Quotients of positroids and lattice path matroids

Carolina Benedetti Velásquez

with K. Knauer (≥ 20)

AlCoVE I June 15th, 2020

Outline

Matroids and Grassmannians

Positroids and LPMs

Quotients of positroids

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in \mathit{Gr}_{2,4}$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in \mathit{Gr}_{2,4} \leadsto A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in Gr_{2,4} \leadsto A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 \circ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in Gr_{2,4} \rightsquigarrow A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

o $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in Gr_{2,4} \rightsquigarrow A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 \circ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$V:\begin{pmatrix}2&0&0&1\\1&1&0&2\end{pmatrix}\rightsquigarrow$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in Gr_{2,4} \rightsquigarrow A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 \circ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$V:\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix} \rightsquigarrow M_V = ([4], \{12, 14, 24\}).$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2) \rangle \in Gr_{2,4} \rightsquigarrow A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

o $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$V:\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix} \rightsquigarrow M_V = ([4], \{12, 14, 24\}).$$

o Every linear matroid arises this way.

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

• $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$:

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$ \checkmark

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

- $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$ \checkmark
- $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

- $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$ \checkmark
- $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set.

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

- $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$ \checkmark
- $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- ullet Positroids care about the labelling of the ground set. $M=([4],\mathcal{B})$ where $\mathcal{B}=\{13,14,23,24\}$ is a positroid:

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

- $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$ \checkmark
- $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set. $M=([4],\mathcal{B})$ where $\mathcal{B}=\{13,14,23,24\}$ is a positroid: $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P=([5],\mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ can be encoded by its

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P=([5],\mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ can be encoded by its

• Grassmann necklace $I_P = (13, 34, 34, 45, 51)$

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P=([5],\mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ can be encoded by its

- Grassmann necklace $I_P = (13, 34, 34, 45, 51)$
- \bullet Decorated permutation $\pi = 4\underline{2}513$

The **totally nonnegative Grassmannian** $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P=([5],\mathcal{B})$ where $\mathcal{B}=\{13,14,15,34,35,45\}$ can be encoded by its

- Grassmann necklace $I_P = (13, 34, 34, 45, 51)$
- Decorated permutation $\pi = 4\underline{2}513$
- and many more combinatorial objects...

Lattice path matroids LPMs

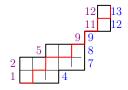
Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$.

The lattice path matroid M[U,L] is the matroid on [n] whose bases are those $B \in \binom{[n]}{k}$ such that $U \leq B \leq L$.

Lattice path matroids LPMs

Fix $0 \le k \le n$ and let $U, L \in \binom{[n]}{k}$. The **lattice path matroid** M[U, L] is the matroid on [n] whose bases are those $B \in \binom{[n]}{k}$ such that $U \le B \le L$.

For instance, let k = 6, n = 13, $U = \{1, 2, 5, 9, 11, 12\}$, $L = \{4, 7, 8, 9, 12, 13\}$.

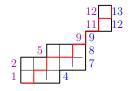


then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of M[U, L].

Lattice path matroids LPMs

Fix $0 \le k \le n$ and let $U, L \in \binom{[n]}{k}$. The **lattice path matroid** M[U, L] is the matroid on [n] whose bases are those $B \in \binom{[n]}{k}$ such that $U \le B \le L$.

For instance, let k = 6, n = 13, $U = \{1, 2, 5, 9, 11, 12\}$, $L = \{4, 7, 8, 9, 12, 13\}$.



then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of M[U, L].

Every LPM is a positroid.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}$$

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}$$

- \circ A *circuit* of M is a minimal linearly dependent subset of [n].
- \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.
- o A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a **(full) flag** matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}$$

- \circ A *circuit* of M is a minimal linearly dependent subset of [n].
- \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.
- o A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a **(full) flag** matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

 $C(M_2)$

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}$$

- \circ A *circuit* of M is a minimal linearly dependent subset of [n].
- o A matroid M is a quotient of N if every circuit of N is union of circuits of M.
- o A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a **(full) flag** matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

$$\mathcal{C}(M_2)=\{13\},\,$$

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}$$

- \circ A *circuit* of M is a minimal linearly dependent subset of [n].
- \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.
- o A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a **(full) flag** matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

$$\mathcal{C}(M_2) = \{13\}, \, \mathcal{C}(M_1)$$

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}$$

- \circ A *circuit* of M is a minimal linearly dependent subset of [n].
- o A matroid M is a quotient of N if every circuit of N is union of circuits of M.
- o A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a **(full) flag** matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

$$C(M_2) = \{13\}, C(M_1) = \{1, 3\}.$$

Let's recap

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k

Let's recap

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$

Let's recap

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in \mathit{Gr}_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in Gr_{k,n}^{\geq 0}$	Positroids of rank k
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in Gr_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$
$F \in \mathcal{F}\ell_n^{\geq 0}$?

ullet $F\ell_n^{\geq 0}:A_{n\times n}$ whose top i rows give a point in $Gr_{i,n}^{\geq 0}$, for $i\in [n]$.

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in Gr_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$
$F \in \mathcal{F}\ell_n^{\geq 0}$?

ullet $F\ell_n^{\geq 0}:A_{n\times n}$ whose top i rows give a point in $Gr_{i,n}^{\geq 0}$, for $i\in [n]$.

$V \in \mathit{Gr}_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in Gr_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$
$F \in \mathcal{F}\ell_n^{\geq 0}$?

• $F\ell_n^{\geq 0}: A_{n\times n}$ whose top i rows give a point in $Gr_{i,n}^{\geq 0}$, for $i \in [n]$.

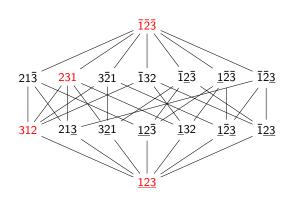
Problems:

- (1) Given two positroids P, Q on [n], can you tell combinatorially if P is a quotient of Q, or viceversa?
- (2) Is every flag $P_1 \subset \cdots \subset P_n$ of positroids a point in $\mathcal{F}\ell_n^{\geq 0}$?
- (3) What can we say about flags $L_1 \subset \cdots \subset L_n$ of LPMs?

(1) Given two positroids P, Q on [n], how to tell (combinatorially) if P is a quotient of Q, or viceversa?

(1) Given two positroids P, Q on [n], how to tell (combinatorially) if P is a quotient of Q, or viceversa?

D. TamayoU. Paris-Saclay



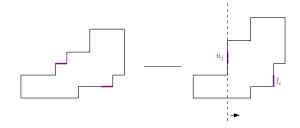
Quotients of uniform positroids. arXiv:1912.06873

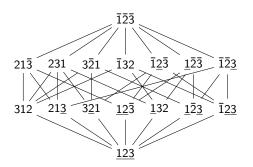
(1) Given two positroids P, Q on [n], how to tell (combinatorially) if P is a quotient of Q, or viceversa?

(1) Given two positroids P, Q on [n], how to tell (combinatorially) if P is a quotient of Q, or viceversa?

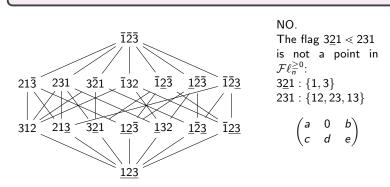
K. Knauer U. of Barcelona

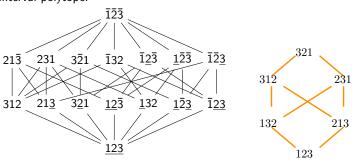
Theorem [B-Knauer'20]: Let M = M[U, L] be an LPM of rank k on [n] and let $i, j \in [n]$. Then M[U/j, L/i] is a quotient of M if and only if $\max(0, u_j - \ell_i) \leq j - i$.



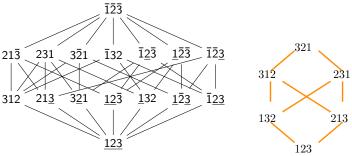


(2) Is every flag
$$P_1 \subset \cdots \subset P_n$$
 of positroids a point in $\mathcal{F}\ell_n^{\geq 0}$?

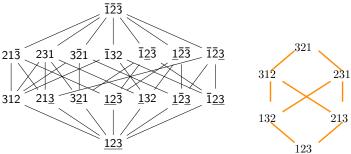




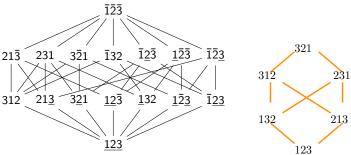
[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F: P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_F = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.



• Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$.



- Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$.
- Out of these 19 flags in $\mathcal{F}\ell_n^{\geq 0}$, 17 are flags of LPMs.



- Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$.
- Out of these 19 flags in $\mathcal{F}\ell_n^{\geq 0}$, 17 are flags of LPMs.

Theorem: [B-Knauer'20]

Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

Theorem: [B-Knauer'20]

Every flag $L_1\subset\cdots\subset L_n$ of LPMs is an interval in the Bruhat order.

(3) What intervals in the Bruhat order correspond to flags $L_1 \subset \cdots \subset L_n$ of LPMs?

Theorem: [B-Knauer'20]

Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

(3) What intervals in the Bruhat order correspond to flags $L_1 \subset \cdots \subset L_n$ of LPMs?

Proposition: [B-Knauer'20]

If an interval [u, v] in the (right weak) Bruhat order is a hypercube then it is a flag of LPMs.

(3') What faces of the permutahedra are flags of LPMs?

Thank you!

