by mere
commutation. Taking a reduced decomposition σ = sisjsh · · · sk, then this leading
term is

si
1

1− xix−1
i+1

sj
1

1− xjx−1
j+1

sh · · · sk
1

1− xkx−1
k+1

= si · · · sk
(

1

1− xix−1
i+1

)sjsh···sk ( 1

1− xjx−1
j+1

)sh···sk

· · · 1

1− xkx−1
k+1

.

In the language of root systems, this property reads as follows.

Lemma 2.13.2. Let Φ+, Φ− be the positive (resp. negative) roots of the root
system of type An−1. Then, in the basis of permutations, πσ and π̂σ have leading
term

F (σ) :=
∏

α∈Φ+∩σΦ−

1

1− eα
.

This leading term intervenes in geometry, for what concerns the postulation
of Schubert varieties.

Let λ ∈ Nn be dominant weight , v be a permutation of λ, σ ∈ Sn be of
minimum length such that v = λσ. One defines the limit m→∞ of Kmvx

−mv to
be

(1− zxλ)−1πσ(1− zxv)
∣∣
z=x−v

.

Expanding πσ in terms of permutations, one has

(1− zxλ)−1πσ(1− zxv) = F (σ) +
∑
ζ<σ

1− zxv

1− zxλζ
cζσ ,
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with coefficients cζσ obtained in (2.13.3). The hypothesis on the pair λ, σ insures
that all terms, but the first one, vanish under the specialization z = x−v. One
thus recovers in the special case of type A a property due to Peterson and Kumar
in the more general context of Kac-Moody algebras.

Corollary 2.13.3. Let λ ∈ Nn be dominant, σ ∈ Sn be of minimum length
modulo the stabilizer of λ. Then the common limit m → ∞ of xmλπσx−mλσ and
xmλπ̂σx

−mλσ is equal to ∏
α∈Φ+∩σΦ−

1

1− eα
.

For example, for λ = [2, 1, 0], v = [1, 0, 2], one has σ = s1s2 and the limit of
Km,0,2mx

−m,0,−2m and K̂m,0,2mx
−m,0,−2m is equal to

(
(1 − x1x

−1
3 )(1 − x2x

−1
3 )
)−1.

The limit of K0,0,mx
0,0,−m = Sm(x1 + x2 + x3)x−m3 = Sm(x1x

−1
3 + x2x

−1
3 + 1) is

also
(
(1− x1x

−1
3 )(1− x2x

−1
3 )
)−1, in accordance with the fact that σ is still equal

to s1s2.

2.14 Schubert, Grothendieck and Demazure as
commutation factors

One could obtain the expression of permutations in terms of divided differences
by iterating Leibnitz formula, starting with expressions like

s2s1s2 =
(
1 + ∂2(x3−x2)

)(
1 + ∂1(x2−x1)

)(
1 + ∂2(x3−x2)

)
.

Let us specially examine the commutation with ∂ω or πω. For example,

∂1x2 = x1∂1 − 1

∂2∂1∂2x2x
2
3 = ∂2x3∂1x2∂2x3 = (x2∂2 − 1)(x1∂1 − 1)(x2∂2 − 1) = . . .

= x210∂2∂1∂2 − x200∂1∂2 − x110∂2∂1 + x100∂1 + (x100 + x010)∂2 − 1 .

This case shows a disymmetry which can be cured by using Schubert polynomials
instead of monomials :

∂2∂1∂2x2x
2
3 = Y210(x,0)∂1∂2 − Y200(x,0)∂2∂1∂2 − Y110(x,0)∂2∂1

+ Y100(x,0)∂1 + Y010(x,0)∂2 − Y000(x,0) .

The following theorem states that Schubert and Grothendieck polynomials do
occur in the commutation of some element with ∂ω or πω. Notice that this gives
a generation which does not require division.
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Theorem 2.14.1. Fixing n, with ρ = [n−1, . . . , 0], one has∑
σ∈Sn

(−1)`(σ)Xσ(x,y) ∂σ−1 = ∂ωXω(y,xω) (2.14.1)∑
σ∈Sn

(−1)`(σω)∂σXσ(x,y) = Xω(y,xω)∂ω (2.14.2)∑
σ∈Sn

(−1)`(σ)xρG(σ)(x,y) πσ−1 = πωXω(y,xω) (2.14.3)∑
σ∈Sn

(−1)`(σ)πσ G(σ)(x,y)xρ = Xω(y,xω) πω . (2.14.4)

Proof. (2.14.1) and (2.14.2) are equivalent, by left-right symmetry of the Leibnitz
relations. Let us prove (2.14.2). The factor Xω(y,xω) is the reproducing kernel
ΘY
n , and therefore (2.14.2) can be proved by checking that, for any f(x) in the

linear span of 〈x : 0 ≤ v ≤ ρ〉, one has∑
(−1)`(σ)f(x)∂σXσ(x,y) = f(y) .

Introducing an extra alphabet z, one needs a single check,

Xω(y, z) =
∑
σ

(−1)`(σ)Xω(x, z)∂σXσ(x,y) =
∑
σ

(−1)`(σ)Xωσ(x, z)Xσ(x,y) .

But this is the Cauchy formula

Xω(y, z) =
∑
σ

Xωσ(x, z)Xσ−1(y,x) .

Similarly, (2.14.4) is proved by checking the action on G(ω)(x, z). Thanks to
(2.9.6), one has

G(ω)(x, z)
∑

(−1)`(σ)πσG(σ)(x,y)xρ =
∑

(−1)`(σ)G(ωσ)(x, z)G(σ)(x,y)xρ

= Xω(y, z) .

On the other hand, Xω(y,xω)y−ρ = ΘG
n is a reproducing kernel with respect

to πω, and therefore, one has

G(ω)(x, z)Xω(y,xω)πω = G(ω)(y, z)yρ .

In final, the images of G(ω)(x, z) under the two sides of (2.14.4) are equal. QED
By specialisation of y, one obtains the following commutations :∑

(−1)`(σ)∂σXσ(x,0) = x01...n−1 ∂ω (2.14.5)∑
(−1)`(σ)xρG(σ)(x,1) πσ−1 = πω (1−x2) . . . (1−xn)n−1 . (2.14.6)
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For example, for n = 3, one has

π1π2π1 (1−x2)(1−x3)2 =

{
−(x1−1)2(x2−1)π1π2π1

−x210G210π1π2π1

llllllll
QQQQQQQQ

QQQQQQQQ{
x1(x1−1)(x2−1)π2π1

x210G110 π2π1

{
x2(x1−1)2π1π2

x210G200 π1π2

{
−x1x2(x1−1)π1

−x210G100 π1

TTTTTTTTTTTTTTT

{
−x1(x1x2−1)π2

−x210G010 π2

kkkkkkkkkkkkk

kkkkkkkkkkkkk

x2
1x2

Given n, using on products of divided differences and rational functions in x
the double reversal

∂iP∂j . . . ∂kQ→ Qω∂n−k . . . P
ω∂n−i ,

one transforms (2.14.3) into

Xω(x,y) ∂ω =
∑
σ∈Sn

π̂σG(ωσω)(x
ω,y) . (2.14.7)

For example,

X321(x,y)∂321 = π̂1π̂2π̂3(1−y1x
−1
3 )(1−y1x

−1
2 )(1−y2x

−1
3 )+ π̂1π̂2(1−y1x

−1
3 )(1−y2x

−1
3 )

+ π̂2π̂1(1−y1x
−1
3 )(1−y1x

−1
2 ) + π̂1(1−y1y2x

−1
3 x−1

2 ) + π̂2(1−y1x
−1
3 ) + 1

= π̂1π̂2π̂1G(321)(x
ω,y) + π̂1π̂2G(312)(x

ω,y)

+ π̂2π̂1G(231)(x
ω,y) + π̂1G(132)(x

ω,y) + π̂2G(213)(x
ω,y) + 1 .

Notice that pushing the coefficients on the right in Xζ(0,x
ω) ∂ω, for any ζ ∈

Sn, can be obtained by expanding Xω(y,xω) in (2.14.2).
In fact, Xω(y,xω) may be thought as the generating function of a linear basis

of Pol(xn) as a Sym(xn)-free module. Hence Formula 2.14.2 implies that for any
function g(xn), one has

g(xωn) ∂ω =
∑
σ∈Sn

(−1)`(σ)∂σ
(
g(xn) ∂ωσ

)
. (2.14.8)

When restricting the action of g(xωn) ∂ω to functions having partial symmetries,
one reduces summation (2.14.8), as in the next case.



 Chapter 2 — Linear Bases for type A

Corollary 2.14.2. Let m ≤ n, r = n−m, k ≥ 0. For any partition λ ≤ rm,
denote

∂λ =
(
∂m . . . ∂m+λ1−1

)
. . .
(
∂1 . . . ∂λm−1

)
.

Then the restriction of the action of Ykr(xω,y) ∂r
m to Sym(m, r) is equal to

Ykr(x
ω,y) ∂r

m

=
∑
λ≤rm

(−1)|µ|∂λ Y0µr ,k−µr,0µr−1−µr ,k−µr−1,...,0µ1−µ2 ,k−µ1
(x,y) ,

(2.14.9)
denoting by µ the partition which is conjugate to [r−λm, . . . , r−λ1].

Proof. The operators Xω(xω,y)∂ω and Ykr(x
ω,y) ∂r

m have the same action on
Sym(m, r), up to sign. Moreover, the permutations σ which are not minimal in
their coset (Sm×Sr)σ annihilate elements of Sym(m, r), and therefore disappear
from summation (2.14.8). QED

For example, for n = 5,m = 2, writing 2 3 ··
1 ··

for (∂2∂3 . . . )(∂1 . . . ), one has

Y666(xω,y) 2 3 4
1 2 3

= 2 3 4
1 2 3

Y666 − 2 3 4
1 2

Y6605 + 2 3
1 2

Y66004

+ 2 3 4
1

Y6055 − 2 3
1

Y60504 − 2 3 4 Y0555 + 2
1
Y60044

+ 2 3 Y05504 − 2 Y05044 + Y00444 .

Formula 2.14.4 :∑
σ∈Sn

(−1)`(σ)πσ G(σ)(x,y) = Xω(y,xω) πωx
−ρ

can be rewritten∑
σ∈Sn

(−1)`(σ)πσ

(
G(ω)(x,y)πωσ

)
= (−1)`(ω)xρωG(ω)(x

ω,y)πωx
−ρ ,

and implies that, for any function g(xn), one has∑
σ∈Sn

(−1)`(ωσ)πσ

(
g(xn)πωσ

)
= xρωg(xωn) πωx

−ρ = g(xωn) π̂ω . (2.14.10)

Using, thanks to (2.6.4), that πσ = (−1)`(σ)xρω π̂ωσω ωx
−ρ, putting ζ = ωσω,

h = (xρg)ω, this last equation can be transformed into∑
σ∈Sn

(−1)`(ωσ)π̂σ

(
h(xn)π̂ωσ

)
= h(xωn) π̂ω . (2.14.11)

Taking g(xn) = xλ = h(xn), with λ dominant, one obtains key polynomials by
commutation :
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Theorem 2.14.3. Given an integer n and a partition λ ∈ Nn, then one has∑
σ∈Sn

(−1)`(σ)πωσ
(
Kλπσ

)
=

(
xρ+λ

)ω
πωx

−ρ (2.14.12)∑
σ∈Sn, σ min

(−1)`(σ)π̂ωσ K̂λσ = xλω π̂ω , (2.14.13)

the sum being limited, in the second expression, to the permutations minimum in
their coset modulo the stabilizer of λ.

For example, for λ = [3, 1, 0], one has

π2π1π2K310 − π1π2K130 − π2π1K301 + π1K103 + π2K031 −K013

= x025 π321/x
210 ,

and for λ = [1, 0, 0], one has

π̂1π̂2π̂1 K̂100 − π̂1π̂2 K̂010 + π̂1K̂001 = x001 π̂321 .

Using (1.4.8), one rewrites (2.14.13) into the following commutation of πω with
a dominant monomial :

πω x
λ =

∑
σ∈Sn, σ min

K̂λσ(xω)πωσ , (2.14.14)

sum over all permutations σ which are of minimum length in their coset modulo
the stabilizer of λ.

For example,

π1π2π1 x
2
1 = x002π1π2π1 +

(
x020 + x011

)
π1π2 +

(
x200 + x110 + x101

)
π2

= K̂2(xω)π1π2π1 + K̂02(xω)π1π2 + K̂002(xω)π2 .

Taking in (2.14.10) g(xn) = Gλ(x,y), with λ dominant, one obtains again
Grothendieck polynomials by commutation :

Gλ(x
ω,y) π̂ω =

∑
σ∈Sn

(−1)`(σ)πσ−1ω

(
Gλ(x,y)πσ

)
. (2.14.15)

For example, for λ = [1, 1, 0], one has(
1− y1x

−1
2

) (
1− y1x

−1
3

)
π̂321 = (π2π1π2 − π1π2)

(
1− y1x

−1
1

) (
1− y1x

−1
2

)
+ (−π2π1 + π1)

(
1− y1x

−1
1

)
+ (π2 − 1)

= (π2π1π2 − π1π2)G110 + (−π2π1 + π1)G100 + (π2 − 1)G000 .

Thanks to the symmetry (1.4.8), one deduces from the preceding formula the
expression of the product of πω with a dominant Grothendieck polynomial in terms
of π̂σ:

πω G(λ(x,y) =
∑

σ∈Sn

(
Gλ(x,y)πσ

)ω
π̂ωσ−1 . (2.14.16)
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For example, for n = 3, one has

π321G210(x,y) = G210(xω,y) π̂1π̂2π̂1 +G200(xω,y) π̂2π̂1 +G110(xω,y) π̂1π̂2

+G010(xω,y) π̂1 +G100(xω,y) π̂2 +G000(xω,y) .

The expression of πωGλ(x, y) can be reduced when λ has repeated parts, i.e.
when there exists i such that Gλ(x, y)πi = Gλ(x, y). Thus

π321G110(x,y) = G110(xω,y) π̂1π̂2π̂1 +G100(xω,y) π̂2π̂1 +G110(xω,y) π̂1π̂2

+G000(xω,y) π̂1 +G100(xω,y) π̂2 +G000(xω,y)

can be written, by right multiplication with π1, as

π321G110(x,y) = G110(xω,y) π̂1π̂2π1 +G100(xω,y) π̂2π1 +G000(xω,y)π1 .
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2.15 Cauchy formula for key polynomials
The usual Cauchy formula is the expansion of

∏
i,j≤n(1−xiyj)−1 in terms of Schur

functions. We are going to see that “half” the Cauchy kernel
∏

i+j≤n+1(1−xiyj)−1

expands in terms of key polynomials.
Notice first that

1

(1− x1y1)(1− x1x2y1y2) · · · (1− x1 · · ·xny1 · · · yn)
=
∑
λ

xλyλ

is the generating function of dominant monomials xλyλ in x and y. Its image
under the product of the two symmetrizers πx

ω π
y
ω transforms this equality into∏

i,j≤n

(1− xiyj)−1 =
∑
λ

Sλ(x)Sλ(y) .

We can use the same starting point, but symmetrize partially in x and y. Let
Ξn :=

∑
σ∈Sn

π̂xσ π
y
σω. Filtering the set of permutations according to the position

of n, one gets the following factorization (we refer to [44] for more details).

Lemma 2.15.1. We have

Ξn = Ξn−1

(
n−1∑
i=0

π̂x[n−1:i] π
y
[n−1:n−1−i]

)
, (2.15.1)

where π[n−1:i] := πn−1 πn−2 · · · πn−i.

For example, the element Ξ4 factorizes as

Ξ4 = Ξ3 (πy3π
y
2π

y
1 + π̂x3π

y
3π

y
2 + π̂x3 π̂

x
2π

y
3 + π̂x3 π̂

x
2 π̂

x
1 ) .

From the definition of key polynomials, the image under Ξn of
∑

λ x
λyλ is

equal to a sum of products of Kv(y), K̂u(x). More precisely∑
λ

xλyλ Ξn =
∑
v

Kv(y)K̂vω(x) .

Using no more, but repeatedly, that

f(1− xig)−1πx
i = f(1− xig)−1(1− xi+1g)−1

when f, g belong to Sym(xi, xi+1), one checks that the image of (1− x1y1)−1(1−
x1x2y1y2)−1 · · · under Ξn is equal to

∏
i+j≤n+1(1−xiyj)−1 [44, Prop 3]. Hence the

following kernel.

Theorem 2.15.2. For every n one has∏
i+j≤n+1

(1− xiyj)−1 =
∑
v∈Nn

Kv(y)K̂vω(x) .
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For example, for n = 2, one has

1

(1− x1y1)(1− x1x2y1y2)
(πy1+π̂x1 ) =

1

(1− x1y1)(1− x1y2)
+

y1x2

(1− x1y1)(1− x2y1)

=
1

(1− x1y1)(1− x1y2)(1− x2y1)
= 1 +

∑
i≤j

Kij(y)xji +
∑
j>i

yjiK̂ij(x) ,

the key polynomialsKij(y) being Schur functions in y1, y2, while K̂ij(x) = Kij(x)−
xji, when i ≤ j.
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2.16 π and π̂-reproducing kernels
We have shown in (2.9.2) a reproducing property of the operator f → (f , ΘG

n )π.
Let us rewrite it without using the scalar product ( , )π. Let

bπΘG
n =

∑
σ∈Sn

π̂σ−1 G(σ)(z,x) (2.16.1)

πΘG
n =

∑
σ∈Sn

πσ−1 Ĝ(σ)(z,x
ω) (2.16.2)

For example, for n = 3, one has

bπΘG
3 = 1 + π̂1

(
1− x1

z1

)
+ π̂2

(
1− x1x2

z1z2

)
+ π̂1π̂2

(
1− x1

z1

)(
1− x2

z1

)
+ π̂2π̂1

(
1− x1

z1

)(
1− x1

z2

)
+ π̂1π̂2π̂1

(
1− x1

z1

)(
1− x2

z1

)(
1− x1

z2

)
.

With the alphabets z,xω,y instead of x,y, z, Formula 2.9.4 reads

ΘG
n =

∑
v≤ρ

Gv(y,x
ω)Ĝρ−v(z,x

ω) .

Indexing by permutations, using the symmetry G(σ)(x, y
∨)♣ = G(σ−1)(y,x

ω) given
in (2.2.4), and the conjugation ♣πi♣ = πn−i, one rewrites this last formula as

ΘG
n (z,y) =

∑
v≤ρ

ΘG
n (x,y)πσ−1 Ĝ(σ)(z,x

ω) (2.16.3)

= ΘG
n (x,y) πΘG

n , (2.16.4)

In other words, for any v : [0, . . . , 0] ≤ v ≤ [0, . . . , n−1] = ρω, one has the
reproducing property xv πΘG

n = zv. Equivalently, (2.16.4) rewrites as

Ĝρ(x,y) πΘG
n = Ĝρ(z,y) . (2.16.5)

A similar computation shows that for 0 ≤ v ≤ ρ, one has x−v bπΘG
n = z−v, or,

equivalently,
Gρ(x,y) bπΘG

n = Gρ(z,y) . (2.16.6)
These two sets of monomials are bases of Pol(xn) as a free Sym(xn)-module,

and therefore the reproducing property extends to the full space, after identifying
Sym(xn) and Sym(zn). In final, one has

Proposition 2.16.1. For any f ∈ Pol(xn) one has

f(xn)πΘG
n ≡ f(zn) ≡ f(xn)bπΘG

n , (2.16.7)

modulo Sym(xn) = Sym(zn).
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Notice that the two operators πΘG
n and bπΘG

n are not equal. Thus

x2
bπΘG

2 = x2

(
1 + π̂1(1− x1

z1

)

)
= x1x2z

−1
1 ,

x2
πΘG

2 = x2

(
z2

x2

+ π1(1− z2

x2

)

)
= z2 ,

evaluating modulo Sym(x2) = Sym(z2) being necessary to insure equality.
Notice also that the two formulas xv πΘG

n = zv for 0 ≤ v ≤ ρω and x−v bπΘG
n =

z−v for 0 ≤ v ≤ ρ show that both operators πΘG
n and bπΘG

n take values in Sym(xn)⊗
Pol(zn).

In the case n = 2, one can rewrite bπΘG
2 = π1 − ∂1

x1x2

z1
, πΘG

2 = π1 − ∂1z2. This
prompts us to define, for any i,

θ̂i = πi − ∂i
xixi+1

zi
& θi = πi − ∂izi+1 .

These operators do not satisfy the braid relations if the parameters zi are not all
equal. Let us show however, that one can use them to factorize bπΘG

n and πΘG
n .

The action of θ2θ1θ2 on Ĝ210(x,y) is such that each step is of the type (1 −
xi+1y

−1
j )fθi = (1 − zi+1y

−1
j )f , with f symmetrical in xi, xi+1. Therefore one has

Ĝ210(x,y)θ2θ1θ2 = Ĝ210(z,y), and, more generally,

Ĝρ(x,y) (θn−1)(θn−2θn−1) . . . (θ1 . . . θn−1) = Ĝρ(z,y) .

One checks similarly that

Gρ(x,y) (θ̂1)(θ̂2θ̂1) . . . (θ̂n−1 . . . θ̂1) = Gρ(z,y) .

Hence, these two products of operators have the same action on Pol(xn) than πΘG
n

and bπΘG
n respectively, and one has the following proposition.

Proposition 2.16.2. Given n, one has the factorizations

πΘG
n = (θn−1)(θn−2θn−1) . . . (θ1 . . . θn−1) (2.16.8)bπΘG
n = (θ̂1)(θ̂2θ̂1) . . . (θ̂n−1 . . . θ̂1) . (2.16.9)
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2.17 Decompositions in the affine Hecke algebra

The elementary constituents of all the operators that we have used so far in type A
are divided differences, together with “multiplication by elements of Rat(x)”, the
ring of rational functions in x. One could as well take permutations and elements of
Rat(x). Indeed, the algebras generated by {∂i, i = 1 . . . n−}∪Rat(xn) , or {si, i =
1 . . . n−}∪Rat(xn) , or {πi, i = 1 . . . n−}∪Rat(xn), or {Ti, i = 1 . . . n−}∪Rat(xn)
all coincide. With M.P. Schützenberger, we call it algebra of divided differences,
Bourbaki prefers produit croisé de l’algèbre du groupe symétrique et de Rat(x),
Kostant and Kumar use the expression smash product, and finally, the terminology
affine Hecke algebra for type A puts the emphasis on the elements Ti.

Every element of this algebra is uniquely written as a sum
∑

σ∈Sn
∂σ R

∂
σ,∑

σ∈Sn
σ Rs

σ,
∑

σ∈Sn
πσR

π
σ,
∑

σ∈Sn
π̂σR

bπ
σ, or

∑
σ∈Sn

TσR
T
σ respectively, choosing

to put the coefficients on the right. Symmetry properties like (1.4.8) allow to pass
from the right module structure to the left one.

We show in (3.3.1), as a consequence of the multivariate Newton interpolation
formula, how to pass from divided differences to permutations using Schubert
polynomials, or conversely in (3.3.3). In fact, this type of expansions uses only
the obvious fact that the kernel ΘY (x,y) vanish for all specializations y = xζ ,
except when ζ is the identity. Instead of ΘY (x,y), one could as well use as a
kernel Yρ(x,y), Gρ(x,y), or Ĝρ(x,y), the non vanishing being obtained for the
identity or for the maximal permutation according to the choice of the kernel.

More generally, given any f(xn) ∈ Pol(xn), let Θf (x,y) = f(xn)ΘY
n . Then for

any element ∇ =
∑

σ σR
s
σ, one has Θf (x,y)∇ =

∑
σ Θf (xσ,y)Rs

σ, and therefore
the coefficients are such that

Rs
σ = Θf (x,y)σ−1∇

∣∣∣
y=x

1

f(xn)∆(xn)
.

Similar expressions hold for the other coefficients R∂
σ, R

π
σ, R

bπ
σ.

As a matter of fact, some of the formulas in preceding sections may be inter-
preted as identities in the affine Hecke algebra. For example, taking z = xζ in
(2.16.7), one obtains the expansion of any permutation in the basis {πσ} or {π̂σ}.

Let us summarize the main expansions, that will be needed later, of any ele-
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ment ∇ of the affine Hecke algebra.

∇ =
∑
σ∈Sn

∂σ

(
Xσ−1(x,y)∇

∣∣∣
y=x

)
(2.17.1)

=
∑
σ∈Sn

σ

( ∏
1≤i<≤j≤n

(xi−yj)
σ−1∇

∣∣∣
y=x

)
(2.17.2)

=
∑
σ∈Sn

πσ

(
Ĝ(σ−1)(x,y

ω)∇
∣∣∣
y=x

)
(2.17.3)

=
∑
σ∈Sn

π̂σ

(
G(σ−1)(x,y)∇

∣∣∣
y=x

)
. (2.17.4)

For example,

s1s2 =
∑
σ∈S3

π̂σ−1 Gσ(xs1s2 ,y)
∣∣
y=x

= 1 + π̂2
(x3x1 − y1y2)

x3x1

+ π̂1

(
1− y1

x3

)
+ π̂2π̂1

(
1− y1

x1

)(
1− y1

x3

)
+ π̂1π̂2

(
1− y1

x3

)(
1− y2

x3

)
+ π̂1π̂2π̂1

(
1− y1

x3

)(
1− y2

x3

)(
1− y1

x1

)∣∣∣
y=x

= 1 + π̂2

(
1− x2

x3

)
+ π̂1

(
1− x1

x3

)
+ π̂1π̂2

(
1− x1

x3

)(
1− x2

x3

)
.

Specific cases of the above expansions appear in the literature. Kostant and
Kumar [83] consider the transition matrices {σ} ↔ {∂σ}. Berline and Vergne
[7], Arabia [1], Kostant and Kumar [84] consider the transition matrices {σ} ↔
{πσ}. Kumar shows in [89] how to relate the entries of these last matrices (which
are specializations of Grothendieck polynomials) to the singularities of Schubert
varieties.

Notice that the above expansions are obtained by specializing polynomials in
x,y. These polynomials are not unique. For example, instead of (2.17.3), one
could use as well

∇ =
∑
σ∈Sn

πσ

(
G(ω)(x,y)π̂ωσ−1∇

∣∣∣
y=x

)
.

Let us mention in final the interest of expressing the basis of the usual Hecke
algebra (with normalization (Ti−t1)(Ti−t2) = 0) in terms of the basis {π̂σ}. For
example, for n = 3, one has

T1 = π̂1
(x2t1 + x1t2)

x2

+ t1 & T2 = π̂2
(x3t1 + x2t2)

x3

+ t1
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T1T2 = π̂1π̂2
(x3t1+x2t2)(x1t2+x3t1)

x3
2 + π̂2

(x3t1+x2t2)t1
x3

+ π̂1
(−x1t22+x3t12)

x3
+ t1

2

T2T1 = π̂2π̂1
(x2t1+x1t2)(x1t2+x3t1)

x3x2
+ π̂2

(−x1t22+x3t12)
x3

+ π̂1
t1(x2t1+x1t2)

x2
+ t1

2

T1T2T1 = π̂1π̂2π̂1
(x3t1 + x2t2) (x1t2 + x3t1) (x2t1 + x1t2)

x2x3
2

+ π̂1π̂2
(x3t1 + x2t2) t1 (x1t2 + x3t1)

x3
2

+ π̂2π̂1
(x2t1 + x1t2) (x1t2 + x3t1) t1

x3x2

+ π̂2
(−x1t2

2 + x3t1
2) t1

x3

+ π̂1
(−x1t2

2 + x3t1
2) t1

x3

+ t31 .

and these expansions specialize to the expression of permutations in the basis {π̂σ}
for t1 = 1, t2 = −1, the coefficients being then specializations of Grothendieck
polynomials.



 Chapter 2 — Linear Bases for type A



Chapter 3
Properties of Schubert polynomials

3.1 Schubert by vanishing properties
To have linear bases, we could have considered only the special case where y = 0
in the case of Schubert polynomials, and y = 1 in the case of Grothendieck poly-
nomials. But doing so, we would lose many interesting specialization properties
that these polynomials possess, and that can be used to characterize them easily,
as we are going to see in this section for Schubert polynomials.

Given a permutation σ (considered as an element of S∞, whose code is v), let
〈v〉 = yσ = [yσ1 , . . . , yσn ].

We call 〈v〉 a spectral vector1 and write f
(
〈v〉
)
for the specialisation of f ∈

Pol(xn,y) in x1 = yσ1 , . . . , xn = yσn .

Theorem 3.1.1. Given v ∈ Nn, and σ such that v = (̧σ), then the Schubert
polynomial Yv(x,y) is the only polynomial in the space of degree ≤ |v| in xn such
that

Yv(〈u〉,y) = 0 , u 6= v, |u| ≤ |v| (3.1.1)
Yv
(
〈v〉,y

)
= e(v) :=

∏
i<j, σi>σj

(yσi − yσj) (3.1.2)

The specialization e(v) is called the inversion polynomial of σ. We shall also
denote it e(σ) when no ambiguity is to be feared.
Proof. First, it is straightforward that the dominant Schubert polynomials, which
are products of linear factors, satisfy both (3.1.1, 3.1.2).

1 We use the same term as for the Yang-Baxter equation, because these two uses are related
in several ways. Notice that xs1 = [x2, x1, x3, . . .], xs1s2 = [x2, x3, x1, . . .] = [xσ1 , xσ2 , xσ3 ],
with σ = s1s2 = [2, 3, 1]. We are acting on the components of the vector [x1, x2, . . .]. On the
other hand, the action on the right on exponents of monomials: xσ1 = x[100]s1s2 = x001 = x3,
xσ2 = x[010]s1s2 = x100 = x1, xσ3 = x[001]s1s2 = x010 = x2 involves the inverse permutation
[3, 1, 2].

97



 Chapter 3 — Properties of Schubert polynomials

Therefore, we have just to check the behaviour of these conditions with respect
to divided differences.

Lemma 3.1.2. Let v ∈ Nn, σ = 〈v〉, i be such that vi > vi+1. Suppose that Yv
satisfies (3.1.1, 3.1.2). Then Yv ∂i also satisfies (3.1.1, 3.1.2) for the index
v′ = [v1, . . . , vi−1, vi+1, vi−1, vi+2, . . . , vn], which is the code of σsi.

Proof. Write Yv = f(xi, xi+1) − xi+1g(xi, xi+1), with f, g ∈ Sym(xi, xi+1). Let us
check that g is the polynomial defined by (3.1.1, 3.1.2) for the index index v′.

If Yv vanishes in [xi, xi+1] = [a, b] and [xi, xi+1] = [b, a], with a 6= b, then g
inherits these vanishings: g(a, b) = g(b, a) = 0. On the other hand, in the points
〈v〉 and 〈v′〉, one has

Yv
(
〈v〉,y

)
= e(v) = f(yσi , yσi+1

)− yσi+1
g(yσi , yσi+1

)

Yv
(
〈v′〉,y

)
= 0 = f(yσi , yσi+1

)− yσig(yσi , yσi+1
) .

Therefore g(yσi+1
, yσi) = e(v)

(
yσi − yσi+1

)−1 is the inversion polynomial of σsi,
and g satisfies the conditions (3.1.1, 3.1.2). This proves the lemma. But Yv∂i =
−xi+1g∂i = g, and therefore g is the Schubert polynomial of index v′. This proves
the theorem. QED

For example,

Y2010(x,y) = (x1 − y1)(x1 − y2)(x2 + x3 − y1 − y2)

is characterized, among all polynomials in x1, x2, x3, x4 of degree no more than 3,
by the vanishing in all x4 = yζ , ζ ∈ S4, `(ζ) ≤ 3, ζ 6= σ = [3, 1, 4, 2], and by the
normalization

Y2010(yσ,y) = (y3 − y1)(y3 − y2)(y1 + y4 − y1 − y2) = e([2, 0, 1, 0]) .

A consequence of the theorem is the following vanishing property (which evi-
dent only for dominant polynomials), corresponding to 〈0〉 = [y1, y2, . . . , yn].

Corollary 3.1.3. For any v 6= [0, . . . , 0], one has Yv(y,y) = 0.

3.2 Multivariate interpolation
We have already used several times the vanishing in x = y = 〈0〉, this property is
better understood as a special case of (3.1.1).

Notice that the polynomials Yk = (x1 − y1) · · · (x1 − yk) are the interpolation
polynomials that Newton used in his famous interpolation formula. The next the-
orem states that the Schubert polynomials are precisely the universal coefficients
in the generalization of Newton’s formula to several variables (this theorem could
be deduced from the Cauchy formula that we gave in Th. 2.10.2.
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Given v ∈ Nn, let ∂v be any product of divided differences2 such that Yv∂v =
Y0...0. It is easy to see that for any u 6= v, then Yu∂

v is either 0 or a Schubert
polynomial of index 6= [0, . . . , 0].

Theorem 3.2.1 (MultivariateNewton). For any f ∈ Pol(x,y), one has the ex-
pansion

f(x) =
∑
v∈Nn

f(x)∂v
∣∣
x=y

Yv(x,y) . (3.2.1)

Proof. Test the statement on the Schubert basis. In that case, f(x)∂v is either 0 or
a Schubert polynomial, whose specialization in x = y (i.e. in the point 〈0 . . . 0〉)
is 6= 0 (and equal to 1) iff f(x) = Yv. QED

The preceding theorem gives the expansion of any polynomial in the Schubert
basis, the coefficients being all the non-zero images under divided differences. In
particular, one can take the key polynomials, or the Grothendieck polynomials3.
For example, the polynomial K021 has only 6 non-zero images under divided dif-
ferences, the images under 1, ∂2, ∂3, ∂2∂3, ∂3∂2, ∂3∂2∂2. Writing the coefficients in
y as key polynomials, one has

K021(x) = K0(y)Y0,2,1 +K0,1(y)Y0,2 +K0,1,1(y)Y0,1

+K0,0,1(y)Y0,1,1 +K0,2(y)Y0,0,1 +K0,2,1(y)Y0 .

In the case where f is a polynomial in x1 (and y) only, the only non-zero
divided differences are f∂1, f∂1∂2, f∂1∂2∂3, . . ., and the theorem is the original
theorem of Newton, apart from notations :

f(x1) = f(y1) + f∂1 Y1 + f∂1∂2 Y2 + f∂1∂2∂3 Y3 + · · · (3.2.2)
= f(y1) + f∂1(x1 − y1) + f∂1∂2(x1 − y1)(x1 − y2) + · · ·

The interpolation of functions f(x1, x2) of two variables reads

f(x1, x2) = f(y1, y2)Y00 + f∂2Y01 + f∂1Y10 + f∂2∂3Y02 + f∂2∂1Y11

+ f∂1∂2Y20 + f∂2∂3∂4Y03 + f∂2∂3∂1Y12 + f∂2∂1∂2Y21 + f∂1∂2∂3Y30 + . . .

In the case that f(x1, x2) is symmetrical, then f∂1 = 0, and only the terms
Yi,j, i ≤ j, which are those symmetrical in x1, x2, survive in the preceding formula:

f(x1, x2) = f(y1, y2)Y00 + f∂2Y01 + f∂2∂3Y02 + f∂2∂1Y11 + f∂2∂3∂4Y03

+ f∂2∂3∂1Y12 + f∂2∂3∂4∂5Y04 + f∂2∂3∂4∂1Y13 + f∂2∂3∂1∂2Y22 + . . .

2Take any reduced decomposition sisj · · · sk of σ, with σ of code v. Then ∂k · · · ∂j∂i is such
product.

3after some change of variables, like xi → 1/xi or xi → 1/(1−xi), to transform Grothendieck
polynomials into polynomials in x, and not in x−1

1 , x−1
2 , . . . .
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Interpolation methods can also be used in the theory of symmetric polynomials.
If f(xn) belongs to Sym(xn), then only anti-dominant indices occur in the RHS
of (3.2.1). In other words, Newton’s interpolation give an expansion of symmetric
polynomials in terms of Graßmannian Schubert polynomials.

For example, the Schur function s32(x3), which is equal to Y023(x,0), has the
following expansion in terms of Graßmannian Schubert polynomials (writing YuYv
for Yu(y,0)Yv(x,y)) :

s32(x3) = Y023(x,0) = Y000Y023 − Y00001Y022 − Y001Y013 + Y00101Y012

+ Y011Y003 − Y01101Y002 − Y00201Y011 + Y01201Y001 − Y02201Y000 .

Such expansions have been considered by Chen and Louck [20] and by Olshan-
ski and Okounkov [162], in the case where y = {0, 1, 2, . . .} or y = {q0, q1, q2, . . .}
(in which case the polynomials are called factorial Schur functions).

Newton interpolation is compatible with symmetry by blocks. Indeed, let
f(x) ∈ Sym(m,n, p, . . . ), i.e. f(x) is a function which is symmetrical in x1, . . . , xm,
symmetrical in xm+1, . . . , xm+n, &c. Then f(x) =

∑
cvYv(x,y), the set of indices

v being restricted to those such that v1 ≤ · · · ≤ vm, vm+1 ≤ · · · ≤ vm+n, &c., i.e.
to those v for which Yv(x,y) belongs to Sym(m,n, p, . . . ). Otherwise, there would
exist a divided difference ∂i annihilating f(x) and not

∑
cvYv. For example, if

f ∈ Sym(3, 4, 2), then the interpolation

f(x) =
∑

f(x)∂v
∣∣
x=y

Yv(x,y)

involves only the v ∈ N9 such that v1 ≤ v2 ≤ v3, v4 ≤ v5 ≤ v6 ≤ v7, v8 ≤ v9.

3.3 Permutations versus divided differences
Fashion has changed since Newton, and it may seem of little interest to interpolate
functions by polynomials. In fact, classical interpolation theory may be thought as
a way of producing algebraic identities involving polynomials or rational functions
in several variables. In this interpretation, it still begs the right to exist, even to
expand. Moreover, one can disguise interpolation under a more sophisticated
terminology.

For example, consider the problem of expressing a permutation σ ∈ Sn, con-
sidered as an operator on Pol(xn), in terms of divided differences. The image of
(3.2.1) under σ is

f(xσ) =
∑
v∈Nn

f(x)∂v
∣∣
x=y

Yv(x
σ,y) .

Putting y = x gives the following property obtained by Kostant and Kumar [83]
in the more general context of Kac-Moody groups (they call the algebra of divided
differences the nil Hecke ring).
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Proposition 3.3.1. Any permutation σ ∈ Sn expands, in terms of divided dif-
ferences, as

σ =
∑
v≤ρ

∂v Yv(x
σ,x) . (3.3.1)

For example,
s2s1 = 1 + ∂2(x3 − x1) + ∂1(x2 − x1) + ∂2∂1(x3 − x1)(x2 − x1) ,

s2s1s3 = 1 + ∂1(x2 − x1) + ∂2(x4 − x1) + ∂3(x4 − x3) + ∂2∂3(x4 − x3)(x4 − x1)

+∂1∂3(x2−x1)(x4−x3)+∂2∂1(x2−x1)(x4−x1)+∂2∂1∂3(x2−x1)(x4−x1)(x4−x3) .

Conversely, one may express divided differences in terms of permutations, and
more generally, any linear combination with rational coefficients in x.
Lemma 3.3.2. Let n be an integer, ΘY (x,y) :=

∏
1≤i<j≤n(yi−xj) as before, and

~ =
∑

σ∈Sn
σ hσ be a sum with rational coefficients hσ in x. Then

ΘY (x,y) ~
∣∣
y=xσ

= (−1)`(σ) hσ
∏

1≤i<j≤n

(xi − xj) . (3.3.2)

Proof. We have already used that ΘY (x,xζ) vanishes for all permutations ζ dif-
ferent from the identity. Therefore ΘY (yσ,yζ) vanishes except for ζ = σ, and the
sum ΘY (x,y) ~ =

∑
ΘY (xσ,y)hσ reduces to a single term when specializing y to

a permutation of x. QED
We can take now ~ = ∂τ . Then

ΘY (x,y)∂τ = Xω(xω,y)∂τ = Xω(x,y)ω∂τω ω

= (−1)`(τ)Xω(x,y) ∂ωτ−1ωω = (−1)`(τ)Xτ−1ω(xω,y) .

In final, one has the following expression of ∂τ [108, Prop. 10.2.5] :
Proposition 3.3.3. Let τ ∈ Sn. Let ∂τ =

∑
ζ cτζ be the expression of ∂τ in terms

of permutations. Then

(−1)`(ζ) cτζ = (−1)`(ωτ) Xτ−1ω(xωζ ,x)
1

∆(x)
= Xωτ (x,x

ωζ)
1

∆(x)
. (3.3.3)

Notice that, apart from signs and the factor ∆(x), the entries of the transition
matrix from permutations to divided differences, and its inverse, are the same.

Here are the two transition matrices for n = 3, to be read by rows, coding
x1 − x2 = 12, x1 − x3 = 13, x2 − x3 = 23 :

1 ∂2 ∂1 ∂1∂2 ∂2∂1 ∂1∂2∂1

1 1 0 0 0 0 0
s2 1 23 0 0 0 0
s1 1 0 12 0 0 0
s2s1 1 23 13 0 23 · 13 0
s1s2 1 13 12 13 · 12 0 0
s1s2s1 1 13 13 12 · 13 13 · 23 12 · 13 · 23
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1 s2 s1 s1s2 s2s1 s1s2s1

∆ 12 · 13 · 23 0 0 0 0 0
∂2∆ −12 · 13 12 · 13 0 0 0 0
∂1∆ −13 · 23 0 13 · 23 0 0 0
∂2∂1∆ 13 −13 −23 0 23 0
∂1∂2∆ 13 −12 −13 12 0 0
∂1∂2∂3∆ −1 1 1 −1 −1 1

Pairs of permutations τ, σ such that the specialisationXτ (x
σ,x) is not a divisor

of the Vandermonde correspond singularities of Schubert varieties. There are only
two singularities when n = 4. One of them occurs in the expansion of ∂2∂3∂1∂2,
which involves the specializations of X2143 = (x1−x2)(x1 +x2 + y3− y1− y2− y3),
among which one finds (x1 − x4)2.

The full expansion of ∂2∂3∂1∂2 is

(1− s2)
( x1 − x4

(x3 − x4)(x2 − x4)(x2 − x3)(−x3 + x1)(x1 − x2)

−s1
1

(x3−x4)(x2−x3)(−x3 + x1)(x1−x2)
−s3

1

(x3−x4)(x2−x4)(x2−x3)(x1−x2)

+ s3s2
1

(x3−x4)(x2−x4)(x2−x3)(x1−x3)
+ s1s2

1

(x2−x4)(x2−x3)(x1−x3)(x1−x2)

+ s1s3
1

(x3−x4)(x2−x3)(x1−x4)(x1−x2)
−s1s3s2

1

(x2−x4)(x2−x3)(x1−x4)(−x3 + x1)

)
The other singularity, when n = 4, occurs for ∂3∂2∂1∂2∂3, which requires spe-

cializing X1324 = x1 + x2 − y1 − y2 :

∂3∂2∂1∂2∂3 ∆ = (1− s1)(1− s3)
(

(x1 +x2−x3−x4)− s2(x1−x4) + s2s3(x1−x3)

+ s2s1(x2 − x4)− s2s1s3(x2 − x3)
)
.

On could obtain the expansion of a reduced product ∂i · · · ∂j by writing it
as (1 − si)(xi − xi+1)−1 · · · (1 − sj)(xj − xj+1)−1 and enumerating all subwords
of si · · · sj. This is the method followed by Kostant and Kumar [83]. We prefer
relating the coefficients to Schubert polynomials, in particular because the number
of subwords of a reduced decomposition of a permutation σ is far greater than the
number of permutations in the interval [1, σ].

Since the coefficients cτζ in (3.3.3) must vanish when ζ does not belong to the
interval [1, τ ], one obtains the following characterization of the Ehresmann-Bruhat
by vanishing properties of Schubert polynomials, which generalizes (3.1.1).

Proposition 3.3.4. Given n and two permutations σ, ζ ∈ Sn, then Xσ(xζ ,x) 6= 0
if and only if σ ≤ ζ with respect to the Ehresmann-Bruhat order.

Graßmannian Schubert polynomials Yv : v ∈ Nn, v = v ↑ are symmetrical in
x1, . . . , xn. One does not need to specialize them in all permutations of y1, y2, . . .,
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but, by symmetry, only in 〈u〉 = [yσ1 , . . . , yσn ] with σ of code u0 . . . 0 such that
u = u↑. In that case, the last proposition becomes :

Corollary 3.3.5. Let u, v ∈ Nn be anti-dominant. Then Yv(〈u〉,y) 6= 0 if and
only if v ≤ u (componentwise).

This property is given by Okounkov [158] in the case where y = {0, 1, 2, . . .}.

3.4 Wronskian of symmetric functions
Given a positive integer r, and r functions fi of a single variable, the determinant
|fi(xj| is divisible by the Vandermonde in x1, x2, . . . , and the quotient may be
thought as a discrete analogue of the Wronskian [108, Prop. 9.3.1].

Writing fi(xj) = fi(x1)s1 . . . sj−1, and using (3.3.1), one sees that∣∣fi(xj)∣∣i,j=1,...,r

∏
r≥j>i≥1

(xj − xi)−1 =
∣∣fix1 ∂1 . . . ∂j−1

∣∣
i,j=1,...,r

.

The same formula (3.3.1) may be applied to symmetric functions, replacing
the integer r by a partition. Let λ ∈ Nn be a partition. To a family of symmetric
functions f1(xn), f2(xn), . . . of cardinality the number of partitions contained in
λ, we shall associate a Wronskian Wλ(fi).

For each µ ⊆ λ, let σµ be the Graßmannian permutation of code µ↑. Thanks
to (3.3.1), every symmetric function f(xn) satisfies

f
(
xσµ1 , . . . , xσ

µ
n

)
= f(xn) + · · ·+ f∂µ↑ e (σµ) .

Therefore, a determinant
∣∣fi (xσµn )∣∣ may be transformed, by multiplication by a

unitriangular matrix, into the determinant
∣∣fi(xn)∂

µ↑ e (σµ)
∣∣.

Definition 3.4.1. Given a partition λ ∈ Nn, and a family of symmetric func-
tions fi(xn) of cardinality the number N of partitions contained in λ, then the
Wronskian is

Wλ(fi(xn)) =
∣∣fi∂µ↑∣∣i=1...N

µ⊆λ
.

The preceding analysis has shown that the Wronskian is equal to

∣∣fi (xσµn )∣∣ 1∏
µ⊆λ e(σµ)

.

For example, let n = 4, λ = [3, 1, 0, 0]. Then the family {µ ↑}, as well as the
inversion polynomials e(σµ), are displayed on the next figure (writing ji instead
of xj−xi). The family {∂µ↑} is the set of paths from the origin.
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0000 ∅

0001 54

0011 43,53 0002 64,65

0012 43,63,65 0003 74,75,76

0013 43,73,75,76

∂4

∂3 ∂5

∂6∂3∂5

∂6 ∂3

In the case where the family {fi(xn)} is the set of Schur functions {sµ(xn) :
µ ⊆ λ}, the Wronskian is unitriangular, and thus its determinant is equal to 1.

In the case of a rectangular partition λ ⊆ rn, the sets {σµ(xn)} are all the
subsets of cardinality n of {x1, . . . , xn+r}. Given any f ∈ Sym(xn), and i :
1 ≤ i ≤ n+r−1, then the set {fµ↑} is such that, either fµ↑ and fµ↑∂i occur
simultaneously, or fµ↑∂i = 0. Thanks to the Leibnitz formula, this forces the
Wronskian Wrn(f1, f2, . . . ) to be annihilated by all ∂i, i = 1, . . . , n+r−1. In other
words, the Wronskian is a symmetric function when λ is a rectangular partition.
Moreover, any inversion (j, i), n+r ≥ j > i ≥ 1, occurs

(
n+r−2
n−1

)
times in the set of

Graßmannian permutations {σµ}.
In summary, one has the following lemma.

Lemma 3.4.2. Let n, r be two positive integers, let f1, . . . , fN , with N =
(
n+r
n

)
,

belong to Sym(xn+r). Then

1∏
n+r≥j>i≥1(xj−xi)

(n+r−2
n−1 )

∣∣∣fi(X)
∣∣∣ i=1...N
X⊂{x1,...,xn+r}

= Wrn(f1, . . . , fN)

is a symmetric function of x1, . . . , xn+r.
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For example, for n = r = 2, the Wronskian

W22

(
Y0(x,0), Y01(x,0), Y11(x,0), Y03(x,0), Y23(x,0), Y34(x,0)

)

=

1 ∂2 ∂2∂1 ∂2∂3 ∂2∂3∂1 ∂2∂3∂1∂2

Y0 Y0 0 0 0 0 0

Y01 Y01 Y0 0 0 0 0

Y11 Y11 Y1 Y0 0 0 0

Y03 Y03 Y002 0 Y0001 0 0

Y23 Y23 Y202 Y012 Y2001 Y0101 Y0001

Y35 Y35 Y304 Y024 Y3003 Y0203 Y0013

is equal to
Y0001

(
Y0101Y0013 − Y0203Y0001

)
= Y 2

0001Y0113 .
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3.5 Yang-Baxter and Schubert
One can degenerate Yang-Baxter bases of Hecke algebras into bases of the algebra
of divided differences. However, instead of taking products of factors of the type
∂i+1/c, let us take factors 1+c∂i. Accordingly, given a spectral vector [y1, . . . , yn],
one defines recursively a Yang-Baxter basis f∂

σ, starting from 1 for the identity
permutation, by

f∂
σsi

= f∂
σ

(
1 + ∂i (yσi+1

− yσi)
)
for σi < σi+1 . (3.5.1)

For example,

f∂
321 = (1 + ∂1(y2−y1))(1 + ∂2(y3−y1))(1 + ∂1(y3−y2))

= 1 + ∂1(y3−y1) + ∂2(y3−y1) + ∂1∂2(y2−y1)(y3−y1)

+ ∂2∂1(y3−y2)(y3−y1) + ∂1∂2∂2(y2−y1)(y3−y1)(y3−y2)

One remarks that the coefficients are the same as in the expression of σ =
[3, 2, 1] in terms of divided differences.

The following proposition shows that this property is true in general, and that
the coefficients are still specialisations of Schubert polynomials.

Theorem 3.5.1. The matrix of change of basis between {f∂
σ} and {∂σ∆(y)}, and

its inverse, have entries which are specializations of Schubert polynomials :

f∂
σ =

∑
ν≤σ

∂ν Xν(y
σ,y) , (3.5.2)

∂ν ∆(y) =
∑

f∂
σXων(y,y

ωσ) . (3.5.3)

Proof. Let σ and i be such that `(σ) < `(σsi). Suppose known the expansion

f∂
σ =

∑
ν

∂ν Xν(y
σ,y) + ∂νsi Xνsi(y

σ,y) ,

with ν : `(ν) < `(νsi). Then its product by 1+(yσi+1
−yσi)∂i is∑

ν

∂ν Xν(y
σ,y) + ∂νsi

(
Xνsi(y

σ,y) +Xν(y
σ,y)(yσi+1

−yσi)
)
,

and the identities

Xν(y
σsi ,y) & Xνsi(y

σsi ,y) = Xνsi(y
σ,y) +Xν(y

σ,y)(yσi+1
−yσi)

give a similar expansion for Yσsi . QED
Notice that to expand products of factors 1 + ∂i(xi+1 − xi), one has used the

Leibnitz relations while in the present case the coefficients (in y) commute with
the operators acting on x.

The analogy between Yang-Baxter elements and permutations can be materi-
alised by acting on a proper element, as shows the following proposition.
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Proposition 3.5.2. For any σ ∈ Sn, one has

Xω(x,yω) f∂
σ = Xω(x,yσω) (3.5.4)

Proof. In the step by step action of the factorised element f∂
σ, each step is of the

type, f(xi − yk)(1 + ∂i(yk − yj) = f(xi − yj), f ∈ Sym(xi, xi+1). QED
For example, for σ = [3, 4, 1, 2], writing the non-symmetric factor in a box, one

has f∂
3412 =

(
1 + ∂2(y3 − y2)

)(
1 + ∂1(y3 − y1)

)(
1 + ∂3(y4 − y2)

)(
1 + ∂2(y4 − y1)

)
and

x1−y2
x1−y3 x2−y3
x1−y4 x2−y4 x3−y4

1+∂2(y3−y2)−−−−−−→
x1−y2
x1−y3 x2−y2
x1−y4 x2−y4 x3−y4

1+∂1(y3−y1)−−−−−−→
x1−y2
x1−y1 x2−y2
x1−y4 x2−y4 x3−y4

1+∂3(y4−y2)−−−−−−→
x1−y2
x1−y1 x2−y2
x1−y4 x2−y4 x3−y2

1+∂2(y4−y1)−−−−−−→
x1−y2
x1−y1 x2−y2
x1−y4 x2−y1 x3−y2

= X4321(x,x2143) .

The general properties of Yang-Baxter bases induce properties of specialisa-
tions of Schubert polynomials.

The symmetry (1.8.4) entails

(−1)`(ν)Xν(y
σ,y) = Xωνω(yωσω,yω) . (3.5.5)

Each of the equations (1.8.9) and (1.8.10) gives in turn∑
ν

(−1)`(ν)Xν(y
σ,y)Xνω(yζ ,y) = ∆(y) δσ,ζω , (3.5.6)

but this is a special case of Cauchy formula∑
ν

(−1)`(ν)Xν(y
σ,y)Xνω(yζ ,y) =

∑
ν

Xν−1(y,yσ)Xνω(yζ ,y) = Xω(yζ ,yσ) .

The quadratic form ( , )H defined in (1.8.5) degenerates into the form

(f , g)H00 = f g∨ ∩ ∂ω , (3.5.7)

still denoting f → f∨ be the anti-automorphism of the algebra of divided differ-
ences induced by (∂σ)∨ = ∂σ−1 .

Property (1.9.5) becomes

Proposition 3.5.3. The Yang-Baxter bases associated to the spectral vectors
[y1, . . . , yn] and [yn, . . . , y1] satisfy the relations(

f∂,y
σ , f∂,yω

ζ

)H00

= δσ,ωζ ∆(yσ) . (3.5.8)
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For example, for σ = ζ = [2, 3, 1], one has to take the product of

f∂,y
231 = 1 + ∂1(y2 − y1) + ∂2(y3 − y1) + ∂1∂2(y2 − y1)(y3 − y1)

and (
f∂,yω

231

)∨
= 1 + ∂1(y2 − y3) + ∂2(y1 − y3) + ∂2∂1(y2 − y3)(y1 − y3) .

The coefficient of ∂321 in this product is equal to (y2−y1)(y3−y1)(y2−y3)+(y2−y1)(y2−y3)(y1−y3) =

0, and this proves that
(
f∂,y

231 , f∂,yω
231

)H00

= 0.
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3.6 Distance 1 and multiplication
The ring Sym(x) has a linear basis consisting of Schur functions. Its multiplicative
structure is determined by the Pieri formulas, i.e. by the products of Schur func-
tions by the elementary (or complete) symmetric functions. In the non-symmetric
case, the requirement to recover the ring structure is easier. Polynomials being
sums of monomials, and monomials being products of variables, we need only
describe the images of the different bases under multiplication by x1, x2, . . ..

Our bases being obtained by the use of ∂i’s or πi’s, we could use the commu-
tation properties of these operators with multiplication by a single variable.

In the case of Schubert polynomials, let us rather use interpolation methods.
This time, it will be more convenient to index polynomials by permutations, pass-
ing from the notation Yv to the notation Xσ, where v is the code c(σ) of σ.

Definition 3.6.1. v ∈ Nn is a successor of u if |v| = |u| + 1 & Yu(〈v〉,y) 6= 0.
Given two permutations ζ, σ, then ζ is a successor of σ iff this is so for their
codes.

Theorem 3.6.2. A permutation ζ, of code v, is a successor of σ iff ζσ−1 is a
transposition (a, b), and `(ζ) = `(σ) + 1. In that case,

Xσ(〈v〉,y) = e(v) (yζb − yζa)−1 .

Proof. If u = c(σ) is dominant, then it is immediate to write the specializations of
Yu and check the proposition in that case. Let us therefore suppose that there ex-
ists i such that ui < ui+1, and let η be such that c(η) = [u1, . . . , ui−1, ui+1+1, ui, ui+2, . . . , un].
Since for any permutation ζ of code v, one has(

Xη(〈v〉,y)− (Xη(〈v〉),y)si
)

(yζi − yζi+1
)−1 = Xσ(〈v〉,y) ,

ζ can be a successor of σ only if ζ = η, or if ζsi is a successor of η. In the first
case,

Xσ(〈v〉,y) = Xη(〈v〉,y)(yηi − yηi+1
)−1 = e(v)) ,

while in the second,

−Xη(〈v〉si ,y)

yζi − yζi+1

=
e(c(ζsi))

(yζi+1
− yζi)(yζb − yζa)

=
e(c(ζ))

yζb − yζa
,

and this proves the proposition. QED

Corollary 3.6.3 (Monk formula [81]). Given v ∈ Nn, σ = 〈v〉, k ∈ {1, . . . , n},
then

(xk − yσk)Xσ(x,y) =
∑
j>k

Xστk,j(x,y)−
∑
j<k

Xστk,j(x,y) , (3.6.1)

summed over all transpositions τk,j such that `(στk,j) = `(σ) + 1.
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Proof. The polynomial (xk−yσk)Xσ(x,y) belongs to the linear span of Yw : |w| =
|v|+ 1, because it is of degree |v|+ 1 and vanishes in all y〈w〉 : |w| ≤ |v|. Writing
it
∑
cζXζ(x,y), and testing all the specializations yζ , one finds that the permu-

tations appearing in the sum are exactly the successors of σ such that yζk 6= yσk .
QED

Instead of multiplying by xk, on can equivalently multiply by x1 + · · · + xk
at once, obtaining the following Pieri formula generalizing the product of a Schur
function by the elementary symmetric function of degree 1.

Corollary 3.6.4 (Degree 1 Pieri formula). Given n, k : k ≤ n, v ∈ Nn, σ = 〈v〉,
i ∈ {1, . . . , n}, then

(x1+ · · · +xk − yσ1
− · · · −yσk)Xσ(x,y) =

∑
1≤i≤k<j

Xστi,j(x,y) , (3.6.2)

summed over transpositions τi,j such that `(στi,j) = `(σ) + 1.

One can iterate Monk formula. Let us call k-path of length r a sequence of
permutations σ0, σ1, . . . , σr such that `(σi+1) = `(σi) + 1 and (σi+1)−1σi) is a
transposition (k, j).

A k-path can be denoted by the sequence [ar, . . . , a0] of values permuted, with

a0 = (σ0)k, a1 = (σ1)k, . . . , ar = (σr)k .

For i = 1, . . . , r, each permutation σi(σ0)−1 is a cycle (ai . . . a1a0). The following
proposition shows that the multiplication by a power of xk can be described in
terms of k-paths, the coefficients being complete functions Sj( ) of the variables
yi indexed by the values permuted.

Proposition 3.6.5. Let σ ∈ Sn, k ≤ n, m ∈ N. Then, modulo Sym(xn) =
Sym(yn), one has

xmk Xσ(x,y) =
∑

ε Sm−1−r(ya0 , . . . , yar)Xτar,ar−1 ...τa1a0σ
(x,y) , (3.6.3)

sum over the k-paths of length ≤ m, the sign being given by the number of times
τai,ai−1

transposes a value at position smaller than k.

Proof. Multiplying by xmk , using (3.6.1), involves enumerating paths with possi-
ble loops σi = σi+1 having weight yj, with j = (σi)k. The proposition results
from grouping all the paths differing only by their loops, this explaining that the
coefficient be a complete function. Each application of Monk formula possibly
involves increasing the size of the symmetric group. One avoids that by using the
ideal generated by the identification of symmetric functions in xn with the same
symmetric functions in yn. QED

The following tree describes the product x3
2X31425(x,y), writing each permu-

tation ζ above the coefficient of Xζ(x,y).
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3 1 425
y3

1

tttttt
KKKKKK

3 2 415
S2(y1, y2)

3 4 125
S2(y1, y4)

MMMMMMM

3 4 215
y1 + y2 + y3

JJJJJJ

4 3 125
−y1 − y3 − y4

3 5 124
y1 + y4 + y5

4 3 215
−1

3 5 214
1

4 5 123
−1

5 3 124
−1

or, for the readers who prefer one-dimensional formulas,

x3
2X31425 = y3

1X3142+(y2
1+y2

4+y1y4)X3412+(y2
1+y1y2+y2

2)X3241+(y1+y5+y4)X35124

−(y3+y1+y4)X4312+(y4+y1+y2)X3421−X45123+X361245−X53124+X35214−X4321 .
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3.7 Pieri formula for Schubert polynomials
The Italian geometer Pieri described the intersection of a Schubert cycle by a
“special” one in the cohomology ring of the Grassmannian. In modern terms, he
described the product of a Schur function by an elementary or complete function,
the remarkable property being that there is no multiplicity in Pieri formula.

Let us generalize Pieri’s result to Schubert polynomials, the presence of extra
variables y allowing to interpret the intersection numbers 1 as complete functions
of degree 0.

Our starting point will be the following case.

Lemma 3.7.1. Let n, k, r ∈ N, ρ = [n−1, . . . , 0], m = max(n−k, 0) and y♥ =
{ym+1, ym+2, ym+3, . . . }. Then

Yρ(x,y)Y0k−1r(x, z) = Yρ(x,y)Y0k−1r(y
♥, z)

+
k∑
i=1

r∑
j=1

Yρ+[0i−1j0n−k](x,y)Y0k−1+jr−j(y
♥, z) . (3.7.1)

Proof. One uses Newton’s interpolation (3.2.1) on the product fg, with f =
Yρ(x,y), g = Y0k−1r(x, z), using Leibnitz’ formula (1.4.2). The images of f un-
der products of divided differences are 0 or Schubert polynomials that one has
to specialize in x = y. Only Y0...0 subsists. Let us first suppose that n ≤ k.
In a sum

∑
εi,...εh∈{0,1}

(
f∂εii ∂

εj
j · · · ∂

εh
h

)(
gsεii ∂

1−εi
i s

εj
j ∂

1−εj
j · · · sεhh ∂

1−εh
h

)
there remains

only divided differences ∂i, i < n acting on f , si preserving g, and products
∂k∂k+1 · · · ∂k+j−1 acting on g and sending it to Y0k−1+jr−j(x, z).

In final, for n = 3 = k for example, the only non-zero contributions in Newton’s
formula are for ∂2∂1∂2(∂3∂4 · · · ), ∂2(∂3∂4 · · · )∂1∂2 and (∂3∂4 · · · )∂2∂1∂2, and this
corresponds indeed to the RHS of (3.7.1).

In the case where n > k, writing y♥ = {yn−k, yk+1, . . .}, one factors Yρ(x, y) =
Y(n−k)k,n−k−1,...,0(x,y)Yk−1,...,0(x,y♥), and write the interpolation for the product
Yk−1,...,0(x,y♥)Y0k−1r(x, z). QED

For example, for n = 5, k = 3, r = 2, one has y♥ = {y3, y4, . . .} and

Y43210(x,y)Y002(x, z) = Y43210(x,y)Y002(y♥, z) +
(
Y53210(x,y) + Y44210(x,y)

+ Y43310(x,y)
)
× Y0001(y♥, z) +

(
Y63210(x,y) + Y45210(x,y) + Y43410(x,y)

)
.

To describe the general Pieri formula, it is convenient to index Schubert poly-
nomials by permutations, and generalize consecutivity in the Bruhat order.

Given an integer k, a pair of permutations σ, η : σ ≤ η is called a k-soulèvement
of degree indexsoulèvement `(η)−`(σ) if each cycle ζi in the cycle-decomposition
ησ−1 = ζ1 · · · ζm is of the type ζi = (α, δ, γ, . . . , β) with δ > γ > · · · > β > α,
{δ, . . . , α} ∩ {σ1, . . . , σk} = {α} and `(η) = `(σ) + (#ζ1 − 1) + · · · + (#ζm − 1).
Denote furthermore yσ,η = {yσ1 , . . . , yσk} ∪ {yi : i ∈ {ζ1} ∪ · · · ∪ {ζm}}.



§ 3.7 — Pieri formula for Schubert polynomials 

For example the pair σ = [5, 2, 7, 4, 1, 6, 8, 3, 9], η = [6, 2, 9, 4, 3, 5, 7, 1, 8]) is a
5-soulèvement of degree 1+1+2 = `(η)−`(σ), because ησ−1 = (1, 3)(5, 6)(7, 9, 8),
and yσ,η = {y5, y2, y7, y4, y1} ∪ {y1, y3} ∪ {y5, y6} ∪ {y7, y9, y8}
= {y5, y2, y7, y4, y1, y6, y8, y9}.

Theorem 3.7.2. Let n, k, r ∈ N, σ ∈ Sn. Then

Xσ(x,y)Y0k−1r(x, z) =
∑
η

Xη(x,y)Y0k−1+jr−j(y
σ,η, z) , (3.7.2)

sum over all k-soulèvements (σ, η) of degree j = 0, . . . , r.

Proof. The divided differences in y send Xn...1(x,y) onto any Xσ(x,y), up to sign.
Thus, the theorem can be proved by decreasing induction on `(σ), checking the
evolution of the RHS of (3.7.6) under a simple divided difference in y, starting
from (3.7.1). QED

For example of the recursion, the term X3471256(x,y)Y052(y3, y1, y5, y4, y7, y6)
occurs in the expansion of X31542(x,y)Y005(x, z), and the permutation
[3, 4, 7, 1, 2, 5, 6][3, 1, 5, 4, 2]−1 is equal to the product of cycles (1, 4)(5, 7, 6). Under
−∂y2 , this term gives, in the expansion of X21543(x,y)Y005(x, z) the two terms
X3471256(x,y)Y061(y2, y1, y5, y4, y3, y7, y6) and
X2471356(x,y)Y052(y2, y1, y5, y4, y7, y6), in accordance with

[3, 4, 7, 1, 2, 5, 6][2, 1, 5, 4, 3]−1 = (1, 4)(2, 3)(5, 7, 6) ,

[2, 4, 7, 1, 3, 5, 6][3, 1, 5, 4, 2]−1 = (1, 4)(5, 7, 6) .

The product of a Schubert polynomial by the elementary symmetric functions
of x1, . . . , xk can be described similarly. In fact, instead of starting by the product
of Yρ(x,y) by

∑k
0(x,0)(−z)k−i = Y1k(x, z) =

∏k
1(xi−z), one can multiply Yv(x,y)

by
∏k

1(xi−zi) under some hypothesis on v. The elementary step is the following,
which transforms multiplication by xi into an action of a divided difference in y.

Let v be dominant, i = 1 or i be such that vi−1 > vi+1, v′ = v + [0i−11],
j = vi+1. Then

Yv(x,y)(xi−z) = Yv′(x,y) + (yj−z)Yv(x,y) = Yv′(x,y) (z−yj+1)∂y
j .

For example, for v = [4, 2, 1], i = 2, ignoring the factors which are invariant under
sy2 , one has

Y421(x,y)(x2−y3)(z−y4) = x2−y3 z−y4
∂y
3−−→Y421(x,y)(x2−z) .
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By iteration, for an integer k and v dominant such that v1 > · · · > vk > vk+1,
one has

Yv(x,y)(x1−z1) · · · (xk−zk)
= Yv+1k−1(x,y)

(
(zk−1−yvk−1+2)∂y

vk−1+1

)
· · ·
(
(z1−yv1+2)∂y

v1+1

)
(xk−zk)

= Yv+1k−1(x,y)(xk−zk)
(
(zk−1−yvk−1+2)∂y

vk−1+1

)
· · ·

= Yv+1k(x,y)
(
(zk−yvk+2)∂y

vk+1

)
· · ·
(
(z1−yv1+2)∂y

v1+1

)
,

and one obtains the following lemma.

Lemma 3.7.3. Let v be dominant, k be such that v1 > · · · > vk > vk+1, u =
v + [1k]. Then one has

Yv(x,y)(x1−z1) · · · (xk−zk) = Yu(x,y)(zk−yuk+1)∂y
uk
· · · (z1−yu1+1)∂y

u1

= Yu(x,y)(zk−yuk+1) · · · (z1−yu1+1)∂y
uk
· · · ∂y

u1
. (3.7.3)

As a corollary, one has, for ρ = [n−1, . . . , 0] and k ≤ n,

Yρ(x,y)Y1k(y, z) =
∑

0k≤u≤1k

Yρ+1k−u(x,y)(yn−z1)u1 · · · (yn−k+1−z1)uk . (3.7.4)

Using the divided differences in z, this formula implies the following analog of
(3.7.1).

Lemma 3.7.4. Let n, r, k be three integers, 0 ≤ r ≤ k ≤ n, ρ = [n−1, . . . , 0]. For
u ∈ [0, 1]k, denote y〈u〉 = {yn+1−i : i such that ui = 1, 1 ≤ i ≤ k}. Then

Yρ(x,y)Y0r1k−r(y, z)

=
∑

0k≤u≤1k

(−1)|u|−rYρ+1k−u(x,y)S|u]−r(z1+ · · · +zr+1 − y〈u〉) . (3.7.5)

For example,

Y4321(x,y)Y011(x, z) = Y4431(x,y) + Y5331(x,y) + Y5421(x,y)

− Y5321(x,y)(z1+z2 − y4−y3)− Y4421(x,y)(z1+z2 − y5−y3)

− Y4331(x,y)(z1+z2 − y5−y4) + Y4321(x,y)S2(z1+z2 − y5−y4−y3) .

The general product Yv(x,y)Y0r1k−r(x, z) requires mirroring the notion of souléve-
ment. Given an integer k, a pair of permutations σ, η : σ ≤ η is called a k-
soulèvement gauche of degree `(η)−`(σ) if each cycle ζi in the cycle-decomposition
ησ−1 = ζ1 · · · ζm is of the type ζi = ((α, β, γ, . . . , δ) with α < β < γ · · · < δ,
{α, . . . , δ}∩{σ1, . . . , σk} = {δ}, and `(η) = `(σ)+(#ζ1−1)+ · · ·+(#ζm−1). For
a pair (σ, η) of permutations, denote y[σ,η] = {yσ1 , . . . , yσk} ∩ {yη1 , . . . , yηk}. Then
one has the following Pieri formula for multiplication by elementary symmetric
functions.
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Theorem 3.7.5. Let n, k, r ∈ N, 0 ≤ r ≤ k ≤ n, σ ∈ Sn. Then

Xσ(x,y)Y0r1k−r(x, z) =
∑
η

(−1)k−r+`(σ)−`(η) Xη(x,y)Sk−r+`(σ)−`(η)(zr+1 − y[σ,η]) ,

(3.7.6)
sum over all k-soulèvements gauches (σ, η) of degree j = 0, . . . , r.

For example, in the product Y241596837(x,y)Y0111(x, z), one has the term
−Y34195827(x,y)(z1+z2−y1−y4), the cycle decomposition of ησ−1 being (2, 3)(5, 9),
and the intersection {yσ1 , . . . , yσ4} ∩ {yη1 , . . . , yη4} being {y1, y4}.
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3.8 Products of Schubert polynomials by oper-
ators on y

We have described in the preceding sections Pieri multiplications by the combina-
torics of soulèvements. Let us rather use now operators in y. For example, the ele-
mentary products Y201(x,0)Y11(x,0) = Y32(x,0)+Y311(x,0), Y101(x,0)Y11(x,0) =
Y31(x,0) + Y22(x,0) + Y211(x,0) can be rewritten

Y201(x,0)Y11(x,0) = Y321(x,0)(−∂y
1 −∂

y
2 )

Y101(x,0)Y11(x,0) = Y321(x,0)(−∂y
1 −∂

y
2 )(−∂y

2 −∂
y
3 )

= Y321(x,0)
(
∂y

1 ∂
y
2 + ∂y

1 ∂
y
3 + ∂y

2 ∂
y
3

)
,

indicating that the elements δi = ∂i + ∂i+1 play a role in the multiplication of
Schubert polynomials.

For them, the braid relations of order 3 are still valid:

δiδi+1δi = δi+1δiδi+1 = (∂i∂i+1+∂i∂i+2+∂i+1∂i+2)∂i + (∂i∂i+2+∂i+1∂i+2)∂i+1 .

In the case of order 2, one has δiδj = δjδi if |j−i| > 2, but

δiδi+2 − δi+2δi = ∂i+1∂i+2 − ∂i+2∂i+1 .

Note, however, that the elements δi do not satisfy a Hecke relation, but that

δ2
i = ∂i∂i+1 + ∂i+1∂i , δ

3
i = 2∂i∂i+1∂i , δ

4
i = 0 .

Given two positive numbers r, p, let ϕ([r], p) = δp · · · δp+r−1, and for a partition
λ ∈ N`, let

ϕ(λ, p) = ϕ([λ1], p)ϕ([λ2], p−1) · · ·ϕ([λ`], p−`+1) . (3.8.1)

For example, the product ϕ([3, 3, 1], 3) is obtained by reading by the successive
rows of the display

δ3 δ4 δ5
δ2 δ3 δ4
δ1

. In fact, one easily checks that δ1, δ2, . . . satisfy the
nilplactic relations (cf. 6.9.1)

δiδi+1δi−1 = δiδi−1δi+1 ,

and this allows to pass from the row-reading of the array to its column-reading.
Hence ϕ([3, 3, 1], 3) is also equal to (δ3δ2δ1)(δ4δ3)(δ5δ4).

By induction on r, one checks that

ϕ([r], p) =

p+r∑
j=p

(∂p · · · ∂j−1)(∂j+1 · · · ∂p+r) .

We shall not use the fact that, more generally, the non-zero terms in the expansion
of ϕ(λ, p) are in bĳection with the partitions whose diagram is contained in the
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diagram of λ. For example, reading the diagrams by rows, i standing for ∂i, one has
9 terms in the expansion of ϕ([3, 2], 2). The partitions are obtained by reordering
the lengths of the rows of the left part of diagram (as cut by the bullets).

ϕ([3, 2], 2) =
• 3 4 5
• 2 3
∅

+
• 3 4 5
1 • 3

1
+

2 • 4 5
1 • 3

11
+
• 3 4 5
1 2 •

2

+
2 • 4 5
1 2 •

21
+

2 3 4 •
• 2 3

3
+

2 3 • 5
1 2 •

22
+

2 3 4 •
1 • 3

31
+

2 3 4 •
1 2 •

32

When v is dominant, and i is such that vi−1 > vi+1 (or i = 1), then

Yv(x,y)(xi−z) = Yu(x,y) + (yui−z)Yv(x,y) = Yu(x,y)
(
1 + ∂y

ui
(z−yui)

)
, (3.8.2)

with u = v + [0i−1, 1]. One has therefore to introduce the operators

Di(z) = 1 + ∂y
i (z − yi)

depending on extra indeterminates z.
Let us show that these operators allow to express the product of two dominant

Schubert polynomials Yλ(x,y)Yµ(x, z). We have first to reinterpret the construc-
tion of the canonical reduced decomposition of a permutation from its code. Let
u ∈ N`. Fill the diagram of u by consecutive numbers upwards in each column,
starting with the column number at the bottom, as in section 1.1. Then Du(z) is
the product obtained by reading the diagram by successive columns, from top to
bottom, interpreting an entry i at level j as Di(zj). For example, u = [3, 0, 1, 2]

gives the diagram
3
2 5
1 3 4

and the product

D3012(z) =
(
D3(z3)D2(z2)D1(z1)

)( )(
D3(z1)

)(
D5(z2)D4(z1)

)
.

Decomposing Yµ(x, z) into products of factors of the type (x1−zj) · · · (xk−zj),
and applying repeatedly remark (3.8.2), one obtains the following description of
the product of two dominant Schubert polynomials.
Proposition 3.8.1. Let λ, µ be dominant, ζ be the permutation of code λ+µ, σ
be the permutation of code λ, and u be the code of ζσ−1. Then

Yλ(x,y)Yµ(x, z) = Yλ+µ(x,y)Du(z) . (3.8.3)

For example, for λ = [4, 3, 3, 2, 1], µ = [2, 2, 1, 1], one has λ+µ = [6, 5, 4, 3, 1],
ζ = [7, 6, 5, 4, 2, 1, 3], σ = [5, 4, 6, 3, 2, 1], ζσ−1 = [1, 2, 4, 6, 7, 5, 3], u = [0, 0, 1, 2, 2, 1],
and Du(z) = D3(z1) ·D5(z2)D4(z1) ·D6(z2)D5(z1) ·D6(z1). Hence

Y43321(x,y)Y2211(x, z) = Y65431(x,y)D3(z1)D5(z2)D4(z1)D6(z2)D5(z1)D6(z1) .

We are now in position to rewrite the product of a Schubert polynomial by an
elementary symmetric function, ϕy(λ, p) standing for a product of operators on y
instead of x.
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Proposition 3.8.2. Let k ∈ N, σ ∈ Sn such4 that n 6∈ {σ1, . . . , σk}, v be the
code of σ, ζ be the permutation of maximal length in the coset σSk|n−k. Let
λ be the partition #{i : ζi < ζj, i = 1, . . . , k, j = k+2, . . . , n}. Let moreover
u = [σ1, . . . , σk] ↑. Then

Xσ(x,y)Y1k(x, z) = (−1)|λ|Xωζ−1σ(x,y)ϕy(λ, n−k−1)Du1(z1) · · ·Duk(z1) . (3.8.4)

Proof. . One first shows that

Xζ(x,y)Y1k(x, z) = (−1)|λ|Xω(x,y)ϕy(λ, n−k−1)Du1(z1) · · ·Duk(z1) ,

by induction on the last part of λ. Since ∂x
ζ−1σ commutes with Y1k(x, z), one has

Xσ(x,y)Y1k(x, z) = Xζ(x,y)Y1k(x, z)∂x
ζ−1σ

= (−1)|λ|Xω(x,y) ∂x
ζ−1σϕ

y(λ, n−k−1)Du1(z1) · · ·Duk(z1)

= (−1)|λ|Xωζ−1σ(x,y)ϕy(λ, n−k−1)Du1(z1) · · ·Duk(z1) .

QED
For example, for σ = [1, 4, 2, 5, 3], k = 3, one has ζ = [4, 2, 1, 5, 3], ωζ−1σ =

[3, 5, 4, 2, 1], λ = [2], and

X14253(x,y)Y111(x, z) = X35421(x,y)(∂y
1 ∂

y
2 + ∂y

1 ∂
y
3 + ∂y

2 ∂
y
3 )D1(z1)D2(z1)D4(z1)

=
(
X25413(x,y) +X25341(x,y)

)
D1(z1)D2(z1)D4(z1)

= X25413 +X25341 +(y4−z1)X24513 +(y1−z1)X15342 +(y4−z1)X24351 +(y1−z1)X15423

+ (y4−z1) (y1−z1)X14352 + (y2−z1) (y1−z1)X15243

+ (y4−z1) (y1−z1)X14523 + (y4−z1) (y2−z1) (y1−z1)X14253 .

One can rewrite the preceding formula using that

Xωζ−1σ(x,y) = (−1)`(σ)+`(ζ)Xω(x,y)∂y
ωσ−1ζω ,

so as to start from a dominant polynomial.
Combining with formula (3.8.3) expressing the product of two dominant Schu-

bert polynomials, one obtains the product of a general Schubert polynomial by a
dominant one in x, z, and by using divided differences in z, the product of two
Schubert polynomials.

Theorem 3.8.3. With the notations of (3.8.4), let ρ = [n−1, . . . , 0], ω = [n, . . . , 1].
Let moreover µ be a partition of length k, η = µ−1k, ξ be the permutation of code
ρ+η, and finally w be the code of ξω. Then

Xσ(x,y)Yµ(x, z) = (−1)|λ|+`(σ)+`(ζ)Yρ+ηD
w(z2, . . . , zµ1)

∂y
ωσ−1ζωϕ

y(λ, n−k−1)Du1(z1) · · ·Duk(z1) . (3.8.5)
4if not, one adds a fixed point n+1 to σ.
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Let v be such that there exists a permutation ν such that Yµ(x, z)∂z
ν = (−1)`(ν)Yv(x, z).

Then

Xσ(x,y)Yv(x, z) = (−1)|λ|+`(σ)+`(ζ)+`(ν)Yρ+ηD
w(z2, . . . , zµ1)

∂y
ωσ−1ζωϕ

y(λ, n−k−1)Du1(z1) · · ·Duk(z1) ∂z
ν . (3.8.6)

Continuing the preceding example, one has

X14253(x,y)Y331(x, z) = Y4321(x,y)∂y
4 ∂

y
3ϕ([2], 1)D1(z1)D2(z1)D4(z1)Y22(x, {z2, z3})

= Y6521(x,y)D5(z3)D6(z3)D4(z2)D5(z2)∂y
4 ∂

y
3ϕ([2], 1)D1(z1)D2(z1)D4(z1) .

The image of this equation under ∂z
3 gives a non-dominant product:

−X14253(x,y)Y231(x, z) = Y6521(x,y)
(
∂y

5 +∂y
6 +∂y

5 ∂
y
6 (z3+z4−y5−y6)

)
D4(z2)D5(z2)∂y

4 ∂
y
3ϕ([2], 1)D1(z1)D2(z1)D4(z1) .

Formula (3.8.6) for the product of two Schubert polynomials involves us-
ing divided differences in z. Thanks to Leibnitz, one needs only to know that
Dj(zi)∂

z
i = ∂y

j and Dj(zi+1)∂z
i = −∂y

j to eliminate the divided differences in z. In
all, the product of two Schubert polynomials Xσ(x,0)Yv(x,0) in x only is com-
puted by starting from a dominant ancestor Yµ(x, z) of Yv(x, z), taking the image
of (3.8.5) under an appropriate product of divided differences in z, then specializ-
ing all zi to 0, i.e. replacing all Dj(zi) by Dj(0) = 1− ∂y

j yj = −yj+1∂j. However,
evaluating a mixture of ∂y

i and yi+1∂
y
i is not straightforward.

Let us follow another strategy by first pushing all the operators Dj(zi) to the
right, iterating the Pieri formula.

First notice that (3.8.4) implies that the expression

Xσ(x,0)x1 · · ·xk =
∑

Xζ(x,0)

extends to

Xσ(x,y)Y1k(x, z) =
∑

Xζ(x,y)Du1(z1) · · ·Duk(z1) .

Moreover, since u1, . . . , uk is increasing, coefficients can be pushed to the right
and the product Du1(z1) · · ·Duk(z1) is equal to∑

εi=0,1

(∂y
u1

)ε1 · · · (∂y
uk

)εk(z1−yu1)
ε1 · · · (z1−yuk)

εk .

For a given ζ, some ∂y
i possibly annihilate Xζ(x,y). Thus there exists a minimal

subsequence uζσ = [v1, . . . , vr] of [u1, . . . , uk] such that

Xζ(x,y)Du1(z1) · · ·Duk(z1) = Xζ(x,y)Dk
σ,ζ(z1) ,
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with Dk
σ,ζ(z1) = Dv1(z1) · · ·Dvr(z1). For example,

X3165247(x,y)Y111(x, z) = X6573124(x,y)ϕ([2, 2, 1], 3)D1(z1)D3(z1)D6(z1)

= X4275136(x,y)D1(z1)D3(z1)D6(z1) +X4571236(x,y)D3(z1)D6(z1)

+X5273146(x,y)D1(z1)D6(z1) +X5371246(x,y)D6(z1) .

Let us write σ k→ ζ for such a Pieri pair of permutations (which was called
k-soulèvement gauche of degree k in the preceding section). One can iterate the
Pieri multiplication

Xσ(x,y)Y1k(x, z1)Y1r(x, z2) =
∑
ζ

Xζ(x,y)Dk
σ,ζ(z1)Y1r(x, z2)

=
∑
ζ

Xζ(x,y)Y1r(x, z2)Dk
σ,ζ(z1) ,

and therefore, assuming r ≤ k, one has

Xσ(x,y)Y2r1k−r(x, z) =
∑
τ

∑
ζ

Xτ (x,y)Dr
ζ,τ (z2)Dk

σ,ζ(z1)

sum over all Pieri paths σ k→ ζ
r→ τ .

By iteration, one obtains

Proposition 3.8.4. Let σ be a permutation, λ be a partition, µ = λ∼ be its
conjugate, m = λ1. Then

Xσ(x,y)Yλ(x, z) =
∑

ζ1,...,ζm

Xζm(x,y)Dµm
ζm,ζm−1

(zm) · · ·Dµ1

ζ1,ζ0
(z1) , (3.8.7)

sum over all Pieri chains

σ = ζ0
µ1−−→ ζ1

µ2−−→ ζ2 · · ·
µm−−→ ζm .

Continuing the preceding example, writingXσ
a
b c

forXσ(x,y)Da(z2)Db(z1)Dc(z1),
one has

Y2032(x,y)Y221(x, z) = X316524(x,y)Y221(x, z)

= X6723145
5
1 6

+X5671234
4 5
3 6

+X7425136
•
1 3 6

+X5741236
4
3 6

+X7345126
2
1 3 6

+X7451236
3
6

+X5374126
2 4
1 3 6

+X7352146
2
1 6

+X5724136
4
1 3 6

+X7523146
•
1 6

+X6731245
5
6

+X5472136
4
1 3 6

+X6372145
2 5
1 6

+X6471235
3 5
6

+X7531246
•
6
.
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Formula (3.8.5) would on the other hand give

Y2032(x,y)Y221(x, z) = Y6542(x,y)D5(z2)D6(z2)ϕ([2, 2, 1], 3)D1(z1)D3(z1)D6(z1) .

By image of (3.8.7) under divided differences in z, and specializing y and z to 0,
one obtains the product of two general Schubert polynomials in x only. However,
cancellations occur, the different Pieri paths cannot be considered independently
of each other, and more work is needed to produce a positive combinatorial rule.

Fomin and Kirillov [40] describe the product of two Schubert polynomials
by introducing some quadratic algebras and evaluating Schubert polynomials in
Dunkl-type operators.
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3.9 Transition for Schubert polynomials
The right-hand side of Monk formula (3.6.1) involves two sets W+,W− of permu-
tations:

(xk − yσk)Xσ(x,y) =
∑
ζ∈W+

Xζ(x,y)−
∑
ν∈W−

Xν(x,y) ,

Let us call transition the case where W+ is a singleton, rewriting the equation

Xζ(x,y) = (xk − yσk)Xσ(x,y) +
∑
ν∈W−

Xν(x,y) , (3.9.1)

the setW− depending on the pair (k, ζ), or equivalently, the pair (k, σ) as described
in (3.6.1).

For example,

X52186347(x,y) = (x2−y1)X51286347(x,y)

= (x4−y7)X5217634(x,y) +X5271634(x,y)

+X5712634(x,y) +X7215634(x,y)

= (x5−y4)X52184367(x,y) +X52481367(x,y) +X54182367(x,y)

Transitions are compatible with Young subgroups. Indeed, let ζ belong to
Sr|n−r. Then ζ = ζ ′ζ ′′, where ζ ′ fixes r+1, . . . , n and ζ ′′ fixes 1, . . . , r. Any
transition for ζ ′ induces a transition for ζ. A transition

Xζ′(x,y) = (xk − yσk)Xσ(x,y) +
∑
ν∈W−

Xν(x,y) ,

all the permutations ν fix r+1, . . . , n, and therefore one has the transition

Xζ(x,y) = (xk − yσk)Xσζ′′(x,y) +
∑
ν∈W−

Xνζ′′(x,y) . (3.9.2)

By recurrence on the length of ζ ′, one obtains the following factorisation property
of Schubert polynomials.

Corollary 3.9.1. Let ζ belong to a Young subgroup, and ζ = ζ ′ζ ′′ its corresponding
factorisation. Then

Xζ(x,y) = Xζ′(x,y)Xζ′′(x,y) . (3.9.3)

Transitions may be used recursively to decompose Schubert polynomials into
sums of "shifted monomials"

∏
(xi − yj), stopping the process when arriving at

dominant polynomials.
Among all transitions for a given ζ, let us choose the one for which k is max-

imum, and call it maximal transition. For this transition, let us rather index
polynomials by codes instead of permutations. Let v ∈ Nn be the code of ζ, and
k be such that that vk > 0, vk+1 = 0 = · · · = vn. Let v′ = v − [0k−110n−k]
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and σ = 〈v′〉. In other words, xv = xv
′
xk, with k maximal. Then the maximal

transition rewrites as

Yv(x,y) = (xk − yσk)Yv′(x,y) +
∑

u
Yu(x,y) , (3.9.4)

summed over all u such that |u| = |v| and 〈u〉σ−1 is a transposition τik with i < k.
For example, starting with v = [2, 0, 3], 〈v′〉 = σ = [3, 1, 5, 2, 4], one has the

following sequence of transitions :

Y203(x,y) = (x3 − y5)Y202(x,y) + Y230(x,y) + Y401(x,y) ,

Y230(x,y) = (x2 − y4)Y220(x,y) + Y320(x,y) ,

Y401(x,y) = (x3 − y2)Y400(x,y) + Y410(x,y) ,

· · · · · ·

that one terminates when attaining dominant indices. Finally, writing each shifted
monomial as a diagram of black squares in the Cartesian plane

(
a square in column

i, row j corresponds to a factor (xi−yj)
)
, the polynomial Y203(x,y) reads

· · �
· · �
· · ·
� · �
� · ·

+
· · �
· · �
· · ·
� · ·
� � ·

+
· · �
· · ·
· · ·
� � ·
� � ·

+

· · ·
· � ·
· · ·
� � ·
� � ·

+

· · ·
� · ·
� · ·
� · �
� · ·

+
· · �
· · ·
� · ·
� · �
� · ·

+

· · ·
· · ·
� · ·
� � ·
� � ·

+
· · �
· · ·
� · ·
� · ·
� � ·

+

· · ·
� · ·
� · ·
� · ·
� � ·

the first diagram, for example, coding the product

· · �
· · �
· · ·
� · �
� · ·

⇒

· · (x3−y5)
· · (x3−y4)
· · ·

(x1−y2) · (x3−y2)
(x1−y1· ·

.

We shall give in the sequel a different combinatorial description of Schubert
polynomials in terms of tableaux.

Fomin and Kirillov [39] give configurations from which one reads a different
decomposition of Schubert polynomials into shifted monomials.

3.10 Branching rules
Let us ignore the term (xk−yσk)Yv′(x,y) in the maximal transition formula (3.9.4)
and write

Yv →
∑
u

or Xσ →
∑
ζ

Xζ , (3.10.1)

where the u’s or ζ’s are described in (3.9.4).
However, if v is dominant, then Yv = (xk − yσk)Yv′ and it would not be very

informative to write Yv → 0. Let us introduce the equivalence v ∼ [0, v], allowing
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the concatanation of 0′s on the left, which corresponds to identify Sn and its
image S1 ×Sn in Sn+1.

We can now iterate (3.10.1), producing an infinite graph.
Let us examine more closely the case where a permutation σ has only one

successor. Write this permutation σ = A 2B 4C 3D, with 2 < 3 < 4, A,B,C,D
being factors5 such that C 3D is increasing, D > 4 and B ∩ [2, . . . , 3] = ∅. The
successors of σ are all the permutations obtained by exchanging 3 in A 2B 3C 4D
with a letter on its left such that length increases by 1 only. The permutation
ζ = A 3B 2C 4D fulfills this requirement, and if B does not contain any letter
smaller than 2, then it is the unique successor of σ.

This indicates that permutations avoiding the pattern 2143 play a special role.
Let us say that σ is vexillary6 if there does not exist i, j, k, l : σj < σi < σl < σk.
A vexillary code is the code of a vexillary permutation.

We have just seen that if σ is vexillary, then it has only one successor in
a transition. In terms of codes, transition for vexillary codes reads as follows
(eventually transforming v into [0, v]).

Lemma 3.10.1. Let v = [AbD c] ∈ Nn be a vexillary code, with c 6= 0, the letter
b being the rightmost occurence of the maximal value in {AbD} ∩ {0, 1, . . . , c−1}.
Let v′ = [AbD c−1], u = [AcD b], σ = 〈v′〉, k = σn. Then v′ and u are vexillary
codes, and

Yv(x,y) = (xn − yk)Yv′(x,y) + Yu(x,y) . (3.10.2)

With this rule, here is the graph originating from the vexillary code [0, 1, 2, 8, 2, 7, 6, 4] :

[0, 1, 2, 8, 2, 7, 6, 4]→ [0, 1, 2, 8, 4, 7, 6, 2]→ [0, 2, 2, 8, 4, 7, 6, 1]

→ [1, 2, 2, 8, 4, 7, 6]→ [1, 2, 2, 8, 6, 7, 4]→ [1, 2, 4, 8, 6, 7, 2]

→ [2, 2, 4, 8, 6, 7, 1] ∼ [0, 2, 2, 4, 8, 6, 7, 1]

→ [1, 2, 2, 4, 8, 6, 7]→ [1, 2, 2, 4, 8, 7, 6]→ [1, 2, 2, 6, 8, 7, 4]

→ [1, 2, 4, 6, 8, 7, 2]→ [2, 2, 4, 6, 8, 7, 1]→ . . .

Since a vexillary code has only one successor, one can truncate any transition
graph, stopping at each vexillary code. For example, for v = [0, 3, 1, 2, 0, 2], the
transition graph is :

5σ is considered as a word, and the letters 2, 3, 4 are not necessarily consecutive in the
alphabet. One requires only that 2 < 3 < 4.

6 There are a lot of flags in a flag variety, but M.P. Schützenberger and I needed still more,
to describe the properties of certain permutations. This is why we introduced the latin root
“vexillum”, which survived a first period of drought and flourished afterwards.
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Y031202

ssssss
LLLLLL

Y03122 Y031301

ssssss
JJJJJJ

Y03131 Y0323

tttttt

Y1313

ssssss
LLLLLL
Y0332 Y0422

Y1331 Y1412

Garsia [50] studies in detail this transition tree.
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3.11 Vexillary Schubert polynomials
To a permutation σ, with code v ∈ Nn, one associates two partitions µ, λ ∈ Nn

as follows. Let w ∈ Nn be such that wi = max(j : j ≥ i, vj ≥ vi). Then µ, is the
decreasing reordering of w and λ be the minimum dominant weight such that Yv
is the image of Yλ under a product of divided differences.

The next property shows that vexillary Schubert polynomials can be expressed
as a multi-Schur function.

Proposition 3.11.1. Let v be a vexillary code, µ and λ be the associated partitions
defined just above. Then

Yv(x,y) = Sv↑(xµ1 − yλn , . . . ,xµn − yλ1) . (3.11.1)

Proof. Normalize v by suppressing terminal 0’s, so that one may suppose r = vn 6=
0. Then the transition formula (3.10.2) states that

Yv(x,y) = (xn − yk)Yv′(x,y) + Yu(x,y)

Suppose the proposition to be true for v′, by induction on weight, and u. The two
Schur functions differ in only one column the sum being

(xn − yk)S•,r−1,•(•,xn − yk−1, •) + S•,r,•(•,xn−1 − yk−1, •) .

Since for any j, any A (here, A = xn−1 − yk−1), one has

(xn − yk)Sj−1(A+ xn) + Sj(A) = Sj(A+ xn − yk)

this sum is equal to the expected multiSchur function S•,r,•(•,xn − yk, •). One
initiates the proposition by the Grasmannian case, where the determinant is ob-
tained as the image of Yλ(x,y) under ∂ω. QED

For example, for v = [0, 2, 7, 2, 4, 5, 5, 4] one has w[8, 8, 3, 8, 8, 7, 7, 8], µ =
[85723], λ = [9372320],

Y02724554(x,y)

= S02244557(x8−y0,x8−y3,x8−y3, x8−y7 ,x8−y7,x7−y9,x7−y9,x3−y9)

= (x8−y7)Y027245530000(x,y) + Y027445520000(x,y)

= (x8−y7)S02234557(x8−y0,x8−y3,x8−y3, x8−y6 ,x8−y7,x7−y9,x7−y9,x3−y9)

+ S02244557(x8−y0,x8−y3,x8−y3, x7−y6 ,x8−y7,x7−y9,x7−y9,x3−y9) .

In the case of only one non-zero component, one has

Y0n−1 k(x,y) = Sk(xn − yk+n−1) ,

two of the indices appearing in the complete function determine the third one. The
entries of the determinant (3.11.1) are not exactly of this type, but nevertheless,
we are going to replace complete functions by Schubert polynomials.
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Let us first modify (3.11.1), in the case of repeated parts of v ↑. Transform
each block of columns

S••kr••(••, xn−ym, . . . ,xn−ym, ••)

into
S••kr••(••, xn−ym,xn−ym+1, . . . ,xn−ym+r−1, ••) .

This amounts to adding to some columns a linear combination of the ones on its
left, and does not change the value of the determinant.

The bottom row of the new determinant is

[Y0µ1−1u1
(x,y), Y0µ2−1u2

(x,y), . . . , Y0µn−1un(x,y) ] ,

with u = v↑ −ρ (defining Y0jk(x,y) = 0 when k < 0). If the bottom element of a
column is Y0r−1k(x,y) = Sk(xr−ym), the last but one is

Sk+1(xr−ym) = Sk+1(xr−ym+1) + ym+1Sk(xr−ym)

= Y0r−1k+1(x,y) + ym+1Y0r−1k(x,y) .

However, since the indexm+1 is different in each column, one cannot transform
the last but one row into a row of Schubert polynomials by adding to it a multiple
of the last row. This can be overcome by introducing a truncation map φ on
polynomials in x,y. Given f(x, y1, . . . , ym), of positive degree in ym, define

φ
(
f(x, y1, . . . , ym)

)
= f(x, y1, . . . , ym−1, 0) .

Thus the complete function Sk+1(xr − yk+r−1) can be written φ
(
Y0r−1k+1(x,y)

)
,

and more generally, the determinant expressing a vexillary Schubert polynomial
can be expressed as a determinant with entries of the type φi

(
Y0r−1k+i(x,y)

)
.

In summary, one has the following expression of a vexillary Schubert polyno-
mial.

Proposition 3.11.2. Let v ∈ Nn be a vexillary code, µ be the partition associated
to it as in (3.11.1), u = v↑ −ρ. Then

Yv(x,y) = det
∣∣∣φn−i(Y0µj−1uj+n−i

)∣∣∣ . (3.11.2)

Continuing the preceding example, for v = [0, 2, 7, 2, 4, 5, 5, 4] one has n = 8,
µ = [85723], u = [−7, −4, −3, 0, 1, 3, 4, 7] and Yv(x,y) is equal to the determinant∣∣∣φ8−i(Y07,1−i(x,y)

)
, φ8−i(Y07,4−i(x,y)

)
, φ8−i(Y07,5−i(x,y)

)
, φ8−i(Y07,8−i(x,y)

)
,

φ8−i(Y07,9−i(x,y)
)
, φ8−i(Y06,11−i(x,y)

)
, φ8−i(Y06,12−i(x,y)

)
, φ8−i(Y02,15−i(x,y)

)∣∣∣ .
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3.12 Schubert and hooks
We have seen that vexillary Schubert polynomials can be expressed as determi-
nants. It is therefore natural to have recourse to the theory of minors to obtain
properties of the different families of polynomials we have seen so far. We have
already used Binet-Cauchy formula for the minors of a product of two matrices,
or Jacobi’s formula for the minors of the adjoint of a matrix.

Another powerful relation is Bazin formula for determinants of minors. Let M
be na n×∞ matrix. Given v ∈ Nn, denote by [v] the minor of order n ofM taken
on columns v1, . . . , vn. Let r ≤ n, A,B ∈ Nr, C ∈ Nn−r. Then Bazin formula
[108, p.188] is

det
∣∣∣[A \ a, b, C]

∣∣∣
a∈A,b∈B

= [A,C]r−1 [B,C] (3.12.1)

It is remarked in [131] that the expression of a Schur function sλ(xn) as a
determinant of hook-Schur functions is a direct corollary of Bazin formula for the
matrix M =

[
sj−i(xn)

]
i=1,...,n; j=1,...,∞

.
More general matrices produce analog formulas for different generalizations

of Schur functions, as illustrated by Macdonald [149]. In fact, Macdonald 9th
variation (see also [146, Ex.21, p.57]) is precisely a direct proof of Bazin formula in
the special case where the minor [A,C] is equal to 1. As a corollary of it, Olshanski,
Regev and Vershik [164, Prop.3.1] give the expression of a Graßmannian Schubert
polynomial in terms of hooks. We are going to show that Bazin formula applies
to any vexillary Schubert polynomial, but we have first to precise what is a hook
in Schubert calculus.

For Schubert, an “elementary condition“ meant a Schubert subvariety of a
Graßmannian indexed by a hook partition. He expressed the class of a general
Schubert variety in the cohomology ring as a determinant of hooks. Giambelli
in his thesis [55] explicited the cohomology ring (in fact the Chow ring) of a
Graßmannian as a ring of symmetric polynomials, with linear basis the classes of
Schubert varieties indexed by a partition contained in a fixed rectangle, identifying
them with Schur functions (defined as determinants of complete or elementary
symmetric functions). Thus Giambelli’s contribution, for what concerns Schur
functions, is rather in the equality between the Jacobi-Trudi determinant and the
determinant of hook-Schur functions which now bears his name, but is due to
Schubert. We shall nevertheless keep the terminology Giambelli determinant for
the determinant of hooks equal to a Schur function.

Changing in a Giambelli determinant every hook Schur function Y0c1ba(x,0)
into Y0c1ba(x,y), one notices on a few examples that the new determinant becomes
equal to a Graßmannian Schubert polynomial (this is not true for the Jacobi-Trudi
determinant). So one can expect vexillary Schubert polynomials to be amenable to
hooks, but one has to extract more information from the code that the Frobenius
coding of the partition obtained by reordering it.
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. Thus let us define a hook Schubert polynomial to be a polynomial Yv(x,y),
where all components vi belong to {0, 1} except at most one, and such that v be
a vexillary code. For example, [1, 1, 3], [1, 3, 1], [3, 1, 1], [3, 0, 1, 1], [3, 0, 0, 1, 1] are
allowable, but not [1, 1, 0, 3], nor [3, 0, 0, 0, 1, 1].

For k ≥ 1, w = [0γ, 1β], let n = β+γ+1. For j ≤ n−1, let v = [w1, . . . , wj−1, k,
wj, . . . , wn−1]. If v is vexillary, then the determinant 3.11.1 can easily be trans-
formed into

Yv(x,y) = S1βk(xn−yγ+1, . . . ,xn−yγ+1,xj−yk+j−1) ,

determinant that one can denote sk−1|β(n|j), in accordance with the notation used
in the case of Schur functions [146, p.47].

Going back to Bazin, let v ∈ Nn be a vexillary code, u = v ↑ −ρ, r = #{j :
uj > 0}. Let us enlarge the matrix 3.11.2 into a matrix of order n × (n+r). One
transforms the sequence µ1

u1
, . . . , µnun into the sequence

µ1
u1

[
µ1

u1+1

]
, . . . , µ2

u2
,
[
µ2

u2+1

]
, . . . , [

µn−r
0 ] , µn−r+1

un−r+1
, . . . , µnun ,

by inserting in the sequence u1, . . . , un the values in [u1, . . . , 0] missing, and corre-
spondingly, completing the exponents by keeping the first exponent µj on its left.
Let ν be the new upper sequence, and η the lower sequence. Define Mv(x,y) to
be the matrix

Mv(x,y)
[
φn−i

(
Y0νj−1ηj+n−i

)]
i=1,...,n; j=1,...,n+r

. (3.12.2)

Thus, for the same v = [0, 2, 7, 2, 4, 5, 5, 4] as above, the sequence

8
7̄

8
4̄

8
3̄

8
0

8
1

7
3

7
4

3
7

is transformed into

8
7̄

[
8
6̄

] [
8
5̄

]
8
4̄

8
3̄

[
8
2̄

] [
8
1̄

]
8
0

8
1

7
3

7
4

3
7 ,

and therefore ν = [89, 72, 3] and η = [−7, . . . , 0, 1, 3, 4, 7].
The Giambelli determinant for sv↓(xn) used the Bazin formula for the ma-

trix obtained from Mv(x,y) by erasing φ and replacing each Y0ak(x,y) by sk(xn).
Taking the same minors as in the case of Schur functions [131] gives a determi-
nantal expression of the vexillary Schubert polynomial Yv(x,y), where the entries
sα|β(xn) have been replaced by some hook Schubert polynomials. Making precise
which hooks appear is the subject of the next proposition, after introducing two
more vectors associated to a vexillary code.

Let v be vexillary, and r be the rank of the partition v↓. Let b1, b2, . . . be the
levels of the bottom boxes of each of the non-void columns of the Rothe diagram of
v (taking matrix coordinates), written in decreasing order. The first vector that
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we need is tv = [t1, . . . , tr] = [b1−b1, b1−b2, . . . , b1−br]. The second vector starts
from the code c = [c1, c2, . . .] of v, that is ci = #{j : j > i, vi > vj}, as when
v is a permutation. Let dv = [d1, . . . , dr] be the truncation of c ↓ to its first r
components. Then Bazin formula gives the following determinantal expression of
vexillary Schubert polynomial.
Proposition 3.12.1. Let v ∈ Nn be a vexillary code, λ = v ↓, (α|β) be the
Frobenius notation of λ, and tv, dv be the two vectors defined just above. For every
i, j ≤ r, let
wj = [0n−1−βj−tj1βj0tj ] & wij = [wj1, . . . , w

j
n−1−di , αi+1, wjn−di , . . . , w

j
n−1] .

Then
Yv(x,y) = det

∣∣∣Ywij(x,y)
∣∣∣
i,j=1,...,r

(3.12.3)

= det
∣∣∣sαi|βj(n−di|n−tj)∣∣∣

i,j=1,...,r
(3.12.4)

For example, for v = [0, 2, 7, 2, 4, 5, 5, 4], one has (α|β) = (6320|6521), r = 4,
n = 8, c = [0, 0, 5, 0, 0, 1, 1, 0], dv = [5, 1, 1, 0], tv = [0, 0, 0, 0],

Yv(x,y) =

∣∣∣∣∣∣∣∣
Y01715(x,y) Y02715(x,y) Y0270312(x,y) Y027041(x,y)
Y01541(x,y) Y021441(x,y) Y05141(x,y) Y0641(x,y)
Y01531(x,y) Y021431(x,y) Y05131(x,y) Y0631(x,y)
Y0161(x,y) Y02151(x,y) Y05121(x,y) Y0611(x,y)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
s6|6(3|8) s6|5(3|8) s6|2(3|8) s6|1(3|8)
s3|6(7|8) s3|5(7|8) s3|2(7|8) s3|1(7|8)
s2|6(7|8) s2|5(7|8) s2|2(7|8) s2|1(7|8)
s0|6(8|8) s0|5(8|8) s0|2(8|8) s0|1(8|8)

∣∣∣∣∣∣∣∣ .
The Giambelli determinant is compatible with transitions. For example, one

has

Y57604311(x,y) =

∣∣∣∣∣∣∣∣
s6|6(2|8) s6|3(2|6) s6|2(2|6) s6|0(2|5)
s4|6(3|8) s4|3(3|6) s4|2(3|6) s4|0(3|5)
s2|6(3|8) s2|3(3|6) s2|2(3|6) s2|0(3|5)
s0|6(5|8) s0|3(5|6) s0|2(5|6) s0|0(5|5)

∣∣∣∣∣∣∣∣
The transition Y

5 7 6 04311
(x,y) = (x3−y7)Y

5 7 5 04311
(x,y)+Y

6 7 5 04311
(x,y)

amounts to decompose the preceding determinant as the sum

(x3−y7)

∣∣∣∣∣∣∣∣
s6|6(2|8) s6|3(2|6) s6|2(2|6) s6|0(2|5)
s3|6(3|8) s3|3(3|6) s3|2(3|6) s3|0(3|5)
s2|6(3|8) s2|3(3|6) s2|2(3|6) s2|0(3|5)
s0|6(5|8) s0|3(5|6) s0|2(5|6) s0|0(5|5)

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
s6|6(2|8) s6|3(2|6) s6|2(2|6) s6|0(2|5)
s4|6(2|8) s4|3(2|6) s4|2(2|6) s4|0(2|5)
s2|6(3|8) s2|3(3|6) s2|2(3|6) s2|0(3|5)
s0|6(5|8) s0|3(5|6) s0|2(5|6) s0|0(5|5)

∣∣∣∣∣∣∣∣ ,
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each element of the second row decomposing as

s4|b(3|N) = (x3 − y7)s3|b(3|N) + s4|b(2|N) .

The order of the Giambelli determinant can decrease by 1 in a transition, but
this case also can be followed on the determinants. For example, the transition
Y

576 04 311
(x,y) = (x5 − y5)Y

5760 03 311
(x,y) + Y

576 40 311
(x,y) gives the sum

(x5−y5)

∣∣∣∣∣∣
s6|6(2|8) s6|3(2|6) s6|2(2|6)
s4|6(3|8) s4|3(3|6) s4|2(3|6)
s2|6(3|8) s2|3(3|6) s2|2(3|6)

∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
s6|6(2|8) s6|3(2|6) s6|2(2|6) s6|0(2|4)
s4|6(3|8) s4|3(3|6) s4|2(3|6) s4|0(3|4)
s2|6(3|8) s2|3(3|6) s2|2(3|6) s2|0(3|4)
s0|6(4|8) s0|3(4|6) s0|2(4|6) s0|0(4|4)

∣∣∣∣∣∣∣∣ .
In fact, the determinants expressing Y57604311(x,y) and Y57640311(x,y) differ only
by their South-East entry, respectively s0|0(5|5) and s0|0(4|4). Since s0|0(5|5) −
s0|0(4|4) = x5−y5, the difference of the two determinants is equal to the minor of
this entry times x5−y5.
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3.13 Stable part of Schubert polynomials
In the theory of symmetric functions, one usually prefers to eliminate variables by
taking the projective limit Sym(x∞) of the ring Sym(x1, . . . , xn), which amounts
to using infinite alphabets.

In terms of Schubert polynomials, the embedding Sym(xn) ↪→ Sym(xn+1)
translates into the transformation Yv(x,0) → Y0v(x,0) for v antidominant. This
leads to define the stable part St(Yv) of a Schubert polynomial Yv(x,y), as

St(Yv) = Y0N v(x,y)
∣∣
xj=0=yj , j>N

,

with N big enough, and consider it as an element of Sym(x∞)⊗Sym(y∞).
We first need to analyze the transformation Yv(x,y) → Y0v(x,y) to compare

Y0N v(x,y) and Y0N+1 v(x,y) and precise what “N big enough” means.

Lemma 3.13.1. Let v ∈ Nn, v ≤ [n, . . . , 1]. Then

Yv(x,0)πxn . . . π
x
1 = Y0v(x,0) (3.13.1)

Yv(x,y)πxn . . . π
x
1π

y
n . . . π

y
1 = Y0v(x,y) . (3.13.2)

Proof. By trivial commutation, one writes πxn . . . πx1 = xn . . . x1∂
x
n . . . ∂

x
1 , and one

uses that Yv(x,0)xn . . . x1 = Yv+1n(x,0) when v ∈ Nn. This proves the first
statement. Writing Yv(x,y) as a sum

∑
cu,u′Yu(x,0)Yu′(y,0), one obtains that

Yv(x,y)πxn . . . π
y
1 is equal to

∑
cu,u′Y0u(x,0)Y0u′(y,0), that is, to Y0v(x,y). QED

Lemma 3.13.2. Let f ∈ Pol(xn) ⊗ Pol(ym), ωn = [n, . . . , 1], ωm = [m, . . . , 1],
πn×n = (πn . . . π2n−1) . . . (π1 . . . πn). Then

f πxωnπ
y
ωm = f πxn×nπ

y
m×m

∣∣∣
xi=0,i>n, yj=0,j>m

. (3.13.3)

Proof. Any monomial xv, v ∈ Nn, can be written xv = Svω(xn,xn−1, . . . ,x1),
and its image under πn . . . π2n−1 is equal to Svω(x2n,xn−1, . . . ,x1), which is sent
to Svω(x2n,x2n−1,xn−2, . . . ) under πn−1 . . . π2n−2. In final, xvπn×n is equal to
Svω(x2n,x2n−1, . . . ,xn+1), and this function restricts to Svω(xn) = xvπωn . QED

For v ≤ [n, . . . , 1], the stable part of Yv(x,y) is obtained by computing Y0nv(x,y),
which is the image of Yv(x,y) under (πxn . . . π

x
1 ) . . . (πx2n−1 . . . π

x
1 ) (πyn . . . π

y
1) . . . (πy2n−1 . . . π

y
1)

according to (3.13.2). But the product of divided differences can be rewritten
πx1,...,n,2n,...,n+1π

y
1,...,n,2n,...,n+1π

x
n×nπ

y
n×n. The first two factors preserve functions of

xn and yn. Therefore,

Y0nv(x,y) = Yv(x,y) πxn×nπ
y
n×n .

Using (3.13.3), one sees that

St(Yv(x,y)) = Yv(x,y) πxn×nπ
y
n×n . (3.13.4)
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A transition

Yv(x,y) = (xk−yj)Yv′(x,y) +
∑
u∈U

Yu(x,y)

entails a transition

Y0nv(x,y) = (xk+n−yj+n)Y0nv′(x,y) +
∑
u∈U

Y0nu(x,y) .

Therefore transitions may be used to compute stable parts :

St(Yv(x,y)) = St(Y0nv(x,y)) =
∑
u∈U

St(Yu(x,y)) . (3.13.5)

The determinantal expression of a vexillary polynomial, for v ≤ [n, . . . , 1],
shows that its stable part is equal to

St(Y0nv(x,y)) = Sv↑(xn − yn) .

One can in fact relax the condition on v. If Yλ(x,y) is a dominant ancestor of
Yv(x,y), with v ∈ Nn and m = λ1, then Yv(x,y) is a polynomial in x1, . . . , xn and
y1, . . . ym. Using (3.13.2) and (3.13.3), one sees7 that

Yv(x,y) πxωnπ
y
ωm = Sv↑(xn − ym) . (3.13.6)

In summary, one has the following three ways of determining the stable part
of a Schubert polynomial.

Theorem 3.13.3. Let v ∈ Nn, Yλ be a dominant ancestor of Yv, m = λ1. Let
Y0v(x,y) = (xk−yj)Y0v′(x,y) +

∑
u∈U Yu(x,y) be a transition. Then

St(Yv(x,y)) = Yv(x,y) πxωnπ
y
ωm (3.13.7)

= Y0n+mv(x,y)
∣∣∣
xi=0,i>n, yj=0,j>m

(3.13.8)

=
∑
u∈U

St(Yu(x,y)) . (3.13.9)

For example, the transition graph for v = [0, 3, 1, 2, 0, 2] given above has five
terminal vertices: Y03122, Y1331, Y1412, Y0332, Y0422, and this implies that

St(Y031202(x,y)) = s3221(x∞−y∞) + s3311(x∞−y∞) + s4211(x∞−y∞)

+ s332(x∞−y∞) + s422(x∞−y∞) .

7 The action of πxωn
on the determinant of complete functions of xk − yj expressing Yv(x,y)

consists in replacing all xk by xn. The action of πyωm
is much more delicate, one has to use that

some determinants of complete functions in xk −yj can be written as determinants of complete
functions in yj − xk (cf. [94]). For example, the equality Xσ(x,y) = (−1)`(σ)Xσ−1(y,x) gives
such a transformation of determinants in the vexllary case. We have bypassed this transformation
by using Yv(x,y)→ Y0Nv(x,y).
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We shall see later that

Y031202(x,0) = K31202 +K31301 +K41201 +K323 +K422 .

Since evidently the image under πω of a key polynomial is a Schur function, the de-
composition of a Schubert polynomial (specialized in y = 0) into key polynomials
is still another way of computing its stable part.

A special case of the determination of the stable part of a vexillary Schubert
polynomial is the Sergeev-Pragacz formula showing that a Schur function of a
difference of alphabets xn−ym can be obtained by symmetrization of a product of
differences xi−yj. Indeed, let λ ∈ Nn be dominant, m ≥ λ1. Then

Yλ(x,y)πxωnπ
y
ωm = Sλ↑(xn,ym) . (3.13.10)

For example, writing the explicit expression of πω a a sum over the symmetric
group, one has

S024(x3 − y4) = Y420 π
x
321π

y
4321

=
1

∆(x1, x2, x3)∆(y1, y2, y3, y4)

∑
σ∈Sx

3 ,ζ∈Sy
4

(−1)`(σ)+`(ζ)
(
x210y3210 Yλ

)σζ
.
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3.14 Schubert and the Littlewood-Richardson rule
When a permutation σ ∈ Sn belongs to a Young subgroup Sn′×Sn′′ , the Schubert
polynomial Xσ(x,y) = Yv′,v′′(x,y) factorizes. This factorization is compatible
with the restriction8 of Y0N ,v′,v′′(x,y) to xN ,yN , and therefore in that case

St(Yv(x,y)) = St(Yv′(x,y))St(Yv′′(x,y)) .

In particular, when the Schubert polynomial factorizes into two vexillary Schu-
bert polynomials, then its stable part is the product of two Schur functions. Since
the stable part can be computed by transition, this observation furnishes many
ways, different from the usual Littlewood-Richardson rule, of computing the prod-
uct of Schur functions.

For example, to compute the square of s21, one can start with any v =
v′v′′, with v′, v′′ ∈ {[2, 1, 0], [2, 0, 1, 0], [1, 2, 0, 0]}. Here are two possible transi-
tion graphs, starting with [2, 1, 0, 2, 1, 0] or [2, 1, 0, 1, 2, 0, 0], which are the codes
of the permutations [3, 2, 1, 6, 5, 4] ∈ S3×S3 and [3, 2, 1, 5, 7, 4, 6] ∈ S3×S4, and
stopping at vexillary codes.

Y21021

lllllllllll

QQQQQQQQQQ

Y2112 Y2202 Y3102

SSSSSSSSSSSSS

Y02121 Y222 + Y2301 Y312 + Y33 Y4101

Y1212 Y411 + Y42

Y1221 + Y1311

Y120021

ooooooo
NNNNNNN

Y12012 Y13002

PPPPPPPP

Y12021

lllllllllll
Y1302 Y14001

Y1212 Y2202 Y132 + Y33 Y1401

Y1221 + Y1311 Y222 + Y2301 Y141 + Y24

8using symmetization is more delicate, since symmetrization does not commute vith product
in general.
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Both graphs imply that

s21s21 = s42 + s411 + s33 + 2s321 + s3111 + s222 + s2211 .



Chapter 4
Products and transitions for
Grothendieck and Keys

4.1 Monk formula for type A key polynomials
Instead of considering the multiplication by each xi in the key basis, let us describe
the multiplication by

ξ = ξAn = y1x1 + · · ·+ ynxn .

This element is invariant under the symmetric group acting on xi and yi simulta-
neously, and therefore, for any permutation σ, one has (ξ)σ

x
= (ξ)(σy)−1 .

Since key polynomials are obtained by applying on dominant monomials the
operators πσ, σ ∈ Sn, we essentially need to describe the products πσξ, that we
shall write

πσξ = x1ϕ
1
σ + · · ·+ xnϕ

n
σ .

The commutation relations πixi = xi+1πi+xi, πixi+1 = xiπi−xi = xiπ̂i, π1 . . . πixi+1 =
x1π̂1 . . . π̂i imply

π1 . . . πk−1ξ = π1 . . . πk−2 (ξ)s
y
k−1πk−1 + π1 . . . πk−2xk−1(yk−1 − yk)

= π1 . . . πk−3 (ξ)s
y
k−2s

y
k−1πk−2πk−1

+ π1 . . . πk−3xk−2πk−1(yk−2 − yk) + x1π̂1 . . . π̂k−3(yk−1 − yk) .

Iterating and grouping the coefficients of yk, one obtains

π1 . . . πk−1ξ = (ξ)s
y
1 ...s

y
k−1π1 . . . πk−1 + x1

(
π̂1 . . . π̂k−1yk + π̂1 . . . π̂k−2yk−1

+ π̂1 . . . π̂k−3yk−2πk−1 + π̂1 . . . π̂k−4yk−3πk−2πk−1 + · · ·+ y1π2 . . . πk

)
. (4.1.1)

Given a permutation σ ∈ Sn, let us write it σ = ζs1 . . . sk−1, with ζ ∈ S1×n−1.
Relation 4.1.1 entails

ϕiσ =
(
ϕiζ
)sy1 ...syk−1 π1 . . . πk−1 , i ≥ 2

137
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ϕ1
σ = πζ

(
y1π2 . . . πk + · · ·+ π̂1 . . . π̂k−1yk

)
,

while ϕ1
ζ = πζy1.

These recursions furnish an induction on n for the products Kvξ.

Proposition 4.1.1. Let v ∈ Nn, λ = v ↓, σ ∈ Sn, ζ ∈ S1×n−1 be such that
Kvπσ = xλπζπ1 . . . πk−1. Then

Kvξ =

(
xλπζξ

∣∣∣
y1=0

)sy1 ...syk−1

+

xλx1πζ

(
y1π2 . . . πk + π̂1y2π3 . . . πk + · · ·+ π̂1 . . . π̂k−1yk

)
. (4.1.2)

For example, when v = [1, 3, 5, 7], one has λ = [7, 5, 3, 1], σ = [4, 3, 2, 1],
ζ = [1, 4, 3, 2]. Supposing known that

K7135 ξ − y1K8135 =
(
y4K7136 + (y3 − y4)K7163 + (y2 − y3)K7613

)
+
(
y3K7145 + (y2 − y3)K7415

)
+ y2K7235 ,

one obtains

x7531
(
x2ϕ

2
4321 + x3ϕ

3
4321 + x4ϕ

4
4321

)
=
(
y3K1367 + (y2 − y3)K1637

+ (y1 − y2)K6137

)
+
(
y2K1457 + (y1 − y2)K4157

)
+ y1K2357 ,

while

x7531x1ϕ
1
4321 = K7135x1

(
y1π2π3 + π̂1y2π3 + π̂1π̂2y3 + π̂1π̂2π̂3y4

)
= y4K1358 + (y3 − y4)K1385 + (y2 − y3)K1835 + (y1 − y2)K8135 ,

the sum of these two terms being equal to K1357ξ.
A fully explicit Monk formula would require finding combinatorial objects com-

patible with the above recursion, as well as a justification of the fact that the
coefficients seem to be of the type yi or (yi − yj) only. For example,

K20424 ξ = y5K20425 + (y3 − y5)K20524 + (y2 − y3)K25024 + (y1 − y3)K50224

+ (y4 − y2)K32404 + (y3 − y2)K52024 + y4K20434 + y2K21424

+ (y1 − y4)K30424 + (y4 − y5)K20452 + (y5 − y4)K20542 + (y2 − y4)K23404 .

4.2 Product Gv x1 . . . xk

We first need to extend the Ehresmann-Bruhat order to weights. Let u, v ∈ Nn

be permuted of each other. Then u ≥ v if and only if for k = 1, . . . , n one has
[u1, . . . , uk] ↑≥ [v1, . . . , vk] ↑ componentwise.
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Given v ∈ Nn, k ≤ n, let

C(v, k) = {u : u ≥ v &
(
∀i 6= k, usi ≥ v implies usi ≥ u

)
} .

In other words, C(v, k) is the set of weights above v which are minimum in the
intersection of their coset modulo Sk×n−k with the interval [v, [n . . . 1]].

Using these sets, we define two operations ~,}. Given v ∈ Nn, k ≤ n, z ∈ Nk,
let u ∈ C(v, k) be such that [u1, . . . , uk] ↑= [z1, . . . , zk] ↑ if it exists. In that case,
define

v } z = u & v ~ z = u+ [1k0n−k] .

Otherwise put v } z = ∅ = v ~ z.
For example, for v = [3, 5, 1, 6, 2, 4], z = [6, 3, 2], one has

v } z = [3, 6, 2, 5, 1, 4] & v ~ z = [4, 7, 3, 5, 1, 4] .

We have given in Lemma 1.4.2 the normal reordering of products of the
type πσx1 · · ·xk. These reorderings provide the decomposition of Gvx1 · · · xk and
Kvx1 · · ·xk in the Grothendieck or key basis respectively, in terms of punched
diagrams.

Let us index Grothendieck polynomials by permutations, putting G∅ = 0, and
let us introduce the ideal Sym(xn = yn) generated by ei(xn)− ei(yn), i = 1 . . . n.

Theorem 4.2.1. Let σ ∈ Sn, k ≤ n. Then, modulo the ideal Sym(xn = yn), one
has

G(σ)x1 · · ·xk ≡
∑

τ∈C(σ,k)

yτ1 · · · yτk G(τ) =
∑

z∈Nk:n≥z1>···zk

yz1 · · · yzk G(σ}z) . (4.2.1)

Proof. Let ζ be the maximal permutation in the coset σSk×(n−k). Then

G(σ)x1 · · ·xk = G(ω)π(ωζ)π(ζ−1ωσ) x1 · · ·xk = G(ω)π(ωζ) x1 · · ·xk π(ζ−1ωσ) .

Thanks to (1.4.7), the product π(ωζ)x1 · · · xk is equal to a sum
∑
xUπU over some

punched diagrams. However, for any i, one has1∏i
j=1

∏n−i
h=1(xi − yj) ≡ 0, hence G(ω)(1 − yn+1−ix

−1
i ) ≡ 0, that is, G(ω)xi ≡

G(ω)yn+1−i. Therefore G(σ)x1 · · ·xk is congruent to a sum
∑

τ cτG(τ), with cτ a
monomial in yn of degree k. It remains, but we shall not do it, to check the
equivalence between enumerating punched diagrams and permutations in C(σ, k).
QED

1 For every i ≤ n, one has
∏i
j=1

∏n−i
h=1(xi − yj) = S(n+1−i))i(xi − yn−i) = S(n+1−i))i

(
(yn −

yn+1−i)− (xn − xi) + (xn − yn)
)
≡ S(n+1−i))i

(
(yn − yn+1−i)− (xn − xi)

)
. his last function is

null because the cardinality of yn − yn+1−i is < i and the cardinality of xn − xi is < n+1−i.
For example, for n = 5, i = 2, S44(x2 − y4) ≡ S44

(
y5 − (x3 + x4 + x5)

)
= 0.
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For example, for σ = [4, 2, 1, 5, 3], and k = 3, thenG(42153) = G(54321)π1π3π2π4π3

and one has to enumerate the punched 122-diagrams to describe the product
G(42153) x1x2x3 = G31010 x1x2x3 =

(
x2x4x5

3 4

1 2 3
→ y4y2y1G(42153)

)
+

(
x1x4x5

3 4
• 2 3

→ y5y2y1G(52143)

)

+

(
x2x3x5

• 4

1 2 3
→ y4y3y1G(43142)

)
+

(
x1x2x5

3 4

1 • 3
→ y5y4y1G(45123)

)

+

(
x2x3x4

3 •
1 2 3

→ y4y3y2G(42351)

)
+

(
x1x2x4

3 4

1 2 •
→ y5y4y2G(42513)

)

+

(
x1x3x5

• 4
• 2 3

→ y5y3y1G(53142)

)
+

(
x1x3x4

3 •
• 2 3

→ y5y3y2G(52341)

)

+

(
x1x2x3

• 4

1 2 •
→ y5y4y3G(43512)

)
.

One obtains the products G(η) x1x2x3, for any η in the coset σS3×2, by taking
the image of the preceding expansion under products of πi’s, i 6= 3. For example,
G(24153) x1x2x3 = G(42153) x1x2x3π1 results from sorting each permutation τ in the
preceding sum into [[τ1, τ2] ↑, τ3, τ4, τ5].

The number of terms in (4.2.1) is equal to the number of strict partitions
z ∈ Nk between u and [n, . . . , n+1−k], where u = [σ1, . . . , σk] ↓, or, equivalently,
the number of partitions containing [u1−n, . . . , un−1] and contained in [(n−k)k].

The original Schubert calculus involved Graßmannians, and, in our terms,
Schubert and Grothendieck polynomials indexed by Graßmannian permutations.
For any Graßmannian permutation σ, corresponding to the partition µ = [σk−k, . . . , σ1−1],
any r, the number of terms in the expansion of G(σ) (x1 · · ·xk)r is the dimension
of some space of sections, and is called a postulation number. From what pre-
cedes, it is equal to the number of increasing chains of partitions µ0 = µ ≤ µ1 ≤
· · · ≤ µk ≤ µk+1 = [(n−k)k]. This number has a determinantal formula proved by
Hodge, with some help from Littlewood.

For example, the product G(145236)(x1x2x3)2 involves 46 chains of strict parti-
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tions [541] ≤ µ1 ≤ µ2 ≤ [654] (represented as two-columns Young tableaux) :

(
5 5
4 4
1 1

)
G(145236) +

(
6 6
4 4
1 1

+
5 6
4 4
1 1

)
G(146235) +

(
6 6
4 5
1 1

+
6 6
5 5
1 1

+
5 6
4 5
1 1

)
G(156234)

+

(
5 5
4 4
1 2

+
5 5
4 4
2 2

)
G(245136) +

(
5 5
4 4
3 3

+
5 5
4 4
1 3

+
5 5
4 4
2 3

)
G(345126)

+

(
6 6
4 4
1 2

+
6 6
4 4
2 2

+
5 6
4 4
1 2

+
5 6
4 4
2 2

)
G(246135)

+

(
6 6
4 5
1 2

+
6 6
5 5
2 2

+
6 6
5 5
1 2

+
6 6
4 5
2 2

+
5 6
4 5
1 2

+
5 6
4 5
2 2

)
G(256134)

+

(
6 6
4 4
1 3

+
5 6
4 4
3 3

+
6 6
4 4
2 3

+
6 6
4 4
3 3

+
5 6
4 4
1 3

+
5 6
4 4
2 3

)
G(346125)

+

(
6 6
4 5
1 3

+
6 6
5 5
3 3

+
6 6
5 5
2 3

+
5 6
4 5
3 3

+
6 6
4 5
2 3

+
6 6
5 5
1 3

+
5 6
4 5
1 3

+
6 6
4 5
3 3

+
5 6
4 5
2 3

)
G(356124)

+

(
6 6
4 5
1 4

+
5 6
4 5
2 4

+
6 6
5 5
3 4

+
6 6
5 5
2 4

+
5 6
4 5
3 4

+
6 6
4 5
2 4

+
6 6
5 5
1 4

+
5 6
4 5
1 4

+
6 6
4 5
3 4

+
6 6
5 5
4 4

)
G(456123)

4.3 Product Kv x1 . . . xk

The computations of Kv x1 · · ·xk and Gv x1 · · ·xk are similar, and use the same
equivalence, detailed in the appendix, between enumerating punched diagrams and
describing sets C(v, k). It translates into the following theorem for what concerns
key polynomials.

Theorem 4.3.1. Let v ∈ Nn, k ≤ n. Then

Kv x1 · · ·xk =
∑

u∈C(v,k)

Ku+[1k,0n−k] =
∑
z

Kv~z , (4.3.1)

sum over all z ∈ Nk, z = z ↑, z subword of v ↑.

For example, for v=[2132], k = 2, we frame the elements of C([2132]) inside
the interval [2132, 3221], and figure the intersection of this interval with cosets
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modulo S2×2.

[3221]

rrrr LLLL

[2321]
JJJ

[3212]

ttt

[2231] [2312] [3122]

[2132]

On the other side, the subwords of length 2 of v ↑= [1223] are 12, 13, 22, 23 and
one has v~12 = [2132] + [1100], v~22 = [2231] + [1100], v~13 = [3122] + [1100],
v ~ 23 = [2312] + [1100], so that

K2132 x1x2 = K2132+1100 +K2231+1100 +K3122+1100 +K2312+1100

= K3232 +K3331 +K4222 +K3412 .

Notice that

K2132x1x2 = K3221π1π3π2 x1x2 = x3221x2x4
3

1 2
+ x3221x1x3

3
1 •

+ x3221x1x2
•

1 2
+ x3221x1x4

3
• 2

+ x3221x1x3
•

• 2
,

but that the term x3221x1x3
•

• 2
= x4231π2 = 0 disappears.

Dominant monomials can be written as products of fundamental weights x1 · · ·xk.
Iterating (4.2.1) and (4.3.1), one obtains the product of a Grothendieck or a key
polynomial by any dominant monomial. The rule will however take (later) a more
satisfactory formulation when stated in terms of the plactic monoid.

4.4 Relating the two products
Let us show how to relate the products G(σ)x

λ and Kux
λ.

Proposition 4.4.1. Let σ ∈ Sn, λ ∈ Nn be a partition, r ≥ λ1, and u =
[rσ1, . . . , rσn]. Then Kux

λ =
∑

wKw is a sum without multiplicities and G(σ)x
λ

is a sum over the same weights :

G(σ)x
λ =

∑
w

y〈w〉Gζ(w) ,

with ζ(w) =
[
bw1/rc, . . . , bwn/rc

]
, z = w ↑, 〈w〉 = [z1−r, . . . , zn−r].
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Proof. The product by xλ is a chain of λ1 multiplications by monomials of the
type x1 · · · xk. From the preceding theorems, it can be written in terms of the
operators xtπη, with t ≤ [λ1, . . . , λ1]. The hypothesis on u is such that each u↓ +t
is dominant, and therefore, gives the key polynomial indexed by [u↓ +t] η. On
the other hand, the same operator xtπη contributes to a Grothendieck polynomial
multiplied by the monomial in y of exponent [tn . . . , t1]. QED

The following table describes the product G3142x
2200 as the same time, taking

r = 3, as the product K9,3,12,6x
2200.

G4321 y0112 K14,10,7,3

G3142 y2020 K11,5,12,6

G3421 y0121 K11,13,7,3

G4312 y1012 K14,10,4,6

G3241 y1120 + y0220 K11,8,12,3 +K11,7,12,4

G4132 y2011 + y2002 K14,5,9,6 +K13,5,10,6

G3412 y1021 + y0022 K11,14,3,6 +K11,13,4,6

G4231 y0211+y0202+y1102+y1111 K13,8,10,3 +K14,8,9,3 +K14,7,9,4 +K13,7,10,4

Of special importance is the case of multiplication by xk...1. Let us show in the
next lemma a case where it is of interest to mix bases.

Lemma 4.4.2. Let k ≤ n, u ∈ Nn be such that u1 ≥ · · · ≥ uk, uk+1 ≥ · · · ≥ un.
Then

K̂u x
k
1 · · · x2

k−1xk = Yu+[k,...,1,0n−k](x,0) .

Proof. The hypothesis on u implies that, with λ = u ↓, there exists a strictly
increasing v ∈ Nk such that

K̂u = K̂λ (π̂v1 · · · π̂1)(π̂v2 · · · π̂2) · · · (π̂vk · · · π̂k)
= K̂λ (∂v1 · · · ∂1x2 · · ·xv1+1)(∂v2 · · · ∂2x3 · · ·xv1+1) · · · (∂vk · · · ∂kxk+1 · · ·xvk+1)

Using repeatedly that (∂j · · · ∂ixi+1 · · ·xj+1)x1 · · ·xi = x1 · · ·xj+1_j · · · ∂i, one can
transfer all monomials to the left and obtain

K̂u x
k
1 · · · xk = xλ(x1 · · ·xv1+1) · · · (x1 · · ·xvk+1) (∂v1 · · · ∂1) · · · (∂vk · · · ∂k) .

This is the image of a dominant monomial under a product of divided differences,
hence the lemma after identifying the index of the Schubert polynomial. QED

4.5 Product with (x1 . . . xk)
−1

The original formulas of Pieri involved intersection of Schubert varieties with spe-
cial Schubert varieties corresponding to elementary symmetric functions. At the
level of Grothendieck polynomials, one has to consider products of Grothendieck
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polynomials with some special ones, for example withG0k−1,1 = 1−y1 · · · ykx−1
1 · · ·x−1

k .
This is not what we have done in (4.2.1), having taken x1 · · ·xk intead of its in-
verse. Let us repair this in the next theorem, which can be found in [99, Th 6.4].

Theorem 4.5.1. Let σ ∈ Sn, k ≤ n. Let ζ ∈ Sn be such that [ζ1, . . . , ζk] =
[σ1, . . . , σk] ↓, [ζk+1, . . . , ζn] = [σk+1, . . . , σn] ↓, and ω = [n, . . . , 1]. Then, modulo
the ideal Sym(xn = yn), one has

G(σ)
yσ1 · · · yσk
x1 · · ·xk

≡ G(ω) π̂ωζ πζ−1σ . (4.5.1)

Proof. The hypothesis on ζ implies that, with V the diagram of v = [n−ζ1, . . . , n−
k + 1 − ζk], one has πωζ = πV . Thanks to (1.4.4), one has πV (x1 · · ·xk)−1 =
(xv1+1 · · ·xvk+k)

−1 π̂V . Since the factor (x1 · · · xk)−1 commutes with πζ−1ωσ because
ζ−1σ belongs to Sk×n−k, the theorem follows. QED

For example, for k = 3, σ = [4, 3, 6, 7, 8, 2, 1, 5], one has ζ = [6, 4, 3, 8, 7, 5, 2, 1],

v = [8, 7, 6] − [6, 4, 3] = [2, 3, 3], V =
4 5

2 3 4
1 2 3

, and ζ−1σ = [2, 3, 1, 5, 4, 7, 8, 6] has

reduced decomposition s1s2s4s6s7. Altogether,

G(σ)
y4y3y6

x1x2x3

≡ G(ω)

(
π̂2π̂1 π̂4π̂3π̂2 π̂5π̂4π̂3

) (
π1π2π4π6π7

)
= G(4,3,6,7,8,2,1,5) −G(4,3,7,6,8,2,1,5) −G(5,3,6,7,8,2,1,4) +G(5,3,7,6,8,2,1,4)

−G(4,5,6,7,8,2,1,3)G(5,4,6,7,8,2,1,3) +G(4,5,7,6,8,2,1,3) −G(5,4,7,6,8,2,1,3) .

V. Pons [167] shows that the expansion of the right hand side of (4.5.1) in the
Grothendieck basis is a signed interval. Lenart and Postnikov [141] give a more
general equivariant K-Chevalley formula valid for any Weyl group.

The preceding theorem involves products of πi’s and π̂j’s, that one can study
using key polynomials rather than Grothendieck polynomials. Let ∇ be an ar-
bitrary product of πi’s and π̂j’s, i, j < n. If G(ω)∇ =

∑
cσG(σ), then Kω∇ =∑

cσKσ, with the same coefficients, since every πi acts in the same manner on the
indices of both families of polynomials. This will allow us to reformulate (4.5.1)
in the next statement.

Proposition 4.5.2. Let k ≤ n, v ∈ Nk be antidominant, V be the v-diagram and
σ be a permutation in Sk×n−k. Then

Kω π̂
V πσ =

∑
K̂τ , (4.5.2)

sum over all weights τ in the interval [η, ησ], with η ∈ Nn permutation of ω =
[n, . . . , 1] such that η1 = vk+k, . . . , ηk = v1+1, ηk+1 > · · · , ηn.
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Proof. The weight η is such that Kω π̂
V = K̂η. The operator πσ is equal to a

sum
∑

ν≤σ π̂ν , where all ν belong to Sk×n−k. Hence products are reduced and
Kω π̂

V πσ =
∑

n uK̂ην . QED

For example, let k = 3, v = [1, 2, 2], σ = [3, 1, 2, 5, 4]. Then η = [4, 2, 1, 5, 3]
and

K̂54321 π̂
V πσ = K̂54321 (π̂1π̂3π̂2π̂4π̂3) (π2π1π4) = K̂42153 (1 + π̂2)(1 + π̂1)(1 + π̂4)

= K̂42153 +
(
K̂41253 + K̂24153 + K̂42135

)
+
(
K̂14253 + K̂41235 + K̂24135

)
+ K̂14235 .

This is also equal to K14235 −K15234 −K14325 +K15324, in accordance with

G(14235)
y1y2y4

x1x2x3

= G(14235) −G(15234) −G(14325) +G(15324) .

4.6 More keys: KG polynomials
Stability properties of Schubert polynomials can be analyzed by using the isobaric
divided differences πi. Let us show that the operators

Di = (1− x−1
i )πi = (xi − 1)∂i (4.6.1)

play a similar role for what concerns the Grothendieck polynomials.
These operators satisfy the braid relations, being the images of the πi under

the transformation xi → xi−1. As an operator commuting with multiplication by
elements of Sym(xi, xi+1), Di is characterized by

1Di = 1 & xi+1Di = 1 .

More generally, Dω = (x1−1)n−1 . . . (xn−1−1)∂ω = Gρ(x,1) πω is characterized by
the fact that it commutes with multiplication by elements of Sym(xn) and sends
any xv : 0 ≤ v ≤ [0, . . . , n−1] to 1. Indeed, xvDω may be written (xv, Gρ(x,1))π,
and Formula 2.9.5 tells that (xv, Gρ(x,y)) = yvω.

Taking the same starting points as for Gv(x,1), one defines recursively KG
v

polynomials by

KG
λ = Gλ(x,1) when λ dominant & KG

vsi
= KG

v Di when vi ≥ vi+1 . (4.6.2)

The operators Di, combined with multiplication by G1k(x,1), can be used to
generate recursively the Grothendieck polynomials Gv(x,1), or to express them
in terms of the basis {KG

v }.

Proposition 4.6.1. Given v ∈ Nn. If 0 6∈ v, then

Gv(x,1) = (1−x−1
1 ) . . . (1−x−1

n )Gv−1n(x,1) .



 Chapter 4 — Products and transitions for Grothendieck and Keys

Otherwise, let k be such that vk = 0 and vi > 0 for i < k, let
u = [v1−1, . . . , vk−1−1, vk+1, . . . , vn]. Then

Gv(x,1) = Gu(x,1) (1−x−1
k−1) · · · (1−x−1

1 )Dn−1 · · ·Dk

= Gu(x,1)Dn−1 · · ·Dk (1−x−1
k−1) · · · (1−x−1

1 ) . (4.6.3)

Proof. By trivial commutation, one can transform Dn−1 · · ·Dk

= (1−x−1
n−1)πn−1 . . . (1−x

−1
k )πk into (1−x−1

n−1) . . . (1−x−1
k )πn−1 . . . πk. Therefore

Gu(x,1) (1−x−1
n−1) . . . (1−x−1

k ) πn−1 . . . πk (1−x−1
k−1) · · · (1−x−1

1 )

= Gu(x,1) (1−x−1
n−1) . . . (1−x−1

1 ) πn−1 . . . πk

= Gu+1n−1(x,1) πn−1 . . . πk = Gv(x,1) ,

as claimed. QED
With the same notations than in (??), if v is vexillary, then u is also vexillary,

as well as u′ = u+ [1k−1, 0n−k]. Suppose that Gu′(x,1) = KG
u′ . Then

Gv(x,1) = Gu+1n−1(x,1)πn−1 . . . πk

= Gu′(x,1)(1−x−1
n−1) . . . (1−x−1

k )πn−1 . . . πk

= Gu′(x,1)Dn−1 . . . Dk = KG
u′Dn−1 . . . Dk = KG

v .

By recursion on n this proves

Corollary 4.6.2. If v is vexillary code, then Gv(x,1) = KG
v .

Notice that the shift of indices Gv(x,1) → G0v(x,1) may be obtained with
the Di. Indeed, if v ∈ Nn, then

Gv(x,1)Dn . . . D1 = Gv(x,1)(1−x−1
n ) . . . (1−x−1

1 )πn . . . π1

= Gv+1n(x,1)πn . . . π1 = G0v(x,1) .
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4.7 Transitions for Grothendieck polynomials
We have seen that multiplication by xi, in the case of Schubert polynomials, can
be used to provide a recursive definition of these polynomials. We are going to
show that one still has a transition formula for Grothendieck and key polynomials
(and later also Macdonald polynomials).

The case of Grothendieck polynomials is an extension of the case of Schubert
polynomials, and is described in [104, Prop. 3]. Since it is proved by a straigh-
forward recursion, let us state the property without proof (caution: in reference
[104], one uses the variables 1− 1/xi instead of xi).

It is more convenient to use indexing by permutations and write G(σ) instead
of Gv, if v is the code of σ. In terms of permutations, the maximal transition
formula for Schubert polynomials (3.9.4) reads as follows.

Given ζ and its code v, let k be such that vi = 0 for i > k and vk > 0. Let σ
be the permutation whose code is v − [0k−110n−k]. Then

Xζ = (xk − yj)Xσ +
∑
i

Xτjiσ , (4.7.1)

sum over all transpositions τji such that σ = [. . . i . . . j . . . ], τjiσ = [. . . j . . . i . . . ]
and `(τjiσ) = `(τ) + 1.

Order decreasingly the integers i occuring in (4.7.1): im > · · · > i1, and write
(1− τji) ? G(σ) for G(σ) −G(τjiσ). With these conventions, one has

Theorem 4.7.1. With the conventions of (4.7.1), one has the following transition
formula (

G(σ) −G(ζ)

) xk
yj

= (1− τjim) ? · · · (1− τji1) ? G(σ) . (4.7.2)

For example, for ζ = [5, 7, 3, 4, 1, 8, 2, 6], one has σ = [5, 7, 3, 4, 1, 6, 2, 8], k = 6,
j = 6, and(

G(57341628) −G(57341826)

) x6

y6

= (1− τ65) ? (1− τ64) ? (1− τ61) ? G(57341628)

is equal to the alternating sum of Grothendieck polynomials displayed below (with
both indexings) :

57341628
45220100

nnnnnnn

WWWWWWWWWWW

67341528
55220100

57361428
45230100

nnnnnnn

57346128
45222000

nnnnnnn

67351428
55230100

67345128
55222000

57364128
45232000

nnnnnnn

67354128
55232000



 Chapter 4 — Products and transitions for Grothendieck and Keys

Relation (2.6.5) allows to transform transition for G-polynomials to transition
for Ĝ-polynomials.

Corollary 4.7.2. With the conventions of (4.7.1), writing i′ for n+1−i, i =
1, . . . , n, one has the following transition formula(

Ĝ(ωσω) + Ĝ(ωζω)

) xk′
yj

=
(
1 + τj′i′m

)
? · · ·

(
1 + τj′i′1

)
? Ĝ(ωσω) . (4.7.3)

For example, the transition for Ĝ(ωζω) = Ĝ[37185624) is the image of the transition
for G(ζ) given above :(

Ĝ(17385624) + Ĝ(37185624)

) x3

y6

= (1 + τ34) ? (1 + τ35) ? (1 + τ38) ? Ĝ(17385624) ,

and can be displayed as

17385624
05142200

nnnnnnn

WWWWWWWWWWW

17485623
05242200

17583624
05341200

nnnnnnn

17835624
05512200

nnnnnnn

17584623
05342200

17845623
05522200

17853624
05531200

nnnnnnn

17854623
05532200

One could in fact extend all transitions of Schubert polynomials, and not only
maximal transitions, to transitions of Grothendieck polynomials. This is useful in
the case of a permutation ζ = ζ ′ζ ′′ belonging to a Young subgroup as in (3.9.3).
One has the same property as in (3.9.2). A transition(

G(σ) −G(ζ′)

) xk
yj

= (1− τjim) ? · · · (1− τji1) ? G(σ)

entails the relation(
G(σζ′′) −G(ζ)

) xk
yj

= (1− τjim) ? · · · (1− τji1) ? G(σζ′′) . (4.7.4)

As a consequence, Grothendieck polynomials satisfy the following factorization
property (shown in [99, Prop. 6.7] for the polynomials G(ζ)(x,1)).

Corollary 4.7.3. Let ζ belong to a Young subgroup, and ζ = ζ ′ζ ′′ its corresponding
factorisation. Then

G(ζ)(x,y) = G(ζ′)(x,y)G(ζ′′)(x,y) . (4.7.5)
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Using the recursive definition of Grothendieck polynomials to prove factoriza-
tion would be delicate. For example, G0120(x,y) is a sum of 12 monomials which
does not factorize2. Its image under π3 is equal to

G0101(x,y) = G01(x,y)G0001(x,y) =

(
1− y1y2

x1x2

)(
1− y1y2y3y4

x1x2x3x4

)
.

2We shall see in (??) that it is equal to S222(x3,x3 − y2,x3 − y4)/x222.
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4.8 Branching and stable G-polynomials
As in the case of Schubert polynomials, one can use the transition formula (4.7.2)
to obtain a transition graph with root a Grothendieck polynomial (indexed by a
permutation), vertices being ± a Grothendieck polynomial, stopping at vexillary
permutations.

For example, for σ = [3, 1, 6, 2, 7, 4, 5], one has

G(3162745)

llllllll
RRRRRRRR

G(5162347) G(3165247)

llllllll
RRRRRRRR
−G(5163247)

G(4163257) G(3461257) −G(4361257)

llllllll
RRRRRRRR

G(4261357)

RRRRRRRR

YYYYYYYYYYYYYYYYYYYYYYYYYY −G(5341267) −G(4531267) G(5431267)

G(5241367) G(4523167) −G(5421367)

The corresponding tree for X3162745 is

X3162745

mmmmmmm

X5162347 X3165247

mmmmmmm

X4163257 X3461257

X4261357

QQQQQQQ

X5241367 X4523167

If v ∈ Nn is antidominant, then KG
v is symmetrical in x1, . . . , xn, and one

has the stability property KG
0v

∣∣∣
xn+1=1

= KG
v . As for Schubert polynomials, this

leads to define the stable part of a Grothendieck polynomial3, for v ∈ Nn and
ω = [n, . . . , 1].

St(Gv) = Gv(x,1)Dω = G0nv(x,1)
∣∣∣
xn+1=1=···=x2n

. (4.8.1)

3Contrary to the Schubert case, we eliminate for simplicity the alphabet y.
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A transition

G0nv(x,1) = (1− x−1
k )G0nv′(x,1) + x−1

k

∑
G0nu(x,1)

induces the equality
St(Gv) =

∑
St(Gu) ,

and therefore, the transition graph is a convenient way of obtaining the stable
part of a Grothendieck polynomial.

For example, the above graph shows that the stable part of G(3162745) is equal
to

St(G(5162347)) + St(G(5241367)) + St(G(4521367))− St(G(5421367)) + St(G(3461257))

− St(G(5341267))− St(G(4531267)) + St(G(5431267))− St(G(5163247))

= KG
0000124 +KG

0000234 +KG
0000034 − 2KG

0000134

+KG
0000223 −KG

0000224 +KG
0000133 −KG

0000233 .

The terms St(G(5421367)) and St(G(5163247)) are both equal to KG
0000134, hence a

multiplicity 2.
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4.9 Transitions for Key polynomials
Key polynomials satisfy a similar transition formula, exhibiting a boolean lattice,
except that now one uses weights instead of permutations. The following consid-
erations are drawn from an unpublished manuscript with Lin Hui and Arthur L.B.
Yang.

Let v ∈ Nn, let k be such that vi = 0 for i > k and vk > 0. The leading term xv

of Kv is equal to xuxk, and we want to describe the difference Kv−xkKu as a sum
of key polynomials. We can suppose that v1 ≥ · · · ≥ vk−1, because π1, . . . , πk−2

commute with multiplication by xk.
Let us compute an example :

x6K543103 = K543104

ooooooo

WWWWWWWWWW

−K544103 −K543401

ooooooo
−K543140

ooooooo

K544301 K544130 K543410

ooooooo

−K544310

Using the same notation as above for operations on indices, one may rewrite
the preceding identity into

x6K543103 = (1− τ43) ? (1− τ41) ? (1− τ40) ? K543104 .

We have used transpositions of values τ4i, ignoring the leftmost 4. However,
this example is not generic enough. What to do when values i are repeated?

Let us take a bigger example, which, this time, will pass the test of genericity.
Let v = [5, 4, 3, 3, 1, 1, 1, 0, 5]. We have to compute

K5,4,3,3,1,1,1,0,4 x9 = K5,4,4,3,3,1,1,1,0 π3 . . . π8 x9 .

Noticing, by the Leibnitz’ commutations (1.4.3), that

π3 . . . π8 x9 = x3∂3x4∂4x5∂5x6∂6x7∂7x8∂8 x9 = x3 π̂3π̂4π̂5π̂6π̂7π̂8 ,

one obtains that K5,4,3,3,1,1,1,0,4 x9 = K̂5,4,3,3,1,1,1,0,4. The general case is similar and
given in the following statement.

Lemma 4.9.1. Let v ∈ Nn be such that v1 ≥ · · · ≥ vn−1, vn 6= 0, and let
u = [. . . , vn−1, vn−1]. Then

Ku xn = K̂v . (4.9.1)
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Expanding K̂v in terms of Ku (which means taking the Ehresmann-Bruhat
interval), one obtains the transition for key polynomials in that case. Let us show
the evolution of the transition under successive applications of πi, i 6= n−1.

We begin with the transition for K4,3,2,2,5 :

K4,3,2,2,5 −K4,3,2,2,4 x5 = K4,3,2,2,5 − K̂4,3,2,2,5

=
(
K5,3,2,2,4+K4,5,2,2,3+K4,3,2,5,2

)
−
(
K5,4,2,2,3+K5,3,2,4,2+K4,5,2,3,2

)
+
(
K5,4,2,3,2

)
,

that we display as a boolean lattice (forgetting signs), writing the starting element
as the bottom element

[5, 4, 2, 3, 2]

ooooooo
OOOOOOO

[5, 3, 2, 4, 2] [4, 5, 2, 3, 2]

ppppppp
NNNNNNNN
[5, 4, 2, 2, 3]

ppppppp

[4, 3, 2, 5, 2] [5, 3, 2, 2, 4] [4, 5, 2, 2, 3]

ppppppp

[4, 3, 2, 2, 5]

Applying π2, then π1, then again π2, one obtains the transitions for K2,4,3,2,5

and K2,3,4,2,5 :

[5, 2, 4, 3, 2]

ooooooo
OOOOOOO

[5, 2, 3, 4, 2] [4, 2, 5, 3, 2]

ppppppp
NNNNNNNN
[5, 2, 4, 2, 3]

ppppppp

[4, 2, 3, 5, 2] [5, 2, 3, 2, 4] [4, 2, 5, 2, 3]

ppppppp

[4, 2, 3, 2, 5]

[2, 5, 4, 3, 2]

ppppppp
NNNNNNN

[2, 5, 3, 4, 2] [2, 4, 5, 3, 2]

ppppppp
NNNNNNNN
[2, 5, 4, 2, 3]

ppppppp

[2, 4, 3, 5, 2] [2, 5, 3, 2, 4] [2, 4, 5, 2, 3]

ppppppp

[2, 4, 3, 2, 5]

[2, 3, 5, 4, 2]

[2, 3, 4, 5, 2] [2, 3, 5, 2, 4]

[2, 3, 4, 2, 5]



 Chapter 4 — Products and transitions for Grothendieck and Keys

The terms which are not underlined cancel two by two at the last stage, because
(K•ji•• −K•ji••)π2 = 0.

To write the general transition, we need to introduce, for each pair of integers
i, j, an operator τi,j on linear combinations of Ku, defined4 by

K...ui...uj ... ? τi,j = K...uj ...ui... .

Then, one has the following transition formula, similar to the one for Grothendieck
polynomials.

Theorem 4.9.2. Let v ∈ Nn, such that vn > 0, and u = [v1, . . . , vn−1, vn−1]. Let
i1 < · · · < ir < n be the places i such that vi is strictly maximal among the values
{vj : i ≤ j < n, vj < vn}. Then

Ku xn = Kv ? (1− τi1n) · · · (1− τirn) . (4.9.2)

Proof. When v1 ≥ · · · ≥ vn−1, the statement comes from rewriting the expansion
of K̂v in (4.9.1) in terms of the operators τin.

Given any k such that vk > vk+1, one has Ku xn πk = Kusk xn. On the other
hand, the product of the RHS of (4.9.2) is obtained by replacing v by vsk and
exchanging k and k+1 in the indices of the operators τi,n, except one has the
double factor (1− τk,n)(1− τk+1,n). In that case the factor (1− τk,n) disappears,
and this corresponds to the pairs Kw −Kwsk which vanish under πk. QED

The four examples above must be rewritten

K43224 x5 = K43225 ? (1− τ15)(1− τ25)(1− τ45)

K42324 x5 = K43224 x5 π2 = K42325 ? (1− τ15)(1− τ35)(1− τ45)

K24324 x5 = K42324 x5 π1 = K24325 ? (1− τ25)(1− τ35)(1− τ45)

K23424 x5 = K42324 x5 π2 = K23425 ? (1− τ35)(1− τ45) .

If v ∈ Nn is a vexillary code such that vn 6= 0 and there exists i : vi < vn, then
Yv(x,0) and Kv satisfy the same transition :

Yv(x,0) = xkYv′(x,0) + Yu(x,0) & Kv = xkKv′ +Ku ,

with v′ and u vexillary (cf. [124, Lemma 3.10]). Therefore, one has the following
property, which is a special case of the expansion of a Schubert polynomial in
terms of keys given in (7.3.2).

Lemma 4.9.3. If v is a vexillary code, then

Yv(x,0) = Kv . (4.9.3)

For example, there are 23 Schubert polynomials Yv(x,0), v ≤ [3, 2, 1, 0], which
coincide with the key polynomial of the same index, while Y1010(x,0) = x1(x1+x2+x3)
is different from K1010 = x1(x2+x3).

4If needed, u is transformed into u, 0, 0, . . .
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4.10 Vexillary polynomials
We have already stated that vexillary Schubert and key polynomials have a deter-
minantal expression. This property is also satisfied by Grothendieck polynomials,
and we collect together these three families in the next theorem.

First, dominant polynomials can be written as multi-Schur functions. Let v
be dominant, u = vω, k = v1. Then

Yv = Su(xn − yvn , . . . ,x1 − yv1)

Gv = (x1 · · ·xn)−kSkn(xn − yvn , . . . ,x1 − yv1)

Kv = Su(xn, . . . , x1)

For example, for v = [6, 3, 1], one has

Y631 = S136(x3−y1,x2−y3,x1−y6) =

∣∣∣∣∣∣
S1(x3 − y1) S4(x2 − y3) S8(x1 − y6)
S0(x3 − y1) S3(x2 − y3) S7(x1 − y6)

0 S2(x2 − y3) S6(x1 − y6)

∣∣∣∣∣∣ ,
G631 = (x1x2x3)−6S666(x3 − y1,x2 − y3,x1 − y6) ,

K631 = S136(x3,x2,x1) .

As we already saw, the action of ∂i or πi on a determinant of complete functions
Sk(xp−yq) is straightforward if only one column or one row is not invariant under
the transposition of xi, xi+1. In that case, one has to transform this row or column,
following the rules Sk(xi − y)∂i = Sk−1(xi+1 − y), Sk(xi − y)πi = Sk(xi+1 − y).

For example,

Y631
∂2−−→Y612 = S126(x3 − y1,x3 − y3,x1 − y6)

∂1−−→Y152

= S125(x3 − y1,x3 − y3,x2 − y6)
∂2−−→Y124 = S124(x3 − y1,x3 − y3,x3 − y6) ,

G631(x1x2x3)6 π2−−→ = S666(x3 − y1,x3 − y3,x1 − y6)
π1−−→

= S666(x3 − y1,x3 − y3,x2 − y6)
π2−−→ = S666(x3 − y1,x3 − y3,x3 − y6) .

On the other hand, Y631∂1 = S135(x3 − y1,x2 − y3,x2 − y6) and we cannot
proceed so easily with ∂2, since two columns involve x2 and not x3.

When v is vexillary, we have already used the property that there exists at
least one sequence of operators ∂i or πi respectively, starting from a dominant
case, such that at each step, only one column is transformed by the operator

To describe the missing determinants in the Grothendieck case, we have to
follow the same recursion than for Schubert, but with different flags. To any
v ∈ Nn, let us associate the two following flags of alphabets. Let w be the
sequence wi := max(j : j ≥ i, vj ≥ vi. Then vx is the decreasing reordering of w.
Let now u be the element of Nn obtained by decreasingly reordering v according
to the rule [. . . i, j . . .] → [. . . j+1, i . . .] whenever i < j. Then vy is set to be the
increasing reordering of u.
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Theorem 4.10.1. Let v ∈ Nn be vexillary, vx, vy be the two vectors defined above,
k = max(vy). Then

Yv = Sv↑(xvx1 − yvy1 , . . . ,xvxn − yvyn) , (4.10.1)
Gv = Skn(xvx1 − yvy1 , . . . ,xvxn − yvyn) (x1 · · ·xn)−k , (4.10.2)
Kv = Sv↑(xvx1 , . . . ,xvxn) . (4.10.3)

In particular, when v is vexillary, then Kv = Yv(x,0).

For example, for v = [3, 5, 4, 0, 2], one has w = [3, 2, 3, 5, 5], which reorders into
vx = [5, 5, 3, 3, 2]. On the other hand, the chain v = [3, 5, 4, 0, 2]→ [6, 3, 4, 0, 2]→
[6, 5, 3, 0, 2]→ [6, 5, 3, 3, 0] gives the second flag vy = [0, 3, 3, 5, 6]. Hence, one has

Y35402 = S02345(x5−y0,x5−y3,x3−y3,x3−y5,x2−y6)

G35402 = S66666(x5−y0,x5−y3,x3−y3,x3−y5,x2−y6)(x1 . . . x5)−6

K35402 = S02345(x5,x5,x3,x3,x2) .

Property (2.6.5) allows to write from (4.10.2) a determinantal formula for Ĝv

polynomials such that v♣ be vexillary. This condition is in fact equivalent to
requiring that v be vexillary, since if a permutation σ avoids the pattern 2143,
then ωσω also avoids this pattern, and conversely.
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4.11 Grothendieck and Yang-Baxter
One can degenerate Yang-Baxter bases of Hecke algebras into bases of the 0-
Hecke algebra, i.e. the algebra generated by π̂1, π̂2, . . . . But as in the case of
divided differences, instead of taking products of factors of the type π̂i+1/c, let us
take factors 1 + cπ̂i. Accordingly, given a spectral vector [y1, . . . , yn], one defines
recursively a Yang-Baxter basis fbπ

σ, starting from 1 for the identity permutation,
by

fbπ
σsi

= fbπ
σ

(
1 +

(
1− yσi

yσi+1

)
π̂i

)
for σi < σi+1 . (4.11.1)

For example,

fbπ
321 =

(
1 +

(
1− y1

y2

)
π̂1

)(
1 +

(
1− y1

y3

)
π̂2

)(
1 +

(
1− y2

y3

)
π̂1

)
= 1 +

(
1− y1

y3

)
π̂1 +

(
1− y1

y3

)
π̂2 +

(
1− y1

y2

)(
1− y1

y3

)
π̂1π̂2

+

(
1− y2

y3

)(
1− y1

y3

)
π̂2π̂1 +

(
1− y1

y2

)(
1− y1

y3

)(
1− y2

y3

)
π̂1π̂2π̂1 .

s As in the case of divided differences, the Yang-Baxter coefficients are speciali-
sations of known polynomials. The proof of the next properties is similar to the
proof of Theorem 3.5.1, and we can avoid repeating it.

Theorem 4.11.1. The matrix of change of basis between {fbπ
σ} and {π̂σ}, and its

inverse, have entries which are specializations of Grothendieck polynomials :

fbπ
σ =

∑
ν≤σ

π̂ν G(ν)(y
σ,y) , (4.11.2)

π̂ν
∏
i<j

(
1− yi

yj

)
=

∑
σ≤ν

(−1)`(σ)−`(ν)fbπ
σ G(ν−1ω)(y

ω,yσ) . (4.11.3)

For example, for ν = [2, 3, 1], one has ν−1ω = [2, 1, 3], and the coefficients of
the expansion of π̂231 are specialisations of the polynomial G(213 = 1−y1x

−1
1 . One

has

π̂231

∏
i<j≤3

(1− yiy−1
j ) = fbπ

123G(213(y321,y)− fbπ
213G(213(y321,y213)

− fbπ
132G(213(y321,y132) + fbπ

231G(213(y321,y231)

=

(
1− y1

y3

)
fbπ

123 −
(

1− y2

y3

)
fbπ

213 −
(

1− y1

y3

)
fbπ

132 +

(
1− y2

y3

)
fbπ

231 .

The general properties of Yang-Baxter bases induce properties of specializa-
tions of Grothendieck polynomials.
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The symmetry (1.8.4) entails(
G(ν)(y

σ,y)
)♣

= G(ωνω)(y
ωσω,yω) , (4.11.4)

using the involution ♣ : yi → y−1
n+1−i, i = 1, . . . , n introduced in (2.6.4).

Each of the equations (1.8.9) and (1.8.10) gives, after some rewriting,∑
ν

(−1)`(ν)+`(σ)G(ν)(y
σ,y)G(νω)(y

ζ ,y) = δσ,ζω
∏
i<j

(
1− yi

yj

)
, (4.11.5)

which is a special instance of formula (2.9.4).



Chapter 5
G1/x and G̃ Grothendieck polynomials

In the preceding sections, we have seen that Grothendieck and Schubert polynomi-
als satisfy similar properties. To relate these two families precisely, it is convenient
to perform a change of variables in the former. In fact, we shall use two slightly
different transformations, in view of different geometrical considerations.

5.1 Grothendieck in terms of Schubert
Denote the image of the Grothendieck polynomial Gv(x,y) under the inversion
xi → x−1

i , yi → yi, by G1/x
v (x,y), and by G̃v(x,y) the image under the transfor-

mation1

xi → (1− xi)−1 , yi → (1− yi)−1, i = 1, 2, . . .

Thus, in the dominant case, for λ ∈ Nn a partition, one has

G
1/x
λ (x,y) =

n∏
i=1

λi∏
j=1

(yj−xi)y
−1
j & G̃λ(x,y) =

n∏
i=1

λi∏
j=1

(xi−yj)(1−yj)
−1 ,

and the other polynomials are generated using respectively the operators

π
1/x
i = −xi+1∂i & π̃i = (1− xi+1) ∂i , (5.1.1)

or the generation in y seen in (2.2.3), which uses the isobaric divided differences
in y in the first case, or in the indeterminates y1−1, y2−1, . . . in the second case :

πy
i & πy−

i = (yi − 1)∂y
i . (5.1.2)

1 Many authors use the transformation xi → (1− xi)−1, yi → (1− yi). This not compatible
with simultaneously using Yv(x,y), but only with Yv(x,0). In fact, the factor x+y−xy, instead
of 1−x/y) or (x− y)/1−y) that we now take, does not possess the right symmetry in x, y which
is imposed by geometry.

159
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For example, the polynomial G1/x
01 (x,y) = 1 − x1x2y

−1
1 y−1

2 is the image of
G

1/x
20 (x,y) = (1−x1y

−1
1 )(1−x1y

−1
2 ) under π1/x

1 = −x2∂1, as well as the image of
G

1/x
11 (x,y) = (1−x1y

−1
1 )(1−x2y

−1
1 ) under πy

1 .
From the expression of π̃i, one sees that the basis G̃v(x,y) is triangular in the

basis Yv(x,y), the term of G̃v(x,y) of lowest degree being

(1− y1)−u1(1− y2)−u2 · · ·Yv(x,y) ,

with u the code of the permutation inverse to 〈v〉.
Any example reveals that the expansion of these new polynomials in the

Schubert basis posseses a structure quite willing to uncover itself. For exam-
ple, v = [2, 0, 2, 1] is the code of the permutation [3, 1, 5, 4, 2], the code of the
inverse permutation is equal to u = [1, 3, 0, 1, 0], and one has

(1−y1)(1−y2)3(1−y4)G̃2021 = Y2021

kkkkkkkkkkkkk

TTTTTTTTTTTT

1
y1−1

Y2220

RRRRRRRRRR

1
y3−1

Y3021

llllllllll

SSSSSSSSSS

y1+y2−2
(y1−1)2

Y2121

kkkkkkkkk

1
(y1−1)(y3−1)

Y3220

RRRRRRRR

1
(y1−1)2

Y2221
y1+y2−2

(y1−1)2(y3−1)
Y3121

kkkkkkkk

1
(y1−1)2(y3−1)

Y3221

A similar computation gives the expansion ofG1/x
2021(x,y) (writing Yv for Yv(x,y)) :

G
1/x
2021(x,y) = − 1

y1y2
3y4

Y2021 −
(y1 + y2)

y1
3y2

3y4

Y2121 −
1

y1
2y2

3y4

Y222

− 1

y1
3y2

3y4

Y2221 −
1

y1y2
3y3y4

Y3021 −
(y1 + y2)

y1
3y2

3y3y4

Y3121

− 1

y1
2y2

3y3y4

Y322 −
1

y1
3y2

3y3y4

Y3221 .

On this single example, it appears that the two expansions are identical, up to a
minor transformation of coefficients. Indeed, since a Schubert polynomial Yv(x,y)
is invariant under a uniform translation xi → xi + ε, yi → yi + ε, i = 1, 2, . . . , the
expansion of G̃v(x,y) is obtained from the expansion of G1/x(x,y) by the change
of variables yi → yi−1 in the coefficients.

Notice however that the polynomials in x only are different. In the case of
G

1/x
v (x,y), one has to specialize y to {1, 1, . . . }, while for G̃v(x,y), one sends y

to {0, 0, . . . }. Thus G1/x
01 (x,y) = −y−1

2 Y01(x,y)− y−1
1 y−1

2 Y11(x,y) gives

G
1/x
01 (x,1) = −Y01(x,1)− Y11(x,1) = 1− x1x2
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while G̃01(x,y) = (1−y2)−1Y01(x,y)− (1−y1)−1(1−y2)−1Y11(x,y) induces

G̃01(x,0) = Y01(x,0)− Y11(x,0) = x1 + x2 − x1x2 .

Normalizing for a moment the polynomials in such a way that ˜̃Gv = Yv + . . . ,
one renders the matrix of change of basis unitriangular. Here it is, together with its
inverse, for n = 4, putting A = (y1−1)−1, B = (y2−1)−1, C = (y1 +y2−2)(1−y1)−2.

000

001

010

100

020

011

200

101

110

300

021

201

120

111

210

301

220

310

121

211

320

311

221

321



1 · · · · · · · · · · · · · · · · · · · · · · ·
· 1 · · · B · · · · · · · AB · · · · · · · · · ·
· · 1 · · · · · A · · · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · A · · · · · · · · · · ·
· · · · · 1 · · · · · · · C · · · · · · · · · ·
· · · · · · 1 · · · · · · · · · · · · · · · · ·
· · · · · · · 1 · · · B · A · · · · · AB · · · ·
· · · · · · · · 1 · · · · · · · · · · · · · · ·
· · · · · · · · · 1 · · · · · · · · · · · · · ·

· · · · · · · · · · 1 · · · · · A · C · · · A2 ·
· · · · · · · · · · · 1 · · · · · · · A · · · ·
· · · · · · · · · · · · 1 · · · B · · · · · · ·
· · · · · · · · · · · · · 1 · · · · · · · · · ·
· · · · · · · · · · · · · · 1 · · · · · · · · ·
· · · · · · · · · · · · · · · 1 · · · · · A · ·
· · · · · · · · · · · · · · · · 1 · · · · · · ·
· · · · · · · · · · · · · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · 1 · · · B ·
· · · · · · · · · · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · · · · · · · · · 1 · ·
· · · · · · · · · · · · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · · · · · · · · · · · 1


For example, the row of index 101 must be read

˜̃
G101 = (y1 − 1)(y3 − 1)G̃101

= Y101 +
1

y2 − 1
Y201 +

1

y1 − 1
Y111 +

1

(y2 − 1)(y1 − 1)
Y211 ,

or equivalently

y1y3G
1/x
101 = Y101 + y−1

2 Y201 + y−1
1 Y111 + y−1

1 y−1
2 Y211 .

The inverse matrix looks very similar, apart from signs, and different location
of the non-zero entries.



 Chapter 5 — G1/x and G̃ Grothendieck polynomials

000

001

010

100

020

011

200

101

110

300

021

201

120

111

210

301

220

310

121

211

320

311

221

321



1 · · · · · · · · · · · · · · · · · · · · · · ·

· 1 · · · −B · · · · · · · A2 · · · · · · · · · ·

· · 1 · · · · · −A · · · · · · · · · · · · · · ·

· · · 1 · · · · · · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · −A · · · AB · · · · · · ·

· · · · · 1 · · · · · · · −C · · · · · · · · · ·

· · · · · · 1 · · · · · · · · · · · · · · · · ·
· · · · · · · 1 · · · −B · −A · · · · · · · · · ·

· · · · · · · · 1 · · · · · · · · · · · · · · ·
· · · · · · · · · 1 · · · · · · · · · · · · · ·
· · · · · · · · · · 1 · · · · · −A · −C · · · AB ·

· · · · · · · · · · · 1 · · · · · · · −A · · · ·

· · · · · · · · · · · · 1 · · · −B · · · · · · ·

· · · · · · · · · · · · · 1 · · · · · · · · · ·
· · · · · · · · · · · · · · 1 · · · · · · · · ·
· · · · · · · · · · · · · · · 1 · · · · · −A · ·

· · · · · · · · · · · · · · · · 1 · · · · · · ·
· · · · · · · · · · · · · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · 1 · · · −B ·

· · · · · · · · · · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · · · · · · · · · 1 · ·
· · · · · · · · · · · · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · · · · · · · · · · · 1


For example, the row of index 021 must be read, with the normalized polyno-

mials ˜̃Gv, or the polynomials G1/x
v ,

Y021 =
˜̃
G021 +

1

1−y1

˜̃
G22 +

(
1

1−y1

+
1−y2

(1−y1)2

) ˜̃
G121 +

1

(1−y1)(1−y2)
˜̃
G221

Y021 = −y2
2y3G

1/x
021 − y1y2

2G
1/x
22 − y1y3 (y1 + y2)G

1/x
121 − y1

2y2G
1/x
221 .

Let us precise and prove the observation of the closeness between the two
matrices. Thanks to (2.6.5), the orthogonality relation between the polynomials
Gv and Ĝu can be rewritten as

(Gux
ρ)ω y−ρGv πω ∈ {±1, 0} . (5.1.3)

Since the operator xρω πω is equal to

(x1 . . . xn)n−1∂ω =
(∑

(−1)`(σ)σ
)

(x1 . . . xn)n−1∆(x)−1

its image under the change of variables xi → (1−xi)
−1 is the operator(∑

(−1)`(σ)σ
)

∆(x)−1 = ∂ω .
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Indexing by permutations rather than codes, one rewrites (5.1.3) as

G
1/x
(σ) (x,y)G

1/x
(ζ) (xω,y) ∂ω = (−1)`(σ)y−ρδσ,ζω (5.1.4)

G̃(σ)(x,y) G̃(ζ)(x
ω,y) ∂ω = (−1)`(σ)(y1−1)n−1 · · · (yn−1−1)δσ,ζω . (5.1.5)

Because (f, g)∂ = fg∂ω is the scalar product used for Schubert polynomials,
the preceding equations mean that, with respect to ( , )∂ and up to normaliza-
tion, {(−1)|v|G

1/x
v (xω,y), v ≤ ρ} is adjoint to {G1/x

v (x,y), v ≤ ρ}, and similarly
{(−1)|v|G̃v(x

ω,y), v ≤ ρ} is adjoint to {G̃v(x,y), v ≤ ρ}. Thus one has the fol-
lowing symmetry property:

Theorem 5.1.1. Let n be an integer. Denote (y−1)ρ = (y1−1)n−1 · · · (yn−1−1).
Then, for any ζ ∈ Sn, one has

Xζ(x,y) =
∑
σ∈Sn

(−1)`(σ)(Xζ(x,y) , yρG
1/x
(σω)(x

ω,y))∂ G
1/x
(σ) (x,y) (5.1.6)

Xζ(x,y) =
∑
σ∈Sn

(−1)`(σ)(Xζ(x,y) , (y−1)ρG̃(σω)(x
ω,y))∂ G̃(σ)(x,y)(5.1.7)

and the inverse formulas

G
1/x
(ζ) (x,y) =

∑
σ∈Sn

(−1)`(σ)(G
1/x
(ζ) (x,y) , Xσ(xω,y))∂ Xσω(x,y) (5.1.8)

G̃(ζ)(x,y) =
∑
σ∈Sn

(−1)`(σ)(G̃(ζ)(x,y) , Xσ(xω,y))∂ Xσω(x,y) . (5.1.9)

For example,(
G

1/x
(1342)(x,y),−X1432(xω,y)

)∂
= (y1 + y2)y−2

1 y−2
2(

G̃(1342)(x,y),−X1432(xω,y)
)∂

= (y1 + y2 − 2)(y1 − 1)−2(y2 − 1)−2

imply that

G
1/x
(1342)(x,y) = · · ·+ (y1+y2)y−2

1 y−2
2 X2341(x,y) + · · ·

G̃(1342)(x,y) = · · ·+ (y1+y2−2)(y1−1)−2(y2−1)−2X2341(x,y) + · · ·
X1432(x,y) = · · · − y1y3(y1+y2)G

1/x
(2431)(x,y) + · · ·

X1432(x,y) = · · · − (y1−1)(y3−1)(y1+y2−2) G̃(2431)(x,y) + · · ·

A combinatorial description of the coefficients will be given in a later section.
We have defined the bases {G1/x

v (x,y)} and {G̃v(x,y)} using the operators
π

1/x
i and π̃i = π

1/1−x
i . Taking the operators π̂1/x

i = π
1/x
i
−1 and π̂1/1−x

i = π
1/1−x
i

−1
instead gives alternating summations which are described in the following propo-
sition.
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Proposition 5.1.2. Given n, σ ∈ Sn, one has the following identities involving
the Ehresmann-Bruhat interval [σ, ω], and the alphabets 1−x = {1−x1, 1−x2, . . . }
and 1−y = {1−y1, 1−y2, . . . }.

xρ
∑
ζ≤σ

(−1)`(ζ)G(ζ)(x,y) = yρG1/x
σ (x,y) (5.1.10)

(1−x)−ρ
∑
ζ≤σ

(−1)`(ζ)G̃(ζ)(x,y) = (1−y)ρG1/x
σ (1−x,1−y) (5.1.11)

x−ρ
∑
ζ≤σ

(−1)`(ζ)G
1/x
(ζ) (x,y) = y−ρGσ(x,y) . (5.1.12)

Proof. The three identities result from each other by change of variables, let us
consider the first one. Its left-hand side can be written (−1)`(σ)Gω(x,y)π̂(ωσ)(x,y).
However, π1/x

i x−ρ = −xi+1∂ix
−ρ = −x−ρπ̂i. Therefore

(−1)`(σ)Gω(x,y)π̂(ωσ)(x,y) = (−1)`(ω)G1/x
ω (x,y)x−ρyρπ̂ωσ

= G1/x
ω (x,y)π1/x

ωσ y
ρ = G1/x

σ (x,y)yρ ,

which is the required identity. QED
Combining 5.1.10 and 2.6.5, one can also express the adjoint basis {Ĝv(x,y)}

with alternating summations:∑
ζ≤σ

(−1)`(ζ)G
1/x
(ζ) (x,y) = Ĝ(ωσω)(x

ω,y) . (5.1.13)

For example, for σ = [1, 3, 2], one has

G
1/x
01 (x,y)−G

1/x
11 (x,y)−G

1/x
20 (x,y)+G

1/x
21 (x,y)

= 1−
x2x1

y1y2

−
(

1−
x1

y1

)(
1−
x2

y1

)
−
(

1−
x1

y1

)(
1−
x1

y2

)
+

(
1−
x1

y1

)(
1−
x1

y2

)(
1−
x2

y1

)
=
x1 (x2x1 − y1y2)

y1
2y2

= Ĝ(213)(x
ω,y) .
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5.2 Monk formula for G1/x and G̃ polynomials
We have described in (4.5.1) the product Gv(x1 . . . xk)

−1. After change of vari-
ables, this translates into the product G̃v(1−x1) . . . (1−xk).

We are going to refine this result by giving the product by a single variable,
instead of by (1−x1) . . . (1−xk). To do so, we need the k-paths introduced in
(3.6.3). Recall also that a hook is a word or a sequence z1 . . . zr such that there
exists j: z1 > · · · > zj, zj ≤ zj+1 ≤ · · · ≤ zr.

Theorem 5.2.1. Let σ ∈ Sn+1 be such that σn+1 = n+1, let k : 1 ≤ k ≤ n. Then

xkG
1/x
(σ) (x,y) =

∑
(−1)`yminG

1/x
(τar,ar−1 ...τa1a0σ)(x,y) (5.2.1)

(1− xk) G̃(σ)(x,y) =
∑

(−1)`(1−ymin) G̃(τar,ar−1 ...τa1a0σ)(x,y) , (5.2.2)

sum over all the k-paths a = [ar, . . . , a0] such that a be a hook, as well as a subword
of [σk+1, . . . , σn+1, σ1, . . . , σk], with min = min(ar, . . . , a0), ` + 1 being the height
of the hook.

Proof. Thanks to Colin Powell, who has considerably lightened the requirements
for a proof2, I shall content myself of sketching the method. The two statements
are equivalent by change of variables. Let us take the G̃-polynomials. One uses
a decreasing induction on length, starting with σ = [n, . . . , 1, n+1], and using the
two recursions

G̃(σ)xk = G̃(σsk−1)π̃k−1xk = G̃(σsk−1)xk−1π̃k−1 + G̃(σsk−1)(xk−1) , σk−1 < σk ,

G̃(σ)xk = G̃(σsk)π̃kxk = G̃(σsk)xk+1π̃k + G̃(σsk)(1−xk+1) , σk < σk+1 ,

which are a direct consequence of Leibnitz’ formula. QED

As a small example, let σ = [3, 1, 5, 2, 4, 6], k = 4. One has to enumerate 4-
paths which are hooks as well as subwords of [4, 6, 3, 1, 5, 2]. One finds the hooks

2 , 1 2 , 4
2

and 4
1 2

, which correspond respectively to the permutations
[3, 1, 5, 2, 4, 6], [3, 2, 5, 1, 4, 6], [3, 1, 5, 4, 2, 6] and [3, 2, 5, 4, 1, 6]. Hence one has the
two expansions

x4G
1/x
(31524)(x,y) = y2G

1/x
(31524)(x,y) + y1G

1/x
(32514)(x,y)

− y2G
1/x
(31542)(x,y)− y1G

1/x
(32541)(x,y)

(1−x4)G̃(31524)(x,y) = (1−y2)G̃(31524)(x,y) + (1−y1)G̃(32514)(x,y)

− (1−y2)G̃(31542)(x,y)− (1−y1)G̃(32541)(x,y) .

2 Colin Powell’s presentation to the U.N. Security Council, February 5, 2003.
http://edition.cnn.com/2003/US/02/05 /sprj.irq.powell.transcript.10.
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Let us illustrate the recursion for Monk formula on a bigger example. Let
k = 4, σ = [1, 3, 4, 6, 2, 7, 5, 8] (resp. σ = [1, 3, 4, 6, 2, 5, 7, 8]).

Suppressing the terminal 8 which is a fixed point of all the permutations in-
volved, one has

(1−x4)G̃(1346275) = (1−y6)G̃(1346275) − (1−y6)G̃(1347265) + (1−y4)G̃(1364275)

−(1−y4)G̃(1365274)+(1−y3)G̃(1463275)−(1−y4)G̃(1367245)+(1−y4)G̃(1367254)−(1−y3)G̃(1465273)

+ (1−y1)G̃(3461275) − (1−y3)G̃(1467235) + (1−y3)G̃(1467253) − (1−y1)G̃(3462175) ,

(1−x4)G̃(1346257) = (1−y6)G̃(1346257)−(1−y6)G̃(1347256)+(1−y4)G̃(1364257)−(1−y4)G̃(1365247)

+ (1−y3)G̃(1463257) − (1−y3)G̃(1465237) + (1−y1)G̃(3461257) − (1−y1)G̃(3462157) .

The following two trees describe the cycles ζσ−1 in the preceding expansions
(1−x4)G̃σ(x,0) =

∑
±G̃ζ(x,0), these cycles being hooks which are subwords of

[2, 7, 5, 1, 3, 4, 6] when σ = [1, 3, 4, 6, 2, 7, 5], and subwords of [2, 5, 7, 1, 3, 4, 6] when
σ = [1, 3, 4, 6, 2, 5, 7].

6

{{{{{{{

4 6

||||||||
??????

??????

7
6

3 4 6

????????

NNNNNNNNNNNNNN

NNNNNNNNNNNNNN

5
4 6

LLLLLLLLLLLLLLL

LLLLLLLLLLLLLLL
7
4 6

1 3 4 6 5
3 4 6

7
3 4 6

7
5
4 6

2
1 3 4 6

7
5
3 4 6

6

������

4 6

||||||||

7
6

3 4 6

CCCCCC

5
4 6

1 3 4 6 5
3 4 6

2
1 3 4 6

For example, the two bottom elements of the left tree must be read as follows.

The two permutations σ=1346275
3462175

differ by the cycle (1 → 3 → 4 → 6 → 2),

that one writes as a hook finishing by 6:
2
1 3 4 6 . The minimum of the cycle

is 1, the height of the hook is 2, and therefore the corresponding term in the
decomposition of (1−x4)G̃(sigma)(x,y) is −(1−y1)G̃(3462175)(x,y).

Similarly, σ=1346275
1467253

differ by the cycle (3 → 4 → 6 → 7 → 5), that one



§ 5.2 — Monk formula for G1/x and G̃ polynomials 

writes
7
5
3 4 6

. The minimum of the cycle is 3, the height of the hook is 3, hence

the term (1−y3)G̃(1467253)(x,y).

Lenart[138, Th.3.1] describes the product xkG̃v(x,0) in terms of chains in the
“k-Bruhat order” and criticizes (4.5.1) for involving cancellations. For our defense,
we shall put forward that this is not the same case which is treated in the two
formulas. In the former, one multiplies by 1−xk, in the later, taking into account
the change of variables, by (1−x1) . . . (1− xk).

The Pieri formula for the products G̃v(x,0)G̃0i,1j(x,0) or G̃v(x,0)G̃0i,j(x,0)
is given by Lenart and Sottile [140].
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5.3 Transition for G1/x and G̃ polynomials
By change of variables, one transforms (4.7.2) into a transition formula for G1/x

and G̃polynomials.

Proposition 5.3.1. Let v ∈ Nk be such that vk > 0, let σ be the permutation of
code v′ = [v1, . . . , vk−1, vk−1]. Then, with the conventions of (4.7.2), one has(

G
1/x
v′ −G

1/x
v

) yj
xk

= (1− τjim) ? · · · (1− τji1) ? G
1/x
(σ) (5.3.1)(

G̃v′ − G̃v

) 1− yj
1− xk

= (1− τjim) ? · · · (1− τji1) ? G̃(σ) . (5.3.2)

These expressions are not a direct corollary of Monk formula for G̃-polynomials.
For example, for v = [1, 0, 1, 1], one has σ = [2, 1, 4, 3, 5], and, writing at the same
time codes and permutations,(

G̃10100
21435

− G̃10110
21453

) 1−y3

1−x4

= (1− τ32)(1− τ31) ? G̃10100
21435

= G̃10100
21435

− G̃11100
23415

− G̃20100
31425

+ G̃21100
32415

,

while, writing also in a box the hooks appearing in the statement of (5.2.2), one
has the Monk formula

(1−x4)G̃10100
21435

= (1−y3)G̃10100
21435

3 + (1−y1)G̃11100
23415

13 + (1−y2)G̃20100
31425

23

− (1−y3)G̃10110
21453

5
3 − (1−y1)G̃11110

23451

5
13 − (1−y2)G̃20110

31452

5
23 .
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5.4 Action of divided differences on G1/x and G̃

polynomials
Let us show that the property that, up to normalization, {G1/x

v (xω,y), v ≤ ρ}
is adjoint to {G1/x

v (x,y), v ≤ ρ}, and similarly {G̃v(x
ω,y), v ≤ ρ} is adjoint to

{G̃v(x,y), v ≤ ρ}, allows to exchange multiplication by xi with ∂n−i.

Indeed, for any σ, ζ ∈ Sn, any i ≤ n−1, let ζ ′ = ζsi if ζi ≥ ζi+1 or or ζ ′ = ζ

otherwise. Consequently, G1/x
ζ (x,y)(−xi+1∂i) = G

1/x
ζ′ (x,y).

Then, according to Theorem 5.1.1, one has

yρ(−1)`(σ)δζ′,ωσ =
((
G

1/x
(ζ) (x,y)(−xi+1∂i)

)ω
, G

1/x
(σ) (x,y)

)∂
=
(
−
(
G

1/x
(ζ) (x,y)xi+1

)ω
ω∂iω,G

1/x
(σ) (x,y)

)∂
=
((
G

1/x
(ζ) (x,y)xi+1

)ω
, G

1/x
(σ) (x,y)∂n−i

)∂
.

Therefore, up to reversal of alphabets, multiplication and divided differences
are exchanged. Thus, let a ¬ hook be a word z1 . . . zr such that there exists j:
z1 ≤ · · · ≤ zj, zj > zj+1 > · · · > zr. Then Monk formulas (5.2.1) and (5.2.2)
translate about the following description of the action of divided differences.

Theorem 5.4.1. Let σ ∈ Sn, k : 1 ≤ k ≤ n−1 be such that σk > σk+1, and
η = σsk. Then

G
1/x
(σ) (x,y)∂k =

∑
(−1)` y−1

maxG
1/x
(τar,ar−1 ...τa1a0η)(x,y) (5.4.1)

G̃(σ)(x,y)∂k =
∑

(−1)`−1(1−ymax)
−1G̃(τar,ar−1 ...τa1a0η)(x,y) , (5.4.2)

sum over all the k-paths a = [ar, . . . , a0] such that a be a ¬ hook, as well as a
subword of [ηk+1, . . . , ηn+1, η1, . . . , ηk], with max = max(ar, . . . , a0), ` being the
width of the ¬ hook.

For example, for k = 3, σ = [3, 1, 5, 2, 6, 4], then η = [3, 1, 2, 5, 6, 4], and,
writing each polynomial together with its ¬ hook, one has

G
1/x
(3,1,5,2,6,4) ∂3 = − 2 y−1

2 G
1/x
(3,1,2,5,6,4) − 4

2
y−1

4 G
1/x
(3,1,4,5,6,2)

+ 1 2 y−1
2 G

1/x
(3,2,1,5,6,4) + 1 4

2
y−1

4 G
1/x
(3,4,1,5,6,2)

+ 3 4
2
y−1

4 G
1/x
(4,1,3,5,6,2) − 1 3 4

2
y−1

4 G
1/x
(4,3,1,5,6,2) ,
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G̃(3,1,5,2,6,4)∂3 = 2
1

1− y2

G̃(3,1,2,5,6,4) + 4
2

1

1− y4

G̃(3,1,4,5,6,2)

− 1 2
1

1− y2

G̃(3,2,1,5,6,4) − 1 4
2

1

1− y4

G̃(3,4,1,5,6,2)

− 3 4
2

1

1− y4

G̃(4,1,3,5,6,2) + 1 3 4
2

1

1− y4

G̃(4,3,1,5,6,2) .



§ 5.5 — Still more keys: K̃G polynomials 

5.5 Still more keys: K̃G polynomials
When σ is Grassmannian, Xσ(x,0) is equal to a Schur function, as well as to a
key polynomial. The polynomial G̃(σ)(x,0) is also symmetrical, but not equal to
a Schur function, nor to any classical symmetric function. 0ne has to find another
family of polynomials which play the role of key polynomials versus Schubert poly-
nomials, and coincide with the polynomials G̃(σ)(x,0) in the symmetric case. The
polynomials KG

v seen in (4.6.2) play such a role with respect to G(σ)(x,1). There-
fore, we define the polynomials K̃G

v , v ∈ Nn, to be the images of the polynomials
KG
v under the transformation xi → (1−xi)

−1. In fact, these are the polynomials
denoted KG[v] in [104].

The corresponding operators are

D̃i = xi(1− xi+1) ∂i = (1− xi+1) πi ,

which can be characterized by

1D̃i = 1 & xi+1(1− xi+1)−1 D̃i = 0

and, therefore, are obtained from the isobaric divided differences by the change of
variable xi → xi(1−xi)

−1. In short, D̃i = π
x/(1−x)
i .

In explicit terms,

K̃G
λ = xλ when λ dominant & K̃G

vsi
= K̃G

v D̃i when vi ≥ vi+1 . (5.5.1)

For example, for the weights which are permutations of [4, 2, 0] these key poly-
nomials expand in the usual key polynomials as follows :

K̃G
420 = K42

K̃G
402 = K402 −K412

K̃G
240 = K24 −K34

K̃G
204 = K204 −K214 −K304 +K314

K̃G
042 = K042 +K242 − 2K142 +K341 −K34

K̃G
024 = K024 −K234 + 2K134 −K034 +K224 − 2K124

Notice that the image of πω = xρ∂ω under the change of variables is

D̃ω = xn−1
1 . . . xn−1 (1−x2) . . . (1−xn)n−1 ∂ω = (1−x2) . . . (1−xn)n−1 πω , (5.5.2)

so that

K̃G
λω = xλ(1−x2) · · · (1−xn)n−1 πω = xλ+ρ(1−x2) · · · ∂ω = G̃λω(x,0) . (5.5.3)

The following proposition is the image of Proposition 4.6.1 by the transforma-
tion xi → (1−xi)

−1 and shows how to generate the polynomials G̃v(x,0) using the
operators D̃i.
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Proposition 5.5.1. Given v ∈ Nn, let k be such that vk = 0 and vi > 0 for
i < k. (if no component of v is 0, change n → n+1, v → [v, 0]). Let u =
[v1 − 1, . . . , vk−1 − 1, vk+1, . . . , vn]. Then

G̃v(x,0) = G̃u(x,0) (xk−1 · · ·x1) D̃n−1 · · · D̃k

= G̃u(x,0) D̃n−1 · · · D̃k (xk−1 · · ·x1) . (5.5.4)

For example, if v = [3, 0, 4], then k = 2, u = [3−1, 4], and

G̃304(x,0) = G̃24(x,0)x1D̃2 = G̃24(x,0)x1(1−x3) π2 .

As in the case of Schubert polynomials, the preceding proposition can be used
to expand the polynomials G̃u(x,0) in terms of the K̃G

v . For example,

G̃2042(x,0) = K̃G
2042 + K̃G

5012 + K̃G
3041 − K̃G

3042 − K̃G
5022 − K̃G

5031 + K̃G
5032 ,

the leading terms corresponding to

Y2042(x,0) = K2042 +K5012 +K3041 .

The appropriate quadratic form (which is not symmetric) is

(f, g)G = CT

(
f g♣

∏
1≤i<j≤n

(
1− xi

xj

(1− xj)
(1− xi)

))
=

(
f

1

(1−x1)n−1 . . . (1−xn−1)
, g

)
taking the scalar product ( , ) used for key polynomials, and the involution ♣ :
xi → x−1

n+1−i.
One checks that, with Di = (xi−1)∂i, one has(

f D̃i , g
)G

=
(
f , g Dn−i

)G
, (5.5.5)

the proof of the statement being reduced, as usual, to the case n = 2.
This leads to define still another basis,

̂̃
KG
λ = xλ when λ dominant &

̂̃
KG
vsi

=
̂̃
KG
v ∂i(xi+1−1) when vi ≥ vi+1 . (5.5.6)

The rest of this section depends on the following lemma, that we leave as an
open question for lack of a simple proof.

Lemma 5.5.2. For any dominant λ ∈ Nn, any v ∈ Nn, one has(
K̃G
v , x

λ
)G

= δv,λω . (5.5.7)

The equations (5.5.5) and (5.5.7) give by a recursion that we already used
several times a pair of adjoint bases:
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Corollary 5.5.3. For u, v ∈ Nn one has(
K̃G
v ,

̂̃
KG
u

)G
= δv,uω . (5.5.8)

For example,

K̃G
021(1−x1)−2(1−x2)−1 = K021+K22+K301+K031+K23+K041+2 K401+K32+· · · ,

̂̃
KG

104 = K̂104 − 2 K̂103 + K̂102 − 2 K̂301 + K̂201 − K̂13 + K̂12 − K̂31 + K̂21 + K̂3

and

(K̃G
021 ,

̂̃
KG

401)G = 2(K401, K̂104)− 2(K301, K̂103)− (K031, K̂130) + (K021, K̂120) = 0 .
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5.6 Graßmannian G1/x and G̃ polynomials
Graßmannian codes lead to the symmetric world. In that case, G1/x-polynomials
are obtained using the symmetriser π1/x

ω = (−1)`(ω)x0,...,n−1∂ω, while one uses π̃ω =

(1−x2) . . . (1−xn)n−1∂ω for G̃-polynomials, and Dω = (1−x2) . . . (1−xn)n−1πω =

xρπ̃ω for K̃G-polynomials
Explicitly, given a partition λ and v = λ ↑ its reordering, the Graßmannian

polynomials of index v are

G1/x
v (x,y) = (−1)`(ω)G

1/x
λ+ρ(x,y)x0,...,n−1∂ω

G̃v(x,y) = G̃λ+ρ(x,y)(1−x2) . . . (1−xn)n−1∂ω

K̃G
v = xλDω = xλ+ρ(1−x2) . . . (1−xn)n−1∂ω

Each of these starting points can be written as a flag Schur function. Let µ be
the partition conjugate to λ+ρ and cλ =

∏
i(yi−1)µi . Then

cλG̃λ+ρ(x,y) = Yλ+ρ(x,y) = Sv1,v2+1,...,vn+n−1(xn−yv1 , . . . ,x1−yvn+n−1)

and therefore

yµG
1/x
λ+ρ(x,y)x0,...,n−1 = (−1)|λ+ρ|Sv+[(n−1)n](xn−yv1 , . . . ,x1−yvn+n−1)

cλG̃λ+ρ(x,y)(1−x2) . . . (1−xn)n−1

= Sv+[(n−1)n](xn−yv1−(n−1), . . . ,x1−yvn+n−1−0)

(−1)`(ω)xλ+ρ(1−x2) . . . (1−xn)n−1 = Sv+[(n−1)n](xn − (n−1), . . . ,x1 − 0)

Writing the image under ∂ω of these functions is immediate, and one obtains
the following determinantal expressions of G1/x

v , G̃v and K̃G
v .

Proposition 5.6.1. Let λ ∈ Nn be dominant, v = λ ↑, u = v + [0, . . . , n−1],
ρ = [n−1, . . . , 0], µ = (λ+ ρ)∼, cλ =

∏
i(yi − 1)µi. Then

yµG1/x
v (x,y) = (−1)|v|Sv+ρ(xn − yu1 , . . . ,xn − yun) (5.6.1)

cλG̃v(x,y) = Sv+ρ(xn − yu1 − (n−1), . . . ,xn − yun − 0) (5.6.2)

(−1)n(n−1)/2K̃G
v = Sv+ρ(xn − (n−1), . . . ,xn − 0) . (5.6.3)

For example, for n = 3, λ = [3, 1, 0], one has v = [0, 1, 3], v + ρ = [2, 2, 3],
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u = [0, 2, 5], µ = [2, 2, 1, 1, 1] and the determinants

y22111G
1/x
013 (x,y) =

∣∣∣∣∣∣
S2(x3−y0) S3(x3−y2) S5(x3−y5)
S1(x3−y0) S2(x3−y2) S4(x3−y5)
S0(x3−y0) S1(x3−y2) S3(x3−y5)

∣∣∣∣∣∣
(y1−1)2 · · · (y5−1)G̃013(x,y) =

∣∣∣∣∣∣
S2(x3−y0−2) S3(x3−y2−1) S5(x3−y5)
S1(x3−y0−2) S2(x3−y2−1) S4(x3−y5)
S0(x3−y0−2) S1(x3−y2−1) S3(x3−y5)

∣∣∣∣∣∣
− K̃G

013 =

∣∣∣∣∣∣
S2(x3−2) S3(x3−1) S5(x3)
S1(x3−2) S2(x3−1) S4(x3)
S0(x3−2) S1(x3−1) S3(x3)

∣∣∣∣∣∣ .
Lenart[137, Th.2.4.] gives the case y = 0 of (5.6.2), that is the case (5.6.3):

G̃v(x,0) = K̃G
v = ±Sv+ρ(xn − (n−1), . . . ,xn − 0) .

One can expand by linearity such determinants, eliminating3 the flag [. . . , 2, 1, 0],
or the flag [yu1 , . . . ,yun ].

For example, c631G̃136(x,y) = S346(x3 − y1 − 2,x3 − y4 − 1,x3 − y8). Writing
Sw for Sw(x3 − y1,x3 − y4,x3 − y8), one obtains

c631G̃136(x,y) = −S346 + 2S246 + S336 − S146 − 2S236 + S136

KG
136 = −K346 + 2K246 +K336 −K146 − 2K236 +K136 .

The functions generalizing the complete or elementary symmetric functions are
of special interest. For v = [0n−1k], (5.6.2) becomes, with λ = [k+n−1, n−2, . . . , 0],

cλG̃v(x,y) = Sn−1,n−2,...,1,k(xn−n+1−y0,xn−n+2−y1, . . . ,xn−1−yn−2,xn−yk+n−1) .

Using recursively that for any z one has

S...,r+1,r,...(. . . , z− 1, z−yi, . . . )

= S...,r+1,r,...(. . . , z, z, . . . )− S...,r,r,...(. . . , z, z, . . . )
− yiS...,r+1,r−1,...(. . . , z, z, . . . ) + yiS...,r,r−1,...(. . . , z, z, . . . )

= (yi−1)S...,r,r,...(. . . , z, z, . . . ) ,

one obtains in final that

(1−y1) . . . (1−yk+n−1)G̃0n−1k(x,y) = S1,...,1,k(xn−1, . . . ,xn−1,xn − yk+n−1) .
(5.6.4)

One may separate the two alphabets x and y, and expand this last determinant
as ∑

i

∑
j

(−1)n−i+jS1i,k−j(xn)S1j(yk+n−1) .

In terms of the Schubert basis, one has
3Recall that Sk(x− r) = Sk(x)− rSk−1(x) +

(
r
2

)
Sk−2(x)− . . .
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Lemma 5.6.2. Let k ≥ 0, m = k+n−1. Then

(−1)kG
1/x

0n−1k(x,y) =
1

yn · · · ym
Y0n−1k(x,y) +

1

yn−1 · · · ym
Y0n−21k(x,y)

+ · · ·+ 1

y1 · · · ym
Y1n−1k(x,y) . (5.6.5)

G̃0n−1k(x,y) =
1

(1−yn) . . . (1−ym)
Y0n−1k(x,y)− 1

(1−yn−1) . . . (1−ym)
Y0n−21k(x,y)

+ · · ·+ (−1)n−1

(1−y1) . . . (1−ym)
Y1n−1k(x,y) . (5.6.6)

The case corresponding to elementary symmetric functions, v = [0n−r1r] is
a little more elaborate. To understand it, let us treat more generally the case
v = [0n−rkr], which also comprises the case that we have just disposed of. The
determinant (5.6.2) becomes

cλG̃v(x,y) = Sn−1,...,r,k+r−1,...,k(xn−(n−1)− y0, . . . ,xn−r − yn−r+1,

xn−r−1− yn−r+k, . . . ,xn−n+1− yn+1−k) ,

with λ = [k+n−1, . . . , k+n−r, n−r−1, . . . , 0].
As in the case r = 1, the determinant can be simplified in the two blocks of

columns, factors (yi−1) being extracted, and one obtains, writing m = k+n−r,
m∏
i=1

(yi−1)rG̃0n−rkr(x,y) = Srn−r,kr
(
xn−r, . . . ,xn−r︸ ︷︷ ︸

n−r

,xn−ym, . . . ,xn−ym︸ ︷︷ ︸
r

)
. (5.6.7)

Expanding this determinant in the Schubert basis is not straightforward. Let
us proceed differently, and use the recursion (5.1.2) in y.

The polynomial G̃0n−rkr(x,y) is the image of

G̃kn(x,y) = Ykn(x,y)(1−y1)−n . . . (1−yk)
−n

under a product of isobaric divided differences in the indeterminates y−1 = y1−1, y−2 =
y2−1, . . . . Since this product acts on a function which is symmetrical in y1, . . . , yk
and symmetrical in yk+1, . . . , ym, with m = k+n−r, it can be replaced by the
maximal symmetrizer πy−

m...1. Concretely,

G̃0n−rkr(x,y) =
Ykn(x,y)

(1−y1)n . . . (1−yk)n
(y1−1)m−1 . . . (ym−1)0 ∂y

m...1 .

Taking into account the symmetry in the two blocks of indeterminates yi, one
obtains

(y1−1)r . . . (ym−1)r G̃0n−rkr(x,y)

= (−1)knYnk(y,x)(yk+1−1)r . . . (ym−1)r
(
∂y
k . . . ∂

y
m−1

)
. . .
(
∂y

1 . . . ∂
y
n−r
)
.
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One can now use (2.14.9), the role of x and y having been exchanged, divided
differences in the indeterminate yi being the same as in the y−i = yi−1. The images
of Ykn(x,y) are Schubert polynomials indexed by antidominant v such that v ≤ kn.
The images of (y1−1)r . . . (ym−k−1)r = Y(n−r)r(y

−,0) being some “skew" Schubert
polynomials that will be detailed in the next chapter. For v ∈ Nn, u ∈ Nn

antidominant, let

v/u = [0u1 , v1 − u1, 0
u2−u1 , v2 − u2, . . . , 0

un−un−1 , vn − un] .

In final, one has the following expansion of G̃0n−rkr(x,y) and, by change of vari-
ables, of G1/x

0n−rkr(x,y).

Proposition 5.6.3. Given positive integers r, n such r ≤ n, and k ≥ 0, let
m = k+n−r. Then

(−1)kr(y1−1)r . . . (ym−1)r G̃0n−rkr(x,y) =
∑

v≤kn−r
Yv,kr(x,y)Yrn−r/v(y

−,0)(5.6.8)

(−1)kryr...rG
1/x

0n−rkr(x,y) =
∑

v≤kn−r
Yv,kr(x,y)Yrn−r/v(y,0) .(5.6.9)

sum over antidominant v, the polynomials having indices with a negative compo-
nent being set equal to 0.

For example, for n = 4, k = 5, r = 2, writing YvYu for Yv(x,y)Yu(y,0), one
has m = 7 and

y2
1 · · · y2

7 G
1/x
0055(x,y) =

Y0255Y200

OOOOOOO

Y0055Y22
/o/o Y0155Y201

OOOOOOO

oooo

Y1255Y010
/o/o Y2255Y000

Y1155Y011

oooo

Notice that the Schubert polynomials in y are all the images of Y22 under divided
differences.

5.7 Dual Graßmannian Grothendieck polynomi-
als

Each of the three sets {G1/x
v (x,y)}, {G̃v(x,y)}, {K̃G

v } , for v ∈ Nn antidominant,
constitute a linear basis of Sym(xn). Recall that the natural scalar product on
this space, which orthonormalizes Schur functions, is the restriction of ( , ). It is



 Chapter 5 — G1/x and G̃ Grothendieck polynomials

therefore natural to consider the bases adjoint to the preceding ones with respect
to the usual scalar on symmetric function. Let us determine only the basis adjoint
to {K̃G

λ↑}.
From (5.5.7), one has, for any pair of partitions in Nn,(

K̃G
µ↑

∏
i<j

1

(1− xi)n−i
, xλ

)
=

(
K̃G
µ↑ , x

λ
∏
i<j

1

(1− x−1
i )i−1

)
= δλ,µ .

In the right-hand side, each factor of the type 1/(1 − 1/xi) is interpreted as the
series 1 + x−1

i + x−2
i + · · · . However, in the expansion, only the terms xu with

u ≥ −ρ can give a contribution. Thus one can replace
xλ(1− x2)−1 · · · (1−xn)−1 by

♠ = xλ(1+x−1
2 + · · · +x−λ2−n+2

2 ) · · ·
(

1+(n−1)x−1
n · · · +

(
n+ λn − 2

λn

))
= x−ρSλ1+n−1(x1)Sλ2+n−2(x2+1) · · ·Sλn(xn+n−1) .

Since K̃G
µ↑ is symmetrical, one has(

K̃G
µ↑ , ♠

)
=
(
K̃G
µ↑ , ♠ πω

)
.

The image of ♠ under πω = xρ∂ω is a multiSchur function, for which we shall
follow the terminology used by [3, 14, 93, 182]. For a partition λ ∈ Nn, define the
dual Grothendieck polynomial gλ(xn) to be

gλ(xn) = ♠ πω = Sλ↑(xn + n−1, . . . , xn + 0) . (5.7.1)

The preceding computations, assuming the validity of (5.5.7), show that the dual
Grothendieck polynomials constitute the basis adjoint to {K̃G

µ↑ = G̃µ↑(x,0)}.
Comparing the determinantal expression with the expression of a vexillary

Schubert polynomial, one sees that gλ is equal to a specialization of a Schubert
polynomial:

gλ(xn) = Y0n−1λ

∣∣
xn+1=1=···=x2n−1

(5.7.2)

The expansion of gλ in the Schur basis is easy to write by multilinearity of the
determinant (5.7.1). This amounts to expand ♠ =

∑
u cux

u, and then to formally
replace each xu by the Schur function su. For example, for n = 3, λ = [3, 2, 1],
one has

♠ = x321
(
1 + x−1

2 + x−2
2 + x−3

2

)(
1 + 2x−1

3

)
= x321 + x311 + x301 + x3,−1,1 + 2x320 + 2x310 + 2x300 + 2x3,−1,0 ,

Replacing x by s, dropping exponents, one obtains

g321 = s321 + s311 + s301 + s3,−1,1 + 2s320 + 2s310 + 2s300 + 2s3,−1,0 ,
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and finally, reordering or eliminating indices to keep only partitions,

g321 = s321 + s311 + 2s320 + 2s310 + s300 .

In fact, the combinatorial interpretation of vexillary Schubert polynomials,
that we shall see later, gives a better description in terms of tableaux satisfying
flag conditions. Lenart [137] used similar tableaux to describe the expansion of
the Graßmannian Grothendieck polynomials G̃λ↑(x,0) in the Schur basis. Lam
and Pylyavskyy [93] call them “elegant fillings“, and also give a description of gλ
in terms of reverse plane partitions.

In [117] , one finds several properties of dual Grothendieck polynomials, among
which a finite-sum Cauchy identity for an arbitrary integer r:∑

λ≤rn
G̃λ↑(xn,0) gλ(yn) =

∑
λ≤rn

sλ(xn) sλ(yn) . (5.7.3)

This formula implies directly the orthogonality property, without assuming (5.5.7).



 Chapter 5 — G1/x and G̃ Grothendieck polynomials



Chapter 6
Plactic algebra and the module Schub

6.1 Tableaux
Let A be a totally ordered alphabet A = {a1 < a2 < . . .}, of non commuting
letters. We usually take A = {1, 2, . . . , n}. The number of occurences of a given
letter a into a word w is denoted |w|a.

Let us repeat the distinction between factors and subwords. A factor of w is
a word obtained by erasing letters at the beginning and the end of the word w, a
subword is a word obtained by erasing letters inside the word. It is important not
to mistake between these two notions ! We shall also need sometimes to record
the position of a subword inside a word. In that case, it will be better to replace
erased letters by a black box.

3 1 4 1 5 9 1 2 �� 4 1 5 9 1� � 1 4� 5� 1 2
word factor subword

AYoung tableau is a labeling of the boxes of the diagram of a partition λ (which
is called the shape of the tableau) with letters of A, in such way that columns are
strictly decreasing from top to bottom, and rows are weakly increasing from left to
right. One can replace such an object by its reading1, that we still call a tableau.

6 8
4 5 5 6
2 2 3 3 5 7
1 1 1 2 4 4 4

⇔ 68 4556 223357 1112444 .

One also needs to read (planar) tableaux by columns, still from left to right. The
ensuing word is called a column-tableau. For the above object, it is 6421 8521 531 632 54 74 4.

1Adopting occidental conventions that one reads from left to right, and from top to bottom.
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6.2 Strings
How to interpret the space of polynomials in x1, x2 of fixed degree, say 5? This
is a vector space with basis {x50, x41, . . . , x05}, but one can as well replace each
xα1x

β
2 with 1 . . . 1︸ ︷︷ ︸

α

2 . . . 2︸ ︷︷ ︸
β

, and write the string of monomials

11111 11112 11122 11222 12222 22222 .

An homogeneous polynomial
∑
cvx

v in x1, x2 may now be considered as a weighted
string, attaching a coefficient cv to each element of the string.

Of course, one can now view the above string as a string of words in the letters
1, 2. These words look special, because they are increasing and involve only two
different letters. However, we show just below how to reduce general words to this
case.

Given a totally ordered alphabet A, a word w in A∗, two consecutive letters in
the alphabet, say 1, 2, pair recursively · · · 2 · · · 1 · · · as if they were parentheses.
Ignoring the paired letters, and the other letters of the alphabet, we are left with an
increasing subword u of w in 1, 2 that we call the 1-subword (and more generally,
for a pair i, i+1, one has a i-subword).

For example, given the word 1222111211222, we write on the same level the
letters in the order that they are paired, and put in boxes the remaining letters.

1 2 2 2 1 1 1 2 1 1 2 2 2 initial word

2 1 2 1
2 1

2 1

1 1 2 2 2 1−subword

We can now build a string of words, replacing the subword u inside w succes-
sively by all the elements of the string of u. By definition, an i-string is a sequence
of words which differ only by their i-subwords, and such that the sequence of i-
subwords is of the type

iα iα−1(i+1) iα−2(i+1)2 · · · (i+1)α .

Here is, for example, a 2-string :

2 1 2 342 2 2 1 2 342 3 2 1 3 342 3 3 1 3 342 3

One may view the construction of the i-subword of a word w as the reduction
of the word to a monomial in xi, xi+1. Let us show conversely that this allows to
lift any degree-preserving operator φ on Pol(xi, xi+1) to an operator φ̃ on the free
algebra.
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Indeed let w be a word, i = 1 and u = 1α2β be the 1-subword of w. Then
if φ(xα1x2β) =

∑
cγ,δ: γ+δ=α+βx

γ
1x

δ
2, one defines φ̃(w) as the sum

∑
cγ,δ wγ,δ of all

words in the string of w with coefficients cγ,δ.
In particular, the lift of the simple transposition s1 acts by symmetry around

the middle of the string, while the lift of π1 sends w, when α ≥ β, to the sum of
all words in the string between w and its image under the lift of s1.

For example, the image of w = 1123211112 under the lift of π1 is

w = 1123211112
u = 11 112

+
1123211122
11 122

+
1123211222
11 222

+
1223211222
12 222

,

in accordance with x6
1x

3
2x3 π1 = x331(x3

1 + x2
1x2 + x1x

2
2 + x3

2).
We can perform this construction for every pair of consecutive letters in the

alphabet, and thus obtain i-strings in the letters i, i+1 and operators lifting si, πi, π̂i
that we shall still denote by the same letters.

In particular, when the words are Young tableaux, their images by si, πi, π̂i are
still (sums of) tableaux.

Here is an example of a 3-string of tableaux

3 4

2 2 3

1 1 2 3 3

3 4

2 2 3

1 1 2 3 4

3 4

2 2 3

1 1 2 4 4

4 4

2 2 3

1 1 2 4 4

and here is the action of of s3 and π̂3 on the first element of the string :

3 4

2 2 3

1 1 2 3 3

s3 =
4 4

2 2 3

1 1 2 4 4

3 4

2 2 3

1 1 2 3 3

π̂3 =
3 4

2 2 3

1 1 2 3 4

+
3 4

2 2 3

1 1 2 4 4

+
4 4

2 2 3

1 1 2 4 4

The last two equations lift respectively the identities x2311x3
3 s3 = x2311x3

4, and
x2311x3

3 π̂3 = x2311(x2
3 + x3x4 + x2

4)x4.

The most elementary operators are the crystal operators ei, fi, which consist
in moving leftwards or rightwards on a i-string (or sending to 0 if not possible).
Write a for the letter i and b for the letter i+1. Then one has :

ei(a
αbβ) = aα+1bβ−1 & ei(a

α) = 0

fi(a
αbβ) = aα−1bβ+1 & fi(b

β) = 0
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6.3 Free key polynomials
Beware that the lifted si’s satisfy the braid relations according to [118], but not
do the πi’s. It is proved2 in [126] that one can however lift the key polynomials to
the free algebra, so that the following definition is consistent (we keep the word
“polynomial” for these elements of the free algebra, but distinguish them by the
notations KFv , K̂Fv ).

Definition 6.3.1. The free key polynomials KFv , K̂Fv , indexed by v ∈ N∞, are
defined recursively as follows. If v is dominant, then

KFv = K̂Fv = · · · 3v32v21v1 .

Otherwise, if v and i are such that vi > vi+1, then

KFvsi = KFv πi & K̂Fvsi = K̂Fv π̂i .

We display below the decomposition, in the basis K̂Fu , of the sum of all tableaux
of shape [2, 1] on three letters, which is equal to sF21(3) = KF012

3.

K̂F210 = 2
1 1

ooooooo
OOOOOOO

OOOOOOO

K̂F120 = 2
1 2

K̂F201 = 3
1 1

K̂F102 = 2
1 3

+ 3
1 3

OOOOOOO

K̂F021 = 3
1 2

+ 3
2 2

ooooooo
ooooooo

K̂F012 = 3
2 3

Since {Kv : v ∈ Nn} is a linear basis of Pol(n), we have therefore lifted the
ring of polynomials into the free algebra, as a free Z-module. Rather than using
the free algebra, we will mostly use a quotient algebra, the plactic algebra, which
is defined in the next section.

Column tableaux belong to our family. Indeed, let v ∈ {0, 1}n. Suppose known
that K̂Fv = nvn · · · 1v1 , and let i be such that vi = 1, vi+1 = 0 (concanating 0 to
the right of v if needed). Then the image of K̂Fv under π̂i, which by definition is

2One directly shows that either Proposition 6.6.1 or Proposition 6.6.2 is compatible with the
action of π̂i or πi.

3The corresponding functions in Pol are Y012 = K012 = K̂012 + K̂021 + K̂102 + K̂201 + K̂120 +
K̂210.
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K̂Fvsi , consists of a single column-tableau obtained from K̂Fv by changing the letter
i into (i+1). By induction, this proves that any K̂Fv : v ∈ {0, 1}n consists of a
single column-tableau.

For example,

K̂F111 =
3
2
1

bπ3−−→ K̂F1101 =
4
2
1

bπ2−−→ K̂F1011 =
4
3
1

bπ4−−→ K̂F10101 =
5
3
1
. . .

6.4 Embedding of Sym into the plactic algebra
By going to the free algebra, we have lost multiplication. In this section, we
introduce partial commutations to recover some products.

The combinatorics of the symmetric group makes an extensive use of tableaux,
which are an appropriate tool to extend to the non-commutative setting the dif-
ferent bases that we have considered.

Schensted described an algorithm to associate to any word w a tableau P (w).
This algorithm, in fact, may be traced back to Robinson. One gives an algebraic
formulation of this algorithm by defining, after Knuth [79], the plactic4 relations:

cab ≡ acb (a ≤ b < c) , (6.4.1)
bac ≡ bca (a < b ≤ c) , (6.4.2)

that one can write planarly :

c
a b

≡ a c
b

(a ≤ b < c)

b
a c

≡ b c
a

(a < b ≤ c)

Two words are congruent iff they differ by a sequence of plactic relations.
The plactic algebra Plac is the quotient of the free algebra under the plactic
relations. The plactic algebra is an intermediate quotient between the free algebra
Free = Z[A∗] and the algebra of polynomial :

Free = Z[A∗] � Plac = Z[A∗/≡] � Pol(x) = Z[x] .

Let us note ev the projection map (called evaluation) onto Pol(x) (in the free
algebra, we shall use the alphabet A = {1, 2, . . .} or A = {a1, a2, . . .}; in the
commutative case, we stick with x).

We recover now symmetric functions, because of the following property [118]
4 Terminology chosen by M.P. Schützenberger, as a tribute to Plate tectonics. There are

indeed ”plates” inside plactic classes, in relation with Kazhdan-Lusztig theory, but the combi-
natorics of Kazhdan-Lusztig cells is far from being fully understood.
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Proposition 6.4.1. The ring Sym(x) is canonically embedded into the plactic
algebra, by sending a Schur function sλ(x) to the sum sFλ of all tableaux of shape
λ.

As a consequence, any algebraic identity in Sym has a non-commutative in-
terpretation in the plactic algebra.

For example, the product of two Schur functions

sλ(x)sµ(x) =
∑
ν

cνλ,µ sν(x)

is described by a certain rule due to Littlewood and Richardson. However, the
equation

sFλ (A)sFµ (A) =
∑
ν

cνλ,µ s
F
ν (A)

gives more information : the coefficient cνλ,µ is the number of factorizations (in the
plactic algebra) of any given tableau of t shape ν into a product of two tableaux
of respective shapes λ and µ:

t being of shape ν, one has cνλ,µ = #
(

(t1, t2) : t1t2 ≡ t, sh(t1) = λ, sh(t2) = µ
)
.

The original rule is the case where one takes t a Yamanouchi tableau5, i.e. t =
· · · 3ν3 2ν2 1ν1 = KFν .

For example , to find the multiplicity of s6531 in the product s421s422, one can

start with the Yamanouchi tableau 41332516, which planarly displays as
4
3 3 3
2 2 2 2 2
1 1 1 1 1 1

,

into a product of two tableaux of respective shapes [4, 2, 1] and [4, 2, 2]. There are
three such products

3
2 2
1 1 2 4

3 3
2 2
1 1 1 1

,
3
2 4
1 1 2 2

3 3
2 2
1 1 1 1

,
4
2 3
1 1 2 2

3 3
2 2
1 1 1 1

,

and this is one way of finding, according to the original rule of Littlewood &
Richardson, that the multiplicity c6531

421,422 is equal to 3. But one could as well

have factorized
4
3 4 4
2 3 3 4 4
1 2 2 3 3 4

into the products

4
3 4
2 3 4 4

3 4
2 3
1 2 3 4

,
4
3 4
2 3 4 4

4 4
2 3
1 2 3 3

,
4
3 4
2 3 4 4

4 4
3 3
1 2 2 3

.

5A Yamanouchi word is a word w such that for every factorization w = w′w′′, then the right
factor is such that |w′′|1 ≥ |w′′|2 ≥ |w′′|3 ≥ 0. In particular, for any partition λ, there is only
one Yamanouchi word which is a tableau of shape λ, and it is equal to . . . 2λ21λ1 .
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Many determinants occur in the theory of symmetric functions. They give
elements of Plac, once one decides to expand them in some arbitrary order (thanks
to the plactic relations, the elements do not depend of the choice of the order).

Take for example the Jacodi-Trudi determinant expressing a Schur function
in terms of complete functions. Replace the sum of (unordered) terms sλ =∑
±hihj · · ·hk by the sum

∑
±sFi sFj · · · sFk . Then, in Plac, one has

sFλ =
∑
±sFi sFj · · · sFk .

For example, the determinant

s2,2,1 =

∣∣∣∣∣∣
h2 h3 h4

h1 h2 h3

0 1 h1

∣∣∣∣∣∣
can be expanded as h2h2h1 − h2h3 − h1h3h1 + h1h4 and the element

sF2 s
F
1 s
F
2 − sF2 sF3 − sF1 sF3 sF1 + sF1 s

F
4

is equal to sF2,2,1. All words which are not congruent to a tableau of shape [2, 2, 1]
cancel out.

Tableaux can be interpreted as non-intersecting paths. In that set-up, one
recovers properties of (binomial) determinants that Gessel and Viennot[54] obtain
by producing an involution which eliminates intersecting paths, instead of having
recourse to the plactic relations.

The same function as above is also a determinant of hooks :

s2,2,1 =

∣∣∣∣∣ s2,1,1 s2

s1,1,1 s1

∣∣∣∣∣
which can be expanded as s2,1,1s1 − s1,1,1s2. The reader can check that, in four
variables,

sF2,1,1s
F
1 − sF1,1,1sF2 =

(
3
2
1 1

+
3
2
1 2

+
3
2
1 3

+
4
2
1 4

+
3
2
1 4

+
4
2
1 1

+
4
2
1 2

+

4
3
1 3

+
4
2
1 3

+
4
3
1 4

+
4
3
1 1

+
4
3
2 4

+
4
3
2 3

+
4
3
2 2

+
4
3
1 2

)(
1 + 2 + 3 + 4

)
−

(
3
2
1

+
4
2
1

+
4
3
1

+
4
3
2

)(
1 1 + 2 2 + 1 2 + 1 3 + 3 3 + 2 3

+ 4 4 + 3 4 + 2 4 + 1 4

)
is still equal to sF2,2,1, the words which are not congruent to a tableau of shape
[2, 2, 1] eliminating two by two.
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6.5 Keys and jeu de taquin on columns
The jeu de taquin on two-columns tableaux produces a contretableau6 with two
columns, or conversely. Starting from a tableau with r columns, repeating the jeu
de taquin on pairs of adjacent columns, one produces r! objects7. Here follows an
example of the plactic class of a tableau with three columns of different lengths :

5 6
1 3

2 4
−→

5
1 3 6

4
2

↗ ↘
5
3 6
1 2 4

1 5 6
3 4

2
↘ ↗

5
3
1 2 6

4

−→
1 5

3 6
2 4

Given a tableau t with r columns, and the r! words w = w1 · · ·wr (factorized
as a product of columns) obtained by the jeu de taquin, the set of right columns
C(t) = {wr} is totally ordered by inclusion. The (right) key of t is defined to be
the tableau of the same shape as t with columns in C(t), or, equivalently, and this
is what we shall keep in most cases, to be the exponent of the evaluation of this
key-tableau.

key = set of columns embedded into each other
⇔ tableau congruent to some word of type . . . 3v32v21v1

⇔ monomial xv = xv11 x
v2
2 . . .

⇔ weight v = [v1, v2, . . . ].

For example, for t =
5
3 6
1 2 4

, one reads from the preceding hexagon

C(t) =

{
4 , 6

4
,

6
4
2

}
⇔

6
4 6
2 4 4

⇔ x2x
3
4x

2
6 ⇔ [0, 1, 0, 3, 0, 2]

The fact that one has an action of the symmetric group on the columns of
a tableau has for consequence that one can compute the key in several steps,
replacing an arbitrary block of left columns by their key.

6skew tableau with outer shape a rectangle.
7Reading them by columns, they are the only words in the plactic class of the tableau which

are products of columns of lengths a permutation of the lengths of the columns of the original
tableau.
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By taking the set of left columns in the above jeu de taquin, one defines
similarly the left key of a tableau.

For the preceding tableau t = 5 36 124, the left key is any of the following
objects {

1 , 5
1
,

5
3
1

}
⇔

5
3 5
1 1 1

⇔ x3
1x3x

2
5 ⇔ [3, 0, 1, 0, 2] .

6.6 Keys and keys
According to [126], keys give the following characterization of the elements K̂Fv .

Proposition 6.6.1. Let v ∈ Nn, λ be the reordering of v. Then K̂Fv is the sum
of all tableaux on the alphabet {1, . . . , n} of shape λ, whose key is equal to v.

Thus the set of tableaux of shape λ is decomposed into a disjoint union of
subsets K̂Fv , v ↓= λ. Each subset contains a distinguished element tv, which is
the only tableau congruent to a permutation of a Yamanouchi word. One has
tv ≡ . . . 3v32v21v1 , so that ev(tv) = xv.

The jeu de taquin gives a second action on tableaux, this time by permuting
rows. Indeed, in the class of a tableau with two rows, of lengths α, β, there exists
a single word which is the product of two rows of lengths β, α, and this element
(which is a contretableau) is given by the jeu de taquin :

3 6
1 2 4 5 7

tableau

−→
1 3 6

2 4 5 7 −→
1 3 4 6

2 5 7 −→
1 3 4 6 7

2 5
contretableau

Repeating this operation on a tableau t of shape λ,with r rows, one generates
r! elements8. Given any permutation v of λ, there exists one and only one word in
the class of t which is a product u1 · · ·ur of rows of respective lengths vr, . . . , v1.
Let us call this product the element of shape v in the class of t.

Here are some such elements in the class of the tableau 4 34 23 112 :

4
3 4
2 3
1 1 2

v = [3, 2, 2, 1]

≡

4
1 3 4

2 3
1 2

v = [2, 2, 3, 1]

≡

1 4 4
3
2 3
1 2

v = [2, 2, 1, 3]

≡

1 4 4
3 3
2 2

1

v = [1, 2, 2, 3]

.

The second characterization of KFv given in [126] is the following.

Proposition 6.6.2. Let λ ∈ Nn be a partition of length r, v be a permutation of
it. Let u1 < · · · < ur be the indices of the non-zero components of v. Then KFv is
the sum of all tableaux of shape λ such that the words congruent to them of shape
v satisfy the flag condition u1, . . . , ur.

8with repetitions when some rows have equal lengths.
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For example, with λ = [4, 2, 1, 0, 0], v = [0, 2, 4, 0, 1], the flag condition is
[2, 3, 5]. The tableau

4

2 3

1 1 2 2

≡
4

1 2 2 3

1 2

flag

5
3
2

belongs to K̂02401, but not

4

2 4

1 1 2 2

≡
4

1 2 2 4

1 2

,

because there is a 4 in the middle row of the element of shape [1, 3, 2].

6.7 vice-tableaux
There is a third characterization of key polynomials which uses another distin-
guished element in the plactic class of a word w, the vice-tableau V(w).

The word V(w) can be recursively defined as follows. It is the unique word
a1 · · · a` in a plactic class Pl(w) such that

• a` is the suffix (i.e. the rightmost letter) of the contretableau in Pl(w)

• The shape of the tableau congruent to a1 · · · a`−1 is maximum (with respect
to the natural order on partitions) among the words in Pl(w) having suffix
a`.

• a1 · · · a`−1 is a vice-tableau.

Recall that the inverse operation of “inserting a letter” into a tableau t (Inverse-
Schensted algorithm) consists in choosing a box at the periphery of t, and finding
a pair (t′, x) such that t′ is a tableau of shape obtained by erasing this box from
the shape of t′, and t′x ≡ t. Thus, the recursive definition of a vice-tableau
implies the following algorithm, consisting of a distinguished sequence of Inverse-
Schensted operations : at each step, the box, denoted �, which is erased is the
highest which factors out on the right the suffix of the contretableau.

For example

1 3 3 4 5
1 2 4

1 2
≡

1 3 3 4 5
1 2 4
� 1

2 ≡
1 3 3 4 5
� 2 4

1 1
2

choose!

≡
� 1 3 3 5

1 2 4
1 2

4
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shows that
V(13345 124 12) = V(13345 24 11) · 2 .

Iterating, one finds a word that one factors into its maximal rows, and that on
can display as a skew tableau

V(13345 124 12) =
3 5
1 2 3 4 4

1 1 2
, shape [0, 3, 0, 5, 2] .

The shape of the vice-tableau is the sequence v1, v2, . . . , vn, where vi is the length
of the (single) row ending with a letter i. Empty rows have to be recorded !

The original unpublished characterization of key polynomials is the following.
Proposition 6.7.1. Given v ∈ Nn, then K̂Fv is the sum, in Plac, of all vice-
tableaux of shape v.

For example, K̂F01302 =
5 5
1 3 3

2
+

4 5
1 3 3

2
+

5 5
3 3 3

2
+

4 5
3 3 3

2
+

5 5
2 3 3

2
+

4 5
2 3 3

2
. This sum is congruent to the following sum of tableaux, which is more difficult to

identify at first glance :
5
3 5
1 2 3

+
4
3 5
1 2 3

+
5
3 5
2 3 3

+
4
3 5
2 3 3

+
5
3 5
2 2 3

+
4
3 5
2 2 3

.

One has a similar notion of left vice-tableau, by iterating the operation: factor
t into xt′ in the plactic monoid, in such a way that x is the first letter of the
tableau, and the shapes of t and t′ differ by a box which is the lowest possible.

The same word as above gives

3 5
2 3 4
1 1 1 2 4

≡ 3
5 �
2 3 4
1 1 1 2 4

≡
3

3 5
2 4 �
1 1 1 2 4

choose!

≡ 1
3 5
2 3 4
1 1 2 4 �

and, iterating, the left vice-tableau

3 3 5
2 4
1 1 1 2 4

.

6.8 Ehresmann tableaux
Given a permutation σ ∈ Sn, the sequence {σ1}, {σ1, σ2}, . . . , {σ1, . . . , σn} is an
increasing flag of subsets of {1, . . . , n}, and may be interpreted as the sequence of
columns of a contretableau, ordering each set decreasingly, or of a tableau, reading
the flag from right to left.

σ = [3, 5, 1, 4, 2]⇒
3 5 5 5 5

3 3 4 4
1 3 3

1 2
1

≡
5
4 5
3 4 5
2 3 3 5
1 1 1 3 3

.
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These tableaux, that we shall denote E(σ), were used by Ehresmann [35] to
describe a cellular decomposition of the flag variety relative to the linear group
GLn(C). Ehresmann described the attachment of cells by introducing an order:
σ ≤ ζ if and only if E(σ) ≤ E(ζ) componentwise. This order on permutations
is the same as the one obtained by taking subwords of reduced decompositions,
and usually called the Bruhat order, or strong order9. A tableau t on the letters
1, . . . , n of shape [n, . . . , 1] has a key which is some E(σ), and we shall denote this
permutation ’oooooo (t). More generally, if t is of arbitrary shape, the set of columns of
its key may be completed in the set of columns of an Ehresmann tableau, and we
define ’oooooo (t) to be the permutation σ such that E(σ) is (componentwise) minimum
among those E(ζ) containing the columns of the key.

For example,
4
2 3 4
1 1 2

≡
2 4 4
1 1 3

2
has key

4
3 4 4
2 2 2

, and

’oooooo

 4
3 4
2 3 4
1 2 2 2

 = [2, 4, 3, 1] is the minimum Ehresmann tableau containing

the columns [4, 2], [4, 3, 2].
Similarly, one can take the maximum Ehresmann tableau containing the columns

of the left key of a tableau, and one obtains a second permutation ’oooooo left(t).
Given two tableaux t, u of shapes λ, µ, the product t u is defined to be frank if

the shape of the tableau congruent to tu is equal to the sum λ+ µ. The action of
the symmetric group on the columns of a tableau seen above has exhibited frank
products of columns.

In the case where t and u are single columns, tu is frank iff tu is a column-
tableau (case `(t) ≥ `(u)) or a column contretableau (case `(t) ≤ `(u)). More
generally, it is shown in [126, Th.2.8] that tu is frank iff for every permutations
t ≡ t1 . . . tk, u ≡ u1 . . . ur of the columns of t and u respectively, then the product
of two columns tku1 is frank. Thus, the test to be frank reduces to the case of
pairs of columns.

The notion of frank product is closely related to the Ehresmann-Bruhat order,
as shows the following lemma given in [126, Th.2.10].

Lemma 6.8.1. Given two tableaux t, u of respective shapes λ, µ, then the product
tu is frank if and only if ’oooooo (t) ≤ ’oooooo left(u).

The order on Ehresmann tableaux is the componentwise order. One could
think of avoiding the construction of keys, and directly use the componentwise
order on tableaux of a given shape. This structure on tableaux is not related to

9Ehresmann did not mention permutations, but was using flags of Plücker coordinates,
in other words, was using Ehresmann tableaux. The terminology “Bruhat order” is due to
Verma[190], because of the Bruhat decomposition BσB, of GLn(C), B being the Borel sub-
group of triangular matrices. I interviewed Bruhat, who, of course, did not claim any paternity
about the Bruhat order.



§ 6.9 — Nilplactic monoid and algebra 

the combinatorics of Schubert, Grothendieck and Key polynomials. It is not even
appropriate to characterize the shapes of products of tableaux. For example, the
product

4
2 2
1 1 2

4
2 3
1 1 2

≡
4 4
2 2 2 2 3
1 1 1 1 2

has shape [5, 5, 2] 6= [3, 2, 1] + [3, 2, 1] though the first tableau (which is eqal to its
right key) is componentwise smaller than the second one. In fact, the left key of

the second tableau is equal to
4
2 2
1 1 1

and the preceding lemma forbids the shape

of the product to be equal to [6, 4, 2].

6.9 Nilplactic monoid and algebra
The plactic relations

ikj ≡ kij & jki ≡ jik , i < j < k ,

are compatible with the braid relations sisk = sksi. However, there is a problem
in the limit case

121 ≡ 211 & 221 ≡ 212 ,

while s1s2s1 = s2s1s2. Since s2s1s1 and s2s2s1 are not reduced decompositions, one
can decide to transform accordingly the plactic relations and define the nilplactic
relations on reduced words10 to be

ikj ∼= kij & jki ∼= jik & i(i+1)i ∼= (i+1)i(i+1) , (6.9.1)

sending to 0 all non-reduced words.
The nilplactic monoid is the quotient of the free monoid under the nilplactic

relations, and the nilplactic algebra is its associated algebra. The nilplactic monoid
is very similar to the plactic monoid. In particular, one has the following analog
of Schensted bĳection[122, 34].

Proposition 6.9.1. In each nilplactic class of a word which is a reduced decom-
position, there exists a tableau and only one tableau. The words in the class of a
tableau t of shape λ are in bĳection with the Q-symbols11 of total shape λ.

10reduced when interpreted as products of simple transpositions
11 Given a word w = w1 . . . wn, the shapes of the successive tableaux which are congruent to

the words w1, w1w2, . . . , w1 . . . wn constitute a flag of shapes which can be encoded by a standard
tableau of shape λ. One has a plactic Q-symbol and a nilplactic Q-symbol, depending on the
relations that one uses to transform the left factors of a word into a tableau.
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The correspondence between the plactic and nilplactic classes can be realized
by describing a bĳection exchanging the two congruences. I gave such a corre-
spondence with M.P. Schützenberger under the name plaxification, but Reiner and
Shimozono obtained a much more elegant description. The plactification Pl is a
transformation on words which is defined recursively as follows, starting with the
empty word which is exchanged with itself.(

w = iw′ , Pl(w′) = η
)
⇒ Pl(w) = i (η)si ,

where si acts as defined in the preceding section.
The plactification can be visualized as moving a cursor (here a box) from right

to left, a pointed letter acting as a simple transposition si on the factor on its
right. For example, Pl([3, 2, 1, 3, 2, 4, 3, 4] is the last word in the following chain

[3, 2, 1, 3, 2, 4, 3, 4 ] = [3, 2, 1, 3, 2, 4, 3, 4]

[3, 2, 1, 3, 2, 4, 3 , 4] = [3, 2, 1, 3, 2, 4, 3, 3]

[3, 2, 1, 3, 2, 4 , 3, 3] = [3, 2, 1, 3, 2, 4, 3, 3]

[3, 2, 1, 3, 2 , 4, 3, 3] = [3, 2, 1, 3, 2, 4, 2, 2]

[3, 2, 1, 3 , 2, 4, 2, 2] = [3, 2, 1, 3, 2, 3, 2, 2]

[3, 2, 1 , 3, 2, 3, 2, 2] = [3, 2, 1, 3, 1, 3, 1, 1]

[3, 2 , 1, 3, 1, 3, 1, 1] = [3, 2, 1, 2, 1, 2, 1, 1]

[ 3 , 2, 1, 2, 1, 2, 1, 1] = [3, 2, 1, 2, 1, 2, 1, 1]

Needless to add that the morphism inverse to Pl is obtained by moving a cursor
from left to right, and acting accordingly on the right factor.

Proposition 6.9.2. [175] The morphism Pl() sends the nilplactic class of a re-
duced word to a plactic class, preserving the Q-symbol.

For example, the nilplactic class of [2, 3, 1, 2, 3] is sent to the plactic class of
[2, 2, 1, 1, 1].

23123

21323

vvvvv
H

H
H

12312

H
H

H
21232

vvvvv

12132

Pl−→
22111

21211

vvvvv
H

H
H

12211

H
H

H
21121

vvvvv

12121

One has still an action of the symmetric group on the columns of a nilplactic
tableau, so that one can define a right nilplactic key or a left nilplactic key.
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For example, the hexagon

2 4
1 3

2 3
−→

2
1 2 4

3
2

↗ ↘
4
2 3
1 2 3

1 2 4
1 3

2
↘ ↗

4
2
1 2 3

2

−→
1 4

2 3
1 2

gives the left key
4
2 2
1 1 1

and the right key
4
3 3
2 2 3

.

Notice that, because the tranpose of a nilplactic tableau is still a nilplactic
tableau, one has also two other keys, the bottom key, and the top key, obtained
by transposing rows using the niplactic relations.

Since two reduced words which are nilplactically congruent are reduced de-
compositions of the same permutation, the set of reduced decompositions of a
permutation decomposes into a union of nilplactic classes, that one can charac-
terize by the tableau that each of them contain. As a consequence, the number of
reduced decompositions of a given permutation is a sum of cardinals of plactic or
nilplactic classes12 The problem of determining the number of reduced decomposi-
tions of a permutation has been considered by Stanley [184] who have reformulated
it in terms of certain symmetric functions which are now called Stanley symmetric
functions, and are the stable parts of Schubert polynomials. Edelman and Greene
[34] gave a more combinatorial solution in terms of balanced tableaux, using also
the nilplactic relations. I preferred to use here the point of view of the note [122],
supplemented by the plaxification.

For example, there are 414 = 168+84+162 reduced decompositions of the per-
mutation [3, 1, 7, 6, 2, 4, 5], which regroup into three nilplactic classes. We write
below these three tableaux, as well as their images under Pl.

6
5 6
2 4 5
1 3 4

Pl−→
6
5 5
2 4 4
1 2 2

,
5 6
4 5
2 4
1 3 4

Pl−→
5 6
4 5
2 4
1 2 2

,

6
5
4 6
2 5
1 3 4

Pl−→
6
5
4 5
2 4
1 2 2

cardinality
of each class

168 84 162

12a plactic or nilplactic class containing a tableau of shape λ has cardinality the number of
standard tableaux of shape λ. This number is also the dimension of the irreducible representation
of index λ of the symmetric group.
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6.10 Lifting Pol to a submodule of Plac

Let us first consider the space of polynomials Pol in x1, x2, . . . , xn, . . . (no limit on
n), as an inductive limit of Pol(xn), with xn = {x1, . . . , xn}.

We have defined flag-elementary functions Pv(x). There is only one natural
way to lift an elementary symmetric function to the free algebra. It must be,
in agreement with the definition of free key polynomials, the sum of all strictly
decreasing words of a given degree in a totally ordered alphabet, that is to say
the sum of all tableaux whose shape is a column of a given length :

ek(xr) ←→ Λk(r) = sum of all decreasing words of length k in 1, . . . , r .
By product, for any v ∈ Nn, v ≤ [n−1, . . . , 0], define in the free algebra

PFv := Λv1(n−1)Λv2(n−2) · · ·Λvn−1(1)Λvn(0) .

The Z-span of all PFv in the quotient algebra Plac is denoted Schub, and is
therefore a lift of Pol. Indeed, every polynomial is lifted to Plac by expanding it
into the basis {Pv}, then formally changing every Pv into PFv .

The word 21 = Λ2(2) belongs to Schub, but not the word 12, because it
has the same evaluation. Neither does the word 22 belong to Schub, because
x2

2 = P1100 − P2000 − P200 lifts into

(1+2+3)(1+2)− (21+31+32)− (1+2)1 = 22 + 12− 21 = 2 2 + 1 2 − 2
1
.

We have a problem now. We have already lifted Pol to the free algebra by
defining free key polynomials, we must ensure that the two elements corresponding
in Plac to a polynom f =

∑
cvPv =

∑
duKu coincide.

Let us prove that Schub is the image in Plac of the product ring

· · · ⊗Sym(3)⊗Sym(2)⊗Sym(1) .

First, the lift of a Schur function sλ(xn), in terms of PFv , is given by the ordered
expansion of a determinant Λu(m/m− 1/ · · · /n), where u is the reordering of
λ∼. Since Λi(m) = Λi(m−1) + mΛi−1(m−1), the determinant is the sum of
Λu(m−1/m−1/ · · · /n) and a determinant with first two rows∣∣∣∣· · · mΛi(m−1) · · ·

· · · Λi(m−1) · · ·

∣∣∣∣ .
However, all the Λi(m−1) commute between themselves in Plac, and therefore
this second determinant is null. Repeating this transformation, one sees that the
original determinant is equal to Λu(n/ · · · /n), and is therefore equal to the sum
sFλ (n) of all tableaux of shape λ in the alphabet n = {1, . . . , n}.

The intermediate expression Λu(n+1/ · · · /n+1/n) shows that sFλ (n) is also
equal to a sum

∑
ν,i±sFν (n+1)Λi(n). A product sFµ (n+1)sFλ (n) may therefore be

expressed as a sum of products sFµ (n+1)sFν (n+1)Λi(n), then of products sFη (n+1)Λi(n).
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Finally, by right to left transformation, any product · · · sFη (n+1)sFλ (n)sFν (n−1) · · ·
may be expressed as a linear combination of PFv .

As a consequence, the elements

HFv = · · · sFv4(4)sFv3(3)sFv2(2)sFv1(1)

constitute a linear basis of Schub because they belong to Schub and their commu-
tative images are a basis of Pol.

Let us check that the operators πi, π̂i preserve Schub. For any i, any product
f = · · · sFλ (i+1)sFµ (i)sFν (i−1) · · · is a sum of products Uw, where U is a i-string,
and w is a word in the alphabet 1, . . . , i. However, for any k, the image of Uik
under πi is equal to UsFk (i, i+1). Therefore the image of Uw, and of f , under πi
belongs to Schub13.

Since the dominant free key polynomials KFλ belong to Schub, all the KFv also
belong to Schub.

In all we have at our disposal four bases of Schub : {PFv }, {HFv } and {KFv },
{K̂Fv }, and we can use the operators πi, π̂i14.

The relations between these different bases are exactly the same as at the com-
mutative level. For example, writing the functions together with their expression
in terms of tableaux, one has

K̂F021 = 3
2 2

+ 3
1 2

=

(
PF2100 =

(
3
2

+ 3
1

+ 2
1

)(
1 + 2

))
+

(
PF3000 =

3
2
1

)

−

(
PF2010 =

(
3
2

+ 3
1

+ 2
1

)
1

)
+

(
PF0210 = 2

1 1

)

−

(
PF1200 =

(
1 + 2 + 3

)
2
1

)
=
(
HF021 = (1 + 2 + 3)(11 + 12 + 22)

)
−
(
HF201 = (1 + 2 + 3)11

)
−
(
HF03 = 111 + 112 + 122 + 222

)
−
(
HF12 = (11 + 12 + 22) 1

)
+
(
HF21 = (1 + 2) 11

)
+
(
HF3 = 111

)
.

13As usual, the case ot understand is the case of cardinality 2. The image of (12)(11) under
π1, which is 1211 + 1212 + 2122 is not equal to (12)(11π1) = (12)(11 + 12 + 22) in Plac, though
12 is invariant under s1. The word 12 does not belong to Schub. On the other hand, 11+12+22
is a 1-string, and the image of (11 + 12 + 22)(11) under π1, which is (111 + 112 + 122 + 222) +
(121 + 221) + (0), is congruent to (11 + 12 + 22)(1 + 2) = KF03 +KF12 and do belong to Schub.

14But the simple transpositions si do not preserve Schub. The image under s1 of 11 is 22, which
do not belong to Schub because the elements of degree 2 in 1, 2 of Schub are linear combinations
of K̂F2 = 11, K̂F11 = 21, K̂F02 = 12 + 22.



 Chapter 6 — Plactic algebra and the module Schub

Let us denote Schubn the lift of Pol(n). It has bases {K̂Fv , v ∈ Nn}, {KFv , v ∈
Nn} and {HFv , v ∈ Nn}, but the finite set {PFv , v ≤ [n−1, . . . , 0]} generates only a
subspace.

Any element f of Schubn is written uniquely as a sum f =
∑
cvK̂

F
v . Instead

of characterizing f by its commutative evaluation, one can simply restrict it to
the set of tableaux {tv : v ∈ Nn}. Indeed, cv is the coefficient of tv in f . For
example, in the above expression, one points out 3

2 2
, 3

2 2 and 3 2 2 , to

check the multiplicity in K̂F021, the second tableau 3
2 2

is not necessary.
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6.11 Allowable products in Schub

We have just stated that any product of the type · · · sFλ (k+1)sFµ (k)sFν (k−1) · · ·
belongs to Schub. The weakly decreasing condition on alphabets is necessary. For
example, the product

sF1 (3)sF1 (2) = KF02 +KF011

belongs to Schub, but

sF1 (2)sF1 (3) = KF02 +KF11 + 1 3 + 2 3

does not belong to it.
Let us show that right multliplication by a column k . . . 1 is permitted.
Given k, and any f = · · · sFλ (k+1)sFµ (k)sFν (k−1) · · · sFη (1), its product on the

right by k · · · 1 is equal to

· · · sFλ (k+1)sFµ (k) (k · · · 1) sFν (k−1) · · · sFη (1) ,

because all letters not greater than k commute with the column k · · · 1.
By iteration this proves that the product on the right by any KFλ , λ partition,

preserves Schub. Thus, the product in Pol by a dominant monomial xλ, that we
have used many times, lifts to the right multliplication by KFλ .

We have seen that column-tableaux belong to Schub, being equal to some K̂Fv
with v ∈ {1, 0}∗. Given n, r, the column (n+r) · · · (n+1) may be expressed15 as a
linear combination of PFu,0n . Consequently, for any v ∈ Nn, the product

(n+r) · · · (n+1) K̂Fv

belongs to Schub.
For example

4
3
K̂F02 =

(
Λ2(4)− Λ2(3)− Λ1(4)Λ1(2) + Λ1(3)Λ1(2)

)(
sF2 (2)− sF2 (1)

)
= 4

3

(
1 2 + 2 2

)
=

4
3
1 2

+
4
3
2 2

belongs to Schub (it is in fact equal to K̂F0211).
One can use the fact that products sFλ (n)K̂Fv , v ∈ Nn, belong to Schubn, to

generalize the Littlewood-Richardson rule.
15 Explicitely,

(n+r) · · · (n+1) =
∑

u≤[r,1...r−1]

(−1)r−1+`(u)(PFu1,0,u2−1,...,ur−r+1,0n − PFu1,u2−1,...,ur−r+1,0n)

sum over all permutations u below (for the Ehresmann-Bruhat order) [r, 1, . . . , r−1].
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In the case where v = µ is dominant, one has

sFλ (n) tµ =
∑

t
K̂Fcl(t tµ) ,

sum over all tableaux t of shape λ such that t tµ is congruent to some tableau
tu. Using the operators π̂σ, one obtains the product of a Schur function by a key
polynomial in terms of tableaux which are in the orbit of Yamanouchi tableaux
under the symmetric group.

Lemma 6.11.1. Let λ be a partition in Nn, v ∈ Nn, then one has

sFλ (n)K̂Fv =
∑

t
K̂Fcl(t t′) , (6.11.1)

sum over all tableaux t of shape λ, t′ ∈ K̂Fv , such that t t′ is congruent to some
tableau tu.

For example, restricting the products KF012K̂v, with v↓= [2, 1, 0], to the terms
which give a key which is a permutation of [1, 2, 3], one has

KF012K̂
F
210 →

 3
1 2

2
1 1

∈ K̂F321 ,
3
2 2

2
1 1

∈ K̂F231 ,
3
1 3

2
1 1

∈ K̂F312

 ,

KF012K̂
F
201 →

 3
1 2

3
1 1

∈ K̂F312 ,
3
2 3

3
1 1

∈ K̂F213

 ,

KF012K̂
F
120 →

 2
1 3

2
1 2

∈ K̂F231 ,
3
2 3

2
1 2

∈ K̂F132

 ,

KF012K̂
F
021 →

 3
2 3

3
1 2

∈ K̂F132 ,
3
2 3

3
1 2

∈ K̂F123

 ,

KF012K̂
F
102 →

 3
2 3

2
1 3

∈ K̂F123 ,
3
1 3

2
1 3

∈ K̂F213

 ,

while KF012K̂
F
012 = K̂F024 → 0. The sum of all these terms is

KF012K
F
012 →

∑
u:u↑=123

2K̂Fu = 2KF123

in accordance with s2
21 = 2s321 + . . . . The multiplicity 2 can already be read from

the first product KF012K̂
F
210, because KF012K̂

F
210π321 = KF012K

F
012. It is therefore the
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number of tableaux t of shape [2, 1] such that t t21 be congruent to t321. We are
back to the Littlewood-Richardson rule ! Notice that in the product KF012K̂

F
210 one

has now ignored the contributions 322 211 and 313 211 because K̂F231π321 = 0 =

K̂F312π321.
Linear relations in Schub can be checked by examining their commutative im-

age in Pol, and conversely, any identity in Pol has a non-commutative counterpart
in Schub. We already used this property for symmetric polynomials.

For example, we have seen that K02301 has a determinantal expression

S00123(x5,x5,x5,x3,x3) = S123(x5,x3,x3) ,

because [0, 2, 3, 0, 1] is a vexillary code. Expanding

S123(x5,x3,x3) =

∣∣∣∣∣∣
K00001 K003 K005

1 K002 K004

0 K001 K003

∣∣∣∣∣∣
in any manner, transforming each Kv into KFv after reordering each product into
a decreasing flag, one obtains

KF02301 ≡ KF00001K
F
002K

F
003 −KF00001K

F
004K

F
001 −KF003K

F
003 +KF005K

F
001 .

Because K00k = K0k−x3K0,0,k−1, K00k = Kk− (x2+x3)K0,0,k−1 +x2x3K0,0,k−2,

one can transform the preceding determinant into

∣∣∣∣∣∣
x1 + x4 + x5 K3 K5

1 K02 K04

0 K001 K003

∣∣∣∣∣∣.
Writing x1+x4+x5 = K00001 − K001 + K1, expanding the determinant, and

reordering the products, one obtains a second expression

KF02301 ≡ KF00001K
F
003K

F
02 −KF00001K

F
001K

F
04 −KF001K

F
003K

F
02 + (KF001)

2
KF04

+KF003K
F
02K

F
1 −KF001K

F
04K

F
1 −KF003K

F
3 +KF001K

F
5 .

Apart from the vexillary case, we have met other determinantal expressions.
The case treated in Th. ?? has for counterpart in Schub the following lemma
(which is a special case of the description of key polynomials).

Lemma 6.11.2. Let v ∈ Nn be dominant, u ∈ Nn be anti-dominant, v//u =
[0u1 , v1, 0

u2−u1 , v2, . . . , 0
un−un−1 , vn]. Then KFv//u is equal to the sum of all tableaux

of shape v satisfying the flag condition [u1 + 1, . . . , un + n].

For example, for v = [2, 1], u = [1, 3], then v//u is [01, 2, 02, 1], the flag is
u + [1, 2] = [2, 5] and KF02001 is equal to the sum of all tableaux c

a b
such that

b ≤ 2, c ≤ 5.



 Chapter 6 — Plactic algebra and the module Schub

6.12 Generating function of Schubert polynomi-
als in Schub

According to Cauchy formula (2.10.2), the product Ω =
∏

i,j: i+j<n(yj+xi) expands
a sum

∑
σ∈Sn

Xσω(y,0)Xσ(x,0). Thus, one can define the Schubert polynomials
in x as the coefficients in the expansion of Ω in the basis of Schubert polynomials
in y. This looks like a circular definition without interest, except that one can
easily lift Ω to an element of Schub, and obtain now the free Schubert polynomials
from the commutative ones.

Given n and an alphabet A = {a1, . . . , an}, one defines

XFω (A,x) =
(

(an−1−x1) . . . (a1−x1)
)(

(an−2−x2) . . . (a1−x2)
)
. . .
(

(a1−xn−1)
)
.

Given σ ∈ Sn, the free Schubert polynomial XFσ (A,y) is defined to be the
coefficient of (−1)`(ωσ)Xωσ(x,y) in the expansion of XFω (A,x) in terms of Schubert
polynomials in x,y 16

Since the kernel XFω (A,x) belongs to Schub, the element XFσ (A,y) coincides
with the element defined by expressingXσ(x,y) in any of the basesKv(x), Pv(x), Hv(x),
and replacing these polynomials by their lift in Schub.

For example, taking the alphabet A = { 1 , 2 , . . . , }, persevering in reading
columnwise, then the coefficient of X213(x,y) in the expansion of

XF321(A,x) =
2 −x1

1 −x1 1 −x2
,

is equal to

·
1 1

+ 2
· 1
− 2

1 ·
− (y1+y2) ·· 1

+ y1y2
·
· · ≡

(
1 − y1

)(
1 − y2

)
.

In the case where σ is dominant, of code λ, the filling of each box of the
diagram of λ with the factor i − yj, where (i, j) are the coordinates of the box,
still belongs to Schub, and therefore is equal to XFσ (A,y). For example,

XF3412(A,y) =
2 −y1 2 −y2

1 −y1 1 −y2

≡ 2 2
1 1

− (y1+y2)

(
2
1 1

+ 2
1 2

)
+ y1y2

(
1 1 + 1 2 + 2 2

)
+ (y2

1+y1y2+y2
2) 2

1
− (y2

1y2+y1y
2
2)
(

1 + 2
)

+ y2
1y

2
2 .

16A function of A, x may be expanded in terms of functions of A,x,y, one can use simultane-
ously several Schubert bases {Xσ(x, z)} of Pol(x) with different z.
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Free Schubert polynomials XFσ (A,y) may be recursively obtained by using the
divided differences in y17. For example

−XF3412(A,y)∂y
2 = XF2413(A,y) =

(
2
1 1

+ 2
1 2

)
− y1

(
1 1 + 1 2 + 2 2

)
− (y1+y2+y3) 2

1
+ (y2

1+y1y2 + y1y3)
(

1 + 2
)
− y2

1(y2+y3)

≡
(

2 − y1

)(
1 − y1

)(
2 + 1 − y2 − y3

)
.

17but defining divided differences in A which would satisfy the braid relations is not feasible.
One can however lift formally the action of divided differences on the basis {Pv}, as is used in
[127, 48].
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Chapter 7
Schubert and Grothendieck by keys

7.1 Double keys

In the commutative case, we did not define key polynomials in two sets of variables,
contrary to Schubert or Grothendieck polynomials, because there was no “good”
candidate. In the free world, it is very easy. Indeed, the operators si or πi on
words can be obtained from the operator fi, which changes, whenever possible, a
specific occurence of a letter i in a word w, or a tableau, into i+1. We can act on
biletters (i.e. letters with a superscript). Ignoring the superscripts, we point out
some biletter

(
j
i

)
as in the case of single letters, and we transform it into

(
j+1
i+1

)
.

This action does not lift a commutative action.
Noticing that the above transformation preserves the difference between su-

perscript and subscript, we can describe directly the transformations on biwords
from the case of words: if a letter i is transformed into a letter k, then in the case
of biletters,

(
j
i

)
is transformed into

(
j+k−i
k

)
.

Starting with an appropriate word in biletters replacing the word · · · 2λ21λ1 ,
and extending the action of πi or π̂i to biwords, we obtain sums of biwords.

For a partition λ, define

Kλ = K̂λ =

(
1
n

)
. . .

(
λn
n

)(
1

n−1

)
. . . . . .

(
λn−1

n−1

)
... ...(
1
1

)
. . . . . . . . .

(
λ1

1

)
By definition, the elements Kv and K̂v, when v runs over the set of permuta-

tions of λ, are all the images of Kλ and K̂λ under (reduced) products of πi’s (resp.
π̂i’s).
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It seems that not much has been gained by passing to biletters. Writing

KF102 = 2

1 1
+ 2

1 2
+ 3

1 1
+ 2

1 3
+ 3

1 3
instead of

K102 =

(
1
2

)
(

1
1

) (
2
1

) +

(
1
2

)
(

1
1

) (
3
2

) +

(
2
3

)
(

1
1

) (
2
1

) +

(
1
2

)
(

1
1

) (
4
3

) +

(
2
3

)
(

1
1

) (
4
3

)
is, indeed, immediate. But these new functions possess more properties than in
the case of single letters. For example, under the projection(

j

i

)
7→ (xi − yj) ,

one obtains polynomials in two sets of variables that we shall still denote Kv.
For example, KF021 = 3

2 2
+ 3

1 2
+ 2

1 2
+ 3

1 1
+ 2

1 1
is transformed into

five tableaux of biletters which compose K021 and become

x3−y2

x2−y2 x2−y3

+

x3−y2

x1−y1 x2−y3

+

x2−y1

x1−y1 x2−y3

+

x3−y2

x1−y1 x1−y2

+

x2−y1

x1−y1 x1−y2

.

We already met polynomials in two sets of variables x,y. The next theorem
shows that double key polynomials and Schubert polynomials coincide in the vex-
illary case.

Theorem 7.1.1. Let v be a vexillary weight. Then Kv = Yv(x,y) .

Proof. The two polynomials Kv and Yv satisfy a transition formula involving the
same vexillary weights v′, u :

Yv(x,y) = (xn − yj)Yv′(x,y) + Yu(x,y) & Kv = xnKv′ +Ku .

One can suppress terminal zeroes, and therefore suppose that vn = k > 0. In that
case v′ = [v1, . . . , vn−1, k − 1]. On the other hand, the expansion Kv =

∑
w≤v K̂w

can be cut into two parts, according to whether wn = k or not. Let T be the set of
tableaux occuring in KFv such that the top row of length k ends with n (and there
is no n below in the tableau). From the properties of keys and vice-tableaux given
in the appendix, one sees that the sum of these tableaux is equal to K̂Fw . Erasing
the pointed occurrence of n in these tableaux, one obtains KFv′ , and therefore one
has that the x, y-evaluation of

∑
t∈T t is equal to (xn− yj)K̂v′ , with j = n+ k− `,

(k, ` being the coordinates of the pointed box containing n. Assuming now by
induction that Ku = Yu(x,y), Kv′ = Yv′(x,y), one obtains that Kv = Yv(x,y).
QED
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The function K021 displayed above as a sum of five tableaux is equal to Y021,
but the function K102, also displayed above as a sum of five tableaux, is not equal
to a Schubert polynomial, because the weight [1, 0, 2] is not vexillary. In fact, one
has

K102 = Y102(x,y) + (y4−y3)Y2(x,y) + (y2−y3)Y11(x,y)

+ (y3−y2)Y101(x,y) + (y2−y3)(y4−y3)Y1(x,y) .

The functions Yv(x,y) can be characterized by their vanishing properties. For
example, Y021(x,y) vanishes on all specializations corresponding to the permuta-
tions in S4 of length ≤ 3 different from [y1, y4, y3, y2]. However, the individual
tableaux in the expression of KF021 do not necessarily vanish, only their sum does.
The following matrix give the non-zero specializations for the tableaux of shape
[2, 1] given above, and written here as words in 1, 2, 3, putting A = (y1− y2)(y1−
y3)(y2 − y3), B = (y2 − y1)(y2 − y4)(y3 − y1), D = (y2 − y3)(y2 − y4)(y3 − y1),
E = (y2 − y1)(y4 − y1)(y4 − y3), F = (y2 − y1)(y2 − y4)(y4 − y3).

212 322 312 311 211

[y2, y1, y3, y4] 0 −A A 0 0
[y2, y1, y4, y3] 0 −B B 0 0
[y3, y1, y4, y2] 0 −B B −D D 0
[y2, y4, y1, y3] E F −E − F 0 0
[y3, y2, y1, y4] A 0 −A A −A

Let us indicate another manner of using key polynomials to distinguish some
interesting elements of Pol(y) ⊗ Pol(x). In fact, we shall rather use the space
Free[y] = Pol(y)⊗ Free, obtaining the previous case by projection.

For i = 1, 2, . . . , let
Θi = 1⊗ π̂i + π̂yi ⊗ si

acting on Free[y]. These operators do not satisfy the braid relations, since the
operators π̂i acting on Free do not either.

For any ∈ Nn, let
Fv =

∑
t

Ku(y) t ∈ Free[y] ,

sum over all tableaux t with right key = v, u denoting the left key of t.
The following statement shows that the elements Fv can be generated recur-

sively, in a manner analogous to the generation of the K̂Fv .

Theorem 7.1.2. Let v ∈ Nn, and i be such that vi > vi+1. Then

FvΘi = Fvsi . (7.1.1)
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Proof. To simplify notations, denote i = 2, i+1 = 3, v = [•v2v3•]. Given a tableau
t, let W (t) = {w} be the set of columns which occurs as left factors of t in the
construction of the left key. If there exists w ∈ W (t) such that 2 ∈ w, 3 6∈ w, then
the left key u of t is such that u2 > u3. If on the other hand 2 6∈ w, 3 ∈ w, then
u2 < u3. Otherwise u2 = u3.

The set of tableaux with right key v decomposes into 2-strings or singletons.
Let us write, instead of a tableau, the product of columns which discriminate
between 2 and 3 when it is the case, the first column being put in a box, erasing
all the other letters as well as the pairs 32 not interfering with the first column.
The transformation operates only on the written letters.

The set of tableaux is composed of pieces of the type

• A string

2 22 · · · 22→ 2 22 · · · 23→ · · · → 2 33 · · · 33︸ ︷︷ ︸
key= [•βα•]

→ 3 33 · · · 33︸ ︷︷ ︸
key= [•αβ•]

,

with β > α. The corresponding subsum of Fv is

Ky
•βα• 2 (2k + 2k−13 + · · ·+ 3k) +Ky

•αβ• 3 3k .

Its image under Θ2 is

(Ky
•αβ• −K

y
•βα•)(2

k + · · ·+ 3k)3 +Ky
•βα•(2

k + · · ·+ 3k)3

+Ky
•αβ•(−(2k + · · ·+ 3k)3) = 0 .

• A singleton Ky
•βα• 2 2k. Its image is

Ky
•αβ• 3 3k +Ky

•βα• 2
(
2k−13 + · · ·+ 3k

)
.

• A singleton Ky
•αβ• 3 2 2k. Its image is

Ky
•αβ• 3 2

(
2k−1 + · · ·+ 3k−1

)
3 .

• A singleton K•αα•, which is sent to 0.

In all the above cases, one has obtained words such that their left key is the
index of their coefficient Ky

u. Moreover, the commutative diagram

Free[y]
Θi−−−→ Free[y]

Ky
u=1

y yKy
u=1

Free
bπi−−−→ Free
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where the projection sends all key polynomials in y to 1, shows that all tableaux
having right key vsi have been obtained. QED

For example,

F042 = Ky
042

3 3
2 2 2 2

+Ky
402

(
3 3
1 2 2 2

+ 3 3
1 1 2 2

+ 3 3
1 1 1 2

)
+Ky

240
2 3
1 2 2 2

+Ky
420

(
2 3
1 1 2 2

+ 2 3
1 1 1 2

)
.

Indeed, the coefficient of Ky
402, for example, is the sum of the three tableaux which

have 3 3
2 2 2 2

as right key and 2 3
1 1 1 1

as left keys.

The projection on Pol(x) of F042 is equal to

Ky
042 x

0420 + Ky
402

(
x1320 + x2220 + x3120

)
+ Ky

240 x
1410 + Ky

420

(
x2310 + x3210

)
,

while the projection Ky
v → 1 gives the seven tableaux composing K̂F042.

Notice that the operators Θi induce the operators

Θ̃i = 1⊗ π̂xi + π̂yi ⊗ sxi

on Pol(y)⊗Pol(x). These new operators satisfy the braid relations. Indeed, there
is no difference between computing f(x)g(x)π̂xi = f(x)

(
g(x)π̂xi

)
+ g(x)π̂xi f(x)si

and f(y)g(x)Θ̃i, as long as f(x) remains left of g(x) when using Leibnitz’ formula
for the image of a product under π̂xi = ∂xi xi+1.
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7.2 Magyar’s recursion
In this section, we specialize the alphabet y to 0. The following proposition is
due to Magyar [151] (his proof is different) and shows how to generate Schubert
polynomials using the isobaric divided differences instead of those of Newton.

Proposition 7.2.1. Given v ∈ Nn, let k be such1 that vk = 0 and vi > 0 for
i < k. Let u = [v1 − 1, . . . , vk−1 − 1, vk+1, . . . , vn]. Then

Yv = Yu πn−1 · · · πk (xk−1 · · ·x1) = Yu (xk−1 · · ·x1) πn−1 · · · πk . (7.2.1)

Proof. πn−1 · · · πk = xn−1∂n−1 · · ·xk∂k, but the letters can be moved to the left,
and therefore

Yu πn−1 · · · πk xk−1 · · ·x1 = Yu xn−1 · · ·x1 ∂n−1 · · · ∂k .

The product of Yu by the monomial translates, at the level of indices, in the
addition of [1n−1]. The action of ∂n−1 · · ·xk∂k inserts a 0, decreasing by 1 the
components on its right, thus producing v. QED

Iterating on Magyar’s recursion, one obtains an expression of any Schubert
polynomial Yv(x,0) as the image of 1 under products of operators of the type
πn−1 · · · πk (xk−1 · · ·x1). For example, one has

1
x1−−→Y1

x2x1−−→Y21
π2π1−−→Y021

π3x2x1−−−→Y1301
π4π3π2x1−−−−−→Y20301 .

Since multiplication by ak · · · a1 preserve the module Schub, as well as the
operators πi, the preceding proposition produces the lift of Yv to Schub.

For example, the proposition gives the chain Y202 = Y12x1π2, Y12 = Y01x2x1,
Y01 = x1π1.

This lifts into Y202 = a1 π1 (a2a1)a1π2, i.e.

1 → 1 + 2 → 2

1 1 1
+ 2 2

1 1

→ 2

1 1 1
+ 3

1 1 1
+ 2 2

1 1
+ 2 2

1 1
+ 2 2

1 1
.

Combining this construction with the rule for multipliying, inside Schub, a
key polynomial by ak · · · a1, one obtains the expression of the lift of Schubert
polynomials in Schub as a sum of KFv .

For example, supposing known that

Y F2124 = KF2124 +KF3114 +KF5112

1if no component of v is 0, change n→ n+1, v → [v, 0].
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then

Y F2124a2a1 =
(
KF3224+KF3314+KF5222+KF3512

)
+
(
KF4214+KF5213+KF4511

)
+
(
KF6212+KF6311

)
and

Y F32024 = Y F2124π4π3 a2a1 = Y F2124a2a1 π4π3

=
(
KF32024+KF33014+KF52022+KF35012

)
+
(
KF42014+KF52013+KF45011

)
+
(
KF62012+KF63011

)
.

To describe in a non-recursive manner the key-decomposition of a Schubert
polynomial, we shall need the nilplactic monoid2.

2 In fact, this application was the original motivation, though not stated, to introduce the
nilplactic monoid in [122]. Edelman and Greene’s motivation [34] for the same monoid was to
classify reduced decompositions.
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7.3 Schubert by nilplactic keys
Given a tableau t which is a reduced decomposition of a permutation ζ, let k be the
integer such that the first column of t is of the type [k, . . . , 1] or [. . . , r, k, . . . , 1],
with r > k+1. Let ϕ(t) be the tableau obtained from t (in the nilplactic monoid)
by erasing the factor [k, . . . , 1] in the first column of t read by columns. Then
the code of ζ−1 is of the type [v′ + 1k, 0, v′′], with v ∈ Nk, and ϕ(t) is a reduced
decomposition of σ, the code of σ−1 being [0, v′, v′′]. One can equivalently use the
transposed tableaux and erase in their bottom row a maximal factor of the type
i . . . k, i being the minimal letter.

For example, the following tableaux

5

4

2 3 5
1 2 3 6

→
5

4
2 3 5 6

→ 5

4 5 6
→ 5

4 5 6
→ 5

are reduced decompositions of the permutations [[3, 6, 2, 1, 5, 7, 4], [1, 3, 6, 2, 5, 7, 4],
[1, 2, 3, 6, 5, 7, 4], [1, 2, 3, 6, 5, 7, 4], [1, 2, 3, 4, 6, 5]], whose inverses have respective codes
[3, 2, 0, 3, 1], [0, 2, 0, 3, 1], [0, 0, 0, 3, 1], [0, 0, 0, 3, 1], [0, 0, 0, 0, 1].

The following lemma relates the Pieri rule for key polynomials and the recursive
construction of tableaux which are reduced decompositions.

Lemma 7.3.1. Let ζ be a permutation of code [v′ + 1k, 0, v′′], and σ be of code
[0, v′, v′′]. Let t be a tableau which is a reduced decomposition of σ−1, [0, u] be its
key (as a weight). Let F be the set of tableaux T which are reduced decompositions
of ζ−1 and such that ϕ(T ) = t. Then

Ku x1 . . . xk =
∑

T,v=Key(T )

Kv . (7.3.1)

The following theorem, due to [128], shows that the transition between Schu-
bert and key polynomials is given by the enumeration of tableaux which are re-
duced decompositions.

Theorem 7.3.2. Let σ be a permutation, T (σ) be the set of tableaux which are
reduced decompositions of σ−1, K(σ) be the set of their left nilplactic keys (as
weights). Then

Xσ(x,0) =
∑

u∈K(σ)

Ku . (7.3.2)

Proof. The preceding lemma shows that Magyar’s recursive definition Yv′v′′ →
Y[v′+1k,0,v′′] corresponds to the recursion on reduced decompositions which are
tableaux. QED
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For example, for σ = [4, 3, 1, 7, 5, 2, 6], of code [3, 2, 0, 3, 1], one has four tableaux
which are reduced decompositions of σ−1 = [3, 6, 2, 1, 5, 7, 4] :

5

4 5

2 3 6

1 2 3

5

4 5

2 3

1 2 3 6

5

4

2 3 5

1 2 3 6

5

4

2 3

1 2 3 5 6

keys [3, 2, 0, 3, 1] [4, 2, 0, 2, 1] [3, 4, 0, 1, 1] [5, 2, 0, 1, 1]

Hence

X4317526(x,0) = Y32031(x,0) = K32031 +K42021 +K52011 +K34011 .

One can replace tableaux which are reduced decompositions by usual tableaux
which satisfy the condition to be peelable, cf. the work of Reiner and Shimozono[176].
The preceding decomposition of X4317526(x,0) is now given by the tableaux

5
4 4
2 2 4
1 1 1

,
5
4 4
2 2
1 1 1 4

,
5
4
2 2 4
1 1 1 4

,
5
4
2 2
1 1 1 4 4

,

which are the images of the first tableaux under the plaxification map.
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7.4 Schubert by words majorised by reduced de-
compositions

Billey, Jockusch, Stanley show in [9] that one can obtain Schubert polynomials
from reduced decompositions without using keys.

Given a reduced decomposition sα = sα1 . . . sαr , let R(sα) be the set of weakly
decreasing words w ∈ Nr below α, i.e. such that w1 ≤ α1, . . . , wr ≤ αr, satisfying
the constraints that αi > αi+1 implies wi > wi+1. Then Billey, Jockusch, Stanley
prove3

Theorem 7.4.1. Let σ be a permutation, {sα} be the set of reduced decompositions
of σ−1. Then the commutative image in Pol of the sum of all words belonging to
the union of the sets R(sα) is equal to the Schubert polynomial Xσ(x,0).

For example, when σ = [3, 1, 6, 2, 4, 5], then σ−1 = [2, 4, 1, 5, 6, 3] has nine
reduced decompositions. Six of them

s1s3s4s5s2, s1s3s2s4s5, s1s3s4s2s5, s3s4s1s5s2, s3s1s4s5s2, s3s1s4s2s5

give empty sets of words. The other three are such that

R(s3s4s5s1s2) = {[2, 2, 2, 1, 1], [3, 2, 2, 1, 1], [3, 3, 2, 1, 1], [3, 3, 3, 1, 1]}
R(s3s4s1s2s5) = {[2, 2, 1, 1, 1], [3, 2, 1, 1, 1], [3, 3, 1, 1, 1]}

R(s3s1s2s4s5) = {[2, 1, 1, 1, 1], [3, 1, 1, 1, 1]} ,

and the Schubert polynomial X316245 is indeed equal to x3,2,0 + x2,3,0 + x2,0,3 +
x3,0,2 + x2,1,2 + x2,2,1 + x3,1,1 + x4,0,1 + x4,1,0.

Billey-Jockusch-Stanley statement is in fact more precise, the Q-symbol of the
reduced decomposition can be used to furnish a sum in the plactic algebra which
is equal to XFσ .

Reiner and Shimozono [174] show that the preceding decomposition can be re-
fined, grouping reduced decompositions into nilplactic classes, each of them giving
the key polynomial appearing in the decomposition of the Schubert polynomial.
In the preceding case, there are two classes, the class of [3, 4, 5, 1, 2] ∼= [3, 4, 1, 2, 5]
which gives

KF203 = 3 3
1 1 1

+ 2 3
1 1 1

+ 3 3
1 1 3

+ 2 3
1 1 3

+ 2 2
1 1 3

+ 2 2
1 1 2

+ 2 2
1 1 1

and the class of [3, 1, 2, 4, 5] which gives KF401 = 3
1 1 1 1

+ 2
1 1 1 1

.

3We reverse words compared to their convention, hence we use reduced decompositions of
the inverse permutation.
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7.5 Product of a Grothendieck polynomial by a
dominant monomial

We have described in (4.2.1) products of the type Gσ(x,y)x1 . . . xk by punching
diagrams. Let us have recourse to softer methods by using the jeu de taquin to
describe more generally the product by a dominant monomial.

The following theorem has been obtained with Fulton [46], and describe prod-
ucts in terms of keys. Given a tableau t, denote by yt the monomial image of t by
i→ yi.

Theorem 7.5.1. Let σ be a permutation in Sn.

• Let k be an integer, k ≤ n. Then, modulo Sym(xn = yn), one has

G(σ)(x,y)xk . . . x1 ≡
∑

u∈U(σ,k)

yuG ’oooooo (E(σ)u)
(x,y) . (7.5.1)

Let v ∈ N be the vector of components vn+1−σi = 1 for i = 1, . . . , k, and
vn+1−σi = 0 for i = k+1, . . . , n. Then

∑
u∈U(σ,k) yu is equal to the key poly-

nomial Kv(y
ω) in the reversed alphabet yω = [yn, . . . , y1].

• Let λ ∈ Nn be a partition, and v be such that nv1 . . . 1vn be the reordering of
σλ1

1 . . . σλnn . Then

G(σ)(x,y)xλ ≡
∑
t

ytG ’oooooo (E(σ)t)
(x,y) , (7.5.2)

sum over all tableaux of shape λ such that the product E(σ)t be frank. More-
over, the sum

∑
t yt is equal to the key polynomial Kv(y

ω).

Proof. The first assertion concerns the same case as in (4.2.1). However, instead
of translating punched diagrams in terms of keys, let us rather use the divided
differences in y−1

1 , y−1
2 , . . . to prove it by induction.

The starting point is for σ = ω, the assertion resulting in that case from
G(ω)xi ≡ yn+1−iG(ω). Suppose the theorem to be true for the pair σ, k, and let i
be such that `(siσ) ≤ `(σ). Then, according to (2.2.3), one has the recursion

Gsiσ(x,y)xk . . . x1 = Gσ(x,y)xk . . . x1 π
y∨

i .

The elements in U(σ, k) are of three types :

• u contains i, i+1 or none of these letters. Then yuG ’oooooo (E(σ)u)
πy∨

i = G ’oooooo (E(σ)u)
πy∨

i πy∨

i yu.

• pairs of elements u′iu′′ and u′(i+1)u′′. The corresponding subsum is of the
type yu′u′′

(
yiGsiζ + yi+1Gζ

)
, with `(siζ) ≤ `(ζ). Thanks to Leinitz’formula,

this subsum is equal to yu′u′′Gζyiπ
y∨

i , and therefore invariant under πy∨

i .
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• elements u = u′(i+1)u′′, such that i 6∈ u′′ and u′iu′′ 6∈ U(σ, k). In that case,
ζ = ’oooooo (E(σ)u) is such that `(siζ) ≤ `(ζ), and

Gζ yuπ
y∨

i = Gζπ
y∨

i ysiu +Gζ yu = Gsiζ ysiu +Gζyu .

In total, U(siσ, k)\U(σ, k) is the image under the exchange of i, i+1 of the elements
of the third type, and for those elements, one has siζ = ’oooooo (E(siσ)(siu)) and
ζ = ’oooooo (E(siσ)u). Hence the summation (7.5.1) is still valid for siσ.

Moreover, when w ∈ {0, 1}n, the element KFw is the sum of all columns ma-
jorized by a fixed column, and its image under the involution u → ω uω is the
sum of all columns which majorize a given column. The commutative evaluation
of this last element is therefore a key polynomial on a reversed alphabet and one
checks that the index corresponding to σ, k is the one stated.

The second part of the theorem results from the associativity of keys: ’oooooo (tt′) =
’oooooo

(
E
(

’oooooo (t)
)
t′
)
. QED

For example of (7.5.2), let σ = [4, 1, 3, 5, 2] and λ = [2, 1, 1]. Then 4211315020

reorders into 5042312011, so that v = [0, 2, 1, 0, 1], and one has to enumerate the
tableaux in KF02101, which are

3
2
1 1

,
3
2
1 2

,
4
2
1 1

,
4
2
1 2

,
4
3
1 1

,
4
3
1 2

,
4
3
2 2

,
5
2
1 1

,
5
2
1 2

,
5
3
1 1

,
5
3
1 2

,
5
3
2 2

One then has to take the images of these tableaux under t → ω tω, and this
furnishes the following value of G(41352)(x,y)x21100, writing the tableaux t instead
of the monomials yt :

G(41352)x
21100 =

5

4

1 5

G(51432) +
5

4

2 4

G(42531) +
5

4

3 4

G(43512) +
5

3

2 5

G(52341)

+
5

4

1 4

G(41532) +
5

4

3 5

G(53412) +
4

3

2 4

G(42351) +
4

3

1 5

G(51342)

+
4

3

2 5

G(52341) +
5

4

2 5

G(52431) +
5

3

1 5

G(51342) +
4

3

1 4

G(41352) .

Notice that the product

K41352x
211 = K62452 +K72442 +K62632 +K72532

+K64612 +K74512 +K63451 +K73441 +K63631 +K73531
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has only 10 terms, and thus does not allow to describe the productG(41352)(x,y)x21100.
Indeed, according to (4.4.1), one has to take parts differing by at least 2 = λ1 to
relate the two products. The weight 2× [4, 1, 3, 5, 2] = [8, 2, 6, 10, 4] is appropriate,
the product

K8,2,6,10,4x
211 = K10,3,7,10,4 +K11,3,7,9,4 +K12,3,7,8,4 +K10,3,11,6,4 +K12,3,9,6,4

+K10,7,11,2,4+K12,7,9,2,4+K10,5,7,10,2+K11,5,7,9,2+K12,5,7,8,2+K10,5,11,6,2+K12,5,9,6,2

has 12 terms from which one reads the 12 permutations occurring in the product
G(41352)(x,y)x21100.
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7.6 ASM and monotone triangles
We have already met a correspondence between Grothendieck polynomials and
key polynomials when describing the multiplication by x1 · · ·xk. In fact, this
correspondence was a direct consequence of the commutation relations between
the πi’s and the xi’s.

We describe now a more subtle correspondence, by putting an appropriate
weight on staircase tableaux. The tableaux which have a non-zero weight are the
tableaux of staircase shape which do not contain a subtableau of the type b

a c
,

with c ≥ b.
Equivalently, they are the tableaux of staircase shape with weakly decreasing

diagonals, which appear in the literature as monotone triangles. These tableaux
are in (easy) bĳection with alternating sign matrices (ASM), but tableaux will fit
better in this text.

Let us define a weight on tableaux, as a product of elementary weights on
tableaux of shape [1, 2]. The weight of a subtableau of shape [1, 2] on columns
j−1, j and consecutive rows is, for three integers a < b < c,

c
a b

c
b b

c
b c

b
a c

ϕG weight yjx
−1
b yjx

−1
b − 1 1 0

.

By definition, the weight ϕG(T ) of a staircase tableau T is the product of these
elementary weights, on all subtriangles. The image of ϕG(T ) under the change
of variables xi → (1−xi)

−1, yj → (1−yj)
−1 is denoted ϕ

eG(T ). Explicitely, the
elementary weights are now

c
a b

c
b b

c
b c

b
a c

ϕ
eG weight (xb−1)(yj−1)−1 (xb−yj)(yj−1)−1 1 0

.

For example, pointing out the rightmost box of the elementary tableaux con-

tributing to the weight, the tableau t =
4
2 3
1 1 2

has weight

4

2 3

1 1 2

→ ϕG(t) =

•
• y1x

−1
3

• y1x
−1
1 −1 y2x

−1
2

→ ϕ
eG(t) =

•
• x3−1

y1−1

• x1−y1
y1−1

x2−1
y2−1

.

The following property is proved4 in [103], by checking its compatibility with
transitions. It states that any Grothendieck polynomial is obtained by enumerat-
ing all the monotone triangles having a fixed right key, or, equivalently, because

4Keys can be defined directly on ASM. For the correspondence with the keys (of tableaux)
that we use here, see Aval [2].
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the non-monotone tableaux have weight 0, enumerating all the tableaux in some
K̂Fσ .

Theorem 7.6.1. Let σ ∈ Sn. Then

(−1)`(σ)G(σ)(x,y) =
∑

T∈ bKFσ ϕG(T ) , (7.6.1)

(−1)`(σ)G̃(σ)(x,y) =
∑

T∈ bKFσ ϕ
eG(T ) . (7.6.2)

For example, for σ = [4, 2, 1, 5, 3], there are fifteen tableaux in K̂Fσ . Only 4 of
them are monotone triangles, and their respective ϕG weights are

5
4 5
3 4 5
2 2 2 4
1 1 1 1 4

y3
x4

( y1
x2
−1)( y2

x2
−1)( y1

x1
−1)( y2

x1
−1)( y3

x1
−1)

5
4 5
3 3 5
2 2 2 4
1 1 1 1 4

y3
x4

( y1
x3
−1)( y1

x2
−1)( y2

x2
−1)( y1

x1
−1)( y2

x1
−1)( y3

x1
−1)

5
4 5
3 4 5
2 2 4 4
1 1 1 1 4

( y1
x2
−1)( y3

x4
−1)( y1

x1
−1)( y2

x1
−1)( y3

x1
−1)

5
4 5
3 3 5
2 2 3 4
1 1 1 1 4

y3
x4

( y1
x3
−1)( y1

x2
−1)( y1

x1
−1)( y2

x1
−1)( y3

x1
−1)

Therefore, the Grothendieck polynomial G(42153) is equal to

G(42153)(x,y) = G3101(x,y) = (1−
y1

x2

)(1−
y1

x1

)(1−
y2

x1

)(1−
y3

x1

)(1−
y1y2y3

x2x3x4

) ,

while the ϕ eG-weight of the same four tableaux furnishes

G̃3101(x,y) =
(x2 − y1) (x1 − y3) (x1 − y2) (x1 − y1)

(1− y1)3 (1− y3)2 (1− y2)2 (−y2y3y1 + y2y3 + y1y2

− y2 + y3y1 − y3 − y1 − x4x3 + x4 + x4x2x3 − x4x2 + x3 − x3x2 + x2) .

Theorem 5.1.9 gives for this polynomial the expression

G̃3101(xy) =
Y3101(x,y)

(1−y2 − 1) (1−y3)2 (1−y1)2 −
Y3111(x,y)

(1−y2) (1−y1)3 (1−y3)2

− Y3201(x,y)

(1−y1)2 (1−y3)2 (1−y2)2 +
Y3211(x,y)

(1−y1)3 (1−y3)2 (1−y2)2 .
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The specialisation z = 0 of (2.9.6) gives the value of the alternating sum of
Grothendieck polynomials, which is also the sum of the weights of all monotone
triangles : ∑

T∈KFn...1

ϕG(T ) =
∑
σ∈Sn

(−1)`(σ)G(σ)(x,y) = yρx−ρ . (7.6.3)

The specialisation x = 1 of this last formula is due to Bousquet-Mélou & Habsieger
[13].



Chapter 8
Generating Functions

8.1 Binary triangles
One can interpret the Cauchy formula for Schubert and Grothendieck polynomials
in many different ways, the Cauchy kernel itself may be thought as the generating
function of the Schubert and Grothendieck basis. To generalize this kernel into
an element of a non-commmutative algebra, one uses planar displays.

Expanding a planar object with n boxes containing a sum a + b of elements
belonging to two families means enumerating the 2n pairs of complementary ob-
jects obtained by choosing either a or b in each box. For example, the expansion

of
�+�

�+� �+�
�+�

is equal to

(
�

� �
�

,
·
· ·
·

)
+
( ·
� �
�

,
�
· ·
·

)(
�

� �
�

,
·
· ·
·

)
+
(
�
· �
�

,
·

� ·
·

)
+ · · ·+

( ·
· �
·
,

�
� ·
�

)( ·
· ·
�
,

�
� �
·

)
+
( ·
· ·
·
,

�
� �
�

)
,

writing a sum instead of a set of pairs. Each pair can afterwards be read in a
precise manner so as to furnish a pair of words.

We shall essentially use planar objects of triangular shape. Decomposing a

triangle �
+�
�+� �+�

can be thought as enumerating binary triangles (i.e. each

box is filled with either 0 or 1) of a fixed shape. In other words, the set

1
1 1

, 0
1 1

, 1
0 1

, 1
1 0

, 0
0 1

, 0
1 0

, 1
0 0

, 0
0 0

codes the same information as the set of pairs(
�
� �

,
�
� �

)
,

(
�
� �

,
�
� �

)
, . . . ,

(
�
� �

,
�
� �

)
221
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used previously.
In the following of this chapter, we shall enumerate binary triangles and put

various weights on them.
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8.2 Generating function in the nilplactic algebra
Let us first use the nilplactic algebra with generators v1, v2, . . . , vn−1 satisfying

v2
i = 0 , vivi+1vi = vi+1vivi+1 (8.2.1)

vjvivk = vjvkvi , vivkvj = vkvivj (i < j < k) (8.2.2)

Given a commutative alphabet xn, define the nilplactic kernel ΘNlP(xn) to be

ΘNlP(xn) :=

(1 + x1vn−1)
(1 + x1vn−2) (1 + x2vn−1)

... ...
(1 + x1v1) (1 + x2v2) · · · (1 + xn−1vn−1)

,

reading the kernel by columns (downwards) from left to right.
One still has a crystal structure on the terms in the expansion of ΘNlP(xn), as

we had in the plactic case (cf. ??).

EXEMPLE

Given a tableau T in v1, v2, . . . , which is a reduced decomposition, denote by
B(T ) ∈ Nn its bottom key (as a weight). Then an analysis of the nilplactic strings
similar to the one performed in ?? gives the following expansion.

Theorem 8.2.1. Given n, the nilplactic kernel expands in the nilplactic algebra
as

ΘNlP(xn) ∼=
∑
T

KB(T ) T ,

sum over all tableaux which are reduced decompositions of permutations of Sn.

For example, for n = 4, there are 25 tableaux (all permutations, except
[2, 1, 4, 3], have only one tableau as a reduced decomposition), and ΘNlP(x4) is
equal to

K0 +K1 1 +K01 2 +K001 3 +K11 1 2 +K101 1 3 +K02
3
2

+K2
2
1

+K2
3
1

+K011 2 3 +K12
3
1 2

+K3

3
2
1

+K201
2
1 3

+K21
2
1 2

+K021
3
2 3

+K111 1 2 3 +K211
2
1 2 3

+K22
2 3
1 2

+K301

3
2
1 3

+K31

3
2
1 2

+K121
3
1 2 3

+K221
2 3
1 2 3

+K311

3
2
1 2 3

+K32

3
2 3
1 2

+K321

3
2 3
1 2 3

.

All key polynomials Ku of index u ≤ ρ occur in the expansion of ΘNlP(xn),
but with eventual multiplicities (in the example above, K2 occurs twice).
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8.3 Generating function in the NilCoxeter alge-
bra

By projecting the nilplactic algebra to the NilCoxeter algebra, one obtains a gen-
erating function where blocks correspond to all the tableaux which are reduced
of the same permutation. In fact, this projection gives back the expansion of
Schubert polynomials Xσ(x,0) in terms of keys seen in (7.3.2)1.

To recover Schubert polynomials in two alphabets, let us take three alphabets
x,y, z and define

Θ∂
n(x,y) =

1+(x1−yn−1)∂zn−1

1+(x1−yn−2)∂zn−2 1+(x2−yn−2)∂zn−1
... ...

1+(x1−y1)∂z1 1+(x2−y1)∂z2 . . . 1+(xn−1−y1)∂zn−1

.

The expansion of such kernel is equal to a sum
∑

σ∈Sn
cσ(x,y)∂zσ that one can

determine by making it act on the monomial zn−1,...,1,0, but we shall rather take
the function Xω(zω,y). Indeed, we have already made this computation in (1.7.2),
up to minor changes including a reversal of alphabet. One has obtained, say for
n = 4, the identity (reading the display by columns)

z4−y1 z4−y2 z4−y3

z3−y1 z3−y2

z2−y1

1+(x1−y3)∂z3

1+(x1−y2)∂z2 1+(x2−y2)∂z3

1+(x1−y1)∂z1 1+(x1−y2)∂z3 1+(x1−y3)∂z3

=

z4−x3 z4−x2 z4−x1

z3−x2 z3−x1

z2−x1

,

using only that

(zi+1 − y)(1 + (x− y)∂zi )) = (zi+1 − y)− (x− y) = zi+1 − x .

More generally, for any n, one has

Xω(zω,y) Θ∂
n(x,y) = Xω(zω,x) . (8.3.1)

Using the Cauchy formula

Xω(zω,x) =
∑
σ∈Sn

Xσ−1(y,x)Xσω(zω,y) ,

1left and bottom keys are exchanged, because one takes the reduced decompositions of σ in
one case, and of σ−1 in the other.
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and comparing with

Xω(zω,y)cσ(x,y)∂zσ =
∑

(−1)`(σ)cσ(x,y)Xω(ωσω)(z
ω,y) ,

one finds that
cσ(x,y) = (−1)`(σ)Xσ−1(y,x) = Xσ(x,y) .

In final, one has obtained that Θ∂
n(x,y) is a generating function of Schubert

polynomials.

Theorem 8.3.1. Let n be a positive integer. Then

Θ∂
n(x,y) =

∑
σ∈Sn

Xσ(x,y) ∂zσ . (8.3.2)

For example, for σ = [3, 1, 5, 2, 4], there are 5 configurations which contribute
to X31524(x,y). Grouping reduced decompositions according to their nilplactic
class, one has

X31524(x,y) =


x1−y4

• •
x1−y2 x2−y2 •
x1−y1 • • •

+

x1−y4

• •
x1−y2 • •
x1−y1 • x3−y1 •

 4
2
1 3

+


•
• x2−y3

x1−y2 x2−y2 •
x1−y1 • • •

+

•
• x2−y3

x1−y2 • •
x1−y1 • x3−y1 •

+

•
• •

x1−y2 • x3−y2

x1−y1 • x3−y1 •

 2 4
1 3

.

This theorem is given by Fomin and Kirillov in [39, 38], and is also a corollary
of the Hopf decomposition of Schubert polynomials given in [122].

The proof of Fomin and Kirillov is very simple, it consists in noticing that
Θ∂
n∂

z
i = Θ∂

n∂i. This property instantly allows to characterize the behaviour of
coefficients with respect to the divided differences in x, and to recognize these co-
efficients to be Schubert polynomials. We have already several times encountered
cases where the action of divided differences is exchanged with another operation
(which is here, multiplication in the algebra generated by the ∂zi ’s).

The Cauchy formula (2.10.2) translates into the following multiplicative prop-
erty of generating functions

Θ∂(x,y) = Θ∂(u,y) Θ∂(x,u) , (8.3.3)

that Fomin and Kirillov prove directly by using the Yang-Baxter equation.
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8.4 Generating function in the 0-Hecke algebra
The preceding considerations can easily be adapted to the Grothendieck world.
This time, one has to use the 0-Hecke algebra, with generators π̂z1, . . . , π̂zn−1, in-
stead of the 00-Hecke algebra (NilCoxeter algebra).

Let

Θbπ
n(x,y) =

1+(1−yn−1

x1
)π̂zn−1

1+(1−yn−2

x1
)π̂zn−2 1+(1−yn−2

x2
)π̂zn−1

... ...
1+(1− y1

x1
)π̂z1 1+(1− y1

x2
)π̂z2 . . . 1+(1− y1

xn−1
)π̂zn−1

.

Using that (
1− zi+1

y

)(
1 + (1− y

x
π̂zi )
)

= 1− zi+1

x
,

starting with ΘG(z,y) =
∏

1≤i<j≤n(1− zjy−1
i ), one obtains

ΘG(z,y)Θbπ
n = ΘG(z,x) . (8.4.1)

Comparing with the Cauchy formula (2.9.4), one obtains the following generating
function of Grothendieck polynomials.

Theorem 8.4.1. Let n be a positive integer. Then

Θbπ
n(x,y) =

∑
σ∈Sn

G(σ)(x,y) π̂zσ . (8.4.2)

For example, for n = 3, one has

1 + (1−y2x
−1
1 )π̂z2

1 + (1−y1x
−1
1 )π̂z1 1 + (1−y1x

−1
2 )π̂z2

= 1 + (1−y1x
−1
1 )π̂z1 + (1−y1y2(x1x2)−1)π̂z2 + (1−y1x

−1
1 )(1−y1x

−1
2 )π̂z1π̂

z
2

+ (1−y2x
−1
1 )(1−y1x

−1
1 )π̂z2π̂

z
1 + (1−y2x

−1
1 )(1−y1x

−1
1 )(1−y1x

−1
2 )π̂z2π̂

z
1π̂

z
2

= 1 +G(213)π̂
z
1 +G(132)π̂

z
2 +G(231)π̂

z
231 +G(312)π̂

z
312 +G(321)π̂

z
321 .

This generating function has been obtained by Fomin and Kirillov in [38], but
is also a corollary of the Hopf decomposition of Grothendieck polynomials given
in [122].

The generating function Θ̃bπ
n(x,y) of G̃-polynomials is obtained by taking a

kernel with factors of the type (xi − yj)(1 − yj)
−1 instead of 1 − yjx

−1
i . For

example,(
1 +

x1−y2

1−y2

π̂z2

)(
1 +

x1−y1

1−y2

π̂z1

)(
1 +

x2−y1

1−y1

π̂z2

)
=
∑
σ∈S3

G̃(σ)(x,y) π̂zσ
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8.5 Hopf decomposition of Schubert and Groth-
endieck polynomials

Any polynomial in x1, . . . , xn can be filtered according to the powers of x1. In
other words, one can use that Pol(xn) ' Pol(x1) ⊗Pol(x2, . . . , xn) and compare
expansions in the natural bases of the two spaces.

In the case of symmetric functions, the isomorphism

Sym(xn) ' Sym(x1)⊗Sym(x2, . . . , xn)

reveals the existence of a Hopf structure on Sym(xn). I kept the same terminol-
ogy with M.P. Schützenberger for what concerns polynomials in the Schubert or
Grothendieck bases. In the case of Macdonald polynomials, one filters according
to xn instead.

From the generating functions (8.3.2) and (8.4.2) one deduces the following
Hopf decompositions given in [122].

Theorem 8.5.1. Let σ be a permutation in Sn, v be its code, x+ = {x2, . . . , xn}.
Then

Yv(xn,0) =
∑
w∂ ,u

x
|v|−|u|
1 Yu(x

+,0) , (8.5.1)

sum over all words w∂ in the expansion of (1+∂n−1) · · · (1+∂1), all u ≤ [n−2, . . . , 0]
such that ∂σ = w∂∂ζ, with ζ of code [0, u].

Similarly

G̃v(xn,0) =
∑
wbπ ,u

(−1)|u|+`(wbπ−|v|x|u|+`(wbπ)
1 G̃u(x

+,0) (8.5.2)

G1/x
v (xn,1) =

∑
wbπ ,u

(−1)|u|+`(wbπ−|v|)(1−x1)|u|+`(wbπ)G1/x
u (x+,1) (8.5.3)

sum over all words wbπ in the expansion of (1+π̂n−1) · · · (1+π̂1), all u ≤ [n−2, . . . , 0]
such that π̂σ = ±wππ̂ζ, with ζ of code [0, u].

Statements (8.5.1) and (8.5.2) are strictly equivalent to (8.3.2) and (8.4.2)
(adding the second alphabet y is no problem), though, we agree, much less elegant.

The two expansions (8.5.1) and (8.5.2) involve the same set {u}, but in the
second case, each u may correspond to several words wbπ. For example, figuring
the words in the expansion, one has

Y021(x,0) = Y21(x+,0)+(x1∂2)Y20(x+,0)+(x1∂3)Y11(x+,0)+(x2
1∂3∂2)Y01(x+,0) ,

G̃021(x,0) = (1−x1π̂3−x1π̂2+x2
1π̂3π̂2)G̃21(x+,0) + (x1π̂2−x

2
1π̂3π̂2)G̃20(x+,0)

+ (x1π̂3−x
2
1π̂3π̂2)G̃11(x+,0) + (x2

1π̂3π̂2)G̃01(x+,0) ,
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the final expansion being

G̃021(x,0) = (1−x1)2G̃21(x+,0) + x1(1−x1)G̃20(x+,0)

+ x1(1−x1)G̃11(x+,0) + x2
1G̃01(x+,0) .

For a given pair v, u, one checks that, keeping only the terms contributing
to the Hopf decomposition, the product (1+x1π̂n−1) · · · (1+x1π̂1) simplifies into a
product of factors of the type 1, x1π̂j or 1+x1π̂j. Therefore, the total coefficient
of G̃u(x

+,0) is equal to some power of x1 multiplied by a power of (1−x1). Thus,
Example 2.6 of [122] reads

G̃14101(x,0) = a1
4G̃1101(x+,0) + a1

3b1G̃2101(x+,0) + a1
2b1G̃41(x+,0)

+ a1
2b1G̃3101(x+,0) + a1b1

2G̃4101(x+,0) ,

putting ai = xi, bi = 1−xi.
Iterating the Hopf decomposition, one obtains an expression of G̃v(x,0) as a

positive polynomial in a1, b1, a2, b2, . . . . Interchanging a and b gives the expression
of G1/x

v (x,1) .
For example,

G̃202(x,0) = a3a2b2b1a1
2 + a3b2a1

3 + a2
2b1a1

2 + a2a1
3 + b2b1a1

2a3
2

G
1/x
202 (x,1) = b3b2a2a1b1

2 + b3a2b1
3 + b2

2a1b1
2 + b2b1

3 + a2a1b1
2b3

2 .

Notice that the specialization bi = 1 in the expression of G̃v(x,0) gives the Schu-
bert polynomial Yv(x,0). We have not investigated the properties of these poly-
nomials.



§ 8.6 — Generating function of G̃-polynomials 

8.6 Generating function of G̃-polynomials
We shall use simultaneoulsy several weights on 0−1 triangles T of shape [1, . . . , n−1]
: A triangle T gives rise to a monomial φx(T ), a product φy(T ) of factors −yi, a
product φπ(T ) of πi’s and a product φ∂(T ) if ∂i’s, as follows :

φx(T ) =
∏

x
1−Tij
i

φy(T ) =
∏

(−yi)
1−Tij & φy−1(T ) =

∏
(1−yi)

1−Tij

φπ(T ) =
∏

π
Tij
n−i+j−1

φ∂(T ) =
∏

∂
1−Tij
n−i ,

reading the successive columns from left to right for φπ(T ), and reading by suc-
cessive rows, each row from right to left, for φ∂(T ) (we use matrix coordinates).

Reading order

1
2 4
3 5 6

filling

π3

π2 π3

π1 π2 π3

for φπ ,

1
3 2
6 5 4
∂3

∂3 ∂2

∂3 ∂2 ∂1

for φ∂ .

For example, one has

for T =
0

1 0

0 1 1

,
•
π2 •
• π2 π3

&
∂3

• ∂2

∂3 • •

Φπ(T ) = π2π2π3 Φ∂(T ) = ∂3∂2∂3

,

x3

• x2

x1 • •
⇒ Φx(T ) = x3x2x1 & Φy(T ) = (1−y3)(1−y2)(1−y1) .

Let ζ(T ) be the permutation such that φπ(T ) = πζ , and σ(T ) be the permu-
tation such that φ∂(T ) = ∂σ (if φ∂(T ) is not 0).

Theorem 8.6.1. Given n and ζ, σ ∈ Sn, let T (σ) be the set of 0-1 triangles such
that σ(T ) = σ. Then

Xσ(x,y) =
∑

T∈T (σ)

φy(T ) G̃(ζω)(x,y) (8.6.1)

Xσ−1(x,0) =
∑

T∈T (σ)

φx(T ) . (8.6.2)
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Proof. ’oooooo
’oooooo

’oooooo
’oooooo

’oooooo
’oooooo

’oooooo
’oooooo

’oooooo
’oooooo

’oooooo
’oooooo

’oooooo
’oooooo

’oooooo
’oooooo

For example, one has eight triangles such that σ(T ) = [2, 5, 1, 4, 3]. We list the
resulting triangles in πi, together with φx(T )φ∂(T ) and G̃v, with v code of ζ(T )ω.

•
π3 •
π2 π3 π4

• π2 • •

•
π3 •
• π3 π4

π1 π2 • •

π4

• π4

• • π4

π1 π2 • •

•
π3 π4

• • π4

π1 π2 • •
x4x3x

3
1 [4, 3, 1, 2, 4] x4x3x2x

2
1 [4, 3, 4, 1, 2] x3x

2
2x

2
1 [4, 3, 4, 1, 2] x4x

2
2x

2
1 [43412]

G̃1311 G̃2301 G̃3301 G̃2301

π4

• •
π2 • π4

π1 π2 • •

•
π3 π4

π2 • π4

• π2 • •

•
• •
π2 π3 π4

π1 π2 • •

π4

• π4

π2 • π4

• π2 • •
x2

3x2x
2
1 [3, 4, 3, 1, 2] x4x2x

3
1 [4, 3, 1, 2, 4] x4x

2
3x

2
1 [4, 3, 4, 1, 2] x3x2x

3
1 [4, 3, 1, 2, 4]

G̃33 G̃2311 G̃1301 G̃3311

The eight words [4, 3, 1, 2, 4], . . . , [4, 3, 1, 2, 4] are reduced decompositions of
the permutation [2, 5, 1, 4, 3], whose code is [1, 3, 0, 1, 0]. The above enumeration
implies that

Y1301 = (1−y1)3(1−y4)(1−y3)G̃1311 + (1−y2)2(1−y1)2(1−y3)G̃3301

+ (1−y1)3(1−y3)(1−y2)G̃3311 + (1−y1)2(1−y4)(1−y2)(2−y2−y3)G̃2301

+ (1−y3)2(1−y1)2(1−y4)G̃1301 + (1−y2)(1−y1)3(1−y4)G̃2311

+ (1−y1)2(1−y3)2(1−y2)G̃33

and that

X[2,5,1,4,3]−1(x,0) = X31542(x,0) = Y2,0,2,1(x,0) = x4x
2
1x

2
3 + x4x3x2x

2
1

+ x4x
2
2x

2
1 + x4x3x

3
1 + x4x

3
1x2 + x2

3x
2
1x2 + x3x

2
2x

2
1 + x3x

3
1x2 .

Lenart[137, Th.2.16] gives the decomposition of a Schur function in terms of
G̃-polynomials (see also [107, Prop.1]).



Chapter 9
Key polynomials for type B,C,D

9.1 KB, KC, KD

For each type ♥ = B,C,D, we are going to define two families of key polynomials,
indexed by elements of Zn, using the divided differences π♥i or π̂♥i , and modifying
the indices using s♥i .

In more details, in type ♥ = B,C, we start with all dominant monomials
xv : v1 ≥ · · · ≥ vn ≥ 0 and put

xv = K♥v = K̂♥v .

The other polynomials are defined recursively by

K♥v πi = K♥v si & K̂♥v π̂i = K̂♥v si , when vi > vi+1 , i < n , (9.1.1)

K♥v π
♥
n = K♥

v s♥n
& K̂♥v π̂

♥
n = K̂♥

v s♥n
, when vn > 0 , for ♥ = B,C . (9.1.2)

In type D, we would not obtain enough elements to span the space of poly-
nomials. To the set of dominant monomials {xv} used in types A,B,C, we have
to add all xu, with u = [v1, . . . , vn−1,−vn]. In short, let us call D-dominant the
vectors [v1, . . . , vn−1,±vn], v1 ≥ · · · ≥ vn ≥ 0.

We start with

xv = KD
v = K̂D

v when v is D-dominant

and define recursively the other polynomials by

KD
v πi = KD

v si
& K̂D

v π̂i = K̂D
v si

, when vi > vi+1 , i < n , (9.1.3)

KD
v π

D
n = KD

v sDn
& K̂D

v π̂
D
n = K̂D

v sDn
, vn−1 + vn > 0 . (9.1.4)

The definition is consistent since the operators satisfy the braid relations, and
since the hypotheses used in the recursive steps insure that length increase.

231
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Notice that, when v ∈ Nn, then all K♥v (resp. K̂♥v ), ♥ = A,B,C,D coincide
with each other, since the exceptional generators sBn or sDn are not used.

On vectors in Zn, put the following lexicographic order : u >L v if there exists
i : u1 = v1, . . . , ui−1 = vi−1 and ui < vi. From the explicit action of the divided
differences, one sees that each K♥v , K̂♥v has dominant term xv. In fact, one has
used the operators π♥i (resp. π̂♥i ) to generate the polynomials K♥v (resp. hK♥v ),
and the action of s♥i on the indices of the key polynomials. Therefore, one has the
following theorem.

Theorem 9.1.1. The sets {K♥v : v ∈ Zn}, {K̂♥v : v ∈ Zn} constitute six bases
of Pol(x±n ), which are triangular in the basis of monomials with respect to the
lexicographic order.

For example,

K̂B
−1,−2,1 = x−1,−2,1 + x−1,−1,0 + x−1,−1,1 + x−1,0,−1 + x−1,0,0 + x−1,0,1 + x0,−2,0

+ x0,−2,1 + x0,−1,−1 + 2x0,−1,0 + 2x0,−1,1 + x0,0,−1 + 2x0,0,0 + x0,0,1 ,

K̂C
−1,−2,1 = x−1,−2,1 +x−1,−1,0 +x−1,0,−1 +x−1,0,1 +x0,−2,0 +x0,−1,−1 +x0,−1,1 +x0,0,0 ,

K̂D
−1,−2,1 = x−1,−2,1 + x−1,−1,0 + x−1,0,−1 + x0,−2,0 + x0,−1,−1 + x0,−1,1 + x0,0,0 .

To my knowledge, the relations between the bases for different types have not
been investigated. Continuing with the preceding example, one has

K̂B
−1,−2,1 = K̂C

−1,−2,1 + K̂C
−1,−1,1 + K̂C

0,−2,1 + K̂C
0,−1,1

= K̂D
−1,−2,1 + K̂D

−1,−1,1 + K̂D
−1,0,1 + K̂D

0,−2,1 + K̂D
0,−1,1

K̂C
−1,−2,1 = K̂B

−1,−2,1 − K̂B
−1,−1,1 + K̂B

−1,0,1 − K̂B
0,−2,1 + K̂B

0,−1,1

= K̂D
−1,−2,1 + K̂D

−1,0,1

K̂D
−1,−2,1 = K̂B

−1,−2,1 − K̂B
−1,−1,1 − K̂B

0,−2,1 + K̂B
0,−1,1

= K̂C
−1,−2,1 − K̂C

−1,0,1 .

On the other hand, for a given type ♥, the relations between K♥ and K̂♥ are
given by the Bruhat order1, thanks to Lemma 1.10.4.

Lemma 9.1.2. For any type ♥, given any weight v, one has the following relation

K♥v =
∑
u≤v

K̂♥u (9.1.5)

1One defines the ♥-Bruhat order on elements of Zn which are in the orbit of a dominant
weight, by generating the elements of the orbit by successive application of simple transpositions.
For example, for n = 3, type B or C, one has the chain x321 < x312 < x312 < x321 < · · · . The
length is also defined as the minimum length of a sequence of simple transpositions which reorder
the weight into a dominant weight. Notice that to order the elements of the group, wich are
denoted by the same vectors, one uses the same “Hasse diagram”, but starts with [1, 2, 3] instead
of [3, 2, 1].
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For example,

KB
0,−2,0 = K̂B

0,−2,0 + K̂B
0,0,−2 + K̂B

0,0,2 + K̂B
0,2,0 + K̂B

2,0,0 ,

but
K̂B

0,−2,0 = KB
0,−2,0 −KB

0,0,−2 .

The full Bruhat interval does not occur in the second formula, because the Moëbius
function takes values in 0, 1, −1 in the case of the orbit of [2, 0, 0], contrary to the
case of the orbit of [3, 2, 1], which is the case of the group itself (Lemma 1.10.4).
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9.2 Scalar products for type B,C,D
Let ∆♥ be the denominator of Weyl character formula. Weyl defined a scalar
product on characters by taking a constant term involving the square of ∆♥. This
is not appropriate in the case of key polynomials, because they are not invariant
under the associated group, contrary to characters. As in the case of the non-
symmetric Cauchy kernel, the solution is to take only half of the factors of the
symmetric kernel, here, to take only ∆♥.

Definition 9.2.1. Let ρB = [n− 1
2
, . . . , 2− 1

2
, 1− 1

2
], ρC = [n, . . . , 2, 1], ρD = ρA =

[n−1, . . . , 1, 0]. For ♥ = B,C,D let

Ω♥ = xρ
♥

∆♥ .

Let moreover ε = (−1)n when ♥ = B,C, and ε = 1 when ♥ = D. Then for any
pair of Laurent polynomials f, g in x1, . . . , xn, define

(f, g)♥ = CT
(
ε fg xρ

♥
∆♥
)
. (9.2.1)

For example, taking n = 2, one has

(f, g)B = CT
(
fgx

3/2
1 x

1/2
2 (x

1/2
1 − x−1/2

1 )(x
1/2
2 − x−1/2

2 )(x1 − x2)(1− 1

x1x2

)
)

= CT
(
fg (1− x1)(1− x2)(1− x1/x2)(1− x1x2)

)
,

(f, g)C = CT

(
fg x2

1x2 (x1 −
1

x1

)(x2 −
1

x2

)(x1 − x2)(1− 1

x1x2

)

)
,

= CT
(
fg (1− x2

1)(1− x2
2)(1− x1/x2)(1− x1x2)

)
,

(f, g)D = CT
(
fg x1 (x1 − x2)(1− 1

x1x2

)
)

= CT
(
fg (1− x1/x2)(1− x1x2)

)
.

In the language of root systems, the different kernels are products over all the
positive roots.

To define the scalar product ( , )♥, one could as well give the finite list of all
monomials xv such that (xv , 1)♥ 6= 0.

For example, for type C2, we need only the list (xv, 1)C = 1 for v = [0, 0], [−1,−3], [−3, 1], [−4,−2],
and (xv, 1)C = −1 for v = [0,−2], [−1, 1], [−3,−3], [−4, 0].

In fact, the scalar product ( , )♥ is related to the maximal symmetrizer π♥w0
, as

shows the next property.

Lemma 9.2.2. Let ♥ = B,C,D. Then (xv, 1)♥ takes values in {0, 1, −1}. The
kernel Ω♥n expands as

Ω♥n =
∑
v∈Zn

(xv, 1)♥x−v .

Moreover, xvπ♥w0
= ±1 if and only if xvπ♥w0

= (xv, 1)♥.
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Proof. That x−v occurs with multiplicity c in the expansion of xρ♥∆♥ is is another
way of stating that (xv, 1)♥ = c. This proves the first statement.

The ♥-Vandermonde expands as a sum
∑

u±xu, over all signed permutations
of ρ♥. Therefore, x−v occurs in the expansion of Ω♥ if and only if v + ρ♥ is a
signed permutation of ρ♥. On the other hand, for any v, xvπ♥w0

is equal to 0, or
there exists a dominant weight λ such that xvπ♥w0

= ±xλπ♥w0
. This last function

is equal to ±1 if and only if λ = [0, . . . , 0], which exactly means that v + ρ♥ is a
signed permutation of ρ♥. QED

The crucial property of the scalar products ( , )♥ is their compatibility with
the operators generating the key polynomials.

Proposition 9.2.3. Write πn = π♥n , π̂n = π̂♥n , for ♥ = B,C,D. Then the
operators πi and π̂i (1 ≤ i ≤ n) are self-adjoint with respect to ( , )♥, i.e. for
every pair of Laurent polynomials f, g, one has(

fπi , g
)♥

=
(
f , gπi

)♥
,
(
fπ̂i , g

)♥
=
(
f , gπ̂i

)♥
.

Proof. For i = 1, . . . , n−1, the proof is similar to the case of type A, except that we
start with fg instead of f(x1, . . . , xn)g(x−1

n , . . . , x−1
1 ). In the case i = n, ♥ = B,C,

one first computes the constant term with respect to xn and writes

(f , g)♥ = CT
(
CTxn

(
fg

xn
1 + βxn

(xn − xn−1)♠
))

,

where ♠ is a function invariant under sn = s♥n and β = 1 for ♥ = B and β = 0 for
♥ = C. Therefore, to evaluate (fπ̂n , g)♥ − (f , gπ̂n)♥ = (fπn , g)♥ − (f , gπn)♥

one can first compute

CTxn

(
(fπ̂ng − gπ̂nf)

xn
1 + βxn

(xn − x−1
n )♠

)
= CTxn

(
(gsnf − f sng)♠

)
which is null, because the function under parentheses is alternating under sn.

Similarly, for ♥ = D, neglecting a function invariant under sn = s♥n , to deter-
mine (fπ̂n , g)D − (f , gπ̂n)D = (fπn , g)D − (f , gπn)D, one can first compute

CTxn−1,xn

(
(fπ̂ng − gπ̂nf)(1− xn−1xn)

)
= CTxn−1,xn

(
f sng − gsnf

)
which is also null, because the function f sng− gsnf is alternating under sn. QED
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9.3 Adjointness
Lemma 2.5.1 evidently extends to the case of π♥n , ♥ = B,C,D. For example, for
♥ = C, the two equations

(K1 5 2 , K̂1 5 2) = 0 & (K1 5 2 , K̂1 5 2) = 1

transfer into
(K1 5 2 , K̂1 5 2) = 1 & (K1 5 2 , K̂1 5 2) = 0 .

To see that, one needs only write

K1 5 2 = f1 + f2x
−1
3 , K̂1 5 2 = g1 + g2x

−1
3 ,

with f1, f2, g1, g2 invariant under sC3 . Then, the statement becomes straightforward
after expliciting K1 5 2 = f1, K̂1 5 2 = −g2x

−1
3 . Once more, computations take place

in a two-dimensional space only.
Since the key polynomials K̂♥u stem from the dominant monomials, we need

only explicit the scalar products of all the K♥v with all dominant monomials, to
know all the (K♥v , K̂

♥
u )♥.

We refer to [44] to check the following lemma.

Lemma 9.3.1. Given n, let ♥ = B,C,D. Let v be ♥-dominant (i.e. v is
a partition λ, or, in type D, to the set of partitions λ one adds the weights
[λ1, . . . , λn−1,−λn]). Then for all u ∈ Zn, one has

(K♥u , K̂
♥
v ) = 0 except (K♥−v, K̂

♥
v ) = 1 . (9.3.1)

Thanks to Lemma 2.5.1 and Lemma 11.1.2, one determines all scalar products
between the two bases of key polynomials, for each type, and one concludes :

Theorem 9.3.2. Let u, v ∈ Zn, and ♥ = B,C,D. Then

(K♥u , K̂
♥
v ) = 0 except (K♥−v, K̂

♥
v ) = 1 . (9.3.2)

Contrary to type A, we do not know how to write a kernel involving all the
elements of the two adjoint bases. Nevertheless, there are non-symmetric kernels
generalizing Littlewood’s kernels for types B,C,D. We refer to [44] for the proof
of the next theorem.

Theorem 9.3.3. Let

ΩB :=

∏
1≤i<j≤n(1− xixj)

∏n
i=1(1 + xi)∏n

i,j=1(1− xiyj)
∏n

i=1

∏n
j=i(1− xi/yj)

,

ΩC :=

∏
1≤i<j≤n(1− xixj)∏n

i,j=1(1− xiyj)
∏n

i=1

∏n
j=i(1− xi/yj)

,

ΩD :=

∏
1≤i≤j≤n−1(1− xixj)∏n−1

i=1

∏n
j=1(1− xiyj)

∏n−1
i=1

∏n
j=i(1− xi/yj)

.
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Then these kernels decompose as follows

ΩB =
∑
v∈Nn

K̂v(x)KB
−v(y) , (9.3.3)

ΩC =
∑
v∈Nn

K̂v(x)KC
−v(y) , (9.3.4)

ΩD =
∑

v∈Nn: vn=0

K̂v(x)KD
−v(y) , (9.3.5)

where xn is specialized to 0 in the last equation.

For example, for n = 3, the term of degree 2 (in x) of the C-kernel

(1− x1x2)(1− x1x3)(1− x2x3)

(1− x1

y1
)(1− x1

y2
)(1− x1

y3
)(1− x2

y2
)(1− x2

y3
)(1− x3

y3
)
∏3

i,j=1(1− xiyj)

is equal to

K̂0,0,2(x)KC
0,0,−2(y) + K̂2,0,0(x)KC

−2,0,0(y) + K̂0,2,0(x)KC
0,−2,0(y)

+ K̂1,0,1(x)KC
−1,0,−1(y) + K̂0,1,1(x)KC

0,−1,−1(y) + K̂1,1,0(x)KC
−1,−1,0(y) .

Remember that we have also stated in Th. 2.15.2, for what concerns type A,
that

ΩA =
1∏

i+j≤n+1(1− xiyj)
=
∑
v∈Nn

K̂v(x)Kvω(y) .
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9.4 Symplectic and orthogonal Schur functions
For v ∈ Nn antidominant, the functions K♥v are symmetrical in x1, . . . , xn. As
in the usual theory of symmetric functions, it is profitable to define functions
independently of the number of variables. One cannot use in the present case
projective limits with xn → 0, because the polynomials K♥v are in general Laurent
polynomials. Thus, one must find polynomials which by specialization of some
variables to x−1

1 , . . . , x−1
n gibe back the K♥v .

Following Littlewood, one defines, for λ ∈ Part, the orthognal Schur func-
tion Oλ(z) and the symplectic Schur function Spλ(z) by the following generating
functions, using a second alphabet y:∏

i≤j(1− yiyj)∏
i

∏
j(1− yizj)

=
∑
λ∈Part

sλ(y)Oλ(z) (9.4.1)∏
i<j(1− yiyj)∏
i

∏
j(1− yizj)

=
∑
λ∈Part

sλ(y)Spλ(z) . (9.4.2)

Using that
∏

i

∏
j(1−yizj)−1 is a reproducing kernel, one can rewriteOλ(z) and

Spλ(z) with the help of the operators adjoint to multiplication by
∏

i≤j(1−yiyj) or∏
i<j(1−yiyj) respectively. Explicitly, using the Frobenius notation for partitions,

the above formulas become

Oλ(z) =
∑

µ=(α+1r|α)

(−1)|µ|/2 sλ/µ(z) (9.4.3)

Spλ(z) =
∑

µ=(α|α+1r)

(−1)|µ|/2 sλ/µ(z) . (9.4.4)

In particular one has, for r ≥ 2,

O1r = s1r , Or = sr − sr−2 , Sp1r = s1r − s1r−2 , Spr = sr . (9.4.5)

In fact, one can avoid decomposing partitions according to their diagonal hooks
of their diagrams, and write, for λ ∈ Nn, using (1.6.4) and (1.6.2),

Oλ(z) =
∑

ε=[ε1,...,εn]∈{0,1}n
(−1)|ε|sλ/[2ε1,4ε2,...,2nεn](z) (9.4.6)

Spλ(z) =
∑

ε=[ε1,...,εn]∈{0,1}n
sλ/[0ε1,2ε2,...,(2n−2)εn](z) . (9.4.7)

For example, writing the non-zero terms only, one has

O332 = s332/000 − s332/200 − s332/040 + s332/240

=
∣∣∣ s3 s4 s5s2 s3 s4
s0 s1 s2

∣∣∣− ∣∣∣ s1 s4 s5s0 s3 s4
0 s1 s2

∣∣∣− ∣∣∣ s3 s0 s5s2 0 s4
s0 0 s2

∣∣∣+
∣∣∣ s1 s0 s5s0 0 s4

0 0 s2

∣∣∣
= s332/000 − s332/200 − s332/310 − s332/330

= s332 − s33 − s321 + s31 + s22 − s2 ,
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Sp332 = s332/000 + s332/020 + s332/004 + s332/024

=
∣∣∣ s3 s4 s5s2 s3 s4
s0 s1 s2

∣∣∣+
∣∣∣ s3 s2 s5s2 s1 s4
s0 0 s2

∣∣∣+
∣∣∣ s3 s4 s1s2 s3 s0
s0 s1 0

∣∣∣+
∣∣∣ s3 s2 s1s2 s1 s0
s0 0 0

∣∣∣
= s332/000 − s332/110 + s332/211 − s332/222

= s332 − s222 − s321 + s211 + s22 − s11 .

The sums (9.4.6) and (9.4.7) are the expansions of single determinants of ccom-
plete functions, due to Weyl ([193, th.7.9.A], [193, th.7.8.E]):

Oλ = det
(
sλi+j−i − sλi−j−i

)
i,j=1...n

(9.4.8)

Spλ =
1

2
det
(
sλi+1−i + sλi−j−i+2

)
i,j=1...n

(9.4.9)

(the first column is divisible by 2, and simplifies with the outside factor).
For example,

Oλ1λ2λ3 =

∣∣∣∣∣∣
sλ1 − sλ1−2 sλ1+1 − sλ1+1−4 sλ1+2 − sλ1+2−6

sλ2−1 − sλ2−1−2 sλ2 − sλ2−4 sλ2+1 − sλ2+1−6

sλ3−2 − sλ3−2 sλ3−1 − sλ3−1−4 sλ3 − sλ3−6

∣∣∣∣∣∣
Spλ1λ2λ3 =

∣∣∣∣∣∣
sλ1 sλ1+1 + sλ1+1−2 sλ1+2 + sλ1+2−4

sλ2−1 sλ2 + sλ2−2 sλ2+1 + sλ2+1−4

sλ3−2 sλ3−1 + sλ3−1−2 sλ3 + sλ3−4

∣∣∣∣∣∣ .
Notice that (9.4.3) and (9.4.4) are exchanged by transposing partitions. In

other words, the expansion of Oλ in terms of Schur functions is obtained by
transposing partitions in the expansion of Spλ∼ .

One extends the definition of orthogonal and symplectic Schur functions to
indices in Nn by requiring the same reordering rules as for Schur functions:

O...,vi,vi+1,... = −O...,vi+1−1,vi+1,... & Sp...,vi,vi+1,... = −Sp...,vi+1−1,vi+1,... .

All linear operators on the space of symmetric functions with basis the Schur func-
tions extend to the spaces with bases orthogonal or symplectic Schur functions,
by just a formal substitution λ→Oλ or sλ → Spλ. In particular, the notations Oλ/µ
and Spλ/µ make sense, even in the absence of a determinantal expression:

sλ/µ =
∑
ν

cλµ,νsν ⇒ Oλ/µ =
∑
ν

cλµ,νOν & Spλ/µ =
∑
ν

cλµ,νSpν .

Formula (9.4.3) can be written with the operator Dσ1(−S2 adjoint to multipli-
cation by σ1(−S2) =

∑
Si(−S2) :

Oλ = Dσ1(−S2) sλ . (9.4.10)

Similarly, (9.4.4) uses the operator adjoint to multiplication by σ1(−Λ2):

Spλ = Dσ1(−Λ2) sλ . (9.4.11)
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The inverse operators are respectively Dσ1(S2) and Dσ1(Λ2). Therefore, using
Litllewood’s formulas (1.6.7) and (1.6.8), one has

sλ = Dσ1(S2)Oλ =
∑

µ even rows

Oλ/µ (9.4.12)

sλ = Dσ1(Λ2) Spλ =
∑

µ even columns

Spλ/µ (9.4.13)

For example,

s433 = O433 +O433/2 +O433/4 +O433/22 +O433/42 +O433/222 +O433/422

= O433 +O431 +O332 +O33 +O321 +O411 +O31 +O211 +O11 .

s433 = Sp433 + Sp433/11 + Sp433/22 + Sp433/33

= Sp433 + Sp332 + Sp422 + Sp321 + Sp411 + Sp31 + Sp4 .

The Jacobi-Trudi like determinant
∣∣∣Spλi+j−i∣∣∣ is not equal to Spλ when `(λ) > 1,

but to sλ, since Spr = sr. However, the determinantal expression of a Schur func-
tion in terms of hooks extends to the symplectic and orthogonal Schur functions,
as shown by Abramsky, Jahn and King.
Lemma 9.4.1. Let (α|β) be the Frobenius decomposition of a partition λ, with
α, β ∈ Nr. Then

Oλ = det(O(αi|βj))i,j=1...r & Spλ = det(Sp(αi|βj))i,j=1...r .

The proof is straightforward, multiplying the Weyl determinants by the matrix[
(−1)j−is1j−i

]
. The functions O(αi|βj), and Sp(αi|βj) being explicit sums of hook

Schur functions, one has just to recognize in them the entries of the matrices
obtained by multiplication, up to reordering. For example, for λ = [7, 4, 2] =(
[6, 2] | [2, 1]

)
, one has

O742 =

∣∣∣∣∣∣
s7 − s5 s8 − s4 s9 − s3

s3 − s1 s4 − 1 s5

1 s1 s2

∣∣∣∣∣∣
∣∣∣∣∣∣
1 −s1 s11

0 1 −s1

0 0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
O7 −O71 O711

O3 −O31 O311

O0 0 0

∣∣∣∣∣∣ =

∣∣∣∣−O(6|1) O(6|2)

−O(2|1) O(2|2)

∣∣∣∣ .

Sp742 =

∣∣∣∣∣∣
s7 s8 + s6 s9 + s5

s3 s4 + s2 s5 + s1

1 s1 s2

∣∣∣∣∣∣
∣∣∣∣∣∣
1 −s1 s11

0 1 −s1

0 0 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Sp7 −Sp71 Sp711

Sp3 −Sp31 Sp311

Sp0 0 0

∣∣∣∣∣∣ =

∣∣∣∣−Sp(6|1) Sp(6|2)

−Sp(2|1) Sp(2|2)

∣∣∣∣ .
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In λ-ring notation, Littlewood’s definitions (9.4.1), (9.4.2) read

σ1(xy − S2(x)) =
∑

sλ(x)Oλ(y) (9.4.14)

σ1(xy − Λ2(x)) =
∑

sλ(x)Spλ(y) . (9.4.15)

Changing y→ yr, taking a finite alphabet xn, these equations become2

σ1(−xnyr−S
2(xn)) =

n∏
i=1

r∏
j=1

(1−xiyj)
∏
i≤j≤n

(1−xixj)

=
∑

(−1)|λ|sλ(xn)Spλ∼(yr) (9.4.16)

σ1(−xy−Λ2(x)) =
n∏
i=1

r∏
j=1

(1−xiyj)
∏
i<j≤n

(1−xixj)

=
∑

(−1)|λ|sλ(x)Oλ∼(y) . (9.4.17)

Changing x → x∨, multiplying by the appropriate power of x1 . . . xn, one
obtains

n∏
i=1

r∏
j=1

(xi−yj)
∏
i≤j≤n

(1−x−1
i x−1

j )

= (x1 . . . xn)−n−1
∑

λ⊆(r+n+1)n

(−1)|λ|s(r+n+1)n/λ(xn)Spλ∼(yr) (9.4.18)

n∏
i=1

r∏
j=1

(xi−yj)
∏
i<j≤n

(1−x−1
i x−1

j )

= (x1 . . . xn)−n+1
∑

λ⊆(r+n−1)n

(−1)|λ|s(r+n)n/λ(xn)Oλ∼(yr) . (9.4.19)

2 Cauchy formula for the expansion of σ1(−xnyr) involves only the partitions λ ⊆ rn. In the
present case, since orthogonal and symplectic Schur functions Oµ(yr), Spµ(yr) do not necessarily
vanish for `(µ) > r, one has extra terms. For example, for n = 2, r = 1, putting sλ = sλ(x1, x2),
Oλ = Oλ(y1), one has

(1−x1y1)(1−x2y1)(1−x1x2) = 1− s1O1 + s2O11 + s11O2 − s21O21 + s22O22

= 1− s1y1 + s20 + s11(y2
1−1)− s21(−y1) + s22(−y2

1) .
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One can eliminate the terms Spµ(yr), Oµ(yr) such that `(µ) > r. Indeed, for
λ ⊆ (r+α)n, one has r ≥ r − λ1 ≥ −α and

(x1 . . . xn)−αs(r+α)n(xn) = xr−λn,...,r−λ1πn...1 .

Symmetrizing under πN...1, withN ≥ n+α, annihilates all xr−λn,...,r−λ1 with r−λ1 <
0. In final, rewriting

∏n
i=1

∏r
j=1(xi−yj) = Yrn(x,y), one obtains :

Lemma 9.4.2.

Yrn(x,y)
∏
i≤j≤n

(1−x−1
i x−1

j ) πN...1 =
∑
λ⊆rn

(−1)|λ|srn/λ(xn)Spλ∼(yr) (9.4.20)

Yrn(x,y)
∏
i<j≤n

(1−x−1
i x−1

j ) πN...1 =
∑
λ⊆rn

(−1)|λ|srn/λ(xn)Oλ∼(yr) , (9.4.21)

with N ≥ 2n+1, in the first case, N ≥ 2n−1 in the second.



§ 9.5 — Maximal key polynomials 

9.5 Maximal key polynomials
The image of each operator π♥w0

is the space of polynomials invariant under the
action of the group of type♥. In particular, the images of dominant monomials are
given by the Weyl character formula (1.12.1). In our present notations, they are
the functions, corresponding to all partitions λ ∈ Nn, Kλω(x) in type A, K♥−λ(x)
in the other types, adding also the functions K−λ1,...,−λn−1,λn in type D.

We shall recognize in these functions the symplectic and orthogonal Schur
functions introduced in the preceding section by symmetrizing the kernels Ω♥

using the operator πω (acting only on x).
Indeed, all Kv(x) are sent to 0, except in the case v = λ dominant. The RHS

of (9.3.3, 9.3.4, 9.3.5) become ∑
λ

Kλω(x)K♥−λ(y) .

On the other hand, all left-hand sides are symmetric functions multiplied∏n
i=1

∏n
j=i(1 − xi/yj)

−1 in type B,C, and
∏n−1

i=1

∏n
j=i(1 − xi/yj)

−1 in type D.
Writing

n∏
i=1

n∏
j=i

1

1− xi/yj
=

∏
i=1..n

∏
j<i 1− xi/yj∏

i=1...n

∏
j=1..n 1− xi/yj

,

one has a denominator which is symmetrical, and a numerator which is a sum of
monomials xv, with v ≤ [0, 1, . . . , n−1]. These monomials are annihilated by πω,
except x0...0, and therefore the image of the numerator is 1. The same property is
true for type D, and in final one obtains the following identities (still with xn = 0
in the last equation) :

Ω̃B =

∏
1≤i<j≤n(1− xixj)

∏n
i=1(1 + xi)∏n

i,j=1(1− xiyj)(1− xi/yj)
=

∑
λ

sλ(x)KB
−λ(y), (9.5.1)

Ω̃C =

∏
1≤i<j≤n(1− xixj)∏n

i,j=1(1− xiyj)(1− xi/yj)
=

∑
λ

sλ(x)KC
−λ(y), (9.5.2)

Ω̃D =

∏
1≤i≤j≤n(1− xixj)∏n

i,j=1(1− xiyj)(1− xi/yj)
=

∑
λ:λn=0

sλ(x)KD
−λ(y) . (9.5.3)

Comparing with Littlewood’s generating functions (9.4.1) and (9.4.2), putting
y+ = {y1, . . . , yn, y

−1
n , . . . , y−1

1 }, one obtains

KB
−λ(y) = Oλ(y++1) & KC

−λ(y) = Spλ(y
+) & KD

−λ(y) = Oλ(y+) , (9.5.4)

with λn = 0 in type D.
In particular, when λn = 0, one passes from type D to type B by “adding 1

to the alphabet”. As in the theory of Schur functions, this means enumerating
all partitions differing by an horizontal strip from a given one. Instead of using
(9.5.4), let us have recourse to Weyl’s determinants to check the following property.
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Lemma 9.5.1. Let λ ∈ Nn be a partition such that λn = 0. Then

KB
−λ(x) =

∑
µ:λ/µhorizontal

KD
−µ(x) (9.5.5)

KD
−λ(x) =

∑
µ:λ/µ vertical

(−1)|λ/µ|KB
−µ(x) (9.5.6)

Proof. We use Weyl’s determinants (1.12.4, 1.12.6). Let us show the proof on an
example, taking λ = [5, 2, 0]. Weyl determinant for type B is then∣∣∣x7+1/2 − x−7−1/2 , x3+1/2 − x−3−1/2 , x1/2 − x−1/2

∣∣∣
x=x1,x2,x3

.

Dividing each row by (x1/2 − x−1/2), one obtains∣∣∣x7 + x6 + · · ·+ x−7 , x3 + · · ·+ x−3 , 1
∣∣∣ .

Subtracting each column to the preceding one transforms the determinant into∣∣∣ (x7+x−7) + · · · (x4+x−4) , (x3+x−3) + (x2+x−2) + (x1+x−1) , 1
∣∣∣ .

The factor
∏

x(
√
x −
√
x) being equal to ∆B/∆D, one reads from the preceding

determinant that
KB
−5,−2,0(x) =

∑
µ

KD
−µ(x) ,

sum over all partitions µ such that 5 ≥ µ1 ≥ 2 ≥ µ2 ≥ 0 ≥ µ3 ≥ 0, which is just
another way of describing horizontal strips. The second formula results formally
from the first one. QED

In detail, one has

KB
−5,−2,0 = KD

−5,−2,0 +KD
−5,−1,0 +KD

−4,−2,0 +KD
−5,0,0 +KD

−3,−2,0 +KD
−4,−1,0

+KD
−3,−1,0 +KD

−2,−2,0 +KD
−4,0,0 +KD

−3,0,0 +KD
−2,−1,0 +KD

−2,0,0 ,

KD
−5,−2,0 = KB

−5,−2,0 −KB
−5,−1,0 −KB

−4,−2,0 +KB
−4,−1,0 .

It is easy to extend (9.5.5) and (9.5.6) to the case of partitions with last part
6= 0. Indeed, (1.10.6) shows that

xλ(1 + sCn ) πDw0
= xλ(1 + sCn )xn−1,...,0 1

2
(1 + sC1 ) . . . (1 + sCn ) ∂•ω

xλ+[n−1,...,0](1 + sC1 ) . . . (1 + sCn ) ∂•ω

=

∣∣∣∣∣∣∣
xλ1+n−1

1 + x−λ1−n+1
1 · · · xλn1 + x−λn1

... ...
xλ1+n−1
n + x−λ1−n+1

n · · · xλnn + x−λnn

∣∣∣∣∣∣∣
1

∆(x•)
.
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Hence, Weyl’s determinant describes the sum KD
−λ + KD

−λsCn
, and the preceding

computation remains valid, at the cost of replacing KD
−λ by

K̃D
−λ = KD

−λ +KD
−λ sCn if λn 6= 0 , K̃D

−λ = KD
−λ otherwise .

In final, one has

KB
−λ(x) =

∑
µ:λ/µhorizontal

K̃D
−µ(x) (9.5.7)

K̃D
−λ(x) =

∑
µ:λ/µ vertical

(−1)|λ/µ|KB
−µ(x) (9.5.8)

For example,

KB
−2,−2,−1 =

(
KD
−2,−2,−1 +KD

−2,−1,1

)
+KD

−2,−2,0 +
(
KD
−2,−1,−1 +KD

−2,−1,1

)
+KD

−2,−1,0 .

Notice that the determinantal expression of K̃D
−λ shows that formula (9.5.4)

extends to all partitions, without the restriction λn = 0:

K̃D
−λ(x) = Oλ(x+) . (9.5.9)

Thus,

K̃D
−4,−2(x) = KD

−4,−2(x) +KD
−4,2(x)

= O42(x+) = s42(x+)− s42/2(x+) + s42/31(x+) .

Type D is also related to type C as shows the next lemma.
Lemma 9.5.2. Let λ ∈ Nn be a partition such that λn 6= 0. Then

KD
−λ(x)−KD

−λ sCn (x) = KC
−λ+1n

∏
i=1...n

(
x−1
i − xi

)
. (9.5.10)

Proof. The left-hand side is the image of (−1)nxλ1...λn−1(xλnn − x−λnn ) =
(−1)nxλ(1− sCn ) under πDw0

. According to (1.10.6),

(1− sCn )πDw0
= xn−1,...,0(1− sC1 ) . . . (1− sCn )∂•ω ,

and therefore

(−1)nxλ(1− sCn )πDw0
= (−1)nxλ−1n+[n−1,...,0]πC1 (x1−

1

x1

) . . . πCn (xn−
1

xn
)∂•ω

= xλ−1n+[n−1,...,0]πC1 . . . π
C
n (

1

x1

−x1) . . . (
1

xn
−xn)∂•ω

= xλ−1n+[n−1,...,0]πC1 . . . π
C
n ∂
•
ω(

1

x1

−x1) . . . (
1

xn
−xn)

= xλ−1n πCw0

∏
(x−1

i − xi) . QED

The two characters KD
−λ(x) and KD

−λ sCn
(x) come by pair. The following lemma

shows that they are in fact exchanged by any sCi .
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Lemma 9.5.3. Let λ be a partition in Nn. Then for any i = 1, . . . , n, one has

KD
−λ(x) sCi = KD

−λ sCn (x) . (9.5.11)

Proof.Given a constant ε, (1+εsC1 ) . . . (1+εsCn ) commutes with ∂•ω =
(∑

σ∈Sn
(−1)`(σ)σ

)
/∆(x•),

because it is symmetrical in x1, . . . , xn, and because ∆(x•) is invariant under any
sCi . Hence, using the expression (1.10.6) of πDw0

, one has

2sCnπ
D
w0
sCi =

(
(1 + sC1 ) . . . (1 + sCn )− (1− sC1 ) . . . (1− sCn )

)
∂•ω s

C
i

= ∂•ω

(
(1 + sC1 ) . . . (1 + sCn )− (1− sC1 ) . . . (1− sCn )

)
sCi

=
(

(1 + sC1 ) . . . (1 + sCn ) + (1− sC1 ) . . . (1− sCn )
)
∂•ω

and therefore sCnπDw0
sCi = πDw0

. QED
For example, KD

−2,−1(x) =
(
x2 + 1

x1

)(
1 + x2

x1

)(
x2

1 + 1
x2
2

)
and

KD
−2,1(x) =

(
1
x2

+ 1
x1

)(
1 + 1

x1x2

)
(x2

1 + x2
2).

A direct corollary of the expression given in Proposition (1.10.3) of πCw0
by type

A-divided differences is the following description of symplectic Schur functions in
terms of type A-key polynomials. Indeed, the operator πζ appearing in (1.10.3)
acts only by reordering the index of xλ = Kλ.
Proposition 9.5.4. Let λ ∈ Nn be a partition, v = [0, λn, 0, λn−1, . . . , 0, λ1]. Then

Spλ(x) = KC
−λ(x) = Kv

∣∣∣
x→{x1,x

−1
1 ,x2,x

−1
2 ,...}

. (9.5.12)

What is remarkable in this formula is that the RHS uses the alphabet {x1, x
−1
1 ,

x2, x
−1
2 , . . .} (which corresponds to considering the hyperoctaedral group as a

wreath product), while the LHS is generated using the order x1, x2, . . . , xn, x
−1
n , . . . , x−1

1 .
The general key polynomials KC

v , for v 6= λ cannot be related to the type A key
polynomials in the alphabet {x1, x

−1
1 , . . .}.

Since key polynomials have a combinatorial interpretation in terms of tableaux,
symplectic Schur functions inherits from the above proposition such a combinato-
rial description, evaluating i in xi and ı in x−1

i .
Corollary 9.5.5. Let λ ∈ Nn be a partition. Then KC

−λ(x) is the sum of all
contretableaux of shape λ on the alphabet {1, 1, 2, 2, . . . , n, n}, such that the letters
i, ı can occur only in rows n, n−1, . . . , n+1−i.

For example, for λ = [5, 3, 2], the admissible tableaux are those contretableaux
in {1, 1, . . .} of shape [5, 3, 2] which remain tableaux when concatanating on the
right the column [3, 2, 1]. Here is one of them :

1 1̄ 1̄ 3 3

1 1̄ 2

1 1̄

3̄

2̄

1̄

, evaluation x−1
1 x2x

2
3 .
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For λ = [1, 1, 0], there are 14 tableaux of shape [1, 1] on the alphabet {1, 1, 2, 2, 3, 3},

without 3 in the bottom row : 3
1

+ 3

1
+ 3

2
+ 3

2
+ 3

2
+ 3

1
+ 3

1
+ 3

2
+

2
2

+ 2
1

+ 2

1
+ 2

1
+ 2

1
+ 1

1
and the sum of these tableaux evaluates into

KC
−1,−1,0 = Sp11(x3) = x1 x2 +

x2

x3

+ x2 x3 +
x2

x1

+
1

x1 x3

+
x1

x3

+ 2 + x1 x3

+
x3

x1

+
x1

x2

+
1

x2 x3

+
x3

x2

+
1

x1 x2

.
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9.6 Symmetrizing further
One can easily increase the number of variables in a Schur function by using
symmetrizing operators. Indeed, for λ ∈ Nr, r ≤ n, ω = [n, . . . , 1], one has
sλ(xr)πω = sλ(xn), since π[r...1]πω = πω.

Because of the orientation of the Dynkin graph that we have chosen in types
B,C,D, the symmetrization of symplectic and orthogonal Schur functions is not
as straightforward.

For example, for n = 3, one has

KC
−4,−2 π

C
w0

= KC
−4,−2,0 +KC

−4,0,0 +KC
−3,−1,0 +KC

−2,−2,0 +KC
−2,0,0 ,

KB
−4,−2 π

B
w0

= KB
−4,−2,0 +KB

−4,−1,0 +KB
−4,0,0 +KB

−3,−2,0

+ 2KB
−3,−1,0 +KB

−3,0,0 +KB
−2,−2,0 +KB

−2,−1,0 +KB
−2,0,0 .

To describe these symmetrizations, we need the following values, which are a
direct consequence of (1.10.1), (1.10.3), (1.10.6).
Lemma 9.6.1. Given n, and i : −n+1 ≤ i ≤ n−1, i 6= 0, then for the groups of
type ♥ = Bn, Cn, Dn one has the vanishing of all xin π♥w0

, except

x−1
n πBw0

= −1 = x−2
n πCw0

.

Passing from xn−1 to xn and keeping the same set yn−1, corresponds, for what
concerns Littlewood’s generating functions3, to division by

Ξ =
n−1∏
i=1

(1− yixn)(1− yix−1
n ) = σ1

(
−(xn+x−1

n )yn−1

)
.

Therefore∑
λ

sλ(yn−1)K♥−λ π
♥
w0

=
(

Ξ π♥w0

)(∑
λ

sλ(yn−1)K♥−λ,0

)
, (9.6.1)

sum over all partitions in Nn−1 (with λn−1 = 0 in type ♥ = D).
To evaluate the factor Ξ π♥w0

, we need, according to the preceding lemma, to
extract the terms x0

n, x
−1
n and x−2

n of

Ξ =
∑
i,j

(−1)jsi,i(xn+x−1
n )sj(xn+x−1

n ) s2i1j(yn−1) .

Thus, the constant term of Ξ is equal to
∑

i,j: i+2j≤n−1 s2i12j(yn−1), the coeffi-
cient of x−2

n is equal to
∑

i,j: i+2j≤n−3 s2i12j+2(yn−1), while the coefficient of x−1
n is∑

0⊆λ⊆2n−1 sλ(yn−1).
Using the scalar product on symmetric functions of yn−1, one transforms as in

(9.4.10), (9.4.11), multiplication by its adjoint operation. In final, the preceding
computations give the looked for images of K♥−λ under π♥w0

:
3We have exchanged the role of x and y compared to (9.5.1), (9.5.2), (9.5.3).
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Proposition 9.6.2. Let n be an integer ≥ 3, λ ∈ Nn be a partition (with last part
λn−1 = 0 in type D). Then

Oλ(xBn−1) πBw0
=

∑
µ⊆2n−1

Oλ/µ(xBn ) (9.6.2)

Spλ(x
C
n−1) πCw0

=
∑

k
Spλ/2k(x

C
n ) (9.6.3)

Oλ(xDn−1) πDw0
=

∑
µ⊆2n−2, |µ| even

Oλ/µ(xDn ) , (9.6.4)

writing xBn = {x1, x
−1
1 , . . . , xn, x

−1
n , 1} and xCn = xDn = {x1, x

−1
1 , . . . , xn, x

−1
n }.

The examples on which we started the section may be rewritten

O42(xB2 )πBw0
= O42(xB3 ) +O42/1(xB3 ) +O42/2(xB3 ) +O42/11(xB3 )

+O42/21(xB3 ) +O42/22(xB3 ) ,

Sp42(xC2 )πCw0
= Sp42(xC3 ) + Sp42/2(xC3 ) + Sp42/22(xC3 ) ,

and we complete them, for n = 4, by

KD
−4,−1,0π

D
w0

= O42(xD3 )πDw0
= KD

−4,−2,0,0 +KD
−4,0,0,0 + 2KD

−3,−1,0,0

+KD
−2,−2,0,0 +KD

−2,0,0,0

= O42(xD4 ) +O42/2(xD4 ) +O42/11(xD4 ) +O42/22(xD4 ) .
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9.7 Finite symplectic Cauchy identity
In the case of symmetric functions, the two Cauchy identities relative to the ex-
pansion of the resultant R(xn,ym) or of

∏
i,j(1−xiyj)

−1 are equivalent. This was
no more the case in the non-symmetric case. For example, in type A the finite
form involves Schubert polynomials (2.10.1), while the other involves Demazure
characters (2.15.2).

Hasegawa [62] has given a symplectic generalization of the expansion of the
resultant.

Theorem 9.7.1 (Hasegawa). Let n,m be two positive integers. Then
n∏
i=1

m∏
j=1

(xi + x−1
i − yj − y−1

j ) =
∑
λ⊆nm

(−1)|λ|Spmn/λ∼(xn)Spλ(ym) . (9.7.1)

Proof. Since xki πCi = xki + xk−2
i + · · · + x−ki , the image of the Vandermonde in

xn ∪ ym by πxC1 . . . πxCn πyC1 . . . πyCm is equal to the Weyl determinant of type D:∣∣∣∣∣∣∣
1 xi+x

−1
i x2

i+x−2
i . . . xn+m−1

i
+x−n−m+1

i
... ... ... ...
1 yj+y−1

j y2
j+y−2

j . . . yn+m−1
j

+y−n−m+1
j

∣∣∣∣∣∣∣
i=1...n, j=1...m

= ∆ (x•n ∪ y•m) .

However,

∆(xn)sλ(xn)πxC1 . . . πxCn = xλ+ρπxC1 . . . πxCn ∂xω = Spλ(xn)∆(x•n)∆(xn)−1 ,

and therefore the image of

∆(xn∪ym) = ∆(xn)∆(ym)R(xn,ym) = ∆(xn)∆(ym)
∑
λ⊆nm

(−1)|λ|smn/λ∼(xn)sλ(ym)

under the product of πCi gives the required identity

∆ (x•n ∪ y•m) ∆(x•n)−1∆(y•m)−1 =
∑
λ⊆nm

(−1)|λ|Spmn/λ∼(xn)Spλ(ym) .

Hamel and King [61] give a bĳective proof of this identity. There is no known
analog for the orthogonal Schur functions.
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9.8 Rectangles and sums of Schur functions
As in the case of Schur functions, the characters indexed by rectangles (i.e. par-
titions with all parts equal) play a special role. Instead of type D, we introduce
two formal types D+, D− such that

πD
+

i = 1 + sCi & πD
−

i = 1− sCi , i = 1, . . . , n ,

and extend the expression of πBw0
and πCw0

to all types B,C,D±, taking ρ =
[n−1, . . . , 0]:

π♥w0
= xρπ♥1 . . . π

♥
n ∂
•
ω = xρ∂•ωπ

♥
1 . . . π

♥
n , (9.8.1)

Lemma 9.8.1. For any r ≥ 0, any type ♥ = B,C,D±, one has

K♥(−r)n = xr...r
∏

1≤i<j≤n

1

1− x−1
i x−1

j

π♥1 . . . π
♥
n . (9.8.2)

Proof. The function is equal to

xr
n+ρ∂•ω π

♥
1 . . . π

♥
n = xr

n+ρ∂ω
∏
i<j

1

1− x−1
i x−1

j

π♥1 . . . π
♥
n ,

and xrn+ρ∂ω = xr
n allows to conclude. QED

The following proposition shows that the functions K♥(−r)n can be obtained as
determinants of functions for n = 2.
Proposition 9.8.2. Let n = 2m be an even integer, r ≥ m−1. Then for ♥ =
B,C,D±, one has∣∣∣∣K♥−r,−r(xi, xj)∣∣∣∣ i=1...m

j=m+1...n

1

∆(x•1, . . . , x
•
m)∆(x•m+1, . . . , x

•
n)

= K♥(−r+m−1)n(xn) . (9.8.3)
Proof. The determinant can be written with an alternating sum over Sm, or
with the summation (m!)−1

∑
σ∈Sm,m

(−1)`(σ)σ over the Young subgroup Sm,m.
Therefore, putting ω′ = [m, . . . , 1, n . . . ,m+1], using (9.8.2) for n = 2, one rewrites
the left-hand side as

K♥−r,−r(x1, xm+1) . . . K♥−r,−r(xm, xn) ∂•ω′(m!)−1

= xr...r
1

1− x−1
1 x−1

m+1

. . .
1

1− x−1
m x−1

n

π♥1 . . . π
♥
n ∂
•
ω′(m!)−1 .

The divided difference ∂•ω′ commutes with the product π♥1 . . . π♥n because each x•i
does. Thus, the expression becomes

xr...r
1

1− x−1
1 x−1

m+1

. . .
1

1− x−1
m x−1

n

∂ω′
1

m!∏
i<j≤m

1

1− x−1
i x−1

j

∏
m<i<j≤n

1

1− x−1
i x−1

j

π♥1 . . . π
♥
n ∂
•
ω′ .
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Cauchy formula for the determinant det
(
1/(1 − x−1

i x−1
j )
)
allows to compute the

action of the divided difference, taking inverse variables 1/xi causing an extra
factor (x1 . . . xn)1−m compared to the usual case. In final the expression becomes
equal to

(x1 . . . xn)r+1−m
∏

1≤i<j≤n

1

1− x−1
i x−1

j

π♥1 . . . π
♥
n

which is equal, thanks to (9.8.2), to K♥(−r+m−1)n(xn). QED

The determinants with entries KD
−r,−r(xi, xj) or KD

−r,r(xi, xj) can also be de-
scribed. In fact, the matrices

[
xrix

r
jK

D
−r,−r(xi, xj)

]
i=1...m, j=m+1...n

and
[
xrix

r
jK

D
−r,r(xi, xj)

]
i=1...m, j=m+1...n

factorize into

[
1 · · · x2r

i

]
i=1...m

 1
...
x2r
j


j=m+1...n

&
[
1 · · · x2r

i

]
i=1...m

x
2r
j
...
1


j=m+1...n

respectively. From this one obtains

det
(
KD
−r,−r(xi, xj)

)
i=1...m, j=m+1...n

=
∆(x1, . . . , xm)∆(xm+1, . . . , xn)

xr...r
×∑

λ⊆(2r−m+1)m

sλ(x1, . . . , xm)sλ(xm+1, . . . , xn) (9.8.4)

det
(
KD
−r,r(xi, xj)

)
i=1...m, j=m+1...n

= (−1)(
m
2 ) ∆(x1, . . . , xm)∆(xm+1, . . . , xn)

xr...r
s(2r−m+1)m(x1, . . . , xn) . (9.8.5)

The determinants (9.8.3) occur in the computation of Pfaffians. According to
[110, Th. 4.1], given n = 2m, given indeterminates a1, . . . , an, gij, i, j = 1..n,
with gij = gji, then the Pfaffian Pfaff

(
(ai−aj)gij

)
is obtained, up to a scalar,

as the image under the alternating sum of permutations, acting on ai and gij
simultaneously, of

(a1−am+1) . . . (am−an) det
(
gij
)
i=1...m, j=m+1...n

.

Taking gij = K♥(xi, xj), one has a summation where the symmetric function
K♥(−r+m−1)n(xn) occurs as a common factor. The initial case is for r = m−1 the
determinant being equal to ∆(x•1, . . . , x

•
m)∆(x•m+1, . . . , x

•
n). Up to a minor change,

this case corresponds to the Pffafian Pfaff
(
ai−aj

1−xixj

)
considered by Sundquist[189].

Indeed, for gij = (1 − xixj)
−1, the determinant det

(
gij
)
i=1...m, j=m+1...n

is equal,
thanks to Cauchy again, to

∆(x•1, . . . , x
•
m)∆(x•m+1, . . . , x

•
n)∏

1≤i<j≤n 1− xixj
xm−1,...,m−1 .
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Proposition 9.8.3. Let n = 2m be an even integer, r ≥ m−1. Let Pn =

Pfaff
(
ai−aj

1−xixj

)∏
i<j(1− xixj)∆(xn)−1. Then for ♥ = B,C,D±, one has

Pfaff
(
(ai−aj)K

♥
−r,−r(xi, xj)

)
= K♥(−r+m−1)n(xn) Pn . (9.8.6)

Specializing ai → xi, i = 1 . . . n, and using that Pn becomes equal4 to ∆(xn)
∏

i<j(1−
xixj)

−1, one obtains

Corollary 9.8.4. Given n = 2m, r ≥ m−1, one has, for type ♥ = B,C,D±

Pfaff
(
(xi−xj)K

♥
−r,−r(xi, xj)

)
= K♥(−r+m−1)n(xn) ∆(xn)x1−m,...,1−m . (9.8.7)

For example, for n = 4, r = 2, ♥ = C, one has

KC
−2,−2(xi, xj) = s22(xi + xj + x−1

i + x−1
j )− s11(xi + xj + x−1

i + x−1
j ) := f(i, j) ,

and
Pfaff((xi − xj)f(i, j))1≤i<j≤4 = KC

−1,−1,−1,−1(x4)∆(x4)/x1111 ,

with KC
−1,−1,−1,−1(x4) = 2 +

∑
v x

v, sum over all exponents: vi ∈ {0, 1, −1},∑
|vi| = 2 or 4.
The elementary functions K♥−r,−r can be written in terms of Schur functions of

x1, x2. From Weyl’s determinants, one finds that

xrrKB
−r,−r =

∑
λ⊆[2r,2r]

sλ , (9.8.8)

xrrKC
−r,−r =

∑
λ⊆[2r,2r], λ even

sλ , (9.8.9)

xrrKD+

−r,−r =
∑
i=0...r

srr + s(2r) . (9.8.10)

xrrKD−

−r,−r =
∑
i=0...r

srr − s(2r) . (9.8.11)

One remarks that the first sum is the sum of all minors of order 2 of the matrix[
sj−i(x2)

]
i≤2,j≤2r+2

. This indicates that symplectic and orthogonal characters can
be used to describe some sums of Schur functions, as first shown by Macdonald
[146, p. 83]. The idea to use Pfaffians is due to Stembridge [185].

Indeed, given a matrix M of order 2m×N , with N > 2m, then, according to
[92, ?] the sum of all minors of order 2m of M is equal to the Pfaffian Pfaff(zij),
denoting zij the sum of all minors of order 2 taken on rows i, j.

4The value of Pfaff((xi−xj)(1−xixj)−1) has been obtained by many authors, among which
[92, 185] .
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Since xrr(x1 − x2)KB
−r,−r(x1, x2) is a sum of minors, (9.8.7) gives the first

statement5, due to Macdonald [146, p. 83] in the next theorem. More elaborate
summations on minors lift the restriction that n be even as in (9.8.7). They also
give the second statement, due to Stembridge [185], and the last two which are
due to Okada [156] (going back to type D instead of using D±).

Proposition 9.8.5. Let n, r be positive integers. Then

KB
(−r)n = x−r,...,−r

∑
λ⊆(2r)n

sλ(xn) (9.8.12)

KC
(−r)n = x−r,...,−r

∑
λ⊆(2r)n, even

sλ(xn) (9.8.13)

KD
(−r)n = x−r,...,−r

∑
λ⊆(2r)n, even cols

sλ(xn) (9.8.14)

KD
(−r)(n−1),r = x−r,...,−r

∑
λ⊆(2r)(n−1), even cols

s2r,λ(xn) (9.8.15)

Remark To evaluate the Pfaffians above, we have only used appropriate factor-
izations of π♥w0

. But to pass from these evaluations to sums of Schur functions,
we had recourse to theorems on sums of minors. One can bypass this step by
following the action on sums of Schur functions of the π♥i operators.

For example, KB
−2,−2,−2 is equal to

x222πBw0
= x222(πB3 π2π

B
3 π2)(π1π2π

B
3 π2π1) = KB

2,−2,−2(π1π2π
B
3 π2π1) .

By induction on n, one knows that KB
2,−2,−2 = x2

1/x
022
∑

λ⊆44 sλ(x2, x3), and thus

KB
2,−2,−2π1π2 = K−2,−2,2 = x−2,−2,−2

∑
λ⊆44

s4,λ(x1, x2, x3) .

It remains to show that the image of this sum under πB3 π2π1, which is Kb
−2,−2,−2,

is equal to x−2,−2,−2
∑

µ⊆444 sµ(x1, x2, x3). This is done using (1.11.5), but not
totally straightforward since cancellations occur.

5Macdonald takes r to be a half-integer, and thus (2r)n can be any rectangle of width n. We
have avoided using square roots of variables to handle only polynomials, but the computation
of the Pfaffian is still valid in this more general case. We have also restricted n to be even, but
it is well known how to adapt the theory of Paffians to matrices of odd order.



Chapter 10
Macdonald polynomials

There is an abundant literature about Macdonald polynomials, we shall restrict
ourselves to properties of the type encountered for Schubert, Grothendieck, key
polynomials: recursive generation, multiplication by a single variable, transition
formula, Hopf decomposition, etc. In that respect, there is a strong similarity
between Schubert polynomials and Macdonald polynomials.

To make connections with literature easier, we specialize the parameters t1 → t,
t2 → −1, though keeping t1, t2 would reveal more symmetry.

10.1 Interpolation Macdonald polynomials

We have at our disposal three bases of Pol(xn), {Yv, v ∈ Nn}, {G̃v, v ∈ Nn},
{Kv, v ∈ Nn}, we want to add a fourth one, {Mv, v ∈ Nn}, which relates easily
with the usual symmetric or nonsymmetric Macdonald polynomials.

This basis, the interpolation Macdonald polynomials, has been defined by Sahi
and Knop. It can be defined, up to normalization, by the vanishing in certain inter-
polation points, exactly as Schubert polynomials. These points have coordinates
of the type qitj, for Schubert we are using points with coordinates a permutation
of independent parameters y1, y2, . . ..

The underlying group is the affine symmetric group, instead of only the sym-
metric group. In consequence, though using vectors of n components, it will be
convenient to consider these vectors as the n first components of an infinite vector,
as we do in [102].

For what concerns the indexing of Macdonald polynomials, v ∈ Nn is extended
to v ∈ N∞ such that vi+rn = vi + r, r ∈ Z.

Similarly, we shall use an infinite set of indeterminates xi : i ∈ Z, such that
xi+rn = qrxi. Now, apart from the simple transpositions si, 0 < i < n (which
transpose xi+rn and xi+1+rn, resp. vi+rn and vi+1+rn, for all r at the same time),
we also have a translation τ : xi → xi+1, vi → vi+1, and its inverse τ̄ = τ−1, that

255
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one can also write

[x1, . . . , xn−1, xn]
τ−→ [x2, . . . , xn, qx1] ,

[v1, . . . , vn−1, vn]
τ−→ [v2, . . . , vn, v1 + 1] .

Let moreover s0 := τs1τ̄ = τ̄ sn−1τ . This is the extra generator such that
{s0, s1, . . . , sn−1} generates the affine symmetric group.

The interpolation points have also an interpretation as spectral vectors (relative
to the Cherednik elements). We shall keep this last terminology, though not using
the Cherednik elements. Given a dominant λ ∈ Nn, the spectral vector 〈λ〉 is
[tn−1qλ1 , . . . , t0qλn ]. For a general v ∈ Nn, such that λ = v ↓, and σ ∈ Sn, of
minimal length, such that v = λσ, one defines 〈v〉 = 〈λ〉σ. When needed, 〈v〉 can
be thought as infinite, by putting 〈v〉n+i = q 〈v〉i.

For example, for v = [2, 0, 6, 2], one has v = [6, 2, 2, 0] s1s3s2, 〈6, 2, 2, 0〉 =
[q6t3, q2t2, q2t, 1], 〈2, 0, 6, 2〉 = 〈6, 2, 2, 0〉 s1s3s2 = [q2t2, 1, q6t3, q2t]. Moreover, v
must be looked at as the prefix of [2, 0, 6, 2, 3, 1, 7, 3, 4, 2, 8, 4, . . .].

We need to generalize the inversions of a permutation. We define recursively
e(v) by

e(vτ) = e(v) & e (vsi) = e(v) (tγ − 1)(γ − 1)−1

when vi < vi+1, with γ = 〈v〉i+1〈v〉−1
i , starting with e([0 . . . 0]) = 1.

Contrary to the case of Schubert polynomials, the lexicographic order is no
more convenient. We have to combine orders on partitions and on permutations.
Recall that the natural order on partitions is defined as follows. For λ, µ ∈ Part,
then λ ≥Part µ iff for any i : 1 ≤ i ≤ n, λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi.

Given v ∈ Nn, denote λ(v, i) the decreasing reordering of v1, . . . , vi. Then, for
two permutations u, v of the same element of Nn, u >S v iff for any i, λ(u, i) ≥
λ(v, i) componentwise.

We can now set : u > v iff

|u| > |v| or
(
|u| = |v| & λ(u, n) >Part λ(v, n)

)
or
(
λ(u, n) = λ(v, n) & u >S v

)
.

For example [4, 0, 0] > [0, 0, 4] > [2, 2, 0] > [2, 0, 2] > [1, 2, 1] > [3, 0, 0] is a chain
with respect to this order.

The leading term of a polynomial is the restriction of the polynomial to its
maximal elements with respect to this order, used by Knop.

Definition 10.1.1. Given v ∈ Nn, then the interpolation Macdonald polynomial
Mv is the only polynomial of degree |v| such that

Mv(〈u〉) = 0 , u 6= v, |u| ≤ |v| (10.1.1)
The leading term is xvq−

P
i (
vi
2 ) . (10.1.2)
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10.2 Recursive generation of Macdonald poly-
nomials

As for Schubert polynomials, the existence and unicity is proved by extracting
from the vanishing conditions a recursion Mv → Mvsi , together with a recursion
Mv →Mvτ .

In the first case, one essentially needs to change the conditions
Mv(〈vsi〉) = 0 &Mv(〈v〉) 6= 0 into Mvsi(〈vsi〉) 6= 0 &Mvsi(〈v〉) = 0

and this is done by using the operator Ti+c, where c is a specific constant furnished
by the following lemma.

Lemma 10.2.1. Let α, β, β 6= α, tα, F (xi, xi+1) be such that F (α, β) 6= 0, F (β, α) =

0. Then G(xi, xi+1) := F (xi, xi+1)
(
Ti + t−1

β/α−1

)
is such that G(α, β) = 0, G(β, α) 6=

0.

Proof. Write F = f + xi+1g, with f, g ∈ Sym(xi, xi+1). Then G = (t+ c)f + (xi +
cxi+1)g. The hypothesis is that

f(α, β) + βg(α, β) 6= 0 , f(α, β) + αg(α, β) = 0

The vanishing of G(α, β) requires that c = (t − 1)(β/α − 1)−1, in which case
G(β, α) = (βα−1 − t)(βα−1 − 1)−1F (α, β) 6= 0. QED

Of course, if F (α, β) = 0 = F (β, α), then G(xi, xi+1)(Ti + c), for any constant
c, is such that G(α, β) = 0 = G(β, α).

From this remark and Lemma 10.2.1, one deduces that if F satisfies (10.1.1)
then G = F (Ti + (t − 1)(γ − 1)−1), with β = 〈v〉i+1, α = 〈v〉i, γ = β/α, also
satisfies (10.1.1).

Vanishing conditions propagate under translation: f(〈u〉) = 0 implies g(〈uτ〉) =
0, with g = f τ̄ . But the vectors uτ are exactly those w such that wn 6= 0. There-
fore, if f(〈u〉) = 0 for all u : |u| ≤ |v|, u 6= v, then g(〈w〉) = 0 for all w : |w| ≤ |vτ |,
w 6= w, wn 6= 0. Since 〈w〉n = 1 when wn = 0, the polynomial Mv τ̄(xn − 1) sat-
isfies the vanishing conditions (10.1.1) for the index vτ , and the coefficient of xvτ
is equal to the coefficient of xv in Mv, divided by q.

Finally, one has the following recursive definition of Macdonald polynomials,
due to Knop [77] (who reverses the alphabet xn, compared to the present defini-
tion):

Theorem 10.2.2. The Macdonald polynomials satisfy the recursions

Mvsi = Mv

(
Ti +

t− 1

〈v〉i+1〈v〉−1
i − 1

)
, if vi < vi+1 , (10.2.1)

and
Mvτ = Mv τ̄ (xn − 1) , (10.2.2)

starting with M0...0 = 1.
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One could have chosen to normalize Macdonald polynomials by specifying the
value ‖v‖ := Mv(〈v〉). The theorem implies that, when vi < vi+1, ‖vsi‖/‖v‖ =
(γ − t)/(γ − 1), with γ = 〈v〉i+1〈v〉−1

i . Moreover, ‖vτ‖/‖v‖ = q〈v〉1 − 1, and this
suffices to determine ‖v‖ starting from 1.

Notice that (10.2.1) means that the linear span Vλ of the Mv, with v such that
v↓= λ, is a space of representation of the Hecke algebra with a Yang-Baxter basis
Mv (generated from Mv↑, taking the spectral vector 〈v↑〉).

When λ has equal parts, then the space Vλ is not of dimension n!, but the con-
struction is still valid! Indeed, if vi = vi+1, then 〈v〉i+1 = t〈v〉i, Mv is symmetrical
in xi, xi+1 and Mv

(
Ti + (t−1)/(t−1)

)
= Mv(t+ 1).

The matrices representing T1, . . . , Tn−1 in the Macdonald are easy to write,
thanks to (10.2.1). More generally, the matrix representing any element ~ of the
Hecke algebra is easy to describe. According to the vanishing conditions, its entries
are

Mv~
(
〈u〉
)
‖u‖−1 .

We can keep the matrices and specialize the Macdonald polynomials, or replace
them by simpler polynomials. They are many ways to compute in the space Vλ.

Indeed, suppose that there exist v ∈ Nn, µ dominant, a constant C, and a
function f(x1, . . . , xn) such that

f
(
〈u〉
)

= CMv

(
〈u〉
)
∀u : u↓= µ .

Then f can be extended to a family {fw : w↓= v↓}, such that

fwsi =

(
Ti +

t− 1

〈w〉i+1〈w〉−1
i − 1

)
, if wi < wi+1 ,

and
fw
(
〈u〉
)

= CMw

(
〈u〉
)
.

Notice that one can generate the Macdonald polynomials in Vλ starting from any
of them, say Mv, using operators Ti + t−1

γ−1
, or

(
Ti + t−1

γ−1−1

)
(γ−1)2

(tγ−1)(γ−t) . We can use
the same operators, starting from f , to generate the fw, f being renamed fv on
this occasion.

For example, take f such that f
(
〈µ〉
)

= 1 and that f
(
〈u〉
)

= 0 for all u such
that u↓= µ, u 6= µ. Then fw

(
〈u〉
)

= 0 if u 6= w, and fw
(
〈u〉
)

= ‖w‖ ‖µ‖−1.
We shall describe in the next section simple polynomials which allow to eval-

uate Mv

(
〈u〉
)
when |u| = [v|+ 1.

It is shown in [102] that one can generalize Macdonald polynomials by using
other affine operations than (10.2.2). In particular, taking two parameters a, b,
one defines polynomials Mv(x, a, b) by using both (10.2.1) and

Mvτ (x, a, b) = Mv(x, a, b) τ̄
xn − a
1− bxn

. (10.2.3)
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These polynomials are related to the BCn-symmetric polynomials of Rains [170]
in the symmetric case. The constants appearing in connection with the polyno-
mials Mv(x, a, b) give a better understanding of the constants related to the usual
polynomials Mv = Mv(x, 1, 0).

10.3 A baby kernel
Much of the theory of Schubert polynomials can be recovered from the study of the
kernel

∏
i+j≤n(yi − xj). We cannot expect a finite kernel for Macdonald polyno-

mials, nevertheless a “baby kernel” similar to the kernel for Schubert polynomials
will already provide properties of Macdonald polynomials.

Define this kernel as

�(x,y) =
∏

1≤i<j≤n

(xj − yi)(xi − tyj) .

Then the action of the Hecke algebra on this element is easily described :

Proposition 10.3.1. Let v ∈ Nn. Then, with γ = yi+1/yi, one has

� (x,y)

(
Ti +

t− 1

γ − 1

)
=
tγ − 1

γ − 1
� (x,ysi) . (10.3.1)

As a consequence, one has the symmetry

� (x,y)dx
i = �(x,y)dy

i , (10.3.2)

Proof. Modulo a factor symmetrical in xi, xi+1,

� (x,y) = (xi − tyi+1)(xi+1 − yi)
=
(
xixi+1 + tyiyi+1 − yixi − yixi+1

)
+
(
yi − yi+1)xi+1 .

At this stage, we need only know that 1Ti = t, xi+1Ti = xi to conclude for the
first equation.

Recall that dx
i = Ti + 1 = (txi − xi+1)∂i, dy

i = (tyi − yi+1)∂y
i . Writing

Ti + 1 = Ti +
t− 1

yi+1y
−1
i − 1

+
yi+1 − tyi
yi+1 − yi

,

one sees that the second statement is a rewriting of the first one, since

�(x,y)�yi = �(x,y)(tyi − yi+1)∂yi

= �(x,y)
tyi − yi+1

yi − yi+1

+�(x,ysi)
tyi+1 − yi
yi+1 − yi

.

QED
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As a consequence, the space generated by the action ofHn on �(x,y) coincides
with the span of �(x,yσ) : σ ∈ Sn (with rational functions in y1, . . . , yn as
coefficients). Putting ∩(yσ) =

∏
ji∈σ(tyj − yi)(yj − yi)−1 , then Eq.10.3.1 tells us

that {∩(yσ)� (x,yσ) : σ ∈ Sn} is a Yang-Baxter basis with spectral vector y.
Let now w ∈ Nn be regular anti-dominant, i.e. 0 ≤ w1 < · · · < wn. Specializing

y = 〈w〉, one sees from (10.3.1) that {Mv : v ↑= w} and
{∩(〈v〉) � (x, 〈v〉)} are two Yang-Baxter bases with the same spectral vector.

To study Mv, we need one more function F (x, v), which belongs to Sym(x)
and depends only upon λ : v↓. Let F(λ) := {tn−iqλi−j, i = 1 . . . n, j = 1 . . . λi −
λi+1 − 1}, putting λn+1 = 0 for the careful reader. Define

F (x, v) =
R(x,F(v+))

R(x, tnq + · · ·+ tnqk)
,

with k = max(v), and R(A,B) =
∏

a∈A
∏

b∈B(a−b) as before.
We moreover notice that, if v has equal components, then the specialization

�(x, v) of �(x,y) in y = 〈v〉 has a factor which is symmetrical in x, namely
R(x, 〈v〉 ∩ 〈v0〉), i.e. the product of all R(x, tiqj) such that both tiqj and ti−1qj

are components of 〈v〉.
For example, if v = [6, 1, 3, 6, 0, 6, 0, 3], then, as sets, 〈6, 1, 3, 6, 0, 6, 0, 3〉 =

{t7q6, t2q1, t4q3, t6q6, t1q0, t5q6, t0q0, t3q3}, 〈v0〉 = 〈6, 1, 3, 6, 0, 6, 0, 3, 0〉 = {t8q6, t3q1,
t5q3, t7q6, t2q0, t6q6, t1q0, t4q3, t0q0} and the intersection is {t7q6, t6q6, t4q3, t1q0}.

Define �̃(x, v) to be the quotient of �(x, v) by the symmetrical factor.
Following [134] let, for u ∈ Nn, and µ = u↓,

Eu(t, 1) = (t−1)−1

n∏
i=1

µi−1∏
j=0

(t− qjti−n)

and denote F (u, v), �̃(u, v) the respective specializations in x = 〈u〉 of F (x, v),
�̃(x, v). We can replace ∩(〈v〉) by e(v), since e(〈vsi〉) = e(〈v〉)(tγ − 1)(γ − 1)−1

when vi < vi+1, with γ = 〈v〉i+1〈v〉−1
i .

Proposition 10.3.2. For u, v such that |u| = |v|+ 1, then

Mv

(
〈u〉
)

= (−qtn−1)|v|F (u, v)Eu(t, 1) e (v) �̃(u, v) . (10.3.3)

Proof. The proposition is compatible with v → vsi, thanks to (10.3.1). We have
to check the behaviour of each function with respect to (u, v)→ (uτ, vτ), but this
presents no difficulty. The only specializations which are missing forMvτ , knowing
those of Mv, are Mvτ (〈u〉), u : un = 0, such u having no predecessor under τ . But
in that case Mvτ (〈u〉) = 0 since 〈u〉n = 1. On the other hand, if vτ has a zero
part, then �̃(u, v) = 0; if not then t0q0 ∈ F(vτ) and F (u, v) = 0. Therefore, the
proposition is true for vτ and all the permutations of uτ . This suffices to make
it valid for any w permutation of vτ , and any permutation of uτ , and therefore
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the first part of the proposition is proved by induction on |v|. The case |u| = |v|
is treated in a similar manner, the slight difference pertaining to the extra factor
t− 1 occuring indeed for v = [0, . . . , 0]. QED

For |u| − |v| > 1, the specialization Mv

(
〈u〉
)
does not, in general, factor into

products of the type (tiqj − 1)±1. Therefore the function F (u, v)�̃(u, v) cannot
qualify to approximate Mv

(
〈u〉
)
. We conjecture however that

Mv

(
〈u〉
)
6= 0 iff F (u, v) �̃(u, v) 6= 0 . (10.3.4)

Knop has shown that u+ 6⊇ v+ implies the nullity of Mv

(
〈u〉
)
. It is a pure

combinatorial problem that we leave to the reader, to check that u+ 6⊇ v+ implies
the nullity of the explicit function F (u, v)�̃(u, v).

The product that we have written in (10.3.3) is not optimal, since F (u, v) has
terms in denominator which can cancel with other terms. We have given a more
compact expression elsewhere, that we shall not use in this text.

The only reduced evaluation that we shall need is given in the next proposition
(the proof, checking the compatibility with respect to (u, v) → (uτ, vτ) being
omitted).

Proposition 10.3.3. Given u ∈ Nn, let k = max(u), i be the leftmost position of
k in u. Let v = [. . . , ui−1, k− 1, ui+1, . . .], and β be such that 〈v〉i = qk−1tβ. Then

Mv

(
〈u〉
)
‖u‖−1 = t−β(tn−1−βq − 1)−1 (10.3.5)

10.4 Multiplication by an indeterminate
Given any polynomial f(x) of degree 1, then f(x)Mv(x) vanishes on all u : |u| ≤
|v|, u 6= v, and therefore(

f(x)− f(〈v〉)
)
Mv(x) =

∑
u: |u|=|v|+1

cuvMu .

The structure constants cuv are determined by specializing the equation in every
u, allowing to rewrite it as

(
f(x)− f(〈v〉)

)
Mv(x) =

∑
u: |u|=|v|+1

(
f(〈u〉)− f(〈v〉)

)Mv(〈u〉)
‖u‖

Mu(x) .

Taking f(x) = x1 + · · · + xn is sufficient to see all non-zero specializations
Mv(〈u〉) occur, since f(〈u〉) 6= f(〈v〉) when |u| 6= |v|.

Denote U, V the sum of components of 〈u〉, 〈v〉. Using (10.3.3), one gets :
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Theorem 10.4.1.

(x1 + · · ·+ xn − V)Mv(x)

= (−qtn−1)|v|
∑

u: |u|=|v|+1

(U−V)
e(v)

‖u‖
F (u, v)Eu(t, 1) �̃(u, v)Mu(x) (10.4.1)

(
xi
〈v〉i
− 1

)
(−qtn−1)−|v|Mv(x)

=
∑

u: 〈u〉i 6=〈v〉i

(
〈u〉i
〈v〉i
− 1

)
e(v)

‖u‖
F (u, v)Eu(t, 1) �̃(u, v)Mu(x) (10.4.2)

For example, for i = 1, v = [1, 0], u = [0, 2], then 〈u〉1/〈v〉1 − 1 = 1/(tq) −
1, e([1, 0]) = (qt2 − 1)(tq − 1)−1, ||0, 2|| = t (q − 1) (q2t− 1), F ([0, 2], [1, 0]) =(
tq(−q + t)(t2q − 1)

)−1, E02(t, 1) = t− q, �̃([0, 2], [1, 0]) = −tq(t− 1)(q − 1) and
the coefficient of M02 in the product (x1/tq − 1)M10 is (1/t− 1)(tq2 − 1)−1.

One can write more compactly the coefficients occurring in the preceding two
formulas, in particular with the help of the functions Eu/v(a, b) studied in [134].
The important property of these coefficients is that they are products of factors
of the type (tiqj − 1)±1, as in the case of many of the constants appearing in the
theory of symmetric Macdonald polynomials.

Computing an example, one sees a structure emerge on the set of u : |u| =
|v|+ 1, Mv(〈u〉 6= 0 (call such u the successors of v; here v = [5, 0, 2]) :

503 ___ 206

LLLLLLL

026

r r r r
062 602 ,

512 521

edges being the simple transpositions s0 −−, s1 −−, s2 ==.
The statement generalizing the preceding figure (equivalent to the description

of Knop [78], and which results from easy-to-prove combinatorial properties of the
function F (u, v)Eu(t, 1), is

Proposition 10.4.2. Let u, v ∈ Nn, |u| = |v|+1. Then u is a successor of v iff
there exist k ∈ {0, . . . , n−1}, and a subword σ of sn−1 · · · s1 such that

uτ k = vτ k+1 σ .

For example, the above figure decomposes into the (overlapping) strings [0, 2, 6]σ,
[2, 6, 1]στ−1, [6, 1, 3]στ−2, with σ ∈ {1, s2, s1, s2s1}.

Baratta [4] has also obtained a degree-1 Pieri formula for Macdonald polyno-
mials.
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10.5 Transitions
As for Schubert polynomials, choosing an appropriate i for the product xiMv(x)
provides a recursion on the Macdonald basis, that we shall still call a transition.

Proposition 10.5.1. Given u ∈ Nn, let k = max(u), i be the leftmost position of
k in u. Let v = [. . . , ui−1, k− 1, ui+1, . . .], and β be such that 〈v〉i = qk−1tβ. Then

Mu(x) = (xiq
−k+1 − tβ)Mv(x) + tβ

∑
w

Mv(〈w〉)
‖w‖

(
1− 〈w〉i
〈v〉i

)
Mw(x) , (10.5.1)

summed over the successors w of v such that 〈w〉i 6= 〈v〉i, and w 6= u. Moreover,
for such w, one has w < u.

Proof. We have evaluated Mv(〈w〉) in Prop. 10.3.3. There remains only to check
the statement about the order, that we skip. QED

Notice that the exponent β is equal to

n− 1−#(j : j > i, uj = k)−#(j : j < i, uj = k−1) . (10.5.2)

In other words, representing u by a diagram of boxes of coordinates (1, 0), . . . ,
(1, u1−1), . . . , (n, 0), . . . , (n, un−1), then β is equal to the number of points (k, j), j >
i and (k−1, j), j < i which are not occupied by a box.

One can iterate the transition formula. This gives a canonical decomposi-
tion of any Macdonald polynomial into sums of products of “shifted monomials”∏

(xiq
−a − tb), the specialization t = 0 of these monomials being of degree |v|.

For example, writing ij for a factor tiqj − 1, starting with u = [2, 0, 2], one has
v = [1, 0, 2], 〈v〉 = [tq, 1, t2q2] and the following sequence of transitions :

M202 =
(
x1q

−1 − t
)
M102 +

10

22
M022 ,

M022 =
(
x2q

−1 − t
)
M012 + tq

10 · 10

11 · 21
M121 +

10 · 31

21 · 21
M112 ,

M121 =
(
x2q

−1 − t
)
M111 +

10

21
M112 ,

M112 =
(
x3q

−1 − 1
)
M111 ,

leading to polynomials of degree 3 that one assumes to be known by induction on
the degree.

To reduce the size of the output, let us represent each factor xj/qi−1 − tβ by
a black square in the Cartesian plane (row i, column j) ( β is determined by i, j,
according to (10.5.2)). Then the final outcome of the transitions for M202 is

· · ·
· � ·
� � �

10 · 10

11 · 22
+
· · ·
· · �
� � �

10 · 10

11 · 22
+
· · ·
� · ·
� � �

10

11
+
· · ·
� · �
· � �

10

11
+
· · ·
· � �
· � �

10

22
+
· · ·
� · �
� · �

with leading term
· · ·
� · �
� · �

= (x1q
−1 − t)(x1 − t)(x3q

−1 − t)(x3 − 1).



 Chapter 10 — Macdonald polynomials

Haglund, Haiman, Loehr [59] give a combinatorial formula for the component
of degree |u| of Mu, which involves, in general, another enumeration than the
one by transition. Still another decomposition is furnished, in the symmetric and
non-homogeneous case, by Okounkov [159, 160, 161].

10.6 Symmetric Macdonald polynomials
In the space Vλ, which has basis {Mv : v↓= λ}, one can build another basis M̂v,
still starting with M̂λ↑ = Mλ↑, but using the spectral vector [0, 1, . . . , tn−1] this
time.

In the case n = 2, we have already used di = Ti + 1 = (txi − xi+1)∂i, wich
sends polynomials onto polynomials symmetrical in xi, xi+1. This shows that
M̂λ is symmetrical in every pair of consecutive variables, hence symmetrical in
x. However, in the space Vλ, there is only one symmetrical polynomial (up to a
scalar): being invariant under each di/(1+t) determines the expansion in the basis
Mv, once knowing one coefficient. This polynomial is the symmetrical Macdonald
polynomial of index λ, its component of degree |λ| being the original Macdonald
polynomial [?].

Thus M̂λ = M̂λ↑dω is symmetrical, and moreover every Mvdω is symmetrical
and proportional to the symmetric Macdonald polynomial belonging to the space
Vλ. As a consequence, one can study the symmetric polynomial by just using dω.
There are other methods, in particular some operators on symmetric functions
which are described in the book of Macdonald.

As a side remark, let us determine the image of �(x,y) under dω. From
(10.3.2), one obtains that this polynomial Gn(x,y) is also symmetrical in y.
Writing the recursion Gn → Gn+1, one realizes that Gn(x,y) is equal to the
Gaudin-Izergin-Korepin function :

R(x,y)R(x, ty)

∆(x)∆(y)
det

(
1

xi − yj)(xi − tyj)

)
.

The relevance of this last function to the theory of Macdonald polynomials has
been pointed out by Warnaar [192], as well as physicists [70, 109].
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10.7 Macdonald polynomials versus Key poly-
nomials

The generation of Macdonald polynomials involves operators of the type

Ti +
t− 1

γ − 1
= πi(t− 1)− si +

t− 1

γ − 1
,

with some γ’s, which are rational functions in q, t, given by a spectral vector.
The limits t = 0 or t = ∞ clearly must have special properties. To study

them, it is better to take the Hecke relation (Ti − t1)(Ti − t2) = 0 instead of
(Ti − t)(Ti + 1) = 0, and transform spectral vectors by t → −t1/t2, without
changing the affine induction.

Let us still denote, in this section, by Mv the homogeneous Macdonald poly-
nomials with parameters t1, t2, q. The operators to use in the recursion are now

Ti +
t1 + t2
γ − 1

= πi(t1 + t2)− t2si +
t1 + t2
γ − 1

.

The first specialisation that we shall consider is t1 = 0, t2 = −1. Let us
denote M̃v the specialisation t1 = 0, t2 = −1 of the normalized polynomial
Mv/coeff(Mv, x

v).
In that case, the constant γ = 〈v〉i+1〈v〉−1

i used in the recursion Mv → Mvsi ,
when vi < vi+1, is of the type qvi+1−vi(−t1/t2)α, with α > 1, and tends towards 0.
The operator Ti + (t1 + t2)(γ − 1)−1 tends towards −πi + si + 1, which sends 1 to
1 and xi + 1 to xi + xi+1. Thus this last operator is a divided difference πxi+1,xi

for the reversed alphabet. Therefore,

M̃vsi = M̃v πxi+1,xi . (10.7.1)

Suppose that we know thatMv = Nv +q ?, with Nv = Kvω(xω), and ? ∈ C[q](xn).
Then (10.7.1) shows that, modulo q, Mvsi is still a key polynomial for the reversed
alphabet xωn.

Let v be antidominant. The affine operation does not imply t1, t2. The prede-
cessor of Mv under the affine operation is Mu, with u = [vn− 1, v1, . . . , vn−1]. One
has

M̃u = Nu + q
∑

cuwx
w = xu +

∑
xu
′
+ q

∑
cuwx

w ,

sum over monomials xu′ such that u′1 < u1 (because, by induction, Nu is a key
polynomial) and monomials xw such that w1 ≤ u1, with coefficients which are
polynomials in q.

Therefore

M̃v = qu1

(
q−u1xv +

∑
q−u

′
1xu

′τ + q
∑

cuwq
−w1xwτ

)
,

and the term of degree 0 in q is the single monomial xv.
In conclusion, one has the following specialization property due to B. Ion [66].
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Theorem 10.7.1. Let v ∈ N. Then the normalized Macdonald polynomialMv/(coeff(Mv, x
v)

specializes, for t1 = 0, t2 = −1, q = 0 into the key polynomial

Kvω(xωn)

for the reversed alphabet xωn = {xn, . . . , x1}.

One could hope that the specialization t1 = 1, t2 = 0 be treated exactly in
the same manner. Let us still denote M̃v the specialization t1 = 1, t2 = 0 of the
normalized Macdonald polynomials. One computes

M̃012 = x012

iiiiiiiiiiiiiii

UUUUUUUUUUUUUUU

UUUUUUUUUUUUUUU

M̃102 = x102 + x111 + 1
q
x012 M̃021 = x021 + x111 + 1

q
x012

M̃120 = x120 + 1
q
x111 + 1

q
x021

TTTTTTTTTTTTT
M̃201 = x120 + 1

q
x111 + 1

q
x102

jjjjjjjjjjjjj

jjjjjjjjjjjjj

M̃210 = x210 + 1
q
?

There is no way that one can obtain M̃021 from M̃012 using an operator involving
only x2, x3 !

However, one can read the hexagon upwards. The space {Mv : v ↑} can be
generated starting fromM210, the arrowsMv →Mvsi being invertible when t1, t2, q
remain generic. Indeed, for any i, any γ 6= 0, 1, one has(

Ti+
t1+t2
γ−1

)(
Ti+

t1+t2
γ−1−1

)
=

(
t1+

t1+t2
γ−1

)(
t1+

t1+t2
γ−1−1

)
= −

(t1γ+t2)(t1+t2γ)

(γ − 1)2
.

Taking into account that we use the normalized polynomialsMv/coeff(Mv, x
v),

we have the recursion
1

coeff
Mv

(t1γ + t2)(t1 + t2γ)

t2(γ − 1)2

(
Ti +

t1 + t2
γ − 1

)
= cMvsi ,

when vi > vi+1, with γ = 〈v〉i+1〈v〉−1
i = q−α

(
−t2
t1

)β
, α, β > 0, and some constant

c 6= 0. The extra factor −1/t2 is due to the fact that xi+1Ti = −t2xi. The limit
t1 = 1, t2 = 0 of (t1γ+t2)(t1+t2γ)

t2(γ−1)2
is 1 when β > 1 and 1 − q−α when β = 1, while

Ti + (t1 + t2)(γ − 1)−1 specializes into πi − 1 = π̂i. Therefore, up to a possible
factor 1− q−α, one has

M̃vsi = (1− q−α) M̃v π̂i .

Hence, if M̃v = K̂v+q
−1(?), then M̃vsi = K̂vsi+q

−1(??), with ? and ?? polynomials
in q−1.
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It remains to determine M̃v for v dominant. If vn > 0, then Mv = MuΦ, with
u = vτ−1 = [vn− 1, v1, . . . , vn−1]. However, M̃u = xu +

∑
cuwx

w, with w1 ≥ u1. By
induction on the degree |u|, one can suppose that M̃u = K̂u modulo q−1. Since
K̂u = xu +

∑
xw with w1 > u1, one has M̃uΦ = q−u1xv + q−u1−1(?) and therefore

M̃v = xv + q−1(?) as needed.
In the case where vn = 0, one has recourse to another ingredient. For any

u ∈ Nn−1, one has M̃u0 = M̃u + xnq
−1(?). Assuming that for u = [v1, . . . , vn−1]

dominant, one has M̃u = xu + q−1(?), this implies that M̃u0 = xu + q−1(??).
In final, one has the following specialization theorem due to B.Ion [66].

Theorem 10.7.2. Let v ∈ N. Then the limit t1 = 1, t2 = 0, q = ∞ of the
normalized Macdonald polynomialMv/coeff(Mv, x

v) is equal to the key polynomial
K̂v.

In both limits (t1 = 1, t2 = 0) and (t1 = 0, t2 = −1), we have eliminated q by
sending it to ∞ or 0. Sanderson [180] shows that the limit t = 0 of the usual nor-
malized homogeneous nonsymmetric Macdonald polynomial is equal to an affine
Demazure character (for us, on the reversed alphabet xω). It would be interesting
to further develop the combinatorics of these affine Demazure characters. In fact,
they are all the polynomials generated from the polynomial 1 using Φ and the
divided differences πxi+1,xi , no other ingredient is needed. Since πi acts on key
polynomials by sorting indices, one needs only to describe the polynomials M̃v

(equal to q||v|| times the specialization t = 0 of the usual homogeneous Macdonald
polynomial) for v antidominant. The polynomials for v dominant are symmetri-
cal, since they are obtained using a maximal product of πxi+1,xi , and in fact are
equal to the Hall-Littlewood polynomials1.

For example, using key polynomials in the reversed alphabet {x3, x2, x1}, one
has

M̃013 = K310 + qK220 + qK211 + q2K112

from which one obtains, by sorting indices,

M̃310 = K013 + qK022 + qK112 + q2K112 .

This last polynomial is explained by enumerating all tableaux of evaluation 1123 =
122131 ([2, 1, 1] is the conjugate of [3, 1]) together with their charge :

q0
3

2

1 1

+ q1 2 3

1 1
+ q1 2

1 1 3
+ q2 3

1 1 2
.

1 There are several species of Hall-Littlewood polynomials. The relevant one is here Q′µ =∑
t q
c(t)sλ(t), sum over all tableaux of evaluation µ, λ(t) being the shape of the tableau, but one

has to conjugate partitions.
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Reading the conjugate shapes, one obtains

q0s31 + q1s22 + (q1 + q2)s211 ,

which coincides with M̃310. A refinement of charge is needed to explain M̃013.
Notice that one can define nonsymmetric Hall-Littlewood polynomials Pv, v ∈

Nn [30], by starting with all dominant monomials and using the spectral vector
[tn−1, . . . , 1] (with the Hecke relations (Ti − t)(Ti + 1) = 0).

For example one has P310 = x310 = K310, P130 = K13 − tK22, P103 = t2

t+1
K22 −

tK112 +K103 − t
t+1
K13 + t2K211 − tK202, P013 = K013 − tK022 − tK112.

The last polynomial is, indeed, the Hall-Littlewood polynomial indexed by
the partition [3, 1], and is the specialization q = 0 of the symmetric Macdonald
polynomial, but, except in the dominant or antidominant case, the polynomials
Pv are not specializations of Macdonald polynomials, and are not related to the
affine Demazure characters.



Chapter 11
Hall-Littlewood polynomials

Hall-Littlewood polynomials are specializations of Macdonald polynomials. How-
ever we shall study them independently in this chapter. This study is part of a
joint work with Jennifer Morse.

11.1 From a quadratic form on the Hecke alge-
bra to a quadratic form on polynomials

We have defined in (1.8.5) the quadratic form ( , )H on the Hecke algebraHn. Since
we can use linear bases of Hn, as we have used {∂σ}, {πσ}, {π̂σ}, to generate bases
of Pol(xn), a natural problem is to find a quadratic form on Pol(xn) compatible
with ( , )H. We propose a t1t2 deformation of the form ( , ) defined in 2.4.1.

Let
Θ :=

∏
1≤i<j≤n

1− xix−1
j

1+t2xit
−1
1 x−1

j

.

Let us use it to define a bilinear form ( , )t1t2 on Pol by

(f , g)t1t2 = CT
(
f g♣Θ

)
= CT

(
f g♣

∏
1≤i<j≤n

(1−
xi
xj

)
∞∑
k=0

(
−
t2
t1

xi
xj

)k)
(11.1.1)

where ♣ is the automorphism, already met, defined by xi → 1/xn+1−i for 1 ≤ i ≤
n, and where CT (f Θ) means

CT (f Θ) := CTxn
(
CTxn−1 (. . . (CTx1 (f Θ)) . . .)

)
.

Lemma 11.1.1. For i ≤ n−1, the operator Ti is adjoint to Tn−i with respect to
( , )t1t2.

Proof. Same proof as in the case of πi and ( , ) seen in 2.4.1. As usual, one is
reduced to the case of two consecutive variables. QED

269
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As in the case of the form ( , ), one has to determine the scalar product of
two monomials. Since (xu, xv)t1t2 = (xu−vω, 1)t1t2 , the answer is provided by the
following lemma 1 for which we refer to [30, Lemma 4.2].

Introduce a partial order on elements of Zn by using right sums (this orders
generalizes the dominance order on partitions in Nn):

v ≥ u ⇔ vn ≥ un & vn−1+vn ≥ un−1+un & vn−2+vn−1+vn ≥ un−2+un−1+un & . . .

Lemma 11.1.2. For any u ∈ Zn, then (xu, 1)t1t2 6= 0 if and only if |u| = 0 and
u ≥ [0, . . . 0].

Proposition 11.1.3. Let λ, µ ∈ Nn be dominant, σ, ζ be two permutations in Sn.
If λ 6= µ, then (xλTσ , x

µT̂ζ)t1t2 = 0.
If λ = µ, and if σ, ζ are of minimum length in their coset modulo the stabilizer

of λ, then
(xλTσ , x

λT̂ζ)t1t2 6= 0 ⇔ σω = ω(λ)ζ , (11.1.2)
where ω(λ) is the element of maximal length of the stabilizer of λ. In that case
(xλTσ , x

λT̂ζ)t1t2 = 1.

Proof. In the case µ, λ different, suppose that λ1 = µ1, . . . , λr = µr, λr+1 < µr+1.
Since T̂i is adjoint to T̂n−i, the nullity of (xλTσ , x

λT̂ζ)t1t2 results from the nullity
of (xλHn , x

µ)t1t2 . Each monomial xu appearing in the expansion of some xλTσ
is such that u ≤ λω. However, (xu, xµ)t1t2 6= 0 requires that u ≥ µω, hence
λω ≥ µω, which is a contradiction.

In the case λ = µ, the same reasoning shows that (xu, xλ)t1t2 6= 0 only in the
case u = λω. The space xλHn has basis {Uv : v↓= λ}, and xλω occurs only in the
expansion of Uλ↑. Since (xλω, xλ)t1t2 = 1, one concludes. QED

When λ is strict, its stabilizer is reduced to the identity, and in that case, for
any two permutations,

(xλTσ , x
λT̂ζ)t1t2 6= 0 ⇔ σω = ζ . (11.1.3)

On the other hand, (Tσ, T̂ζ)
H is different from 0 if and only if σ = ωζ. Thus in

that case we have a perfect correspondence between the quadratic form on Hn

and the quadratic form on xλHn. When λ is not strict, the dimension of the space
xλHn is less than n!. This explains why we have to use the stabilizer of λ.

11.2 Nonsymmetric Hall-Littlewood polynomi-
als

We have shown in [30] how to use the two adjoint Yang-Baxter bases {∇ωσ}, {dσ}
to generate noncommutative Hall-Littlewood polynomials Uv and Ûv, v ∈ Nn. Let
us recall the construction. Given v ∈ Zn, denote 〈v〉 its standardization.

1t1 = 1, t2 = −t for [30]. By homogeneity, one recovers the case of a general pair t1, t2.
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When λ is dominant, then

Uλ = Ûλ = xλ .

For v and i such that vi > vi+1, then

Uvsi = UvTi
(
〈v〉i − 〈v〉i+1

)
& Ûvsi = ÛvTi

(
〈−v〉i − 〈−v〉i+1

)
(11.2.1)

For example, for v = [2, 2, 0], one has 〈v〉 = [2, 3, 1], 〈−v〉 = [1, 2, 3]; for
v = [2, 0, 2], one has 〈v〉 = [2, 1, 3], 〈−v〉 = [1, 3, 2] and for v = [0, 2, 2], one has
〈v〉 = [1, 2, 3], 〈−v〉 = [3, 1, 2]. Accordingly

x220 = U220
T2(2)−−→ U202

T1(1)−−→U022 ,

x220 = Û220
T2(−1)−−−→ Û202

T1(−2)−−−→Û022 .

The fact that {∇ωσ} and dσ are adjoint bases with respect to ( , )H has its
counterpart at the level of polynomials.

Theorem 11.2.1. The two sets of polynomials {Uv : v ∈ Nn} and {Ûv : v ∈
Nn} are two adjoint bases of Pol with respect to the scalar product ( , )t1t2. More
precisely, they satisfy

(Uv , Ûuω)t1t2 = δv,u .

Proof. If u ↓ or v ↓ are strict, then the statement results from (11.1.3). One has
just to check that (xλTω, x

λ)t1t2 = (xλω, xλ)t1t2 = 1. In the non strict case, one
has to replace (11.1.3) by (11.1.2). QED

Notice that, we had met the pairing σ ↔ ωσ for bases of the Hecke algebra,
while we have now the pairing v ↔ vω.

11.3 Adjoint basis with respect to ( , )

Using the quadratic form ( , ) instead of ( , )t1t2 , one obtains a basis, denoted {Vv},
v ∈ Nn, adjoint to {Uv}. The transition matrix Vv → K̂u is the transpose of the
transition matrix Kv → Uu, and should be investigated.

For example, the rows of the following matrix describe the expansions of Vv,
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v ∈ Nn, |v| = 3.

300 1 0 0 0 0 0 t
t+1

0 0 0

210 0 1 0 0 0 0 0 0 0 0

201 0 0 1 0 0 0 0 t
t+1

0 0

120 0 0 0 1 0 t
t+1

t 0 0 0

111 0 0 0 0 1 t 0 t t (t+ 1) t3

102 0 0 0 0 0 1 0 0 0 0

030 0 0 0 0 0 0 1 0 0 0

021 0 0 0 0 0 0 0 1 0 0

012 0 0 0 0 0 0 0 0 1 t

003 0 0 0 0 0 0 0 0 0 1

Row 111 reads

V111 = K̂111 + tK̂201 + tK̂120 + t (t+ 1) K̂210 + t3K̂300 .

A bigger example

V421 = K̂421 + tK̂511 + tK̂430 + t(t+1)K̂520 + t2(t+1)K̂610 + t4K̂700 + t2K̂601

shows that the charge of tableaux of commutative evaluation 14223 explains the
terms K̂µ, µ dominant, the term t2K̂601 being apart.

11.4 Symmetric Hall-Littlewood polynomials for
types A,B,C,D

For the remainder of this chapter, take t1 = 1, t2 = −t, and write ( , )t for the
corresponding specialization of ( , )t1t2 .

The polynomials Uλ↑ are symmetrical, being in the image of dω. More precisely,
taking into account the stabilizer of λ, the recursive definition of Uλσ implies

Uλ↑ = b−1
λ xλ

∏
i<j≤n

(1− txjx−1
i )πω , (11.4.1)

where bλ =
∏

i

(
(1−t) · · · (1−tαi)

)
= 1dω(λ), writing λ = 0α01α12α2 · · · in exponen-

tial form, ω(λ) being the permutation of maximal length in the stabilizer of λ (we
have taken λ ∈ Nn, with eventual terminal 0’s, contrary to the usual conventions).
This equation is precisely the definition by Littlewood [144] of the Hall-Littlewood
function Pλ:

Uλ↑ = Pλ .

Identifying the pairs xjx−1
i with the negative roots of the root system of type

A, one naturally extends the definition of Hall-Littlewood polynomials to all types.



§ 11.5 — Atoms 

Let R♥ be the set of positive roots of the root system of type ♥ = A,B,C,D.
Then for any ♥-dominant weight λ, one defines the Hall-Littlewood polynomial
P♥λ by

P♥λ = b−1
λ

∏
α∈R♥

(1− te−α) π♥w0
, (11.4.2)

where bλ is such that the coefficient of xλ be 1 in P♥λ .
For example, for n = 3, one has

PB
λ = b−1

λ xλ
(

1−
tx2

x1

)(
1−

t

x1x2

)(
1−
tx3

x1

)(
1−

t

x1x3

)
(

1−
tx3

x2

)(
1−

t

x2x3

)(
1−

t

x1

)(
1−

t

x2

)(
1−

t

x3

)
πBw0

PC
λ = b−1

λ xλ
(

1−
tx2

x1

)(
1−

t

x1x2

)(
1−
tx3

x1

)(
1−

t

x1x3

)(
1−
tx3

x2

)
(

1−
t

x2x3

)(
1−

t

x1
2

)(
1−

t

x2
2

)(
1−

t

x3
2

)
πCw0

PD
λ = b−1

λ xλ
(

1−
tx2

x1

)(
1−

t

x1x2

)(
1−
tx3

x1

)(
1−

t

x1x3

)
(

1−
tx3

x2

)(
1−

t

x2x3

)
πDw0

.

Notice that
∏

α∈R♥(1−te−α) π♥w0
specializes, for t = 1, to the operator

∑
w∈W w.

This leads to define, for λ dominant, a ♥-monomial function m♥λ to be the nor-
malized image of xλ under

∑
w∈W w.

11.5 Atoms
Instead of using the full set of positive roots, let us delete the simple roots and
use the operator

f♥ =
∏

α∈R\S

(1− te−α) π♥w0
. (11.5.1)

For n = 3, these operators are

fB =

(
1−
tx3

x1

)(
1−

t

x1x2

)(
1−

t

x1x3

)(
1−

t

x2x3

)(
1−

t

x1

)(
1−

t

x2

)
πBw0

fC =

(
1−
tx3

x1

)(
1−

t

x1x2

)(
1−

t

x1x3

)(
1−

t

x2x3

)(
1−

t

x1
2

)(
1−

t

x2
2

)
πCw0
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fD =

(
1−
tx3

x1

)(
1−

t

x1x2

)(
1−

t

x1x3

)
πDw0

.

With these restricted sets of roots, one defines atoms A♥λ , λ dominant, to be

A♥λ = xλ f♥ . (11.5.2)

We shall show that the functions A♥λ and P♥λ are related by the Moebius
function of the dominance order on dominant weights, but we have first to say a
few words about this order.

In type A, lower intervals for the dominant order can be defined by using the
expansion of Schur functions in terms of monomials. Indeed, for two partitions,
ν ≤ λ if and only if xν occurs in the expansion of sλ.

One adopts the same definition in type B,C,D. Given two dominant weights,
then ν ≤♥ λ if and only if xν occurs in the expansion of xλπ♥w0

.
For example, for n = 3, and the weight λ = [3, 1, 1], the different sets {ν ≤ λ}

are:
type A : {[2, 2, 1], [3, 1, 1]}

type B : {[0, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 1, 0], [2, 1, 1],

[2, 2, 0], [2, 2, 1], [3, 0, 0], [3, 1, 0], [3, 1, 1]}

type C : {[1, 0, 0], [1, 1, 1], [2, 1, 0], [2, 2, 1], [3, 0, 0], [3, 1, 1]}

type D : {[1, 0, 0], [1, 1,−1], [1, 1, 1], [2, 1, 0], [2, 2, 1], [3, 0, 0], [3, 1, 1]}

We have to adapt the definition of |λ| and n(λ) to take into account that in
type D, for n odd, the last component of a dominant weight may be negative.
Thus let ||λ|| :=

∑
|λi|, n(λ) = 0λ1 + · · ·+ (n−2)λn−1 + (n−1)|λn|.

Then the expression of A♥λ in terms of P♥ν by a mere summation over the lower
interval of λ, and conversely, the expression of P♥λ in terms of A♥ν is given by a
summation involving the Moebius function of the interval.

Theorem 11.5.1. Let ♥ be A,B,C or D, and λ be a dominant weight for this
type. Then

A♥λ =
∑
ν≤♥λ

tk(||λ||−||ν||)+n(ν)−n(λ) P♥ν , (11.5.3)

P♥λ =
∑
ν≤♥λ

µ♥(λ, µ) tk(||λ||−||ν||)+n(ν)−n(λ) A♥ν , (11.5.4)

were µ♥( , ) is the Moebius function of the dominance order, with k = 0 in type
A, n in type B, n− 1/2 in type C, n−1 in type D.
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For example,

AB311 = t12PB
000 + t9PB

100 + t7PB
110 + t6PB

111 + t6PB
200 + t4PB

210 + t3PB
211

+t2PB
220 + tPB

221 + t3PB
300 + tPB

310 + PB
311 ,

PB
311 = AB311 − tAB211 − tAB310 + t2AB220 .

AC311 = t7PC
100 + t5PC

111 + t3PC
210 + tPC

221 + t2PC
300 + PC

311 ,

PC
311 = AC311 − t2AC300 − tAC221 + t3AC210 .

AD311 = t5PD
1,0,0 + t4PD

1,1,−1 + t4PD
1,1,1 + t2PD

2,1,0 + tPD
2,2,1 + tPD

3,0,0 + PD
3,1,1 ,

PD
311 = AD3,1,1 − tAD3,0,0 − tAD2,2,1 + t2AD2,1,0 .

AD3,1,−1 = t5PD
1,0,0+t4PD

1,1,−1+t4PD
1,1,1+t2PD

2,1,0+tPD
2,2,−1+tPD

3,0,0+PD
3,1,−1 ,

PD
3,1,−1 = AD3,1,−1 − tAD3,0,0 − tAD2,2,−1 + t2AD2,1,0 .

Here are the transitions matrices from Atoms to Hall-Littlewood (dominance
order), and from K♥λw0

to Atoms, for λ ∈ N3 and |λ| = 3 (in type D, there is the
extra dominant weight [1, 1, −1]).

Type B



000 100 110 200 111 210 300

1 · · · · · ·
t3 1 · · · · ·
t5 t2 1 · · · ·
t6 t3 t 1 · · ·
t6 t3 t · 1 · ·
t8 t5 t3 t2 t2 1 ·
t9 t6 t4 t3 t3 t 1





000 100 110 200 111 210 300

1 · · · · · ·
· 1 · · · · ·

t+t3 · 1 · · · ·
t2+t4 · · 1 · · ·
t2 t · · 1 · ·
· t3+t2+t · · t 1 ·
· t2+t4 · · · · 1


Type C



000 100 110 200 111 210 300

1 · · · · · ·
· 1 · · · · ·
t4 · 1 · · · ·
t5 · t 1 · · ·
· t2 · · 1 · ·
· t4 · · t2 1 ·
· t5 · · t3 t 1





000 100 110 200 111 210 300

1 · · · · · ·
· 1 · · · · ·
t2 · 1 · · · ·

t+ t3 · · 1 · · ·
· · · · 1 · ·
· t+ t2 · · t 1 ·
· t+ t3 · · · · 1


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Type D

000 100 110 200 111 111̄ 210 300

1 · · · · · · ·
· 1 · · · · · ·
t3 · 1 · · · · ·
t4 · t 1 · · · ·
· t · · 1 · · ·
· t · · · 1 · ·
· t3 · · t2 t2 1 ·
· t4 · · t3 t3 t 1





000 100 110 200 111 111̄ 210 300

1 · · · · · · ·
· 1 · · · · · ·

t+t2 · 1 · · · · ·
t2 · · 1 · · · ·
· · · · · 1 · ·
· · · · 1 · · ·
· t · · t t 1 ·
· t2 · · · · · 1


The following property of the specialization in t = 1 of the functions A♥λ has

been obtained by Postnikov [168].

Corollary 11.5.2.
A♥λ

∣∣∣
t=1

=
∑
ν≤♥λ

m♥ν

For example, AD2,1,−1

∣∣
t=1

= x0,0,0+x2,0,0+x0,2,0+x1,1,0+x1,0,−1+x1,−1,0+x−2,0,0+
x0,0,−2 + x0,−2,0 + x−2,−1,−1 + x0,0,2 + x0,−1,−1 + x0,1,1 + x1,0,1 + x−1,0,−1 + x−1,−1,0 +
x−1,−1,−2 + x−1,2,1 + x−1,1,2 + x−2,1,1 + x0,1,−1 + x0,−1,1 + x2,1,−1 + x1,2,−1 + x2,−1,1 +
x1,−1,2 + x1,−2,1 + x−1,−2,−1 + x1,1,−2 + x−1,1,0 + x−1,0,1 has indeed no multiplicity.

11.6 Q′-Hall-Littlewood functions
By definition the Q′-Hall-Littlewood functions are the symmetric functions such
that

(Pλ, Q
′
µ) = δλ,µ .

We have defined a basis {Vv} which is adjoint to {Uv}. Since Pλ = Uλ↑, one has

(Pλ, Vµ) = δλ,µ = (Pλ, Vµπω) .

Hence
Q′µ = Vµ πω . (11.6.1)

From the expansion of Vµ in the basis {K̂v}, one obtains the expansion of Q′µ in
the basis of Schur functions, since K̂vπω = 0 if v is not dominant, and K̂λπω = sλ
if λ is a partition.

This expansion is positive, and coefficients have been interpreted in terms of
charge of tableaux. Denote by Tabµ the set of tableaux of evaluation µ. Then one
has [119]:
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Proposition 11.6.1. Let µ be a partition. For a tableau T , denotes λ(T ) its
shape, and c(T ) its charge. Then

Q′µ =
∑

T∈Tabµ
tc(T )sλ(T ) . (11.6.2)

The set Tabµ has a structure of rank poset given by the cyclage [118, 116]. If
ν ≤ µ with respect to the dominance order, then Tabν is canonically isomorphic
to a subposet of Tabµ. The complement in Tabµ of all the subposets isomorphic
to Tabν : ν < µ is a poset called atom2 and denoted A(µ) [98].

Using the Möbius function (−1)〈µ,ν〉 of the lattice of partition to define functions
Q′′µ, one has [98]

Proposition 11.6.2. Let µ be a partition. Then

Q′′µ :=
∑
ν≤µ

(−1)〈µ,ν〉tn(ν)−n(µ) Q′ν =
∑

T∈A(µ)

tc(T )sλ(T ) . (11.6.3)

For example, for µ = [3, 2, 1, 1], the atom is

A([3, 2, 1, 1]) =

4
3
2 2
1 1 1

3
2 2
1 1 1 4

3
2 2 4
1 1 1

2 2 4
1 1 1 3

and this gives

Q′′3211 = Q′3211 − tQ′322 − tQ′322 + 0Q′331 + t3Q′421 = s3211 + ts421 + ts331 + t2s43 .

In summary, one has

Proposition 11.6.3. With respect to ( , ), {Q′λ} is the basis adjoint to {Pλ} and
{Q′′λ} is the basis adjoint to {Aλ}.

Both scalar products (sλ, Q
′
µ) and (sλ, Q

′′
µ) are equal to sums

∑
tc(T ) over sub-

sets of tableaux of shape λ, tableaux of weight µ in the first case, tableaux in A(µ)
in the second case.

2In [98], one rather takes the image of A(µ) into the set of standard tableaux, i.e. tableaux
with weight [1, . . . , 1].
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The following matrices record the scalar products (sλ, Q
′′
µ). Rows must be read

as the expansion of Schur functions in the basis Aλ, columns give the expansion
of the functions Q′′µ in the Schur basis.

3 1 · ·
21 · 1 t

111 · · 1

4 1 · · · ·
31 · 1 · t t3

22 · · 1 · t2

211 · · · 1 t2 + t

1111 · · · · 1

5 1 · · · · · ·
41 · 1 · t · t3 t6

32 · · 1 · t t2 t5 + t4

311 · · · 1 · t2 + t t5 + t4 + t3

221 · · · · 1 t t3 + t2 + t4

2111 · · · · · 1 t3 + t2 + t

11111 · · · · · · 1

6 51 42 411 33 321 3111 222 2211 21111 111111

1 · · · · · · · · · ·

· 1 · t · · t3 · · t6 t1·

· · 1 · · t t2 t2 · t5+t4 t9+t8+t7

· · · 1 · · t2+t · · t5+t4+t3 t9+t8+t7+t6

· · · · 1 · · · t2 t4 t8+t6

· · · · · 1 t t t t4+2 t3+t2 t8+2 t7+2 t6+2 t5+t4

· · · · · · 1 · · t3+t2+t t7+t6+2 t5+t4+t3

· · · · · · · 1 · t2 t6+t5+t3

· · · · · · · · 1 t2+t 2 t4+t5+t6+t3+t2

· · · · · · · · · 1 t4+t3+t2+t

· · · · · · · · · · 1





Chapter 12
Kazhdan-Lusztig bases

We have already used the Hecke algebra Hn to generate bases of polynomials
(Macdonald polynomials, Hall-Littlewood polynomials). Kazhdan and Lusztig
have defined a linear basis {Cw : w ∈ Sn} with which we shall build still another
linear basis of Pol(xn) in this chapter.

12.1 Basis of the Hecke algebra
We take the Hecke algebra of type A with algebraic generators satisfying the Hecke
relations (Ti− t1)(Ti− t2) = 0. It has a linear basis {Tw : w ∈ Sn}. Many families
of interesting elements in the group algebra of Sn are globally invariant under the
inversion of permutations. However Tw−1 6= (Tw)−1, when w is not the identity,
the Hecke algebra has more subtle symmetry properties than the group algebra.

Kazhdan and Lusztig [72] defined a basis which is invariant under the involu-
tion

ι : Tw → (Tw−1)−1 , t1 → −t2, t2 → −t1 ,

and has many interesting properties. In particular this basis gives information
about singularities of Schubert varieties and of specializations of Schubert poly-
nomials.

Requiring invariance under ι is not enough to characterize the basis. For
example, {1, T1−t1} and {1, T1−t2} are two bases of H2 which could be candidate
to replace the basis {1, s1} of C[S2].

One has to complete the condition of being invariant under ι by a condition
of “positivity“.

Definition 12.1.1. An element
∑
cwTw is t-positive if and only if the coefficients

cw belong to the linear span of the monomials tα1 t
β
2 with α > β.

The following theorem is due to Kazhdan and Lusztig [72].

279
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Theorem 12.1.2. There exist a unique linear basis Cw of Hn, called Kazhdan-
Lusztig basis, such that

Cw = Tw +
∑
v<w

P v
w(t1, t2)Tv

is invariant under the involution ι, with t-positive coefficients P v
w(t1, t2) (the sum-

mation is over the Ehresmann-Bruhat order).

The specializations P v
w(−1, t2) are called Kazhdan-Lusztig polynomials.

Thus, with the positivity condition, we have discriminated between T1−t1 and
T1−t2, and must have

Ci := Csi = Ti−t1 = Ti(−1) .

In length 2, one has, for i 6= j,

Csisj = CiCj = TiTj − t1Ti − t1Tj + t21 .

However,

C1C2C1 = T321 − t1T231 − t1T312 + (t21 − t1t2)T213 + t21T132 − (t31 − t21t2)T123

exhibits a violation t1t2T213. In fact, the absence of symmetry in T1, T2 is also a
good reason to exclude C1C2C1 . This can be repaired by taking

C1

(
C2 −

t1t2
t1 − t2

)
C1 =

∑
w∈S3

(−t1)3−`(w)Tw ,

which satisfies all the requirements to be a Kazhdan-Lusztig element.
However,

C1C2C1 = T321 − t1T231 − t1T312 + (t21 − t1t2)T213 + t21T132 − (t31 − t21t2)T123

exhibits a violation t1t2T213. In fact, the absence of symmetry in T1, T2 is also a
good reason to exclude it. This can be repaired by taking

C1

(
C2 −

t1t2
t1 − t2

)
C1 =

∑
w∈S3

(−t1)3−`(w)Tw ,

which satisfies all the requirements to be a Kazhdan-Lusztig element.
More generally, once known their existence, the strategy to build recursively

the Kazhdan-Lusztig elements is clear. Knowing Cw, given i such that `(wsi) >
`(w), one computes f = CwCi. Enumerating permutations v < w by decreasing
length, one replaces, for each term of the type tj1t

j
2Tv, f by f − tj1t

j
2Cv, and iterate

till arriving to the identity permutation. The final value of f is equal to Cwsi . In
summary, there exists integers µ(v, w) such that

Cwsi = CwCi +
∑

µ(v, w)(−t1t2)(`(w)−`(v)+1)/2Cv , (12.1.1)
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sum over a certain subset1 of permutations smaller than w.
For example, the above expression of C1C2C1 can be rewritten C321 = C231C1+

t1t2C1.
Though the preceding algorithm is very simple to implement, it is unsatisfac-

tory because it does not shed much light over the Kazhdan-Lusztig elements and
polynomials.

Notice that all v appearing in (12.1.1) must be such that `(v) > `(vsi). Indeed,
the image of this equation by right multiplication by Ci is

CwsiCi = (t2−t1)CwCi −
∑

µ(v, w)(−t1t2)(`(w)−`(v)+1)/2CvCi ,

and the unicity of the basis implies that for each v appearing in the summation
one has CvCi = (t2−t1)Cv.

For example, for w = [3, 4, 5, 1, 2], one has

C34512C2 = C35412 − t1t2C34152 − t1t2C34215 + t21t
2
2C1,4,3,2,5 ,

and all permutations v appearing in the right hand side are such that v2 > v3.

12.2 Duality
We have introduced in (1.8.5) a quadratic form such that {T̂ωσ} is the basis adjoint
to {Tσ : σ ∈ Sn}. Thus, the coefficients P v

w(t1, t2) may be expressed as

P v
w(t1, t2) =

(
Cw , T̂ωv

)H
.

Taking any total order compatible with the Bruhat order, one has the property
that the transition matrix between {Cw} and {Tw} is unitriangular. It is natural
to invert it, here it is for n = 3 (read by rows):

123 132 213 312 231 321

123 1 0 0 0 0 0

132 t1 1 0 0 0 0

213 t1 0 1 0 0 0

312 t1
2 t1 t1 1 0 0

231 t1
2 t1 t1 0 1 0

321 t1
3 t1

2 t1
2 t1 t1 1

.

For this small example, the inverse matrix is obtained by just changing t1 into −t1.
We refer to [65, Prop. 7.13] for the next proposition which describes the inverse
of the matrix of Kazhdan-Lusztig polynomials for general n.

1 Kazhdan and Lusztig characterize this subset in terms of a graph which, even in type A,
presents much mystery.
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Proposition 12.2.1. For any pair of permutations: ν, ζ such that ν ≤ ζ, one has

∑
z: ν≤z≤ζ

(
Cz , T̂ων

)H((
Cωz , T̂ζ

)H)t1→−t1,t2→−t2
= δν,ζ . (12.2.1)

Equation 12.2.1 can be rewritten, using the KL involution on the second scalar
product, as ∑

z: ν≤z≤ζ

(
Cz , T̂ων

)H ((
Cωz , Tζ

)H)t1↔t2
= δν,ζ . (12.2.2)

Define, for any ζ ∈ Sn, C̃ζ to be the image of Cζ under the exchange of t1 and
t2. Then, since {T̂ων} is the basis adjoint to {Tν}, Eq. 12.2.2 translates into the
following duality property.

Proposition 12.2.2. The basis {C̃ζ : w ∈ Sn} is adjoint to the basis {Cν}, i.e.
one has (

Cων , C̃ζ

)H
= δν,ζ . (12.2.3)

Notice that (12.2.3) is a statement about products CνC̃ζ−1 , while (12.2.2)
involves sums of products of KL-polynomials. For example, one has C45123 =

C3C2C1C4C3C2, C̃34512 = C̃2C̃1C̃3C̃2C̃4C̃3, and
(
C45123 , C̃34512

)H
= 0, because the

coefficient of T54321 in the expansion of (C3C2C1C4C3C2)
(
C̃3C̃4C̃2C̃3C̃1C̃2

)
is null.

Relation 12.1.1 can be used to describe the regular representation of the Hecke
algebra, as well as its irreducible representations [72]. The matrixMω representing
Tω, i.e. describing the multiplication by Tω in the KL-basis, has special properties
which should be investigated. Its entries are[

Mω
]
ζ,ν

=
(
CζTω , C̃ων

)H
.

The last column of this matrix is the list of the coefficients of Cω in the products
CζTω. One has(

CζTω , C̃1...n

)H
= (Cζ , Tω)H =

((
Cζ , T̂ω

)H)t1↔−t2
,

using the KL-involution for the last equality. The last expression shows that the
coefficient of Cω in the product CζTω is equal to the image under the exchange
t1 ↔ −t2 of the coefficient of T1...n in Cζ . In other words, the last column of Mω

furnishes the Kazhdan-Lusztig polynomials in the identity. For example,

C3412T4321 = (t42 − t1t32)C4321 + . . .

C3412 = (t41 − t31t2)T1234 + . . .

The inverse of the matrix Mω are described by the following proposition.
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Proposition 12.2.3. Let N be the matrix with entries

Nζ,ν = (−t2)−`(ζ)
(
CζTω , C̃ων

)
t
−`(ων)
1 .

Then the inverse of N is the image of N under the exchange t1 ↔ −t2, and N
possesses the symmetry

Nων,ωζ = (−1)`(ζ)+`(ων)
[
Nζ,ν

]t1↔−t2
.

Proof. The entries of N−1 are obtained by taking the adjoint bases in the scalar
products: [

N−1
]
ν,ζ

= (−t2)`(ζ)
(
C̃ωζ T̂ω(−t1t2)−`(ω), Cν

)
t
`(ων)
1 .

Exchanging the role of ζ, ν, one has[
N−1

]
ζ,ν

= (−t2)−`(ωζ)
(
C̃ωνT̂ω, Cζ

)
t
−`(ζ)
1 .

Using the KL-involution to transform the scalar product, one obtains[
N−1

]
ζ,ν

= (−t2)−`(ωζ)
(
C̃ωνTω, Cζ

)t1↔−t2
t
−`(ζ)
1

=
[
t
−`(ων)
1

(
C̃ων , CζTω

)
(−t2)−`(ζ)

]t1↔−t2
,

and this proves the required property about N−1. The second statement results
from the fact that C̃w is obtained from Cw by the exchange of t1, t2; the scalar
products

(
CζTω , C̃ων

)H are homogeneous polynomials in t1, t2, so that taking their
image under t1↔−t2 or by t1↔ t2 just introduces an eventual sign that we took
into account. QED

For n = 3, the matrices M and N are

123 132 213 312 231 321

t1
3 t1

2 t1
2 t1 t1 1

0 0 0 t1t2 0 t2

0 0 0 0 t1t2 t2

0 −t1
2t2

2 0 0 0 t2
2

0 0 −t1
2t2

2 0 0 t2
2

0 0 0 0 0 t2
3





123 132 213 312 231 321

t1
−3 − 1

t2t13 − 1
t2t13

1
t22t13

1
t22t13 − 1

t13t23

0 0 0 − 1
t12t22 0 1

t23t12

0 0 0 0 − 1
t12t22

1
t23t12

0 1
t1t2

0 0 0 − 1
t23t1

0 0 1
t1t2

0 0 − 1
t23t1

0 0 0 0 0 t2
−3


12.3 Peeling out canonical factors
Let us recall that, according to 1.9.12, the quasi-idempotent

∑
w∈Sn

(−t1)`(ωw)Tw
can be written as a product of factors of the type

Ti(−k) = Ti +
t1 + t2

(−t2/t1)k − 1
= Ci − t1t2

[k−1]

[k]
=: Ci(k−1) ,
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with [k] = tk−1
1 − tk−2

1 t2 + · · · + (−t2)k−1 and [−k] = tk−1
2 − t1tk−1

2 + · · · + (−t1)k−1

for k > 0. The last expression is invariant under the KL involution, and therefore,
for the permutation of maximal length of the symmetric group, one recognizes an
element already met several times,

Cω =
∑
w∈Sn

(−t1)`(ωw)Tw = ∇ω . (12.3.1)

In other words, all Kazhdan-Lusztig polynomials Pw
ω (−1, t2) are equal to 1. By

exchange of t1, t2, one has

C̃ω =
∑
w∈Sn

(−t2)`(ωw)Tw = dω . (12.3.2)

More generally, given a Young subgroup Sa×b×···, let ωa×b×··· be the permuta-
tion of maximal length of this group. Then, by direct product, one has

Cωa×b×··· =
∑

w∈Sa×b×···

(−t1)`(ωa×b×···w)Tw .

Under certain conditions on w, one can factor out from Cw some Cωa×b×··· .
Let us just give a case that we shall need in the sequel. Given m, r : 1 ≤
m < r ≤ n, denote by �m,r,n = Cω1m,r−m,1n−r

, and by �̃m,r,n the idempotent
�m,r,n[2]−1 · · · [r−m+1]−1.

Lemma 12.3.1. Let w ∈ Sn, m, r : 1 ≤ m < r ≤ n be such that wm > wm+1 >
· · · > wr. Then there exists h ∈ Hn such that

Cw = h�m,r,n . (12.3.3)

Proof. The preceding lemma has shown that Cw is invariant under right multipli-
cation by the idempotent Ci/(t2−t1) for each i = m, . . . , r−1. Therefore, it must
be invariant under the idempotent �̃m,r,n.

Thus one can write

Cw =

(∑
u

Qu
w(t1, t2)Tu

)
�m,r,n ,

sum over permutations u which are of minimum length in their coset
uS1m,r−m,1n−r . The coefficients Qu

w(t1, t2) must be polynomials in t1, t2, and not
rational functions, and invariant under ι, otherwise the RHS would not be a
Kazhdan-Lusztig element. QED

The left factor h is not necessarily a Kazhdan-Lusztig element. For example,
one has the factorizations

C321 =
(
T2T1 − t1T1 + t21

)
C2 =

(
(T2 − t1)(T1 −

t21
t1 − t2

)

)
C2 ,

but the first left factor is not invariant under ι, being different from C312, and the
second left factor does not have polynomial coefficients.
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Corollary 12.3.2. Let w ∈ Sn be such that there exists m < n : wn = n, and
wm > wm+1 > · · · > wn. Let v = [w1, . . . , wm−1, wm+1, . . . , wn]. Then

Cw = Cv
(
Tn−1 . . . Tm − t1Tn−1 . . . Tm+1 + · · ·+ (−t1)n−m

)
= CvTn−1(m−n) · · ·Tm(−1) . (12.3.4)

Proof. From the hypothesis on w, there exists h ∈ Hn such that Cv = h�m,n−1,
Cw = h�m,n. The result follows from
�m,n = �m,n−1Tn−1(m−n) · · ·Tm(−1). QED

If the preceding corollary can be applied to w, or w−1, or ωwω, or ωw−1ω, say
that the permutation is peelable. allows to peel right or left factors from Cw. In
the contrary case, and if w is not the identity, say that w is irreducible.

For example, let w = [4, 1, 7, 6, 2, 3, 5]. Then 1 is the first valley, one extracts
T1(−1) from the right, and obtains w′ = [1, 4, 7, 6, 2, 3, 5]. Taking the inverse w” =
[1, 5, 6, 2, 7, 4, 3], one sees that 7 is the last peak, and this allows the factorization
of T5(−1)T6(−2). One is left with [1, 4, 6, 5, 2, 3, 7]. Erasing the fixed points 1 and
7, one sees that the ensuing permutation [4, 5, 1, 3, 2] cannot be reduced any more.
The corollary has given

C4176235 = T5(−1)T6(−2)C1465237 T1(−1) = (T5T6−t1T6 + t21)C1465237(T1−t1) .

In fact, C4176235 factorizes totally, but this requires more work to be proved !

C4176235 = T5(−1)T6(2)
(
T3(−1)T2(−1)T5(−1)T4(−2)T3(−2)T5(−1)T4(−1)

)
T1(−1) .

Let us call totally reducible a permutation such that there exists a chain of
reductions leading to the identity permutation.

12.4 Non-singular permutations
Let us call non-singular2 a permutation w such that

Cw =
∑
v≤w

(−t1)`(w)−`(v)Tv ,

i.e. such that all P v
w(−1, t2), v ≤ w, are equal to 1.

Lakshmibai and Sandhya [90] have proved that a Schubert variety w is non-
singular if and only if the indexing permutation avoids the patterns 3412 and 4231.
Notice that in that case wω avoids 2143 and 1324, the first condition being that
wω be vexillary.

The following proposition [100] shows that the two notions, being non-singular,
or being totally reducible, coincide.

2They are the permutations such that the corresponding Schubert varieties are non-singular.
The relations between Kazhdan-Lusztig polynomials and Schubert varieties are explained in [73].
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Proposition 12.4.1. A permutation w is such that all P v
w(−1, t2) are equal to 1

when v ≤ w iff it is totally reducible.

Proof. With the hypotheses of the last corollary, the set {P u
w(−1, t2), u ∈ Sn}

coincides with the set {P u
v (−1, t2), u ∈ Sn}. Therefore, if v is non-singular, then

w is so. The same reasoning is valid when the reduction applies to w−1, or ωwω,
or ωw−1ω, instead of w.

Conversely, let w be irreducible and such that n is not a fixed point. If w
avoids the pattern 3412, then one checks that w contains a subword of the type
[. . . n . . . b . . . c . . . a], with a = wn, a < b < c. If w avoids the pattern 4231,
then one checks that w contains a subword of the type [. . . c . . . n . . . a . . . b], with
b = wn, a < b < c. QED

Thus, non-singularity can be controlled by looking for patterns 3412 and 4231,
or testing recursively a condition on n and 1 inside w.

In the non-singular case, the preceding proposition gives a factorization [100]
of Cw, and by specialization, of the Poincaré polynomial of the interval [1, w].

For example, w = [4, 1, 6, 5, 3, 2] is non-singular, Cw factorizes as

C416532 =

((
T2(−1)T3(−2)

(
T2(−1)T1(−1)

))
T4(−2)T3(−1)

)
T5(−3)T4(−2)T3(−1) .

Sending Ti → t2 transforms Ti(−k) into −[k+1]/[k]. Therefore the image of Cw =∑
v≤w(−t1)`(w)−`(v)Tv, using the preceding factorisation, is equal to

−
((

[2]
[3]

[2]

(
[2]2
)) [3]

[2]
[2]

)
[4]

[3]

[3]

[2]
[2] = −[2]2[3]2[4] .

Notice that we thus recover the fact that Cω factorizes into simple factors1.9.10:

C54321 = C1(0)C2(1)C1(0)C3(2)C2(1)C1(0)C4(3)C3(2)C2(1)C1(0) .

The factorization of the Poincaré polynomial in the non-singular case is due
to Carrell and Peterson [18]. The specialisation Ti = t2 of Cw has a geometrical
interpretation in terms of some sophisticated cohomology theories [73]. Notice
that, from a combinatorial point of view, using Kazhdan-Lusztig elements instead
of intervals with respect to the Ehresman-Bruhat order regularizes the special-
ization. For example, the Poincaré polynomial for w = [3, 4, 1, 2] is equal to
(t2 − t1)(t2

3 − 3t2
2t1 + 2t2t1

2 − t13), while C3412 specializes to (t2 − t1)4.
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12.5 Kazhdan-Lusztig polynomial bases
We have used the pair {∇ωσ}, {dσ} of adjoint bases of Hn to generate a pair
{Uv}, {Ûvω} of adjoint bases of Pol(xn). We shall see that the same construction
works when starting from the pair of Kazhdan-Lusztig elements {Cωσ}, {C̃σ}.
Take t1 = 1, t2 = −t in this section.

As in the case of nonsymmetric Hall-Littlewood polynomials, some care is
needed when indices have equal components. Standardization provides the link
between elements of Nn and permutations. We have already used v → 〈v〉 the
standardization3 , reading from left to right, by increasing values. We need a
second one, the standardization by decreasing values, reading from right to left,
that we denote 〈〈v〉〉. For example,

v = 2 0 3 2 0 2 3 0

2 1
5 4 3

8 7 6

〈〈v〉〉 = 5 8 2 4 7 3 1 6

Then, for any v ∈ Nn, with λ = v↓, one defines

C̃x
v =

xλ

bλ
C̃〈〈v〉〉 , (12.5.1)

and

Cxv =
xλ

bλ
C〈−v〉 , (12.5.2)

where the constant bλ has been defined in (??).
For example, for v = [2, 2, 0], [2, 0, 2], [0, 2, 2], one has 〈〈v〉〉 = [2, 1, 3], [2, 3, 1],

[3, 2, 1], and 〈−v〉 = [1, 2, 3], [1, 3, 2], [3, 1, 2]. Therefore

C̃x
220 =

x220

1+t
C̃213 = x220 , C̃x

202 =
x220

1+t
C̃231 , C̃x

022 =
x220

1+t
C̃321 ,

Cx220 = x220 , Cx202 = x220 C132 , Cx022 = x220 C312 .

Using the explicit values of the Kazhdan-Lusztig elements, one finds

C̃x
220 =

x220

1+t
T1(1) = x220 = U220 , C̃

x
202 =

x220

1+t
T1(1)T2(1) = U202 +

t

1+t
U220 ,

C̃x
022 =

x220

1+t
T1(1)T2(2)T1(1) = U022 ,

3We also standardize −v, that is, we standardize v from left to right by decreasing values.
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Cx220 = x220 = Û220 , Cx202 = x220T2(−1) = Û202 ,

Cx022 = x220T2(−1)(T1−1) = Û022 −
t

1+t
Û202 .

In the case where v = λ ↑ is antidominant, then C̃x
v = xλb−1

λ C̃ω = xλb−1
λ dω,

and therefore is equal to the Hall-Littlewood polynomial Pλ(x1, . . . , xn). When λ
is strict (i.e. all parts are different), then

Cxv = xλ Cω = xλ∇ω = xλ ∂ω
∏
i<j

(xj−txi) = sλ−ρ(xn)
∏
i<j

(xj−txi) .

The same proof as for the bases {Uv}, {Ûvω} (Theorem ??) gives the following
duality between {Cxv }, {C̃x

vω}:

Theorem 12.5.1. The two sets of polynomials {Cxv : v ∈ Nn} and {C̃x
v : v ∈ Nn}

are two adjoint bases of Pol with respect to the scalar product ( , )t. More precisely,
they satisfy

(Cxv , C̃x
uω)t = δv,u .
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12.6 Kazhdan-Lusztig and Hall-Littlewood
We have already seen that C̃x

v = Uv when v is antidominant. In fact, one may
consider the Kazhdan-Lusztig basis to be a deformation of the Hall-Littlewood
basis.

Let λ ∈ Nn be a partition. Then the Hn-module xλHn has bases {Uv}, {Ûv},
{Cxv }, {C̃x

v }, where v varies over all permutations of λ. The transition matrices
between these different bases seem to present some interest.

Here is the transition matrix C̃x
v → Uv for λ = [4, 2, 2, 0], the rows of which

describe the expansion of the successive C̃x
v :

4220 1 · · · · · · · · · · ·

4202 t
t+1

1 · · · · · · · · · ·

4022 · · 1 · · · · · · · · ·

2420 t
t+1

· · 1 · · · · · · · ·

2402 t2

(t+1)2
t
t+1

· t
t+1

1 · · · · · · ·

2240 · · · · · 1 · · · · · ·

2204 · · · · · t(t+1)
t2+t+1

1 · · · · ·

2042 t2

t+1
· t

t+1
· t(t+1)

t2+t+1
t
t+1

· 1 · · · ·

2024 · · · · · t2

t2+t+1
t
t+1

· 1 · · ·

0422 · · t(t+1)
t2+t+1

· · · · · · 1 · ·

0242 · · t2

t2+t+1
· · · · · · t

t+1
1 ·

0224 · · · · · · · · · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
From the recursions defining the different bases, one sees that the transition

matrices do not depend on the parts of λ, but only on multiplicities. The same
matrix as above is obtained for λ = [2, 1, 1, 0].

An example with bigger multiplicities:

C̃x
02202 = U0,2,2,0,2 +

U2,0,2,0,2t

t+ 1
+
t2U2,2,0,0,2

t2 + t+ 1
+

(t+ 1) tU0,2,2,2,0

t2 + t+ 1

+
t2U2,0,2,2,0

t2 + t+ 1
+
t3 (t+ 1)U2,2,0,2,0

(t2 + t+ 1)2 +
t3U2,2,2,0,0

t2 + 1
.
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12.7 Using key polynomials
We have seen that„ then Cw, for a nonsingular permutation w, is a sum over an
interval for the Ehresmann-Bruhat order. On the other hand, a key polynomial
Kv is also a sum of polynomials K̂u over an interval for the same order. It is thus
natural to try to relate Kazhdan-Lusztig elements to key polynomials.

Let, for this section only, ρ = [1, . . . , n], and let Vρ be the linear span of
monomials of exponents w ∈ Sn. Notice that xρTw ∩ Vρ = (−t2)`(w)xw Hence one
has

xρCw ∩ Vρ =
∑
v

(−t1)`(w)−`(v)P v
w(t1, t2)(−t2)`(v)xv .

Define a linear morphism ϕ from Vρ to Pol(xn) by

ϕ(xv) = (−t2)`(v)xvω if v is a permutation , ϕ(xv) = 0 otherwise , (12.7.1)

with ϕ(t1) = −1, ϕ(t2) = t2. The preceding equation reads now

ϕ(xρCw) =
∑
v≤w

P v
w(−1, t2)xvω . (12.7.2)

In particular, when w is non-singular, the image of the Kazhdan-Lusztig element
reduces to a single key polynomial:

ϕ(xρCw) =
∑
v≥wω

xv = Kwω ∩ Vρ (12.7.3)

For n = 4 there are only two singular permutations, which satisfy

C3412 = C2C3C1C2 , ϕ(x1234C3412) ≡ K2143 + t2K4231

C4231 = C3C2C1(1)C2C3 , ϕ(x1234C4231) ≡ K1324 + t2K3412 .

For n = 5, there are 32 singular permutations. Taking into account sym-
metries, eliminating those permutations coming from [3, 4, 1, 2] or [4, 2, 3, 1], one
is left with only 8 permutations to study. We give a factorisation of Cw, writ-
ing C+

i , C
++
i instead of Ci(1), Ci(2). Only C45312 does not factorize into simple

elements Ci(k). It can however be written

C45312 = C2C
+
3 C2

(
C+

4 C
+
1 −

t31t
3
2

(t2 − t1)2(t22 − t1t2 + t21)

)
C2C

+
3 C2 .

C45123 C3C2C1C4C3C2 K32154+t2K52341+t2K53142+t2K35241−t2K53241

C53412 C4C3C
+
2 C3C4C

+
1 C2C3 K21435+t2K41523+t2K42315+t2K24513−t2K42513

C52341 C4C3C2C
+
1 C2C3C4 K14325+t2K45123+t2K34512+t22K45312

C45132 C3C4C
+
2 C

+
3 C4C1C2 K23154 + t2K25341

C35142 C2C1C4C
+
3 C4C2 K24153 + t2K45231

C52431 C1C2C
+
3 C

++
4 C2C

+
3 C2C1 K13425 + t2K34512

C54231 C4C
+
3 C4C

+
2 C3C

++
1 C+

2 C3C4 K13245 + t2K34125

C45312 see above K21354 + t22K52341
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From the table, by summation of the coefficients in the last column, one obtains
the Kazhdan-Lusztig polynomials P 12345

w (−1, t2) :

P 12345
45123 = P 12345

53412 = 1 + 2t2, P
12345
52341 = 1 + 2t2 + t22 ,

P 12345
45132 = P 12345

35142 = P 12345
52431 = P 12345

54231 = 1 + t2, P
12345
45312 = 1 + t22 .

The permutation [4, 5, 3, 1, 2] belongs to the family {[n−1, n, n−2, . . . , 3, 1, 2]}
which give rise to the Kazhdan-Lusztig polynomials equal to 1 + tn−1

2 . These per-
mutations are used by Polo [166] to build arbitrary Kazhdan-Lusztig polynomials.
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12.8 Parabolic Kazhdan-Lusztig polynomials
Taking the action of Kazhdan-Lusztig elements on a weight space Vλ, when λ has
repeated parts, produce polynomials with coefficients which, in general, are linear
combinations of Kazhdan-Lusztig polynomials (see Deodhar [29]).

Let λ ∈ Nnbe a partition, v = λ ↑. Since (xixi+1)kCi = 0, then xvCσ = 0 if
there exists i : vi = vi+1 and `(siσ) < `(σ). To avoid this nullity, given v, one has
to take any σ such that for any i : vi = vi+1, then σ contains the subword i, i+1.

One has
x12C1 = x12(T21 − t1T12) = −t2x21 − t1x12 .

To identify the action of C1 on x12 to the expression of C1 in the Tσ basis, one has
to normalize monomials by length4:

−t2x21 − t1x12 → −t2
(
(−t2)−1x21

)
− t1

(
(−t2)−0x12

)
.

More generally, given a partition λ, and an element in xvHn with v = λ ↑, one
defines ψλ to be the morphism∑

u:u↑=v

cux
u +

∑
w:w↑6=v

cwx
w →

∑
cu

∣∣∣
t1=1

(−t2)−`(u)xu .

One checks that for any σ ∈ Sn one has

ψλ (xvTσ) = xvσ , (12.8.1)

so that the action of the Hecke algebra on xv projects on the usual action of the
symmetric group.

Given a partition λ ∈ Nn, v = λ↑ and σ ∈ Sn such that xvCσ 6= 0, let w = vσ.
Then

ψλ (xvCσ) = xw +
∑
u

(−1)`(w)−`(u)P u
λ,σ(t2)xu

and the polynomials P u
λ,σ(t2)xu are called parabolic Kazhdan-Lusztig polynomi-

als. The next proposition relates these polynomials to the usual Kazhdan-Lusztig
polynomials.

Given a composition α = [α1, . . . , αk], let β = 0α11α2 . . . (k−1)αk . The projec-
tion of Sn onto Sα\Sn can be identified with the morphism

Sn 3 σ
pβ−−→βσ1 . . . βσn

from the symmetric group to words which are permuted of β.

4the length of an exponent u is defined to be the number of pairs such that ui > uj ,i < j, by
extension of the case of a permutation.



§ 12.8 — Parabolic Kazhdan-Lusztig polynomials 

Proposition 12.8.1. Given a partition λ ∈ Nn, v = λ ↑ and σ ∈ Sn such that
xvCσ 6= 0, let w = vσ. Then

P u
λ,σ(t2) =

∑
ν∈Sn: pv(ν)=u

(−1)`(σ)−`(ν)P ν
σ (−1, t2) . (12.8.2)

Proof. The statement is a direct consequence of (12.8.1). QED
For example, let σ = [3, 4, 1, 2], v = [0, 0, 1, 1]. The correspondence between

xvC3412 = x1100 − x1010 + t2x
0101 − t2x0011 and the expansion of C3412 in the Tw

basis is shown in the following enumeration (writing ν instead of Tν):

2143
−1243 −2143

(1−t2)1234

−t2x0011
+

−2413
2314 1423

(t2−1)1234

t2x
0101

+

1432

−1342

0x0110
+

3214

−3124

0x1010
+

−3142

−x1010
+

3412

x1100
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12.9 Graßmannian case
The Kazhdan-Lusztig polynomials corresponding to Schubert subvarieties of Graß-
mannians have been described in terms of increasing labelling of trees [120, 100].
The relevant permutations are the coGraßmannian permutations, i.e. w ∈ Sn

issuch that there exists r : w1 > · · · > wr; wr+1 > · · · > wn.
Let G(r, n) be the module Cr...1n...r+1Hn. It has a linear basis {Cw}, where the

w are coGraßmannian with a rise in r. Recall that, as an operator on polynomials,

Cr...1n...r+1 = ∂r...1n...r+1∆t2t1(x1, . . . , xr)∆
t2t1(xr+1, . . . , xn)

where ∆t2t1(x1, . . . , xr) =
∏

1≤i<j≤r(t2xi + t1xj).
In particular, putting ρr,n−r = [r−1, . . . , 1, 0, n−r, . . . , 1, 0], one has

xρr,n−rCr...1n...r+1 = ∆t2t1(x1, . . . , xr)∆
t2t1(xr+1, . . . , xn) .

The space ∆t2t1(x1, . . . , xr)∆
t2t1(xr+1, . . . , x2r)H2r is in fact a representation

of the Temperley-Lieb algebra5, and together with its Kazhdan-Lusztig basis, has
been the object of numerous articles in the physics literature [43, 56, 70]. It has
also a basis of Macdonald polynomials degenerated in q = −(t2/t1)3. The relations
between the Kazhdan-Lusztig basis and the Macdonald basis are described in [57].

Instead of computing in the space Cr...1n...r+1Hn, let us show that one obtains
more simply the same Kazhdan-Lusztig polnomials using the dual basis {C̃v : v↓=
1r0n−r}. The elementary elements that one has to use are C̃i = C̃i(0) = Ti − t2,
and their shifted versions:

C̃+
i = C̃i(1) = Ti +

t1 + t2
(−t1/t2)2 − 1

= C̃i −
t1t2
[2]

C̃++
i = C̃i(2) = Ti +

t1 + t2
(−t1/t2)3 − 1

= C̃i −
t1t2[2]

[3]
. . . . . .

C̃i(k) = Ti +
t1 + t2

(−t1/t2)k+1 − 1
= C̃i −

t1t2[k]

[k+1]

The description of the dual basis is made easier by interpreting the indices v as
describing the border of the diagram of a partition. The correspondence between
Graßmannian permutations w (with descent in r), v : v ↓= 1r0n−r and partitions
λ is

w ↔ v = [0w1−1, 1, 0w2−w1−1, 1, . . . , 0n−wr ]↔ λ = [wr−r, . . . , w1 − 1] .

Given a partition λ ∈ Nr, label recursively the boxes of the diagram of λ (using
matrix conventions) as follows. Corners have label ` = 0. Erase them. The new
corners have labels ` = 1. &c. Iterate till exhausting all boxes.

0
0

0
,

1 0
1 0
0

,
2 1 0

1 0
0

,
3 2 1 0
1 0
0

.

5 quotient of Hn by the relations Ti(1)Ti±1(2)Ti(1) = 0.
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Let C̃r,λ be the product of the elements C̃r+j−i(`(�)), i, j being the coordinates
of the box �, reading the boxes of the diagram of λ by successive rows. With
r = 3, the preceding diagram gives C̃3,[421] =

C̃3(3) C̃4(2) C̃5(1) C̃6(0)

C̃2(1) C̃3(0)

C̃1(0)

⇒ C̃3(3)C̃4(2)C̃1(1)C̃6(0)C̃2(1)C̃3(0)C̃1(0) .

The following theorem is given in [76]

Theorem 12.9.1. Let r < n be two integers. Then

{x1 · · ·xrC̃r,λ : λ ⊆ (n−r)r}

coincides with the dual basis {C̃x
v : v ↓= 1r0n−r}. The coefficients of the ele-

ments of the basis in the basis of monomials are the Kazhdan-Lusztig polynomials
corresponding to pairs of coGraßmannian permutations.

For example, for r = 2, n = 4, the space x1x2H4 is 6-dimensional, with basis

{x11, x11C̃2, x
11C̃+

2 C̃3, x
11C̃+

2 C̃1, x
11C̃+

2 C̃3C̃1, x
11C̃++

2 C̃+
3 C̃

+
1 C̃2} .

The element C̃3,[421] = C̃x
0101001 has coefficient in x111 equal to (t1 − t2)2. This

implies that the Kazhdan-Lusztig polynomial P 1234567
6531742 is equal to (1+t)2, the Graß-

mannian permutation corresponding to [4, 2, 1] being w = [2, 4, 7, 1, 3, 5, 6].



 Chapter 12 — Kazhdan-Lusztig bases

12.10 Dual basis and key polynomials
In a preceding section, we have used that x1...nTw ∩ V1...n = (−t2)`(w)xw to relate
the Kazhdan-Lusztig basis to key polynomials.

On the other hand, the space x1 · · ·xrHn has linear basis the monomials with
exponent v : v ↓= 1r0n−r, and thus has linear basis {Kv} as well as {K̂v = xv}.
In that case we can directly use the key polynomials without having to pass to a
quotient space.

Under the specialization t1 to 1 and t2 to 0, the action of C̃1 becomes: x10C̃1 =
t1(x1+x2) is sent to x1+x2, x01C̃1 = −t2(x1+x2) is sent to 0, and xiiC̃1 = (t1−t2)xii

is sent to xii. In other words, C̃1 acts like π1. Thus the dual Kazhdan-Lusztig
basis in the weight space V1r0n−r may be considered as a deformation of the basis
of key polynomials.

For example, for r = 2, n = 5, the Kazhdan-Lusztig basis is indexed by
partitions contained in [3, 3] and has the following expansion in terms of the key
polynomials K11, K101, K1001, K10001, K011, K0101, K0011, K01001, K00101, K00011 :

[ ] 1 · · · · · · · · ·
[1] · t1 · · · · · · · ·
[2] · · t1

2 · · · · · · ·
[3] · · · t1

3 · · · · · ·
[1, 1] · · · · t1

2 · · · · ·
[2, 1] −t12t2 · · · · t1

3 · · · ·
[2, 2] · · · · · · t1

4 · · ·
[3, 1] −t13t2 · · · · · · t1

4 · ·
[3, 2] · · · · −t2 t14 · · · t1

5 ·
[3, 3] · · · · · · · · · t1

6

Row [3,2], for example, has to be read C̃2,[32] = t51K00101 − t2t41K011.
The Kazhdan-Lusztig polynomials P v

w(−1, t2) themselves are equal to the image
under t1 → 1, t2 → −t2 of the coefficients in the basis K̂v. For example, the
expansion

C̃3,[321] = t61K010101 − t2t51K0111 − t2t51K110001 +−t22t41K1101

furnishes the Kazhdan-Lusztig polynomials 1, 1 + t2, 1 + 2t2 + t22, the expansion
of C̃3,[321] = C̃x

010101 in the basis of monomials xv = K̂v being
t1

4 (t1−t2)2 x111000 + t1
4 (t1−t2)2 x110100 + t1

5 (t1−t2)x011100 + t1
5 (t1−t2)x101100 +

t1
5 (t1−t2)x110010+t1

6x101010+t1
6x011010+t1

5 (t1−t2)x110001+t1
6x101001+t1

6x011001+
t1

6x100110 + t1
6x010110 + t1

6x010101 + t1
6x100101.

The rule to read Kazhdan-Lusztig polynomials from a partition is given in
[120, 100].
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13.1 The symmetric group

13.1.1 Permutohedron
Given v ∈ Nn, one generates a directed graph I(v) by iterating sorting operations
u → usi if ui if vi > vi+1. This graph is in fact a rank lattice, with extremal
elements v and v↑. The rank `(u) is the number of inversions (as for permutations,
an inversion is a subword ji with j > i).

The set I(v) can be generated recursively by using a restricted shuffles defined
as follows. For v ∈ Nn, k ∈ N, let i be such that vi · · · vn be the maximal left
factor of v such that vj > k, j = i, . . . , n. Then

vsk = {[v1, . . . , vi−1, k, vi, . . . , vn], [v1, . . . , vi, k, vi+1, . . . , vn], . . . , [v1, . . . , vn, k]} .

It is clear that
I(v) = v1s v2s · · · s vn .

When v = [n, . . . , 1], the poset I(v) is called the (right) permutohedron, and
the underlying order on the symmetric group is called, unfortunately [11], the
(right) weak order.

Another approach to intervals for the weak order is to replace sets of elements
of Sn by sums in the group algebra Z[Sn] or in the algebra Z[∂1, . . . , ∂n−1].

Let �n =
∑

σ∈Sn
∂σ. We have already used that

∑
σ∈Sn

σ =

 ∑
σ∈Sn−1

σ

 (1 + sn−1 + sn−1sn−2 + · · ·+ sn−1 · · · s1) (13.1.1)

= (1 + sn−1 + sn−2sn−1 + · · ·+ s1 · · · sn−1)
∑

σ∈Sn−1

σ (13.1.2)

Correspondingly, one has

�n = �n−1 (1 + ∂n−1 + ∂n−1∂n−2 + · · ·+ ∂n−1 · · · ∂1) (13.1.3)
= (1 + ∂n−1 + ∂n−2sn−1 + · · ·+ ∂1 · · · ∂n−1)�n−1 . (13.1.4)

Factorizing further 13.1.1 requires using the Yang-Baxter relations ??. This is
in fact easier in Z[∂1, . . . , ∂n−1]. Indeed

1 + ∂n−1 + ∂n−1∂n−2 + · · ·+ ∂n−1 · · · ∂1

= (1 + ∂n−1)(1 + ∂n−1∂n−2) · · · (1 + ∂n−1∂n−2 · · · ∂1)

because all products (∂n−1 · · · ∂i)(∂n−1 · · · ∂j) vanish. Therefore, one has

�n = �n−1 (1 + ∂n−1)(1 + ∂n−1∂n−2) · · · (1 + ∂n−1∂n−2 · · · ∂1) (13.1.5)
= (1 + ∂1 · · · ∂n−1) · · · (1 + ∂n−2∂n−1)(1 + ∂n−1)�n−1 . (13.1.6)
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The inverse of 1+∂n−1 · · · ∂i being 1−∂n−1 · · · ∂i, the element �n has an inverse Ωn

which is equal to

Ωn = (1− ∂n−1∂n−2 · · · ∂1) · · · (1− ∂n−1) Ωn−1 (13.1.7)
= Ωn−1 (1− ∂n−1) · · · (1− ∂1 · · · ∂n−1) . (13.1.8)

One can in fact check by induction on n that

Ωn =
n∑
k=1

(−1)n−k
∑

v∈Nk+, |v|=n

∂ωv , (13.1.9)

sum over the maximal elements of all the Young subgroups of Sn. This expression
encodes the Möbius function of the permutohedron [11, Cor. 3.2.8].

Thus,

Ω3 = ∂123 − ∂213 − ∂132 + ∂321

= 1− ∂1 − ∂2 + ∂2∂1∂2 = (1− ∂1)(1− ∂2)(1− ∂1∂2) .

The Grothendieck polynomials are a deformation of Schubert polynomial: one
obtains G̃v(x,y) from Yv(x,y) by adding terms of degree > |v|. Intervals in the
permutohedron furnish another deformation, but this time adding terms of lower
degree. Define Lσ(x,y) = Xσ(x,y)�n, σ ∈ Sn.

Divided difference in y commute with divided differences in x, and therefore,
when `(siσ) < `(σ),

Lsiσ(x,y) = −Xσ(x,y)∂y
i �n = −Lσ(x,y)∂y

i .

In other words, the basis {Lσ(x,y)} is generated from Lω(x,y) by using the
divided differences in y. Taking intervals of the left permutohedron, one would
obtain a basis {Xσ

∑
ζ(−1)`(ζ)∂y

ζ : σ ∈ Sn} generated from its top element by
using divided differences in x.

Since �nΩn = 1, the relations (2.6.6)

(
Xσ(x,y) , Xζ(x

ω,y)
)∂

= (−1)`(ζ)δσ,ζω

are equivalent to (
Xσ(x,y)�n , Xζ(x

ω,y)Ωn

)∂
= (−1)`(ζ)δσ,ζω , (13.1.10)

and therefore, the basis adjoint to {Lσ(x,y)}, with respect to ( , )∂, is {(−1)`(ζ)Xζ(x
ω,y)Ωn}.
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13.1.2 Rothe diagram
A permutation σ can be represented by a matrix M(σ), which describes its action
on the vector space with basis 1, 2, . . . , n. Explicitly, M(σ) has entries 1 in po-
sitions [i, σi], and 0 elsewhere (taking the usual coordinates of matrices, not the
Cartesian plane).

Rothe[177] found in 1800 a graphical display of the inversions of σ, starting
from M(σ) (though, of course, matrices had still to wait 50 years to appear),
which leads to many combinatorial properties of permutations.

For each pair of 1’s in M(σ) in relative position
0 ··· 1...
1

write a box � at the
intersection of the top row and left column containing these entries, thus obtaining
� ··· 1...
1

.
The planar set of such boxes is called the Rothe diagram of σ. The list of the

number of boxes in the successive rows is the code of the permutation, One can
also read the canonical reduced decomposition of σ (defined in section 1.1) from
the Rothe diagram: number boxes in each row by consecutive numbers, starting
from the number i in row i. Reading rows from right to left, from top to bottom
gives the canonical reduced decomposition.

For example, the code of σ = [4, 2, 6, 5, 8, 1, 3, 7] is [3, 1, 3, 2, 3, 0, 0, 0], the
canonical reduced decomposition of σ is (s3s2s1)(s2)(s5s4s3)(s5s4)(s7s6s5), and
the numbered Rothe diagram is (the 1’s in the matrix representing the permuta-
tion are replaced by •)

4 3 1 2 3 • · · · ·
2 1 2 • · · · · · ·
6 3 3 · 4 · 5 • · ·
5 2 4 · 5 · • · · ·
8 3 5 · 6 · · · 7 •
1 0 • · · · · · · ·
3 0 · · • · · · · ·
7 0 · · · · · · • ·
σ code

To build the Rothe diagram, instead of considering pairs of 1’s in the matrix
representing a permutation, one can use the fact that there is no box right of a 1
in its row, and no box below a 1 in the same column. The Rothe diagram occupies
the places which are not eliminated and which do not contain a 1.

1 � � ··· � �
�...
�
forbidden region

� � � 1 � � � �
� 1 � � � � � �
� � � � � 1 � �
� � � � 1 � � �
� � � � � � � 1
1 � � � � � � �
� � 1 � � � � �
� � � � � � 1 �
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The simplest non trivial Rothe diagram is [ � 1
1 0 ]. Instead of putting a box,

one can use a parameter x, and consider [ x 1
1 0 ], or more generally, for i: 1 ≤ i < n,

replace the matrix representing si by

Ti(x) :=



1
. . .

1
x 1
1 0

1
. . .

1


Let r be an integer and I = [i1, . . . , ir] ∈ {1, . . . , n−1}r, such that sI :=

si1 · · · sir be a reduced decomposition of a permutation σ. Define TI(x1, . . . , xr)
to be the product

TI(x) = TI(x1, . . . , xr) = Tir(xr) · · ·Ti1(x1) .

The matrix TI(x) depends on the choice of the reduced decomposition of σ.
When specializing all xi’s to 0, one recovers the matrix representing σ. The
combinatorial properties of the matrix TI(x) are studied in [74]. In particular,
removing in the matrix all monomials of degree different from 1, one obtains a
balanced labelling of the Rothe diagram [37], the concept of being balanced first
appearing in the work of Edelman and Greene [34] about reduced decompositions.

For example, for σ = [3, 4, 2, 5, 1], the canonical reduced decomposition [2, 1, 3, 2, 3, 4]
and the reduced decomposition [1, 2, 1, 3, 2, 4] give the following matrices:

x2 x1 1 0 0

x4 x3 0 1 0

x5 1 0 0 0

x6 0 0 0 1

1 0 0 0 0

 ,


x1x3 + x2 x3 1 0 0

x1x5 + x4 x5 0 1 0

x1 1 0 0 0

x6 0 0 0 1

1 0 0 0 0

 .

13.1.3 Ehresmann-Bruhat order
The most elementary order is the inclusion order of sets. We shall argue in this
section that ordering finite sets can be formulated in terms of inclusion of sets.
For example, Schubert cells in a Graßmannian are indexed by partitions. The
order associated to a cellular decomposition of the Graßmannian corresponds to
teh inclusion of diagrams of the corresponding partitions. Ehresmann [35] gave
more generally a cellular decomposition of the flag variety. Cells are indexed by
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permutations (Ehresmann was instead taking the left factors of a permutation,
viewed as a word, and considered them as a flag of subsets of {1, . . . , n}):

σ ∈ Sn → {σ1} ⊂ {σ1, σ2} ⊂ · · · ⊂ {σ1 . . . , σn} = {1, . . . , n} .

Writing a set of k integers as a decreasing vector, and subtracting [k, . . . , 1], one ob-
tains from a permutation a sequence λ1(σ), λ2(σ), . . . , λn(σ) of partitions. Ehres-
mann defined an order on cells by requiring that

σ ≤ ζ ⇔ λ1(σ) ⊆ λ1(ζ), λ2(σ) ⊆ λ2(ζ), . . . , λn(σ) ⊆ λn(ζ) . (13.1.11)

This definition amounts to the componentwise order of the corresponding Ehres-
mann tableaux, using partitions instead of sets of integers. Equivalently, a per-
mutation gives a sequence of Graßmannian permutations

p1(σ), p2(σ), . . . , pn−1(σ) ,

where pk(σ) is the permutation of minimal length in the coset σSk|n−k.
Notice that comparing a permutation σ to a Graßmannian permutation g with

descent in k requires only the comparison of pk(g) and σ. Associating to σ the
set G(σ) = {g, g ≤ σ} of Graßmannian permutations smaller than it, one can
rephrase the Ehresmann order :

σ ≤ ζ ⇔ G(σ) ⊆ G(ζ) .

One can think of using the same type of construction for any finite ordered
set. Given a poset X, find an “optimal“ subset B of X such that X → 2B be
a morphism of posets (2B is the set of subsets of B, ordered by inclusion, the
morphism being x → B(x) = {b ∈ B, b ≤ x}). Given two subsets C,C ′ having
this property, then the intersection C ∩C ′ also satisfies it. Therefore, there exists
an optimal subset, that is called the basis of the order, such that X → 2B be a
poset morphism.

In the case of the symmetric group, the basis is the set of biGraßmannian
permutations (i.e. permutations whose code is of the type [0abc0d], bc 6= 0), which
is a subset of the set of Graßmannian permutations. Hence, the basis of Sn

is of cardinality
(
n+1

3

)
and provides an efficient way of coding intervals in the

Ehresmann order. Geck and Kim [51] describe the basis of every finite Coxeter
group.

As a consequence, the symmetric group Sn is embedded into a lattice (obtained
by taking unions of B(σ)), which is called its enveloping lattice , or Mac Neille
completion. The enveloping lattice, which happens to be distributive, is also easily
obtained by replacing permutations by their Ehresmann tableaux, and taking the
supremum or infimum of tableaux componentwise: given two tableaux t = {t[i, j]},
u = {u[i, j]} of the same shape, then t∧u is the tableau {max(t[i, j], u[i, j]}. The



§ 13.1 — The symmetric group 

vertices of the enveloping lattice are, in this interpretation, tableaux of staircase
shape made of elementary pieces of the type

c
a b

, c
a a

, c
a c

,

with a < b < c ∈ {1, . . . , n} (in other words b
a c

is forbidden). These tableaux
(also called monotone triangles) are in bĳection with alternating sign matrices.

For n = 3, one has

123

213 132

231 312

321

123

213 132

231 312

321

123

213 132

•
231 312

321

Permutohedron Ehresmannoedre Enveloping lattice

The enveloping lattice is obtained by adding one element to S3, this red ele-

ment being interpreted as the tableau
3
2 3
1 1 2

, or the matrix
[ 0 1 0

1 −1 1
0 1 0

]
.

For n = 4, there are 42− 24 = 18 tableaux not coming from permutations:
4
3 4
2 2 3
1 1 1 1

4
3 4
2 3 3
1 1 2 2

4
3 4
2 3 3
1 1 1 2

4
3 4
2 2 3
1 1 2 2

4
3 4
2 2 3
1 1 1 2

4
3 3
2 2 3
1 1 1 2

4
3 4
2 2 4
1 1 1 2

4
3 4
2 3 4
1 1 1 2

4
3 4
2 3 4
1 1 2 2

4
3 4
2 3 4
1 1 1 3

4
3 4
2 2 4
1 1 1 3

4
3 4
2 3 4
1 2 2 3

4
3 4
2 2 4
1 1 2 3

4
3 4
2 3 4
1 1 2 3

4
3 4
2 2 3
1 1 1 3

4
3 4
2 3 3
1 1 2 3

4
3 4
2 2 3
1 1 2 3

4
3 4
2 3 4
1 1 2 4

.

The symmetric group Sn, with its generators S = {s1, . . . , sn−1} is a Coxeter
system [11]. Given a Coxeter system (W,S), one usually defines a Bruhat order
on W by having recourse to reduced decompositions. Let si1 · · · sik be a reduced



 Chapter 13 — Complements

decomposition of w ∈ W . Then v ≤ w with respect to the Bruhat order if and
only if there exists a reduced decomposition of v which is a subword of si1 · · · sik .

It is easy to check that two permutations σ, ζ are consecutive with respect to
the Bruhat order if and only if σζ−1 is a transposition. Therefore the Bruhat
order for the symmetric group coincides with the Ehresmann order. We shall use
the terminology Ehresmann-Bruhat order for it, and refering to [11] for more
properties.

We have seen in Lemma 1.10.4 that 0-Hecke algebras give an easy way of gen-
erating lower intervals for the Ehresmann-Bruhat order on classical Weyl groups.
Stembridge [187] gives more generally a short derivation of the Möbius function
for the Bruhat orderings of Coxeter groups and their parabolic quotients by using
the 0-Hecke algebra.
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13.2 t-Schubert polynomials
The spectral vectors for Macdonald polynomials specialize, in q = 1, into a per-
mutation of [t0, t1, . . . , tn−1]. Let us show that one can similarly generalize the
spectral vectors for Schubert polynomials by multiplying the components by a
permutation of [t0, t1, . . . , tn−1].

Let v ∈ Nn be the code of a permutation σ. Let β ∈ Nn be such that
βi = #(σj < σi, i 6= j), that is, β and [σ1, . . . , σn] are two copies of the same
permutation in S({0, 1, . . . , n−1}) and S({σ1, . . . , σn}) respectively. Let more-
over

〈vt〉 = [tβ1yσ1 , . . . , t
βnyσn ] .

One defines the t-Schubert polynomial Y t
v (x) by the condtions{

Y t
v

(
〈ut〉

)
= 0 for all u : |u| ≤ |v|, u 6= v ,

Y t
v (x)

∣∣∣
t=1

= Yv(x,y)
(13.2.1)

These polynomials specialize, in t = 1, into the usual Schubert polynomi-
als Yv(x,y), share many of their properties and constitute still another basis of
Pol(xn).

Proposition 13.2.1. The family {Y t
v (x), v ∈ Nn} is stable under ∂1, . . . , ∂n−1.

Let v = u+ kn, with k ∈ N. Then Y t
v (x) = Ykn(x,y)

(
Y t
u(x)

∣∣
yi→yi+k

)
.

Proof. Let v and i be such that vi > vi+1, and let u = [. . . , vi−1, vi+1, vi−1,
vi+1, . . . ]. Then 〈ut〉 = 〈vt〉si, and the proof that Y t

ux) is equal to Y t
vx)∂i is the

same than in the case t = 1.
As for the factorization property of Y t

u+kn(x), the polynomial Y t
v (x) does have

to satisfy more vanishing properties than Y t
u(x), but the factor Ykn(x,y) takes

care of all the points w ∈ Nn having at least one component not greater than k.
Thus, one is left with the vanishing in all points w ⊆ kn, |w| ≤ |v|, w 6= v, and
this is insured by the image of t-Schubert polynomial Y t

u(x) under the uniform
translation of indices yi → yi+k. QED

As a consequence, t-Schubert polynomials are determined by the dominant
ones. However, contrary to the case of the usual Schubert polynomials, when
v is dominant, Y t

v (x) is not a product of linear factors in general. t-Schubert
polynomials indexed by antidominant weights are symmetrical in x1, . . . , xn, since
they belong to the images of ∂1, . . . , ∂n−1.

Monk’s formula extends smoothly.

Lemma 13.2.2. Let w ∈ Nn, i be such that wi > 0, v be the image of w under
wi → wi−1. Then there exists rational functions cu in t, y1, y2, . . . such that one
has

(xi − 〈vt〉i)
(〈wt〉i − 〈vt〉i)

Y t
w(〈wt〉)
Y t
v 〈wt〉

= Y t
w(x) +

∑
u: |u|=|w|, u 6=w

cuY
t
u(x) . (13.2.2)
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Proof. Both sides of the equation are polynomials of degree |w| which vanish in all
points 〈ut〉 : |u| < |w|. One can therefore determine the required coefficients cu
by specializing the LHS in 〈ut〉 : |u| = |w|, u 6= w, to insure the equality of both
sides of the equation in maximal degree. QED

In the case of Schubert polynomials, the specialization Yv(〈v〉,y) is equal
to the inversion polynomial e(v) =

∏
(ji)∈Inv(σ)(yj − yi), with σ of code v. Let

[α1, . . . , αn] = [σ1, . . . , σn]↑, and

yv = [y1, . . . , yα1 , tyα1+1, . . . , tyα2 , . . . , t
n−1yαn−1+1, . . . , t

n−1yαn ,

tnyαn+1, . . . , t
ny∞] .

Then we conjecture that

Y t
v 〈wt〉 =

∏
(ji)∈Inv(σ)

(yvj − yvi ) . (13.2.3)

Instead of expanding the basis {Y t
v (x)} in the basis {Yu(x,y)}, one rather

choose the bases {Yu(x,yv)} or {Yu(x,yu)} to obtain more compact expressions.
For example

Y t
012(x) = Y012(x,y012) +

(t− 1) (t2y4 + ty3 − ty2 − y1) y2

(t2y4 − y1) (ty3 − y1)
Y111(x,y012) ,

with y012 = [y1, ty2, ty3, t
2y4, t

2y5, t
3y6, . . . ], while the expansion of Y t

012(x) in the
Schubert basis involves

Y012(x,y), Y111(x,y), Y002(x,y), Y011(x,y), Y001(x,y), Y000(x,y) .

Contrary to the case of Schubert polynomials, one cannot concatanate 0 to
the right of v, since in general Y t

v 0(x) 6= Y t
v (x). In fact, concatanating sufficiently

many 0’s gives back the Schubert polynomials, as shows the next lemma.

Lemma 13.2.3. Let v ∈ Nn, k ≥ |v|. Then

Y t
v 0k(x) = Yv(x,y

v) .

Proof. One has to test vanishing in all u ∈ Nn+k, |u| ≤ |v|, u 6= [v, 0k]. The
permutation σ of code u belongs to Sn+k and the spectral vector 〈ut〉 is the image
of 〈u〉 under yi → ti−1yi. Thus, the set of vanishing conditions is the set defining
Yv 0k(x,y

v). QED

For example, Y t
2 (x) = (x1−y1)(x1−y2), Y t

20(x) = Y t
2 (x)+ (t−1)y2

ty3−y1 (x1−y1)(x2−ty3),
Y t

200(x) = (x1−y1)(x1−ty2).
One can reduce the number of equations in the determination of Y t

v , v domi-
nant, and avoid testing all u : |u| ≤ |v|, u 6= v, as show the next factorization.



§ 13.2 — t-Schubert polynomials 

Lemma 13.2.4. Let v be dominant, v = [v1, . . . , vr, 0, . . . , 0] with vr > 0. Then
there exist a polynomial Pv(x) of degree |v| − r such that

Y t
v (x) = (x1−y1) . . . (xr−yr)Pv(x) ,

which is determined by the conditions{
Pv
(
〈ut〉

)
= 0 for all u : u ≥ [1r0n−r], |u| ≤ |v|, u 6= v ,

Pv(x)
∣∣∣
t=1

= Yv(x,y)/Y1r(x,y) .
(13.2.4)

Proof. One notices that (x1−y1) . . . (xr−yr) vanishes in all points 〈yt〉 such that
0 ∈ {u1, . . . , ur}, because if ui = 0 is the first occurrence of 0 in u, then 〈ut〉i = y1.
Therefore, it remains to satisfy the vanishing conditions for all points u >≥
[1r, 0n−r], points that one can write w+[1r, 0n−r], with |w| ≤ |v|−r, w 6= v−[1r, 0n−r].
QED

For example, Y t
210 = (x1−y1)(x2−y2)P210(x), with

P210(x) = x100 +
y2(t−1)

t2y4−y1

x001 − y2(t3y4−y1)

t2y4−y1

x000 ,

determined by the conditions

P210(〈110t〉) = 0 = P210(〈111t〉) = P210(〈120t〉) ,

P210(x)
∣∣∣
t=1

= Y210(x,y)/Y110(x,y) = x1 − y2 .

Notice that Y t
100(x) is determined by similar conditions

Y t
100(〈000t〉) = 0 = Y t

100(〈001t〉) = Y t
100(〈010t〉) , Y t

100(x)
∣∣∣
t=1

= Y100(x,y)

but there is no change of variables which allows to pass from one system of equa-
tions to the other.

It is interesting to specialize the variables yi to 1, but the specialized equations
(13.2.4) are not sufficient to determine the specialization of Y t

v (x). For example,
all the polynomials Y t

v (x)
∣∣
yi=1

, v ∈ N2, v 6= [0, 0], [1, 0] vanish in the points [1, t]

and [t, 1].
One computes

Y t
002(x)

∣∣
yi=1

= (x1+x2+x3 − 1−t−t2)2

Y t
012(x)

∣∣
yi=1

= (x1+x2+x3 − 1−t−t2)S2(x1+x2+x3 − 1−t)

Y t
022(x)

∣∣
yi=1

= (S2(x1+x2+x3 − 1−t))2 .

This leads to the conjecture that the specialization yi = 1 of the symmetric poly-
nomial Y t

v (x), v anti-dominant, coincides with the specialization q = 1 of the
Macdonald polynomial Mv↓ seen in (??).
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The non-symmetric case is more subtle. Let us write that a sum of Y t
v is

equivalent to a sum of Macdonald polynomials if they become equal after special-
ization yi → 1, q → 1 and reversal of the alphabet xi → xn+1−i in the Macdonald
polynomials. Then one has Y t

320 ∼ M023, Y t
302 ∼ M203, Y t

230 ∼ M032, Y t
023 ∼ M320,

but
Y t

203 ∼M104 & Y t
032 ∼M230 +

t2 − t
t2 − 1

M203 .
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13.3 Polynomials under C-action
We have seen that Pol(xn) is a free Sym(xn)-module. More generally, the ring of
Laurent polynomials in xn is a free module over the invariants of the Weyl groups
of type Bn, Cn, Dn respectively. For a basis of monomials, in the more general
case of a symmetrizable KacMoody group, in relation with the K-theory of the
associated flag variety, see the article of Griffeth and Ram [58, Th.2.9].

Let us give in this section an explicit description of Pol(xn) as a free module
under the action of the Weyl group W of type Cn.

As usual, we have to start with the smallest possible case, which is here, in
disagreement with Bourbaki, n = 1.

We thus have polynomials in x1, x
−1
1 , and the operator sC1 : x1 → x−1

1 . To
understand the underlying structure, we may rather use two indeterminates x, y
satisfying the relation xy = 1. Any polynomial f(x, y) can be written

f(x, y) = f1 + xf2, f1, f2 ∈ Sym(x, y) .

Indeed, f2 = f∂x,y and f1 = −yf∂x,y.
In our case, this means that f(x1) = f1 + x1f2, with f1, f2 invariant under sC1 .

But a polynomial invariant under sC1 is a polynomial in the variable x•1 := x1+x−1
1 ,

and one may rephrase the preceding construction as

Lemma 13.3.1. Pol(x±1 ) is a free-module over Pol(x•1) = Sym(x•1) with basis
1, x1.

As a corollary, one deduces

Lemma 13.3.2. Pol(xn) := Pol(x±1 , . . . , x
±
n ) is a free module over the ring of

usual polynomials Pol(x•n) := Pol(x•1, . . . , x
•
n), with basis {xv : v ∈ {0, 1}n}.

In other words, the ring of Laurent polynomials, say in coefficients in C, may
be identified with the tensor product of the two-dimensional spaces 〈1, xi〉, i =
1, . . . , n, with the ring of polynomials in x•1, . . . , x•n.

Choosing furthermore a basis of Pol(x•n) as a free Sym(x•n)-module and using
the preceding lemma, furnishes a basis of Pol(x) as a module over itsW -invariants.
For example, one can take the Schubert polynomials1 Xσ(x•,0), σ ∈ Sn, which,
by definition, are all the different images of Xn...1(x•,0) := (x•1)n−1 · · · (x•n)0 under
products of divided differences

∂•i := (1− si)
1

x•i − x•i+1

= ∂i
1

1− x−1
i x−1

i+1

.

In summary, one has the following structure.
1 It is more convenient to index the polynomials by permutations in Sn rather than by their

code.
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Proposition 13.3.3. The ring of Laurent polynomials Pol(xn) is a free module
over Sym(x•n), with basis

{xvXn...1(x•,0) : v ∈ {0, 1}n, σ ∈ Sn} .

Since one has taken Schubert polynomials in x•n, it is natural to use the
quadratic form

(f, g)C := fg ∂C1 · · · ∂Cn ∂•ω = fg x−ρ
C

πCw0
. (13.3.1)

Since xi∂Ci = 1, 1∂Ci = 0, and Xσ(x•,0)∂•ω = 0, except Xω(x•,0)∂•ω = 1, it is
immediate to evaluate the scalar product of all the elements of the basis with 1 :

Lemma 13.3.4.(
xvXσ(x•,0) , 1

)C
= 0 except

(
x1...1Xω(x•,0), 1

)C
= 1 . (13.3.2)

Having a basis and a quadratic form, we have now to look for the adjoint basis,
or equivalently, to look for a reproducing kernel.

Back to the case n = 1, this is achieved by taking an extra indeterminate y1.
Then one instantly checks that {1, x1 − y1} and {1, y1 − x−1

1 } are adjoint bases
with respect to (f, g)C = fg ∂C1 .

Thus it is appropriate to introduce indeterminates y1, . . . , yn, to use the poly-
nomials (x1 − y1)v1 · · · (xn − yn)vn , v ∈ {0, 1}n, instead of the monomials xv,
and to use the Schubert polynomials Xσ(x•,y•) in the two alphabets x•, y• =
{(y1 +y−1

1 ), . . . , (yn+y−1
n )}. These polynomials are, by definition, all the different

images of

Xω(x•,y•) :=
∏

i,j: i+j≤n

(x•i − y•j ) =
∏

i,j: i+j≤n

(xi + x−1
i − yj − y−1

j )

under products of divided differences ∂•i (which act only on x•).
Let us choose an indexing compatible with the tensor product structure of

Pol(xn). Any element w of W is identified with a bar permutation (or signed
permutation). In other words, we write w ∈ W as

w = [(−1)ε1σ1, . . . , (−1)εnσn], with ε ∈ {0, 1}n, σ ∈ Sn .

Let, for any w ∈ W , σ = [|w1|, . . . , |wn|], v ∈ {0, 1}n such that vi = 1 whenever
−i ∈ w. Define

XC
w (x,y) = (x1 − y1)v1 · · · (xn − yn)vn Xσ(x•,y•) , (13.3.3)

X̃C
w (x,y) = (−1)`(σ)

(
y1−

1

x1

)v1
· · ·
(
yn−

1

xn

)vn
Xσ((x•)ω,y•) . (13.3.4)

Notice that in the last Schubert polynomials, we have reversed the alphabet
x• and used (x•)ω = [x•n, . . . , x

•
1].

Knowing that, in the case of the usual ring of polynomials, {(−1)`(σ)Xσ(xω,y)}
is the basis adjoint to the basis {Xσ(x,y)}, with respect to the scalar product
(f, g)∂ = fg∂ω, combining with the analysis for n = 1, one obtains
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Theorem 13.3.5. The ring of Laurent polynomials Pol(xn) is a free module over
Sym(x•n), with pairs of adjoint bases {XC

w (x,y) : w ∈ W} and {X̃C
w (x,y) : w ∈

W}. More precisely, let write −wω for [−wn, . . . ,−w1]. Then, for any w ∈ W ,
one has (

XC
w (x,y) , X̃C

−wω(x,y)
)C

= 1

and the other scalar products are 0.

For example, for n = 2, the two adjoint bases are{
XC

[(−1)ε11, (−1)ε22] = (x1 − y1)ε1 (x2 − y2)ε2 ,

XC
[(−1)ε22, (−1)ε11] = (x1 − y1)ε1 (x2 − y2)ε2

(
x•1 − y•1

)
, ε1, ε2 ∈ {0, 1}

}
,

{
X̃C

[(−1)ε11, (−1)ε22] = (y1 −
1

x1

)ε1 (y2 −
1

x2

)ε2 ,

X̃C
[(−1)ε22, (−1)ε11] = (y1 −

1

x1

)ε1 (y2 −
1

x2

)ε2
(
y•1 − x•2

)
, ε1, ε2 ∈ {0, 1}

}
.

The second alphabet y may be thought as a set of arbitrary parameters. One
may “specialize” it to 0, i.e. specialize all yi to 0 in the linear factors occurring in
the expression of XC

w (x,y) and X̃C
w (x,y), as well as specializing all y•i to 0 inside

the Schubert polynomials.
Notice that Weyl’s character formula for type C uses the operator πCw0

which
is equal to xn1 · · ·x1

n ∂
C
1 · · · ∂Cn ∂•ω. Weyl’s formula xλ πCw0

= Spλ(xn) may be written
(xλ , xn1 · · ·x1

n) = Spλ(xn).
Key polynomials for type C may be written as linear combinations ofXC

w (xn,0)
with coefficients expressed in terms of symplectic Schur functions. For example,
for n = 2, writing Xw instead of XC

w (x2,0), and Spλ instead of Spλ(x2), one has

KC
−3,1 = Sp2

(
X−2,1 −X2,−1 −X−1,−2

)
− Sp11X1,2 + Sp1Sp2X−1,2 .

As in the case of type A, it is not difficult to reformulate the preceding con-
struction of pairs of adjoint bases in terms of a kernel.

Theorem 13.3.6. Let

Θn(x,y) :=
n∏
i=1

(
xi −

1

yi

)∏
i<j

(
xi +

1

xi
− yj −

1

yj

)
.

Then Θn(x,y) is a reproducing kernel, modulo the identification Sym(x•) = Sym(y•),
i.e. one has

∀f ∈ Pol(x) ,
(
f(x1, . . . , xn) , Θn(x,y)

)∣∣∣
x=y

= f(y1, . . . , yn) . (13.3.5)



 Chapter 13 — Complements

Proof. Writing the scalar product as a summation over W , thanks to (1.10.4), the
LHS becomes (∑

±fwΘn(xw,y)
) 1

∆C

∣∣∣
x=y

.

However, all Θn(xw,y) vanish under the specialization x = y, i.e. x1 = y1, . . . , xn =
yn, but when w is the identity, in which case Θn(y,y) = ∆C(y). QED

The quadractic form takes values in Sym(x•) and is Sym(x•)-bilinear, this
forces the identification of Sym(x•) with Sym(y•).

The kernel diagonalizes into any pair of adjoint bases. For example, given any
z = {z1, z2}, writing Xw for XC

w (x, z) and writing X̃w for X̃C
w (y, z), one may check

directly for n = 2 that

Θ2(x,y) =

(
x1 −

1

y1

)(
x2 −

1

y2

)(
x1 +

1

x1

− y2 −
1

y2

)
= X1,2X̃−2,−1 +X−1,2X̃−2,1 +X1,−2X̃2,−1 +X−1,−2X̃2,1 +X2,1X̃−1,−2

+X2,−1X̃1,−2 +X−2,1X̃−1,2 +X−2,−1X̃1,2 .
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13.4 Polynomials under D-action
There are more functions which are invariant under D-action than C-action. For
example, for n = 2, x1 + x−1

2 is invariant under s1, s
D
2 , hence is a D-invariant, but

it is not invariant under sC2 .
To describe Pol(xn) as a module over the ring SymD(n) ofD-invariant, one can

start from the C-basis {XC
w (xn,0)}. However, we shall see that polynomial coef-

ficients are not sufficient. Thus, one defines SymD(n) to be the ring of symmetric
rational functions in x±1 , . . . , x±n which are invariant under sDn .

Adapting the type C-case, one takes the quadratic form

(f, g)D = fg x−ρ
D

πDw0
= fgθDn ∂

•
ω , (13.4.1)

using the notation of (1.10.6).
The Weyl group of type D may be considered as the subgroup of signed per-

mutations with an even number of signs. This embedding WD
n ↪→ WC

n does not
preserve the pairing:

(XC
−2,−1(xn,0), X̃C

12(xn,0))C = 1 , (XC
−2,−1(xn,0), X̃C

−1,−2(xn,0))C = 0, . . .

but

(XC
−2,−1(xn,0), X̃C

12(xn,0))D = x1x2+x−1
1 x−1

2 , , (XC
−2,−1(xn,0), X̃C

−1,−2(xn,0))D = 2 , . . .

To show nevertheless that {XC
w (xn,0) : w ∈ WD

n } is a SymD(n)-basis, one uses
another quadratic form

((f, g))D = (f, g)D ∩
(
KD
−1,...,−1 −KD

−1,...,−1,1

)
,

the notation meaning that, after expressing (f, g)D in the KD basis, that is,
(f, g)D = aKD

−1,...,−1 + bKD
−1,...,−1,1 + · · · , one puts ((f, g))D = a− b.

The next lemma, which is immediate to verify, shows that the two special
key-polynomials KD

−1,...,−1, K
D
−1,...,−1,1 occur in the images of monomials under θDn .

Lemma 13.4.1. Let v ∈ {−1, 0, 1}n, m(k) be the number of components of v equal
to k. Let u = [|v1|, . . . , |vn|], ε = (−1)n+m(−1)+1. Then

xvθDn =

{
KD

(−1)n−1,ε
−KD

(−1)n−2,02+KD
(−1)n−4,04− · · · if m(0) = 0

2m(0)−1(x•)u if m(0) > 0 .
(13.4.2)

Proposition 13.4.2. For w,w′ ∈ WC
n , one has((

XC
w (xn,0) , (−1)nX̃C

w′(xn,0)
))D

= δw′,−wω . (13.4.3)

Consequently, the set {XC
w (xn,0) : w ∈ WD

n } is a SymD(n)-basis.
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Proof. The product of the two polynomials XC
w , X̃w′ is equal to the product of

two Schubert polynomials in x• times a monomial xv, with v ∈ {−1, 0, 1}n. If v
has at least a component equal to 0, then its image under θDn is a monomial in
x•. This monomial, multiplied by the two Schubert polynomials belongs to the
span of monomials (in x•) of exponent ≤ [n, . . . , n]. It image under ∂•ω belongs
to the span of Schubert polynomials Y0n−i,1i(x

•,0). If i 6= n, then Y0n−i,1i(x
•,0)

has no component in the KD-basis of index [(−1)n−1,±1]. Moreover Y1n(x•,0) =
x•1 · · ·x•n = KD

(−1)n + K(−1)n−1,1 + · · · . Therefore, to avoid nullity, v must have
no component equal to 0. But in that case xvθDn is D-invariant and commutes
with ∂•ω. One is reduced to the case of two Schubert polynomials (2.6.6), and this
allows to conclude. QED

To expressXC
w (xn,0), when w ∈ WC

n \WD
n , in the above basis is not immediate.

For example, for n = 2, writing w instead of XC
w (xn,0), Kv instead of KD

v , putting
γ = (x1x2 − x−1

1 x−1
2 )2, one has the following expansions

[12] [1̄2̄] [21] [2̄1̄]

γ[1̄2] K2̄1̄ −2K1̄0 −K1̄1̄−K00 K1̄1̄+K00

γ[12̄] −2K1̄0 K2̄1̄ K1̄1̄+K00 −K1̄1̄−K00

γ[2̄1] −K2̄2̄−K2̄0−K1̄1+K00 K2̄2̄+K2̄0+K1̄1−K00 K2̄1̄ −2K1̄0

γ[21̄] K2̄2̄+K2̄0+K1̄1−K00 −K2̄2̄−K2̄0−K1̄1+K00 −2K1̄0 K2̄1̄
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13.5 Hecke algebras of types B,C,D
In type A, we have obtained the Hecke algebra by replacing the simple trans-
positions si by Ti = (t1 + t2)πi − t2si. Having at our disposal π♥n and s♥i for
♥ = B,C,D, we have therefore candidates for T♥n . One can in fact take indepen-
dent parameters for types B and C. We prefer to rename the parameters for type
A, and define for i ≥ 1,

Ti = (q1+q2)πi − q2si & TBi = (t1+t2)πBi − t2sBi & TCi = (t1+t2)πCi − t2sCi ,

and, for i ≥ 2,
TDi = (q1+q2)πDi − q2s

D
i .

These operators satisfy the braid relations, together with

(TBi − t1)(TBi − t2) = 0, (TCi − t1)(TCi − t2) = 0, (TDi − q1)(TDi − q2) = 0 .

The collection T1, . . . , Tn−1, T
♥
n generates the Hecke algebra of type ♥ = B,C,D.

One can order differently the Dynkin graph. In type C, instead of using
the divided difference relative to the pair xn, x−1

n , one takes the pair x−1
1 , x1, and,

correspondingly, πC0 = πx−1
1 ,x1

, and sC0 = sC1 . In type B, one takes πB0 = π
x
−1/2
1 ,x

1/2
1

,
and sB0 = sB1 . In type D, one puts sD0 = sD2 ,

f(x1, x2, . . . ) π
D
0 =

(
x−1

1 x−1
2 f − f sD0

)
(x−1

1 x−1
2 − 1)−1 .

Thus

TB0 = (t1+t2)πB0 − t2sB0 & TC0 = (t1+t2)πC0 − t2sC0 & TD0 = (q1+q2)πD0 − q2s
D
0 .

The operators TB0 , TC0 are characterized by the fact that they commute with
the functions of x•1 = x1 + x−1

1 , and by the images of 1, x1, which are

1TB0 = t1 = 1TC0 , x−1
1 TB0 = −t1−t2−t2x

−1
1 , x−1

1 TC0 = t2x
−1
1 .

The operator TD0 is characterized by the fact that it commutes with functions
which are invariant under sD0 , and by the images of 1, x1, x2, x2x

−1
1 , which are

1TD0 = q1, x1T
D
0 = −q2x

−1
2 , x2T

D
0 = −q2x

−1
1 , x2x

−1
1 TD0 = q1x2x

−1
1 .

The set {T♥0 , T1, . . . , Tn−1} generates another realization of the Hecke algebra
of type ♥, as an algebra of operators on polynomials. This is this realization that
we shall retain in this section.

One can, of course, combine both realizations, or use simultaneously the op-
erators for the different types. From the explicit images of 1, x1, x2, x2x

−1
1 , one

discovers that TD0 coincides with the specialization t1 = 1, t2 = −1 of TC0 T1T
C
0 .

Thus, the Hecke algebra of type D may be obtained as a subalgebra of the Hecke
algebra of type C for t1 = 1, t2 = −1.
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As for type A, inserting parameters in the braid relations is a powerful way
of obtaining interesting elements of the Hecke algebra. We refer to the work
of Cherednik [21, 22, 23] for a Yang-Baxter philosophy and its application to
mathematical physics. For our part, we shall restrict to the construction of Yang-
Baxter graphs for the Hecke algebras of the Weyl groups, wich allow to insert
parameters inside reduced decompositions in a coherent way.

A Yang-Baxter graph is a graph with vertices labelled by pairs Yw, v, w in the
Weyl group W♥,n, v a vector of length n, satisfying the following conditions.

The starting point is the pair consisting of 1 = Y12...n and of an arbitrary
spectral vector. The other elements are recursively defined by the same rule than
in type A, which is, for i > 0,

(
Yw, v

)
→
(
Yw
(
Ti +

q1 + q2

vi+1v
−1
i − 1

)
, vsi

)
when `(wsi) > `(w) , (13.5.1)

the rule for type D being

(
Yw, v

)
→
(
Yw
(
TD0 +

q1 + q2

v1v2 − 1

)
, vsD0

)
when `(wsD0 ) > `(w) , (13.5.2)

and finally, the rule for type ♥ = B,C being

(
Yw, v

)
→
(
Yw
(
T♥0 +

t1 + t2
v2

1(−t1t2)−1 − 1

)
, vs♥0

)
when `(ws♥0 ) > `(w) , (13.5.3)

with vsB0 = vsC0 = [−t1t2v
−1
1 , v2, . . .] and vsD0 = [v−1

2 , v−1
1 , v3, . . .].

The fact that the elements Yw are well defined translates algebraically in the
Yang-Baxter equations for types B,C,D. The relation sD0 s2s

D
0 = s2s

D
0 s2 corresponds

to an embedding of S3 into WD,3, thus comes from type A. Thus, there is only
one new relation, which is for type C (or B). On the following graphical display,
this relations translates into the fact that the two paths from top to bottom give
equal elements in the Hecke algebra (each path being evaluated as the product of
the labeling of its edges).

Write pairs w, Ti(γ) instead of YCw , Ti+ t1+t2
γ−1

, for the vertices of the Yang-Baxter
graph.
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12, [a, b]

21, [b, a] 1̄2, [−t1t2
a
, b]

2̄1, [−t1t2
b
, a] 21̄, [b, −t1t2

a
]

12̄, [a, −t1t2
b

] 2̄̄1, [−t1t2
b
, −t1t2

a
]

1̄̄2, [−t1t2
a
, −t1t2

b
]

T1( b
a
) T0(−a

2

t1t2
)

T0(−b
2

t1t2
)

T1(−ab
t1t2

)

T0(−a
2

t1t2
)

T1(−ab
t1t2

)

T0(−b
2

t1t2
)

T1( b
a
)

Notice that the labelings of edges are reversed when exchanging the two paths from
top to bottom. In other words, the Yang-Baxter equation equals two products
obtained by reversal of each other. To simplify the picture, we could have taken
−t1t2 = 1. However, keeping the two parameters t1, t2 instead of using t,−t−1 is
essential in some problems.

The construction of a Yang-Baxter product corresponding to the choice of a
reduced decomposition of w♥0 , which is obtained by choosing a path from top to
bottom in the Yang-Baxter graph, amounts to list inversions in the order that they
are created, exactly as when computing the Poincaré polynomial. This remark
is clear when starting with the spectral vector [y1, . . . , yn]. For example, for type
C, the Yang-Baxter expression is obtained from the case n−1 to the case n by
multiplication by the factor(

Tn−1 +
q1 + q2
ynyn−1

−t1t2
−1

)
· · ·

(
T1 +

q1 + q2
yny1
−t1t2

−1

)(
TC0 +

q1 + q2

y2n
−t1t2

−1

)
(
T1 +

q1 + q2

yny
−1
1 −1

)
· · ·
(
Tn−1 +

q1 + q2

yny
−1
n−1−1

)
,

the negative roots of the root systems of type C being encoded as

. . . , ynyn−1, . . . , yny1, y
2
n, yny

−1
1 , . . . , yny

−1
n−1

(we have changed the orientation of the Dynkin graph, compared to when we were
computing the Poincaré polynomial).
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The alternating sum 1
|W |

∑
w(−1)`(w)w on a Weyl group is a fundamental idem-

potent. We have seen (1.9.10 ) how fruitful it is in type A to factorize the corre-
sponding element of the Hecke algebra. Let us do the same for types B,C,D.

In type ♥ = B,C, instead of the usual length, one defines `0(w) (resp. `1(w))
to be the degree in s♥0 (resp. in s1, s2, . . .) of any reduced decomposition of w. Let

∇♥,n =
∑

w∈W
(−t1)n−`0(w)(−q1)n(n−1)−`1(w) Tw , ♥ = B,C , (13.5.4)

∇D,n =
∑

w∈W
(−q1)n(n−1)−`(w) Tw (13.5.5)

The description of the canonical reduced decompositions of the elements of the
Weyl groups of type ♥ = B,C,D entails the following factorizations of the sums
∇♥,n:

∇♥,n = ∇♥,n−1
(
Tn−1 · · ·T♥0 · · ·Tn−1 − q1Tn−1 · · ·T♥0 · · ·Tn−2 + · · ·

+ (−q1)n−1Tn−1 · · ·T♥0 − t1(−q1)n−1Tn−1 · · ·T1 + · · ·

− t1(−q1)2n−3Tn−1 − t1(−q1)2n−2
)
, ♥ = B,D . (13.5.6)

∇D,n = ∇D,n−1
(
Tn−1 · · ·T2T

D
0 T1 · · ·Tn−1 + · · ·+ (−q1)n−2Tn−1 · · ·T2T

D
0 T1

+ (−q1)n−1Tn−1 · · ·T2T
D
0 + (−q1)n−1Tn−1 · · ·T2T1

+ (−q1)nTn−1 · · ·T2 + · · ·+ (−q1)2n−2
)

(13.5.7)

However, ∇♥,n is a Yang-Baxter element, as shows the following proposition.

Proposition 13.5.1. For types B,C,D, ∇♥,n is the bottom element of the Yang-
Baxter graph corresponding to the spectral vectors [t2, (−q2q

−1
1 )t2, . . . , (−q2q

−1
1 )n−1t2]

for types B,C, and [1, −q2q
−1
1 , . . . , (−q2q

−1
1 )n−1] for type D.

In particular, one has the following factorizations, for types ♥ = B,C,

∇♥,n = ∇♥,n−1

Tn−1 +
q1 + q2

−t2
t1

(
−q2
q1

)2n−3
−1

 · · ·
T1 +

q1 + q2

−t2
t1

(
−q2
q1

)n−1
−1


TC0 +

q1 + q2

−t2
t1

(
−q2
q1

)2n−2

− 1


T1 +

q1 + q2(
−q2
q1

)n−1

− 1

 · · ·(Tn−1 +
q1 + q2
−q2
q1
− 1

)
, (13.5.8)



§ 13.5 — Hecke algebras of types B,C,D 

and for type D,

∇D,n = ∇D,n−1

Tn−1 +
q1 + q2(
−q2
q1

)2n−3
−1

 · · ·
T2 +

q1 + q2(
−q2
q1

)n
−1


TD0 +

q1 + q2(
−q2
q1

)n−1
−1


T1 +

q1 + q2(
−q2
q1

)n−1
−1


T2 +

q1 + q2(
−q2
q1

)n−2

− 1

 · · ·(Tn−1 +
q1 + q2
−q2
q1
− 1

)
. (13.5.9)

Proof. Using the Yang-Baxter relations, one can factor on the left of the right
hand-side of the two above expressions each of the simple factors (T1−q1), . . .,
(Tn−1−q1), and TD0 −q1) or (T

B/C
0 −t1). Moreover, the term of maximal length is

T♥w0
. Therefore these factorized expressions are equal to the quasi-idempotents

∇♥,n. QED
For types B,C, there are other factorizations which do not correspond to the

choice of a spectral vector, but present the advantage of having the parameters
t1, t2 appear in only the factors containing T0.

Recall the notation (1.9.1) Ti(−k) = Ti − qk1/[k] for type A, with [k] = qk−1
1 −

q2q
k−2
1 + · · · +(−q2)k−1. Let

βk = t1 +
[k−1]

[k]
(t1q2+t2q1) , T♥0 (−k) = T♥0 −βk for k ≥ 1 , ♥ = B,C . (13.5.10)

Then one proves as above the following factorization of ∇B/C .

Proposition 13.5.2. For type ♥ = B,C, one has

∇♥,n = ∇♥,n−1 Tn−1(−n+1) · · ·T1(−1)T♥0 (−n)T1(−n+1) · · ·Tn−1(−1) . (13.5.11)

For example,

∇C,2 = (TC0 −t1)(T1−q1)

(
TC0 − t1−

t1q2 + t2q1

q1 − q2

)
(T1−q1)

= TC0 T1T
C
0 T1 − q1T

C
0 T1T

C
0 − t1T1T

C
0 T1 + t1q1T

C
0 T1 + t1q1T1T

C
0

− t21q1T1 − t1q2
1T

C
0 + t21q

2
1 .

All ∇♥,n, ♥ = A,B,C,D, are quasi-idempotents. As in the case of Weyl’s
character formula, they send xρ♥ to a generalization of the Vandermonde.

Let

V A,n =
∏

1≤i<j≤n

(q2xi + q1xj) & V D,n =
∏

1≤i<j≤n

(q2xi + q1xj)

(
q1 +

q2

xixj

)
,
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V B,n = V D,n

n∏
i=1

(
t2√
xi

+ t1
√
xi

)
& V C,n = V D,n

n∏
i=1

(
t2
xi

+ t1xi

)
.

The following theorem shows that V ♥,n is a right factor of ∇♥,n.

Theorem 13.5.3. With the notations of Propositions 1.10.1, 1.10.2, one has, for
♥ = B,C,D,

∇♥,n = x−ρ
♥
π♥w0

V ♥,n (13.5.12)

=

(∑
w

(−1)`(w)w

)
V ♥,n

(
∆♥,n

)−1 (13.5.13)

Moreover, for ♥ = B,C, one has

(−1)(
n+1

2 )∇♥,n = ∂♥1 · · · ∂♥n ∂•ω V ♥,n = ∂•ω ∂
♥
1 · · · ∂♥n V ♥,n (13.5.14)

Proof. For each type, the different assertions are equivalent, thanks to the different
factorizations of the maximal divided difference. Let us test (13.5.8), for type C,
on the basis {Pv,σ = xvXσ(x•n,0) : v ∈ {0, 1}n, σ ∈ Sn} of Pol(xn) as a free
module over the invariant under C, defined in (13.3.3).

If v1 = 0, then Pv,σ is sent to 0 by ∂C1 , as well as by TC0 − t1, which is a
left factor of ∇C,n. Since σ∇C,n = (−1)`(σ)∇C,n for any permutation σ, non-
vanishing implies that v = [1, . . . , 1]. Since ∂ω is a left factor of ∇A,n, hence
of of ∇C,n, as well as of ∂•ω, non-vanishing requires that σ = ω. The image
of x1...1Xω(x•n,0) under the right-hand side of (13.5.8) is V C,n. The image under
∇C,n is a polynomial f which belongs to the linear span of monomials of exponents
u such that [|u1|, . . . , |un|] ↓≤ [n, . . . , 1]. Since moreover ∇C,nTi = ∇C,nq2 for
i = 1, . . . , n−1, and ∇C,nTC0 = ∇C,nt2, then f must be equal to V C,n, up to a
non-zero constant. One finds this constant by computing, in the image of x1,2,...,n,
the coefficient of 1/x1,...,n, which is (−tn2 )q

n(n−1)
2 under TCw0

(hence under ∇C,n),
and (−1)(

n
2)tn2q

n(n−1)
2 under the right-hand side. This settles the case of type C,

the case of type B being similar. The case D requires checking only the images
of Pv,σ for v having an even number of components equal to 1. QED

For example,

−∇2,C = ∂C1 ∂
C
2 ∂
•
21 (q2x1 + q1x2)

(
q1 +

q2

x1x2

)(
t2
x1

+ t1x1

)(
t2
x2

+ t1x2

)
.

Exchanging t1, t2, q1, q2, one obtains another family of quasi-idempotents

d♥,n =
∑

w∈W
(−t2)n−`0(w)(−q2)n(n−1)−`1(w) Tw , ♥ = B,C , (13.5.15)

dD,n =
∑

w∈W
(−q2)n(n−1)−`(w) Tw . (13.5.16)

This exchange of parameters give for d♥,n relations corresponding to (13.5.6),
(13.5.7), (13.5.8), (13.5.9), taking factors Ti(k) = Ti − qk2(qk−1

2 + · · · +(−q1)k−1)−1

instead of Ti(−k).
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However, change of parameters is not sufficient for what concerns the expres-
sion of d♥,n in terms of divided differences. One must also change the order of
operations, as we have seen in type A. Let Ṽ ♥,n be the image of V ♥,n under the
symmetry q1 ↔ q2, t1 ↔ t2. Then one has

Theorem 13.5.4. Given n, let εA = 1, εB = εC = (−1)(
n+1

2 ), εD = (−1)(
n
2). Then

d♥,n = ε♥Ṽ ♥,nx−ρ
♥
π♥w0

= Ṽ ♥,n∇♥,n
(
V ♥,n

)−1
. (13.5.17)

For example,

dC,2 = − (q1x1+q2x2)

(
q2+

q1

x1x2

)(
t1
x1

+t2x1

)(
t1
x2

+t2x2

)
1

x2
1x2

πC0 π1π
C
0 π1 .

We have used the simultaneous transposition of t1, t2, and q1, q2. In type C
(or B), one has two other ways to produce a quasi idempotent from ∇C , using
a single transposition. Let

(
∇C,n

)(t2,t1) (resp.
(
∇C,n

)(q2,q1)) be the image of ∇C,n

under the transposition (t2, t1) (resp. (q2, q1)). Write V C,n(q1, q2, t1, t2) = V C,n,
V C,n(q1, q2, ∅) = V D,n, V C,n(∅, t1, t2) =

∏n
i=1

(
t2
xi

+t1xi

)
. We have just seen that

dC,n = ε♥V C,n(q2, q1, t2, t1)x−ρ
♥
πCw0

. The following proposition shows that the two
other quasi idempotents similarly factorize in terms of divided differences.

Proposition 13.5.5. Defining εC = (−1)(
n+1

2 ) as in (13.5.17), using the factor-
ization (1.10.3) of πCw0

, one has(
∇C,n

)(q2,q1)
= εCV C,n(q2, q1, ∅) ∂C1 · · · ∂Cn ∂•ω V C,n(∅, t1, t2) (13.5.18)(

∇C,n
)(t2,t1)

= εCV C,n(∅, t2, t1) ∂C1 · · · ∂Cn ∂•ω V C,n(q1, q2, ∅) . (13.5.19)

For example,(
∇C,2

)(t2,t1)
= (TC0 −t2)(T1T

C
0 +t2q1)(T1 − q1)

= (TC0 − t2)(T1 − q1)

(
TC0 −

q1(t1+t2)

q1−q2

)
(T1 − q1)

= −
(
t1
x1

+ t2x1

)(
t1
x2

+ t2x2

)
∂C1 ∂

C
2 ∂
•
21 (q2x1 + q1x2)

(
q1 +

q2

x1x2

)
.

Thus

−x1

(
∇C,2

)(t2,t1)
=

(
x1

(
t1
x1

+ t2x1

)
∂C1

)((
t1
x2

+ t2x2

)
∂C2

)
∂•21V

C,2(q1, q2, ∅)

= (t2(x1 + x−1
1 ))(t2 − t1)∂•21V

C,2(q1, q2, ∅) = t2(t2 − t1)V C,2(q1, q2, ∅) ,

value which would be more complicated to obtain using the definition
(
∇C,2

)(t2,t1)
=∑

w∈W (−t2)n−`0(w)(−q1)n(n−1)−`1(w) Tw.
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The Hecke algebraHD
n contains two copies ofHA

n , one generated by {T1, T2, . . . ,
Tn−1}, the other by {TD0 , T2, . . . , Tn−1}. However, these two copies act differently
on polynomials. In fact, the identity sC0 T

D
0 s

C
0 = T1 exchanges the two actions.

Thus,

∇A,3 = T1(−1)T2(−2)T1(−1) = ∂321 (q2x1+q1x2) (q2x1+q1x3) (q2x2+q1x3)

entails

TD0 (−1)T2(−2)TD0 (−1) = sC0 ∂321s
C
0

(
q2

x1

+q1x2

)(
q2

x1

+q1x3

)
(q2x2+q1x3) .

Since the work of Young, one knows that 1-dimensional idempotents are the
elementary bricks with which to build representations of the symmetric group,
and, by extension, of the Hecke algebras of the classical groups.

Due to the factorization (13.5.12), one can also use polynomials of the type
V ♥,n (c.f. [111] in type A). We have seen in the preceding chapters the im-
portance of Yang-Baxter graphs to generate families of polynomials or bases of
representations. Essentially, to describe a representation of the group algebra, or
of the Hecke algebra of the fundamental groups, one needs a starting element. An
appropriate graph will take care of generating a basis from this element.

For example, in the case of the group algebra of the symmetric group, one
can start from a product of Vandermonde determinants on blocks of consecutive
variables to generate a “Specht module”. Standard Young tableaux index the
elements of the Specht or Young basis, the starting element being indexed by the
tableau having its columns filled with consecutive integers. Thus, one has to find
similar “first elements” to generate representations of the different Hecke algebras
associated to the classical groups.

Young orthogonal bases are nowadays characterized as eigenvectors of Jucys-
Murphy elements [69, 154, 163]. In that respect, the fundamental property of
the polynomial ∆t1,t2

λ encoutered in (1.9.14) is that it is an eigenvector of the
Jucys-Murphy elements ξA1 = 1, ξA2 = T1T1/(−q1q2), ξA3 = T2T1T1T2/(q1q2)2, . . .

Jucys-Murphy elements are recursively defined [172] by

ξA1 = 1, ξB1 = TB0 , ξ
C
1 = TC0 , ξ

D
2 = TD0 T1, ξ

♥
i = Ti−1ξ

♥
i−1Ti−1(−q1q2)−1 .

Irreducible representations of the Hecke algebra of type C are indexed by
pairs of partitions, and, correspondingly, bases are indexed by bitableaux (pairs
of standard tableaux). Representations may be realized as subspaces of the Hecke
algebra, the elements corresponding to bitableaux being eigenvectors of the Jucys-
Murphy elements with special eigenvalues [172]. According to what we have said,
to obtain irreducible polynomial representations of the Hecke algebra HC

n , we need
only to exhibit, for each pair of partitions (λ, µ) : |λ|+|µ| = n, a polynomial which
is an eigenvector of the Jucys-Murphy elements, with the same eigenvalues as the
bitableau of shape (λ, µ) filled with consecutive numbers in columns.
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We do not have a solution in general, but only in the case where [λ, µ] is a
partition. We give without proof these polynomials, to prompt a reader to describe
the general case.

Given three positive integers a, b, k, with a < b, let

φ(a, b, k) =
∏

a≤i<j≤b

(q2xi + q1xj)

(
qk1 −

(−q2)k

xixj

)
(13.5.20)

φC(a, b, k) = φ(a, b, k)
b∏
i=a

(
t2x
−1
i + t1xi

)
(13.5.21)

Thus φC(1, n, 1) = V C,n.
To a pair of partitions λ = [λ1, . . . , λr], µ = [µ1, . . . , µ`], one associates a

content-vector of length λ|+|µ|

c(λ, µ) =
[
[0, −1, . . . , −λ1+1], [1, 0, . . . , −λ2+2], . . . , [r−1, . . . , −λr+r],

[0, −1, . . . , −µ1+1], [1, 0, . . . , −µ2+2], . . . , [`−1, . . . , −λ`+`]
]

(this vector is made of blocks that we have figured, one should erase the inside “[”
and “]”).
Claim. Let λ = [λ1, . . . , λr], µ = [µ1, . . . , µ`] be two partitions, with λ|| = m
λ|+|µ| = n, such that λr ≥ µ1. Let c = c(λ, µ) be the content-vector, and

v = [λ1, λ1+λ2, . . . , λ1+ · · · +λr, λ1+ · · · +λr+µ1, . . . , λ1+ · · · +µ`] .

Then the polynomial

φC(1, v1, 1)φC(v1+1, v2, 2) · · ·φC(vr−1+1, vr, r)φ(vr+1, vr+1, r+1) · · ·φ(vr+`−1, vr+`, r+`)

is an eigenvector for the Jucys-Murphy elements ξC1 , . . . , ξCn with eigenvalues

t2, t2(−q1/q2)c2 , . . . , t2(−q1/q2)cm , t1, t1(−q1/q2)cm+2 , . . . , t1(−q1/q2)cn .

For example, for λ = [3, 2], µ = [2], the content-vector is c = [0, −1, −2, 1, 0, 0, −1]
and the polynomial

(q2x1 + q1x2)

(
q1 +

q2

x1x2

)
(q2x1 + q1x3)

(
q1 +

q2

x1x3

)
(q2x2 + q1x3)(

q1 +
q2

x2x3

)(
t2
x1

+ t1x1

)(
t2
x2

+ t1x2

)(
t2
x3

+ t1x3

)
(q2x4 + q1x5)(

q1
2 − q2

2

x4x5

)(
t2
x4

+ t1x4

)(
t2
x5

+ t1x5

)
(q2x6 + q1x7)

(
q1

3 +
q2

3

x6x7

)
.

is an eigenvector of the Jucys-Murphy elements, with eigenvalues

t2, −t2q2/q1, t2q
2
2/q

2
1, −t2q1/q2, t2, t1, −t1q2/q1 .
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13.6 Noncommutative symmetric functions
We have already used noncommutative methods in the theory of symmetric func-
tions, by embedding the ring Sym into Plac. Since Sym(x∞,) is a ring of polynomi-
als in S1, S2, . . . , one can use another approach to noncommutativity by deciding
that S1, S2, . . . do not commute any more, and look for the bases analogous to
the bases of Sym other than products of complete functions.

Instead of using quasi-determinants as in [52], let us adopt a more down-to-
earth point of view, and use a combinatorics of compositions2.

Given a composition v of n, let D(v) = [v1, v1+v2, . . . , v1+v2+ . . . +vr−1] =
[d1, . . . , dr−1] be the list of descents of v, and 〈v〉 ∈ Nn−1 be the exponent of
the monomial xd1 . . . xdr−1 .

Let Pol1 be the vector space with basis {x〈v〉} indexed by all compositions,
and Pol1n the subspace corresponding to compositions of n. Define the product

Pol1n ×Pol1m 3 f × g
→ f(x1, . . . , xn−1) (1 + xn) g(x1+n, . . . xn+m−1) ∈ Pol1m+n .

Let Sym be the free associative algebra generated by S[1], S[2], . . .. Given any
composition v = [v1, . . . , vr], denote S[v] the product S[v1] · · ·S[vr], and let Symn

be the linear span of {S[v] : |v| = n}.
Other bases of Symn have been defined in [52] through generating functions.

Let σ(t) =
∑

k≥0 t
kS[k]. Then one defines L[k],Ψ[k],Φ[k] by∑

k≥0

tkL[k] = σ(−t)−1 (13.6.1)

∑
k≥1

tk−1Φ[k] =
d

dt
log
(
σ(t)

)
(13.6.2)

∑
k≥1

tk−1Ψ[k] = σ(t)−1 d

dt
σ(t) . (13.6.3)

By product, one obtains three linear bases of Sym:

L[v] = L[v1]L[v2] . . . , Φ[v] = Φ[v1]Φ[v2] . . . , Ψ[v] = Ψ[v1]Ψ[v2] . . . .

Another important basis, the basis of ribbon functions R[v], is recursively defined
by R[k] = S[k],

R[v, a]R[b, w] = R[v, a, b, w] +R[v, a+b, w] , a, b ∈ N+ .

One can identify Sym and Pol1 by sending S[k] to 1, and requiring the com-
patibility with the product. In more details, let θ : Sym → Pol1 be defined by
θ(S[k]) = 1 for all k ∈ N, and, for any two compositions v, w,

θ(S[v]S[w]) = θ(S[v]) (1 + x|v|) θ(S[w]) .

2In [52], one mostly uses quasi-determinants of almost triangular matrices (i.e. null under
the subdiagonal), in which case the theory is simpler than the general theory.
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Thus, given v = [v1, . . . , vr], let D(v) = [d1, . . . , dr−1] be the descents of v. Then

θ
(
S[v1, . . . , vr]

)
= (1 + xd1)(1 + xd2) . . . (1 + xdr−1) (13.6.4)

θ
(
R[v1, . . . , vr]

)
= xd1xd2 . . . xdr−1 = x〈v〉 . (13.6.5)

It is easy to check that

θ(L[k]) = x1 . . . xk−1 (13.6.6)
θ(Ψ[k]) = 1− x1 + x1x2 − · · ·+ (−1)k−1x1 . . . xk−1 . (13.6.7)

A little more effort is required to show that

θ(Φ[k]) = 1−
(
k−1

1

)−1

e1 +

(
k−1

2

)−1

e2 − · · ·+ (−1)k−1ek−1 , (13.6.8)

where e1, . . . , ek−1 are the elementary symmetric functions in x1, . . . xk−1.
The above values induce θ(L[v]), θ(Ψ[v]), θ(Φ[v]). For example, for n = 3, the

polynomial images of the different bases are given by the following table :

basis 3 21 12 111

θ(R) 1 x2 x1 x1x2

θ(S) 1 1+x2 1+x1 (1+x1) (1+x2)

θ(L) x1x2 x1 (1+x2) (1+x1)x2 (1+x1) (1+x2)

θ(Ψ) 1−x1+x1x2 (1+x2) (1−x1) (1−x2) (1+x1) (1+x1) (1+x2)

θ(Φ) 1−1/2x2−1/2x1+x1x2 (1+x2) (1−x1) (1−x2) (1+x1) (1+x1) (1+x2)

Notice that the expression of any element f of Sym in the basis R[v] can be
obtained by expanding θ(f) in terms of monomials, and that the expression in
the basis S[v] as the same coefficients as the expansion of the image of θ(f) under
the translation xi → xi−1. For example θ(Ps[4]) = x000− x100 + x110− x111. This
polynomial becomes under the translation 4x000 − 2x010 − 3x100 + 2x110 + x101 +
x011 − x111 − x001, and therefore

Ψ[4] = 4S[4]− S[31]− 2S[22] + S[211]− 3S[13] + S[121] + 2S[112]− S[1111] .

Some other linear bases of Sym have been introduced, for example, the multi-
plicative basis K[v] of [52, p. 279] which is such that

θ(K[k]) = (1 + qx1)(1 + q2x2) . . . (1 + qk−1xk−1) .

Florent Hivert [63] defined a deformation of the ribbon functions, the noncom-
mutative Hall-Littlewood functions H[v], which are such that, using descents as
above, one has

θ(H[v]) = (xd1 + q)(xd2 + q2) . . . (xdr−1 + qr−1) .
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The space Symn is dual to the space Qsymn of noncommutative quasi-symmetric
functions, the basis {M [v]} dual of {S[v]} being the basis of quasi-monomial func-
tions. The basis {E[v]} is dual to the basis {L[v]}. Another basis, the quasi-ribbon
functions {F [v]}, has been defined by Gessel [53].

The space Qsymn can also be identified with Pol1n. Under this identification
that we still denote θ, one has, in terms of the descentsD(v) = {v1, v1+v2, v1+v2+v3 . . .}
of v,

θ(F [v]) =
∏

i∈D(v)
xi = x〈v〉 (13.6.9)

θ(E[v]) =
∏

i 6∈D(v)
(xi−1) (13.6.10)

θ(M [v]) = x〈v〉
∏

i 6∈D(v)
(1−xi) . (13.6.11)

basis 3 21 12 111

θ(F ) 1 x2 x1 x1x2

θ(E) (x1−1) (x2−1) (x1−1) (x2−1) 1

θ(M) (1−x1) (1−x2) (1−x1)x2 x1 (1−x2) x1x2

The pairing between Symn and Qsymn induces a quadratic form on Pol1n. In
fact, the space Pol1n being the tensor product of 2-dimensional spaces with bases
1, xi, there is not much choice to define a pairing compatible with this structure.
Given f, g ∈ Pol1n, one puts

(f, g) = CT
(
f(x1, . . . , xn−1)g(x−1

1 , . . . , x−1
n−1)

)
.

Because (1, 1−xi) = 1 = (1+xi, xi), and (1+xi, 1−xi) = 0 = (1, xi), one has indeed
that

(
θ(S[v]), θ(M [u])

)
= δu,v as required by the definition of the pairing. The

monomials θ(R[v]) and θ(F [v]) being both equal to x〈v〉 , the basis F [v] is dual to
the basis R[v].

As usual, it is convenient to use a Cauchy kernel, having two alphabets x1, . . . , xn−1

and y1, . . . , yn−1, and two morphisms θ = θx and θy. Let

Ωn = (1 + x1y1) . . . (1 + xn−1yn−1) .

Then the duality between the bases R[v], F [v] (resp. S[v],M [v]) reads now as

Ωn =
∑
v

θx
(
R[v]

)
θy
(
F [v]

)
=
∑
v

θx
(
S[v]) θy

(
M [v]

)
, (13.6.12)

sum over all compositions of n.
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One can determine
(
θ(Φ[v]), θ(M [u])

)
without writing Φ[v] in the S-basis, by

applying recursively the property

CTxi

(
θ(Φ[k+1]) (1− x−1

i )
)

=
k+1

k

(
1−

(
k−1

1

)−1

e1 +

(
k−1

2

)−1

e2 − · · ·+ (−1)k−1ek−1

)
. (13.6.13)

where e1, . . . , ek−1 are the elementary symmetric functions in {x1, . . . , xk} \ {xi}.
Computations in Pol1n are usually simpler than in Symn and Qsymn, and

allow to recover all the transition matrices given in [52]. Let us illustrate the
advantage of the polynomial point of view by determining the basis adjoint to
{Φ[v]}, denoted {Φ?[v]} (compare to [52, Prop. 4.29]).

Lemma 13.6.1. For k = 1, 2, 3, . . . , let }k(x1, . . . , xk) be equal to θ(Φ[1k+1]).
Then for any composition v of n, with descents D(v), one has

θ(Φ?[v]) =
1∏r
i=1 v

2
i

∏
j 6∈D(v)

(1− xj) }r−1(xd1 , . . . , xdr−1) . (13.6.14)

Proof. Let {f [v]} be a multiplicative basis of Symn, and gv ∈ Pol1n be such
that gv = g′

∏
i 6∈D(v)(1−xi). Then

(
θ(f [u]), gv

)
= 0 if D(u) 6⊆ D(v). Thus,(

θ(Φ[u]), gv
)

= 0 if D(u) 6⊆ D(v). Let us now impose that
(
θ(Φ[u]), gv

)
= 0

for the other compositions u different from v. One can use (13.6.13) to eliminate
the factors (1−xj) in g. Renaming x1, . . . , xr−1 the remaining variables, one is
left with the equations

(
θ(Φ[u′]), g′

)
= 0 for all compositions u′ of r, u′ 6= 1r.

Therefore g′(x1, . . . , xr−1) is equal, up to a scalar, to θ(Φ?[1r]). QED
For example, 2}1(x1) = 1+x1, 6}2(x1, x2) = 1 + 2x1+2x2 + x1x2,

4!}3(x1, x2, x3) = 1 + 3x1+5x2+3x3 + 3x1x2+5x1x3+3x2x3 + x1x2x3. Hence, for
v = [2, 4, 3], one has D(v) = [2, 6] and

θ(Φ?[243]) =
1

24
(1−x1)(1−x3)(1−x4)(1−x5)(1−x7)(1−x8)

(
1

6
+

1

3
x2+

1

3
x6+

1

6
x2x6

)
.

We hope that the reader will be willing to show that the polynomials r!}r−1

are the descent polynomials filtering permutations according to their descents:

r!}r−1(x1, . . . , xr−1) =
∑

σ∈Sr

∏
i∈Desc(σ)

xi .

One method is to use Cauchy formula

Ωn =
∑

v
θ(Φ[v])θ(Φ?[v]) ,

supposing by induction that all Φ?[v] are known, except Φ?[1n].
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The ring Sym is a Hopf algebra. As such, it possesses an antipode A which
may be characterized, for v = [v1, . . . , v`] and vω = [v`, . . . , v1], by

A
(
S[v]

)
= (−1)|v|L[vω] .

Therefore, A induces on Pol1n the transformation

xu → (−1)nx1n−1−uω = (−1)nx1−un−1,...,1−u1 .

For example, one has

S[2, 4, 3]
A−−→ −L[3, 4, 2]

θ ↓ ↓ θ
(1+x2)(1+x7)

A−−→ −(x1 . . . x10)(1+ 1
x9

)(1+ 1
x4

)

Using θ, one sees instantly that

A
(
Ψ[v]

)
= (−1)`(v)Ψ[vω] & A

(
Φ[v]

)
= (−1)`(v)Φ[vω] .

Ribbon functions are exchanged, up to sign, by the antipode :

A
(
R[v]

)
= (−1)|v|R[v∼] ,

denoting by v∼ the conjugate composition (obtained by reading the number of
boxes of the diagram of v by columns, from the right).

A
(
R[243]

)
= −R[1121121] ⇐

1 2 1 1 2 1 1

Requiring the compatibility with θ, one has no choice for extending the an-
tipode to QSym :

A
(
F [v]

)
= (−1)|v|F [v∼] .

The formula for θ(Φ?[v]) shows that

A
(
Φ?[v]

)
= (−1)`(v)Φ?[vω] .

This extends the property of the commutative power sums that

pλ(−X) = (−1)`(λ)pλ(X) .
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There are other ways to use tableaux in relation with Symn and QSymn.
Indeed, the sum of all the tableaux in 1, . . . , N which standardize to a given
tableau t has a commutative image which is clearly quasi-symmetric. More pre-
cisely, if t has (maximal) subwords in consecutive letters [1, . . . , d1], [d1+1, . . . , d2],
. . . , [dr+1, . . . , n], let v(t) be the composition of n with descents d1, . . . , dr. Then

ev

(∑
st(T )=t

T

)
= F [v(t)] .

For example, the tableaux which standardize to 34125 are all the tableaux
b1b2a1a2b3 with a1 ≤ a2 < b1 ≤ b2 ≤ b3, and their sum evaluates to F [2, 3] =∑

u,v: |u|=2, |v|=3 x
uv.

Let v ∈ Nr
+, n = |v|, N ≥ r. Following Haglund, Luoto, Mason, Willigenburg

[60], define the quasisymmetric Schur function QK̂v to be the sum

QK̂v =
∑

w:w\0=v
K̂w . (13.6.15)

If two tableaux T1, T2 have the same standardization, with T1 ∈ K̂Fα and T2 ∈ K̂Fβ ,
then α\0 = β\0, as is seen from the construction of the right key. Therefore, one
has that [60, Th.6.2]

QK̂v =
∑

t
F [v(t)] , (13.6.16)

sum over all standard tableaux belonging to some K̂Fw with w\0 = v. The image
of this identity under θ is

θ
(
QK̂v

)
=
∑

t

∏
i: [i+1,i]∈t

xi , (13.6.17)

over the same set of standard tableaux3.
Since the Schur function sλ(xn) of index λ ∈ Nn, with n = |λ|, is equal to the

sum
∑

v: v↓=λ K̂v, the preceding formula gives

θ(sλ) =
∑

t

∏
i: [i+1,i]∈t

xi , (13.6.18)

sum over all standard tableaux of shape λ, as stated in [113].
It is clear that the transition matrix between {QK̂v} and {F [v]} is uni-triangular

(for the lexicographic order from the right), the terms on the diagonal correspond-
ing to the tableaux congruent to the words st(. . . 2v21v1).

Instead of giving the transition matrix, one can as well write the generating
function

∑
θ(QK̂v)QK̂v.

For n = 3, 4, 5, these generating functions are
QK̂3 + x2QK̂2,1 + x1QK̂1,2 + x1x2QK̂1,1,1

3the integers i such t contains the subword [i+1, i] are called the recoils of the tableau.
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QK̂4 + x3QK̂3,1 + (x1x3+x2)QK̂2,2 + (x1+x2)QK̂1,3 + x3x2QK̂2,1,1 + x1x3QK̂1,2,1 +

x1x2QK̂1,1,2 + x3x1x2QK̂1,1,1,1

QK̂5 + x4QK̂4,1 + (x3+x1x4 + x2x4)QK̂3,2 + (x1x3+x2)QK̂2,3 + (x1+x2+x3)QK̂1,4 +

x3x4QK̂3,1,1+(x2x4+x1x3x4)QK̂2,2,1+x3x2QK̂2,1,2+(x1x4+x2x4)QK̂1,3,1+(x1x3+x1x2x4)QK̂1,2,2+

(x1x2+x1x3+x3x2)QK̂1,1,3 + x2x3x4QK̂2,1,1,1 + x1x3x4QK̂1,2,1,1 + x1x2x4QK̂1,1,2,1 +

x3x1x2QK̂1,1,1,2 + x1x2x3x4QK̂1,1,1,1,1 .

For example, the coefficient of QK̂32 is x3 + x1x4 + x2x4, due to the three
tableaux

4 5
1 2 3

≡ 1 4 5
2 3

∈ K̂F00302,
2 5
1 3 4

≡ 2 3 5
1 4

∈ K̂F00032,

3 5
1 2 4

≡ 1 3 5
2 4

∈ K̂F00032 .

Permutations occur in many different ways in the theory of Sym and Qsym.
In fact, Solomon [183] has shown that the subspace of C[Sn] generated by Solv :=∑
{σ : Desc(σ) = D(v)} is a sub-algebra4 of C[Sn]. The space Symn is isomor-

phic, as a vector space, to Solomon’s sub-algebra of C[Sn], and thus inherits a
product which is called the internal product.

Under this correspondence, R[v] is sent onto Solv, that is, on the sum of
permutations which can be displayed as a ribbon tableau of shape v. For example,
for v[2, 1, 2], one has

Sol212 =
4 5

3
1 5

+
3 4

2
1 5

+
4 5

2
1 5

+
3 5

2
1 5

+
2 5

3
1 5

+
2 4

3
1 5

+
2 5

4
1 5

+
3 5

4
1 5

+
1 5

4
2 5

+
1 4

3
2 5

+
1 5

3
2 5

.

Plactic considerations can also be used. Twist the previous morphism between
Symn and C[Sn] by inversion of permutations, that is use the morphism

Symn 3 R[v]→
∑

σ:Desc(σ)=D(v)
σ−1 .

Then S[v] is sent over all permutations having subwords [i+1, i] for all i ∈ D(v),
and the image of Ωn is

Ω̃n =
∑

σ∈Sn

(∏
[i+1,i]∈σ

yi

)
σ .

Therefore, Ω̃n is a sum of plactic classes of all standard tableaux of n boxes.

Ω̃3 = Cl
(

1 2 3
)

+ y1Cl
(

2
1 3

)
+ y2Cl

(
3
1 2

)
+ y2y1Cl

(
3
2
1

)
.

4His construction is valid for any Coxeter group.
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Projecting the plactic class of a tableau to the Schur function of index the shape
of this tableau, one finally obtains a symmetric function∑

T

(∏
[i+1,i]∈T

yi

)
ssh(T ) ,

sum over all standard tableaux.
Let us mention that one can define non-commutative Macdonald polynomials

indexed by compositions [6, 135].
Quasisymmetric functions may be used to study problems in the classical the-

ory of symmetric functions. For example, the plethysm (i.e. the composition) of
symmetric functions is a fundamental issue (it is the third axiom in the definition
of a λ-anneau).

In [115], the plethysm of power sums and products of complete functions is
studied using ribbon tableaux, this allowing to introduce an extra parameter q
pointing the connection of plethysm with representations of Uq(ŝln). Let us restrict
to the q = 1 case and consider the plethysm of a power sum pk with a Schur
function sλ. In plain words,

pk
(
sλ(xn)

)
= sλ(x

k
1, . . . , x

k
n) .

The observation that for a quasimonomial function, one has

pk(M [v1, . . . , vr]) = M [kv1, . . . , kvr]

shows that the image under θ of the plethysm with pk is the morphism

Pol1n 3 f(x1, . . . , xn−1)→

 ∏
i=1...kn−1
i 6=0 mod k

(1− xi)

 f(xk, x2k, . . . , xkn−k) .

As a consequence, one has the following description of the plethysm of a power
sum with a Schur function.

Proposition 13.6.2. Let λ be a partition of n. Then

θ
(
pk(sλ)

)
=

 ∏
j=1...kn−1
j 6=0 mod k

(1− xj)

∑t

∏
i: [i+1,i]∈t

xki , (13.6.19)

sum over all standard tableaux of shape λ.

For example, one reads from the two tableaux 2
1 3

, 3
1 2

that θ(s21) = x1+x2

and that
θ(p2(s21) = (1− x1)(1− x3)(1− x5)(x2 + x4) .
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This last polynomial determines the explicit expansion

p2(s21) = −s411 + s222 − s2211 + s42 − s33 + s3111 .

The plethysm of p2 and any Schur function is described by Carré and Leclerc
in terms of domino tableaux in [17].

The space Pol1n has dimension 2n−1, number bigger than the number of parti-
tions of n. One can use a projection of Pol1n onto a space of monomials in bĳection
with partitions. Indeed, for each partition λ, the tableau st

(
. . . 2λ21λ1

)
has tallest

shape among the tableaux having recoils λ1, λ1+λ2, λ1+λ2+λ3 . . . :
6
4 5
1 2 3

is taller

than
6
4
1 2 3 5

and 4 6
1 2 3 5

. Therefore the morphism

sλ → x〈λ〉 = xλ1xλ1+λ2xλ1+λ2+λ3 . . .

is unitriangular, and any symmetric function f in Symn is determined by the
restriction θ̃(f) of θ(f) to the linear span 〈x〈λ〉, λ ∈ Partn〉.

For example, for n = 6 one has the following correspondence between mono-
mials and Schur functions.

6 51 42 411 33 321 3111 222 2211 21111 111111

00000 1 · · · · · · · · · ·
00001 · 1 −1 · · 1 · −1 −1 · ·
00010 · · 1 · −1 −1 · 2 1 · ·
00011 · · · 1 · −1 · 1 1 · ·
00100 · · · · 1 · · −1 · · ·
00101 · · · · · 1 · −2 −1 · ·
00111 · · · · · · 1 · −1 · ·
01010 · · · · · · · 1 · · ·
01011 · · · · · · · · 1 · ·
01111 · · · · · · · · · 1 ·
11111 · · · · · · · · · · 1

The row of index 00100↔ x00100 = x3 must be interpreted as x3 = θ̃(s33 − s222).
Going back to our example, instead of using θ

(
p2(s21)

)
, one takes θ̃

(
p2(s21)

)
=

x00010 − x00011 + x00111 = x4 − x4x5 + x3x4x5, to determine p2(s21).
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