Dimers, double-dimers, and the PT/DT correspondence

Helen Jenne

joint work with Gautam Webb and Ben Young

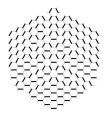
CNRS, Institut Denis Poisson, Université de Tours and Université d'Orléans

AICoVE

June 15, 2021

Outline

(1) The dimer model

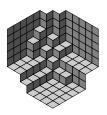


(2) The double-dimer model

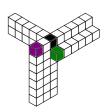
(3) Main result

(4) Proof sketch

(4a) Box counting in DT theory



(4b) Box counting in PT theory



Dimer configurations

Assumptions:

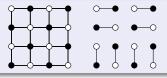
- ullet $G = (V_1, V_2, E)$ is finite, bipartite, planar
- G has a fixed embedding in the plane (dividing the plane into *faces*, one of which is unbounded)

Dimer configurations

Assumptions:

- $G = (V_1, V_2, E)$ is finite, bipartite, planar
- G has a fixed embedding in the plane (dividing the plane into faces, one of which is unbounded)

Definition (Dimer configuration/Perfect matching)

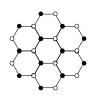


A collection of edges that covers each vertex exactly once

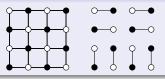
Dimer configurations

Assumptions:

- $G = (V_1, V_2, E)$ is finite, bipartite, planar
- G has a fixed embedding in the plane (dividing the plane into faces, one of which is unbounded)
- $|V_1| = |V_2|$



Definition (Dimer configuration/Perfect matching)



A collection of edges that covers each vertex exactly once

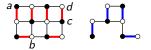
Let
$$Z^D(G) = \sum_M w(M)$$
, where $w(M) = \prod_{e \in M} w(e)$
(If all edge weights = 1, $Z^D(G) = \#$ of dimer configs of G)

Let
$$Z^D(G) = \sum_M w(M)$$
, where $w(M) = \prod_{e \in M} w(e)$
(If all edge weights = 1, $Z^D(G) = \#$ of dimer configs of G)

Theorem (Kuo04, Theorem 5.1)

Let vertices a,b,c, and d appear in a cyclic order on a face of G. If $a,c\in V_1$ and $b,d\in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$

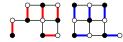


Let
$$Z^D(G) = \sum_M w(M)$$
, where $w(M) = \prod_{e \in M} w(e)$
(If all edge weights = 1, $Z^D(G) = \#$ of dimer configs of G)

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$



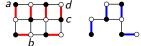


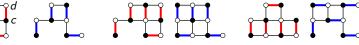
Let
$$Z^D(G) = \sum_{M} w(M)$$
, where $w(M) = \prod_{e \in M} w(e)$
(If all edge weights = 1, $Z^D(G) = \#$ of dimer configs of G)

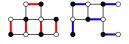
Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$







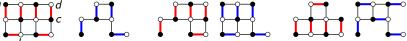
Kuo's proof was bijective!

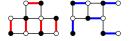
Let
$$Z^D(G) = \sum_M w(M)$$
, where $w(M) = \prod_{e \in M} w(e)$
(If all edge weights = 1, $Z^D(G) = \#$ of dimer configs of G)

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$





Kuo's proof was bijective!

Non-bijective proofs:

- Desnanot-Jacobi identity/Dodgson condensation (see Zeilberger, 1997)
- Pfaffian identities, e.g. Fulmek, 2010
- Plücker relations, e.g. Speyer, 2016

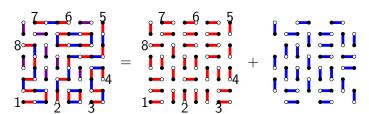
Double-dimer configurations

 \mathbf{N} is a set of special vertices called *nodes* on the outer face of G (with $|\mathbf{N}|$ even)

Definition (Double-dimer configuration on (G, \mathbf{N}))

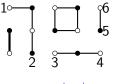


- A "subgraph" (doubled edges allowed) of degree 1 at $v \in \mathbb{N}$ and degree 2 at all other vertices.
- Equivalently, a configuration of
 - ullet ℓ disjoint loops
 - Doubled edges
 - Paths connecting nodes in pairs

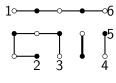


Double-dimer configurations

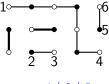
Each double-dimer configuration is associated with a planar pairing of ${f N}$



$$\sigma = \begin{array}{c|c} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}$$



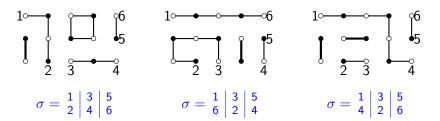
$$\sigma = \frac{1}{6} \left| \begin{array}{c} 3 \\ 2 \end{array} \right| \frac{5}{4}$$



$$\sigma = \frac{1}{4} \begin{vmatrix} 3 & 5 \\ 2 & 6 \end{vmatrix}$$

Double-dimer configurations

Each double-dimer configuration is associated with a planar pairing of ${f N}$



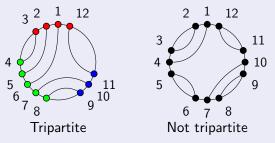
 $Z^{DD}_{\sigma}(G,\mathbf{N})=$ weighted sum of all DD configs with pairing σ

A condensation-type recurrence holds for $Z_{\sigma}^{DD}(G, \mathbf{N})$ when σ is *tripartite*

Tripartite pairings

Definition (Tripartite pairing)

A planar pairing σ of **N** is *tripartite* if the nodes can be divided into ≤ 3 sets of circularly consecutive nodes so that no node is paired with a node in the same set.

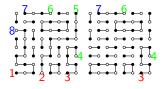


We often color the nodes in the sets red, green, and blue, in which case σ has no monochromatic pairs.

Double-dimer condensation

 $Z_{\sigma}^{DD}(G, N) =$ weighted sum of all DD config with pairing σ

$$Z_{\sigma}^{DD}(\mathsf{N})Z_{\sigma_{1258}}^{DD}(\mathsf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathsf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathsf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathsf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathsf{N}-2,5)$$



Double-dimer condensation

 $Z_{\sigma}^{DD}(G, N) =$ weighted sum of all DD config with pairing σ

$$Z_{\sigma}^{DD}(\mathsf{N})Z_{\sigma_{1258}}^{DD}(\mathsf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathsf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathsf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathsf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathsf{N}-2,5)$$

Double-dimer condensation

 $Z^{DD}_{\sigma}(G, N) =$ weighted sum of all DD config with pairing σ

$$Z_{\sigma D}^{DD}(\mathsf{N})Z_{\sigma_{1258}}^{DD}(\mathsf{N}-1,2,5,8) = Z_{\sigma_{12}}^{DD}(\mathsf{N}-1,2)Z_{\sigma_{58}}^{DD}(\mathsf{N}-5,8) + Z_{\sigma_{18}}^{DD}(\mathsf{N}-1,8)Z_{\sigma_{25}}^{DD}(\mathsf{N}-2,5)$$

Theorem (J., 2019)

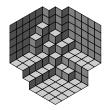
Divide N into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbb{N}$ such that $x < w \in V_1$ and $y < v \in V_2$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and x, y, w, v appear in cyclic order then $Z_{\sigma}^{DD}(G, \mathbb{N})Z_{x_{yw}}^{DD}(G, \mathbb{N} - \{x, y, w, v\}) =$

$$Z_{\sigma_{xy}}^{DD}(G, N - \{x, y\}) Z_{\sigma_{wv}}^{DD}(G, N - \{w, v\}) + Z_{\sigma_{xv}}^{DD}(G, N - \{x, v\}) Z_{\sigma_{wy}}^{DD}(G, N - \{w, y\})$$

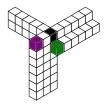
Proof uses Dodgson condensation, technical extension of Kenyon-Wilson

Main result

Donaldson-Thomas theory and Pandharipande-Thomas theory have generating fns known as the *combinatorial Calabi-Yau topological vertices* which count *plane-partition-like* objects.



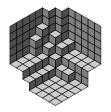
DT theory gen fn: $V(\mu_1, \mu_2, \mu_3)$

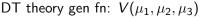


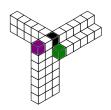
PT theory gen fn: $W(\mu_1, \mu_2, \mu_3)$

Main result

Donaldson-Thomas theory and Pandharipande-Thomas theory have generating fns known as the *combinatorial Calabi-Yau topological vertices* which count *plane-partition-like* objects.







PT theory gen fn: $W(\mu_1, \mu_2, \mu_3)$

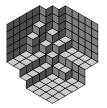
Theorem (J.-Webb-Young, Calabi-Yau case of Conj 4 from PT2009)

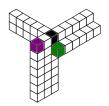
$$V(\mu_1, \mu_2, \mu_3) = M(q)W(\mu_1, \mu_2, \mu_3),$$

where M(q) is the generating function for plane partitions.

Main result

Donaldson-Thomas theory and Pandharipande-Thomas theory have generating fns known as the *combinatorial Calabi-Yau topological vertices* which count *plane-partition-like* objects.





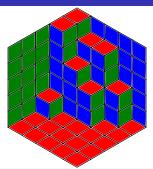
PT theory gen fn: $W(\mu_1, \mu_2, \mu_3)$ double-dimer interpretation \rightharpoonup

Theorem (J.-Webb-Young, Calabi-Yau case of Conj 4 from PT2009)

$$V(\mu_1, \mu_2, \mu_3) = M(q)W(\mu_1, \mu_2, \mu_3),$$

where M(q) is the generating function for plane partitions.

Plane partitions

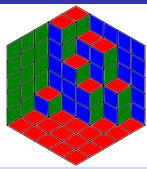


5 4 4 2 5 3 2 1

Definition (Plane partition)

A plane partition is a finite array π of positive integers that is nonincreasing in rows and columns.

Plane partitions



5 4 4 2 5 3 2 1

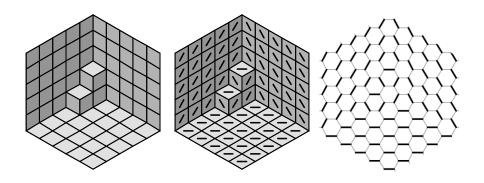
Definition (Plane partition)

A plane partition is a finite array π of positive integers that is nonincreasing in rows and columns.

Theorem (MacMahon, 1916)

$$M(q)=\sum_{\pi}q^{|\pi|}=\prod_{n=1}^{\infty}rac{1}{(1-q^n)^n}, \quad ext{where } |\pi|=\sum \pi_{i,j}.$$

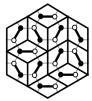
Connection to the dimer model



Connection to the dimer model

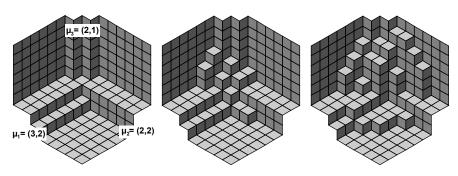
Let $\mathcal{B}(r, s, t)$ denote a "room" with dimensions $r \times s \times t$. $\pi \in \mathcal{B}(r, s, t)$ is a rhombus tiling of a hexagonal region of triangles

This is equivalent to a dimer configuration of the dual graph.



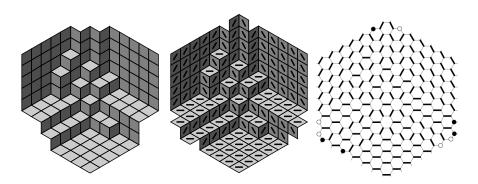
DT box counting

In DT theory, we count *plane partitions asymptotic to* (μ_1, μ_2, μ_3)



The DT topological vertex is
$$V(\mu_1,\mu_2,\mu_3) = \sum_{\pi \in P(\mu_1,\mu_2,\mu_3)} q^{w(\pi)}$$

Dimer model interpretation



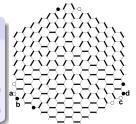
 $\pi \in P(\mu_1, \mu_2, \mu_3)$ is equivalent to a dimer configuration on the honeycomb graph with some outer vertices removed.

The condensation recurrence in DT theory

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$

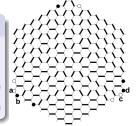


The condensation recurrence in DT theory

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$



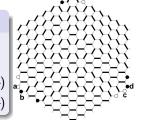
$$qV((3,1),(2,1),\mu_3)V((3,2),(2,2),\mu_3) = qV((3,2),(2,1),\mu_3)V((3,1),(2,2),\mu_3) + V((2,1,1),(3),\mu_3)V((4),(1,1,1),\mu_3)$$

The condensation recurrence in DT theory

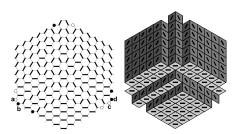
Theorem (Kuo04, Theorem 5.1)

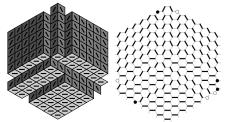
Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_1$ and $b, d \in V_2$, then

$$Z^{D}(G)Z^{D}(G - \{a,b,c,d\}) = Z^{D}(G - \{a,b\})Z^{D}(G - \{c,d\}) + Z^{D}(G - \{a,d\})Z^{D}(G - \{b,c\})$$



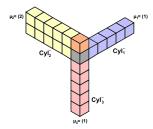
$$qV((3,1),(2,1),\mu_3)V((3,2),(2,2),\mu_3) = qV((3,2),(2,1),\mu_3)V((3,1),(2,2),\mu_3) + V((2,1,1),(3),\mu_3)V((4),(1,1,1),\mu_3)$$





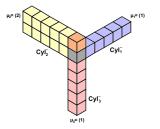
PT box counting

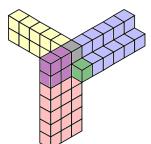
Following PT2009, we first define containers that we will fill with boxes:



PT box counting

Following PT2009, we first define containers that we will fill with boxes:



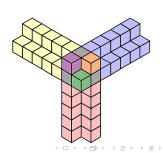


Containers consist of regions:

•
$$I^- = Cyl_1^- \cup Cyl_2^- \cup Cyl_3^-$$

$$\bullet \ \ \mathsf{III} = \mathsf{Cyl}_1 \cap \mathsf{Cyl}_2 \cap \mathsf{Cyl}_3$$

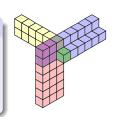
$$\bullet \ \mathsf{II} = \bigcup_{i \neq j \neq k} (\mathsf{Cyl}_i \cap \mathsf{Cyl}_j \setminus \mathsf{Cyl}_k)$$

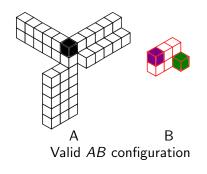


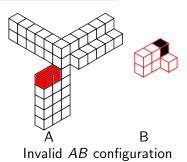
AB configurations

Definition

If $A \subseteq I^- \cup III$ and $B \subseteq II \cup III$ are finite sets of boxes, then (A,B) is an AB configuration if each of A and B satisfies the condition for plane partitions (with gravity pulling in the opposite direction).







(A is valid, B is not)

Labelled AB configurations

- Some AB configs can be labelled (following an intricate set of rules).
- Define

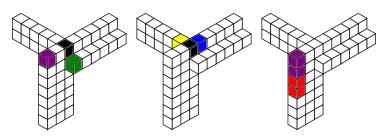
$$W(\mu_1,\mu_2,\mu_3) = \sum_{ ext{labelled }AB ext{ configs}} q^{|A|+|B|}$$

Labelled AB configurations

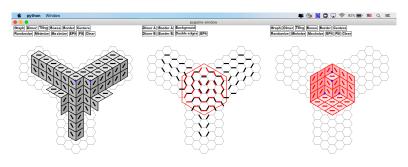
- Some AB configs can be labelled (following an intricate set of rules).
- Define

$$W(\mu_1,\mu_2,\mu_3) = \sum_{ ext{labelled }AB ext{ configs}} q^{|A|+|B|}$$

 We prove that labelled AB configurations are a discrete version of labelled box configurations used to define the PT topological vertex.



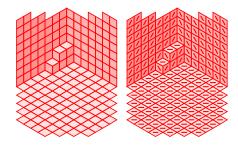
The observation that a PT labelled box config can be split into an A config and a B config gives a tripartite double-dimer interpretation for the PT topological vertex $W(\mu_1, \mu_2, \mu_3)$



B configuration

B configuration

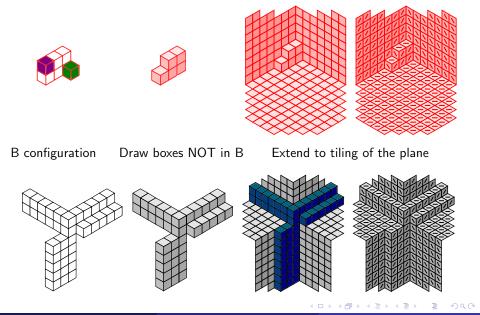
Draw boxes NOT in B

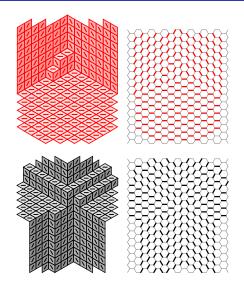


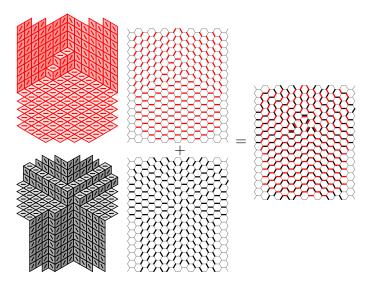
 ${\sf B}\ {\sf configuration}$

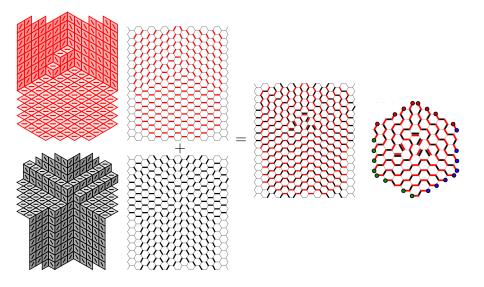
Draw boxes NOT in B

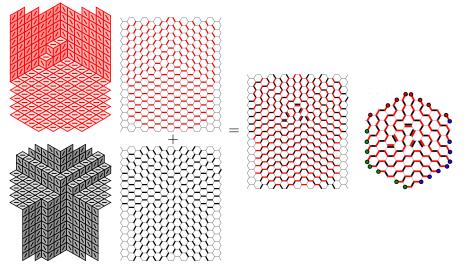
Extend to tiling of the plane











Apply double-dimer condensation by adding nodes.

Summary

Theorem (J.-Webb-Young, Calabi-Yau case of Conj 4 from PT2009)

$$V(\mu_1, \mu_2, \mu_3) = M(q)W(\mu_1, \mu_2, \mu_3),$$

where M(q) is the generating function for plane partitions.

- $V(\mu_1, \mu_2, \mu_3)$ counts dimer configurations
- $W(\mu_1,\mu_2,\mu_3)$ counts tripartite double-dimer configurations
- Both are unique solutions of the condensation recurrence (up to a constant)

Summary

Theorem (J.-Webb-Young, Calabi-Yau case of Conj 4 from PT2009)

$$V(\mu_1, \mu_2, \mu_3) = M(q)W(\mu_1, \mu_2, \mu_3),$$

where M(q) is the generating function for plane partitions.

- $V(\mu_1, \mu_2, \mu_3)$ counts dimer configurations
- $W(\mu_1,\mu_2,\mu_3)$ counts tripartite double-dimer configurations
- Both are unique solutions of the condensation recurrence (up to a constant)

Thank you for listening!

References

- M. Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of matchings. *Electron. J. Comb.*, 17, 2010.
- H. Jenne. Combinatorics of the double-dimer model. *arXiv preprint arXiv:1911.04079*, 2019.
- H. Jenne, G. Webb, and B. Young. The Combinatorial PT-DT Correspondence arXiv preprint arXiv:2012.08484, 2020.
- R. Kenyon and D. Wilson. Combinatorics of tripartite boundary connections for trees and dimers. *Electron. J Comb.*, 16(1), 2009.
- R. Kenyon and D. Wilson. Boundary partitions in trees and dimers. *Trans. Amer. Math. Soc.*, 363(3):1325-1364, 2011.
- E. H. Kuo. Applications of graphical condensation for enumerating matchings and tilings. *Theoret. Comput. Sci.*, 319(1-3):29-57, 2004.
- R. Pandharipande and R. P. Thomas. The 3-fold vertex via stable pairs. Geom. Topol., 13(4):1835–1876, 2009.
- D. E. Speyer. Variations on a theme of Kasteleyn, with Application to the Totally Nonnegative Grassmannian. *Electron. J. Comb.*, 23(2), 2016.
- D. Zeilberger. Dodgon's Determinant-Evaluation Rule proved by Two-Timing Men and Women, *Electron. J. Comb.*, 4(2), 1997.