A tale of two polytopes 1: the bipermutahedron

Federico Ardila

San Francisco State University
Universidad de Los Andes

AlCoVe The Internet, June 15, 2020

Part 1 is joint work with Graham Denham + June Huh (15-20).

Part 2 is joint work with Laura Escobar (20).

The plan

- 1. What is the bipermutahedral fan?
- 2. What is the bipermutahedron?
- 3. Why study them? An origin story.

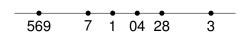
Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$:

Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n .

Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$:

Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n .

Moduli space: n-tuples of points in \mathbb{R} (mod. common translation)



Permutahedral fan Σ_n in $N_n = \mathbb{R}^n/\mathbb{R}$:

Hyperplane arrangement $x_i = x_i$ for $i \neq j$ in N_n .

Moduli space: n-tuples of points in \mathbb{R} (mod. common translation)

Stratification: relative order

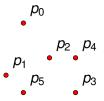
Strata: ordered set partitions 3|28|04|1|7|569

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

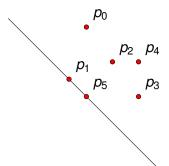


Stratification: • draw lowest supporting -45° diagonal ℓ

 \bullet record relative order of x and y projections onto ℓ

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

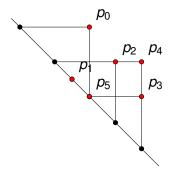


Stratification: • draw lowest supporting −45° diagonal ℓ

ullet record relative order of x and y projections onto ℓ

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

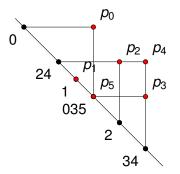
Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)



- Stratification: \bullet draw lowest supporting -45° diagonal ℓ
 - \bullet record relative order of x and y projections onto ℓ

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)



- Stratification: draw lowest supporting −45° diagonal ℓ
 - \bullet record relative order of x and y projections onto ℓ

Bipermutahedral fan $\Sigma_{n,n}$ in $N_n \times N_n$:

Moduli space: n-tuples of points in \mathbb{R}^2 (mod common translation)

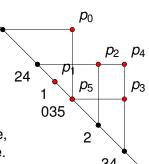
0

Strata: bisequences on [n]

Sequences $\mathfrak{B} = B_1 | \cdots | B_m$ such that

- each number appears once or twice,
- some number appears exactly once.

Ex: 34|2|035|1|24|0



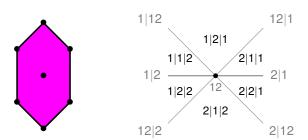
The bipermutahedron

Permutahedral fan Σ_n :

Normal fan of the permutahedron Π_n .

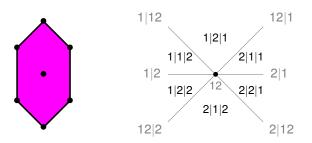
Bipermutahedral fan $\Sigma_{n,n}$:

Normal fan of the **bipermutahedron** $\Pi_{n,n}$.



For the precise construction, see [Ardila-Denham-Huh 2020].

Combinatorial structure of the bipermutahedron



- faces: **bisequences** 12|45|4|235
- vertices: **bipermutations** 1|5|4|1|3|4|2|5|3. (one number appears once, others twice)

 $(2n)!/2^n$

• facets: **bisubsets** 1245|235 $(S, T \neq \emptyset, \text{ not both } [n], \text{ with } S \cup T = [n])$

 $3^{n} - 3$

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the **biEulerian polynomial**.

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the biEulerian polynomial.

• The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is

 $h_i(\Pi_{n,n}) = \#$ of bipermutations of [n] with i descents.

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the biEulerian polynomial.

• The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is

$$h_i(\Pi_{n,n}) = \#$$
 of bipermutations of $[n]$ with i descents.

• The biEulerian polynomial is given by

$$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k>0} {\binom{k+2}{2}}^n x^k$$

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the **biEulerian polynomial**.

• The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is

$$h_i(\Pi_{n,n}) = \#$$
 of bipermutations of $[n]$ with i descents.

• The biEulerian polynomial is given by

$$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k \ge 0} {\binom{k+2}{2}}^n x^k$$

• All roots of the biEulerian polynomial are real and negative.

The bipermutahedron is simple; consider its *h*-polynomial:

$$h_n(x) = h_0(\Pi_{n,n}) + h_1(\Pi_{n,n})x + \cdots + h_{2n-2}(\Pi_{n,n})x^{2n-2}$$

We call it the **biEulerian polynomial**.

• The *h*-vector of the bipermutahedron $\Pi_{n,n}$ is

$$h_i(\Pi_{n,n}) = \#$$
 of bipermutations of $[n]$ with i descents.

• The biEulerian polynomial is given by

$$\frac{h_n(x)}{(1-x)^{2n+1}} = \sum_{k \ge 0} {\binom{k+2}{2}}^n x^k$$

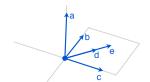
- All roots of the biEulerian polynomial are real and negative.
- The *h*-vector of the bipermutahedron is log-concave.

Origin story: the geometry of matroids

Matroids capture the combinatorial essence of independence.

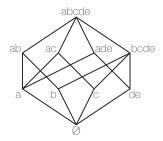
Prototypical example:

E= set of vectors in a vector space V \mathcal{F} = {spans of subsets of E} (a poset under \subseteq)



Definition. A matroid (E, \mathcal{F}) is

- a set E and
- a collection \mathcal{F} of subsets of E satisfying some axioms.



Numerical invariants

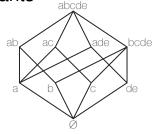
Given a matroid M,

n = number of elements

r = rank = height of poset

f-vector = |coeffs| of $\chi_M(q)$

h-vector = |coeffs| of $\chi_M(q+1)$



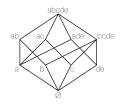
Ex:
$$n = 5$$
 $r = 3$ $f = (1,4,5,2)$ $h = (1,1,0,0)$

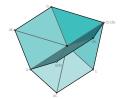
Theorem.

- 1. [Adiprasito-Huh-Katz '15] $f_0, f_1, ..., f_r$ is log-concave. Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72.
- 2. [Ardila-Denham-Huh '20] $h_0, h_1, ..., h_r$ is log-concave. Conjectured by Brylawski 82, Dawson 83, Hibi 89.

Log-concavity of *f*-vector: geometry of matroids [Adiprasito—Huh—Katz 15]

1. Use the **Bergman fan** Σ_M as a geometric model for M. (r-1)-dim fan in N_n , Supp $(\Sigma_M) = Trop(M)$ [FA-Klivans 06]





2. Find classes α, β in the Chow ring $A^{\bullet}(\Sigma_M)$ with

$$\alpha^{r-i}\beta^i = f_i \qquad (1 \le i \le r)$$

3. Prove the Hodge-Riemann relations for the fan Σ_M . They imply $(\alpha^{r-i}\beta^i: 0 \le i \le r)$ is log-concave.

Log-conc of *h*-vector: Lagrangian geom of matroids

[Ardila-Denham-Huh 20]

- 1. Use the **conormal fan** $\Sigma_{M,M^{\perp}}$ as a geometric model for M. (n-2)-dim fan in $N_n \times N_n$
- 2. Find classes γ, δ in the Chow ring $A^{\bullet}(\Sigma_{M,M^{\perp}})$ with

$$\gamma^{i}\delta^{n-2-i} = h_{r-i} \qquad (1 \le i \le r)$$

3. Prove the Hodge-Riemann relations for the fan $\Sigma_{M,M^{\perp}}$. They imply $(\gamma^{i}\delta^{n-2-i}:0\leq i\leq r)$ is log-concave.

How to define the conormal fan $\Sigma_{M M^{\perp}}$?

Varchenko's critical set varieties offer hints/requirements:

- 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle.
- 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_M \times \Sigma_{M^{\perp}}$?

How to define the conormal fan $\Sigma_{M,M^{\perp}}$?

Varchenko's **critical set varieties** offer hints/requirements:

- 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle.
- 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_{M} \times \Sigma_{M^{\perp}}$?
- 3. There "should be" classes γ and δ with $\gamma^{i}\delta^{n-2-i}=h_{r-i}$ (*)
 - ullet γ "should be" the pullback of lpha along

$$\pi: \Sigma_M \times \Sigma_{M^{\perp}} \to \Sigma_M, \ \pi(x,y) = x$$

 \bullet δ "should be" the pullback of α along

$$\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_n, \quad \sigma(x,y) = x + y$$

where Δ_n is the normal fan of the standard simplex.

• Geometry predicts (*), prove it algebro-combinatorially.

How to define the conormal fan $\Sigma_{M M^{\perp}}$?

Varchenko's critical set varieties offer hints/requirements:

- 1. Support($\Sigma_{M,M^{\perp}}$) "should be" $\mathit{Trop}(M) \times \mathit{Trop}(M^{\perp})$. Tropical analog of conormal bundle.
- 2. $\Sigma_{M,M^{\perp}}$ "should be" simplicial, so the Chow ring is tractable. Try: $\Sigma_{M,M^{\perp}} = \Sigma_{M} \times \Sigma_{M^{\perp}}$?
- 3. There "should be" classes γ and δ with $\gamma^{i}\delta^{n-2-i}=h_{r-i}$ (*)
 - \bullet γ "should be" the pullback of α along

$$\pi: \Sigma_M \times \Sigma_{M^{\perp}} \to \Sigma_M, \ \pi(x,y) = x$$

 \bullet δ "should be" the pullback of α along

$$\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_n, \ \ \sigma(x,y) = x + y$$

where Δ_n is the normal fan of the standard simplex.

• Geometry predicts (*), prove it algebro-combinatorially.

Problem: σ is not a map of fans!

How to define the conormal fan $\Sigma_{M,M^{\perp}}$?

Problem: $\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_E$, $\sigma(x,y) = x + y$ not a map of fans! Solution: Subdivide $\Sigma_M \times \Sigma_{M^{\perp}}$ so σ is a map of fans. Pero how?

How to define the conormal fan $\Sigma_{M,M^{\perp}}$?

Problem: $\sigma: \Sigma_M \times \Sigma_{M^{\perp}} \to \Delta_E$, $\sigma(x,y) = x + y$ not a map of fans! Solution: Subdivide $\Sigma_M \times \Sigma_{M^{\perp}}$ so σ is a map of fans. Pero how?

Idea: Do it simultaneously for all matroids on E.

[FA – Klivans 06]

Permutahedral fan Σ_E resolved this issue for all Bergman fans:

$$\Sigma_M := \mathsf{Trop}(M) \cap \Sigma_E$$

[FA - Denham - Huh 20]

Bipermutahedral fan $\Sigma_{E,E}$ resolves this for all conormal fans:

$$\Sigma_{M,M^{\perp}} := (\mathsf{Trop}(M) \times \mathsf{Trop}(M^{\perp})) \cap \Sigma_{E,E}$$

What do we want?

A **nice** complete fan Σ in $N_n \times N_n$ such that:

- a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans
- b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans
- c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans where Σ_n = braid fan and Δ_n = fan of \mathbb{P}^{n-1} .
- d. It is the normal fan of a polytope.

Try 1: Σ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

What do we want?

A **nice** complete fan Σ in $N_n \times N_n$ such that:

- a. $\pi_1: \Sigma \to \Sigma_n$, $\pi(x,y) = x$ is a map of fans
- b. $\pi_2: \Sigma \to \Sigma_n$, $\pi(x,y) = y$ is a map of fans
- c. $\sigma: \Sigma \to \Delta_n$, $\sigma(x,y) = x + y$ is a map of fans where Σ_n = braid fan and Δ_n = fan of \mathbb{P}^{n-1} .
- d. It is the normal fan of a polytope.

Try 1:
$$\Sigma$$
 = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

This is the **harmonic fan/polytope** $H_{n,n}$ of Laura Escobar's talk.

Good news: It has all these properties + beautiful combinatorics. Bad news: It is not simplicial. How to compute in its Chow ring?

We want a nice, polytopal, simplicial fan with these properties.

Try 1: $H_{n,n}$ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

Try 2: $\Sigma_{n,n}$ = nice polytopal simplicial refinement of $H_{n,n}$.

We want a nice, polytopal, simplicial fan with these properties.

Try 1: $H_{n,n}$ = coarsest refinement of $\Sigma_n \times \Sigma_n$ and $\sigma^{-1}(\Delta_n)$.

Try 2: $\Sigma_{n,n}$ = nice polytopal simplicial refinement of $H_{n,n}$.

How do we find it? It's more of an art than a science... The **bipermutohedral fan** $\Sigma_{n,n}$ is the nicest one we could find.

muchas gracias

(part 1 of) [ADH20]: https://arxiv.org/abs/2004.13116

[AE20]: https://arxiv.org/abs/2006.03078