The antiprism triangulation

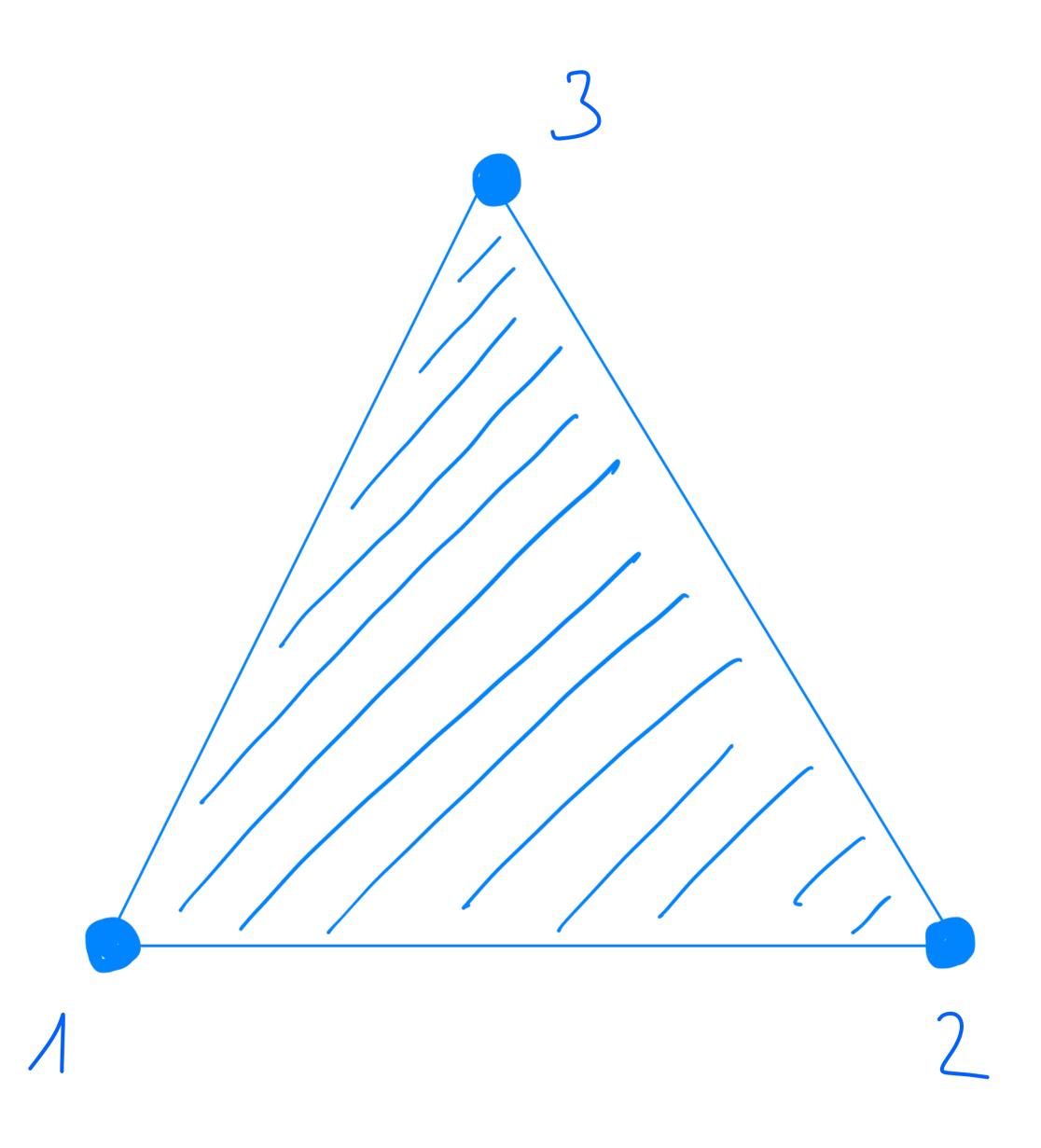
(Joint work with C. Athanasiadis and J.-M. Brunink)
AlCoVE

The barycentric subdivision $\mathrm{sd}(\Delta)$

 Δ simplicial complex on vertex set V

Geometrically:

stellar subdivide faces by decreasing dimension

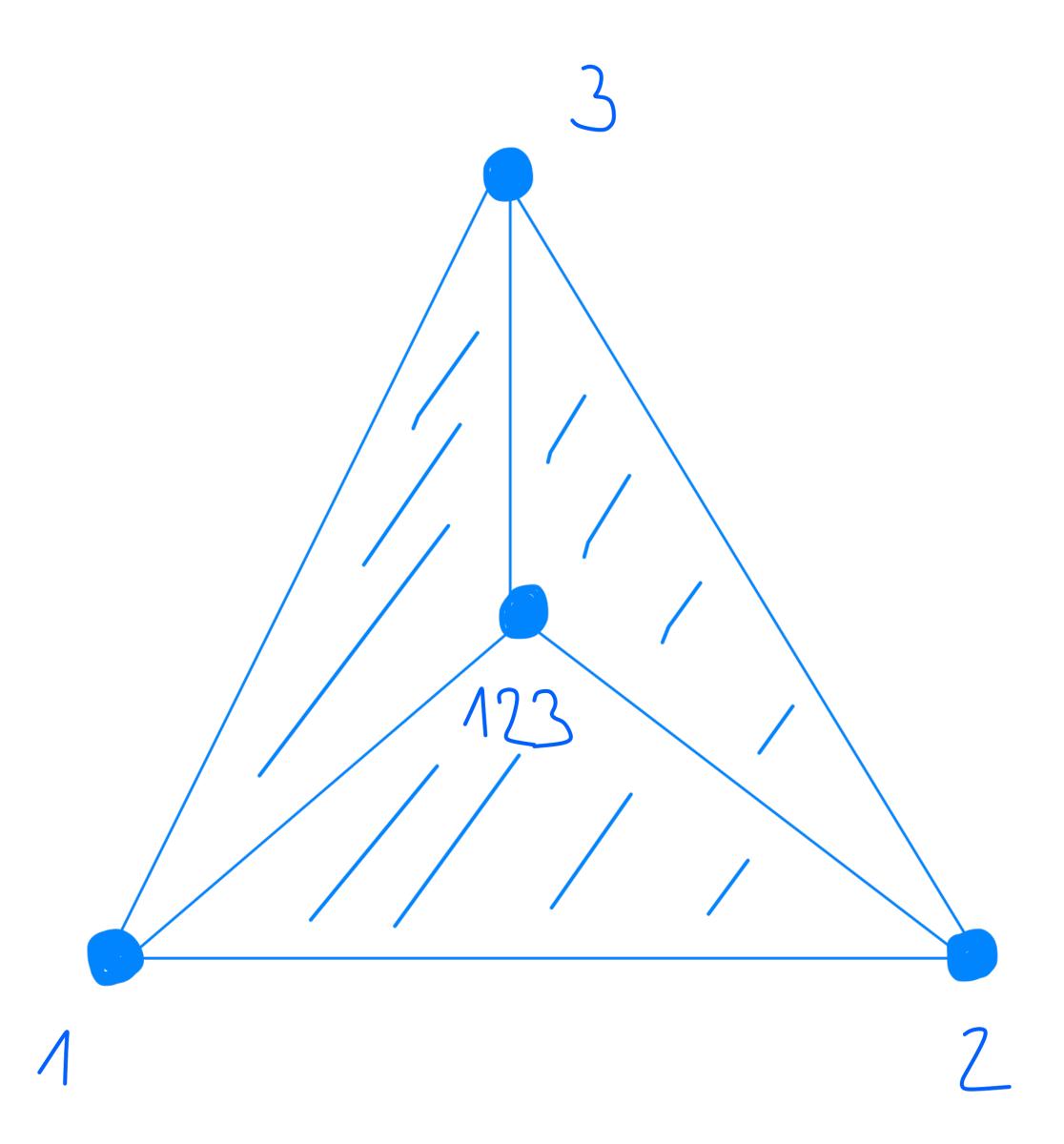


The barycentric subdivision $\mathrm{Sd}(\Delta)$

 Δ simplicial complex on vertex set V

Geometrically:

stellar subdivide faces by decreasing dimension

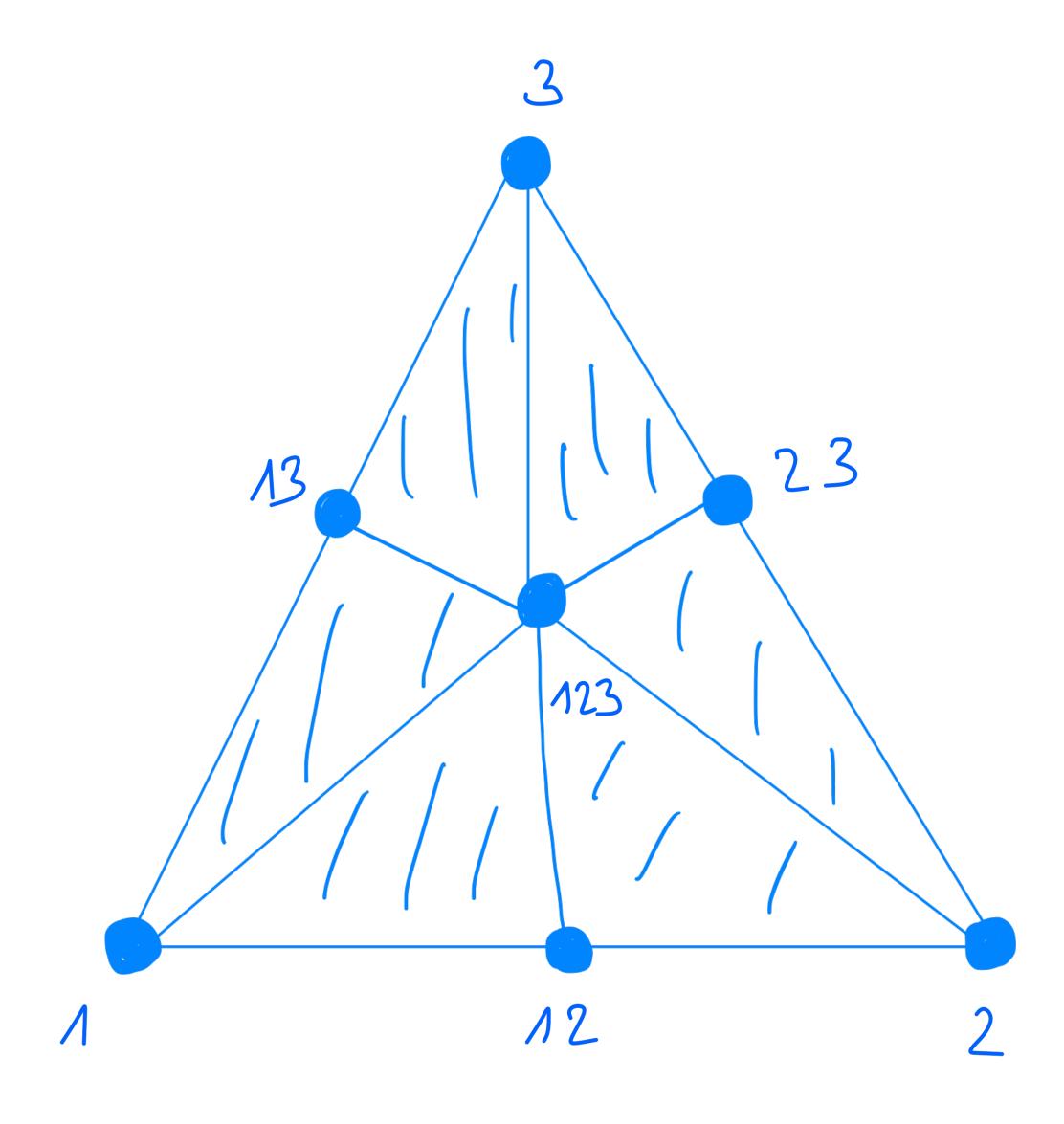


The barycentric subdivision $\mathrm{sd}(\Delta)$

 Δ simplicial complex on vertex set V

Geometrically:

stellar subdivide faces by decreasing dimension



The barycentric subdivision $\mathrm{Sd}(\Delta)$

 Δ simplicial complex on vertex set V

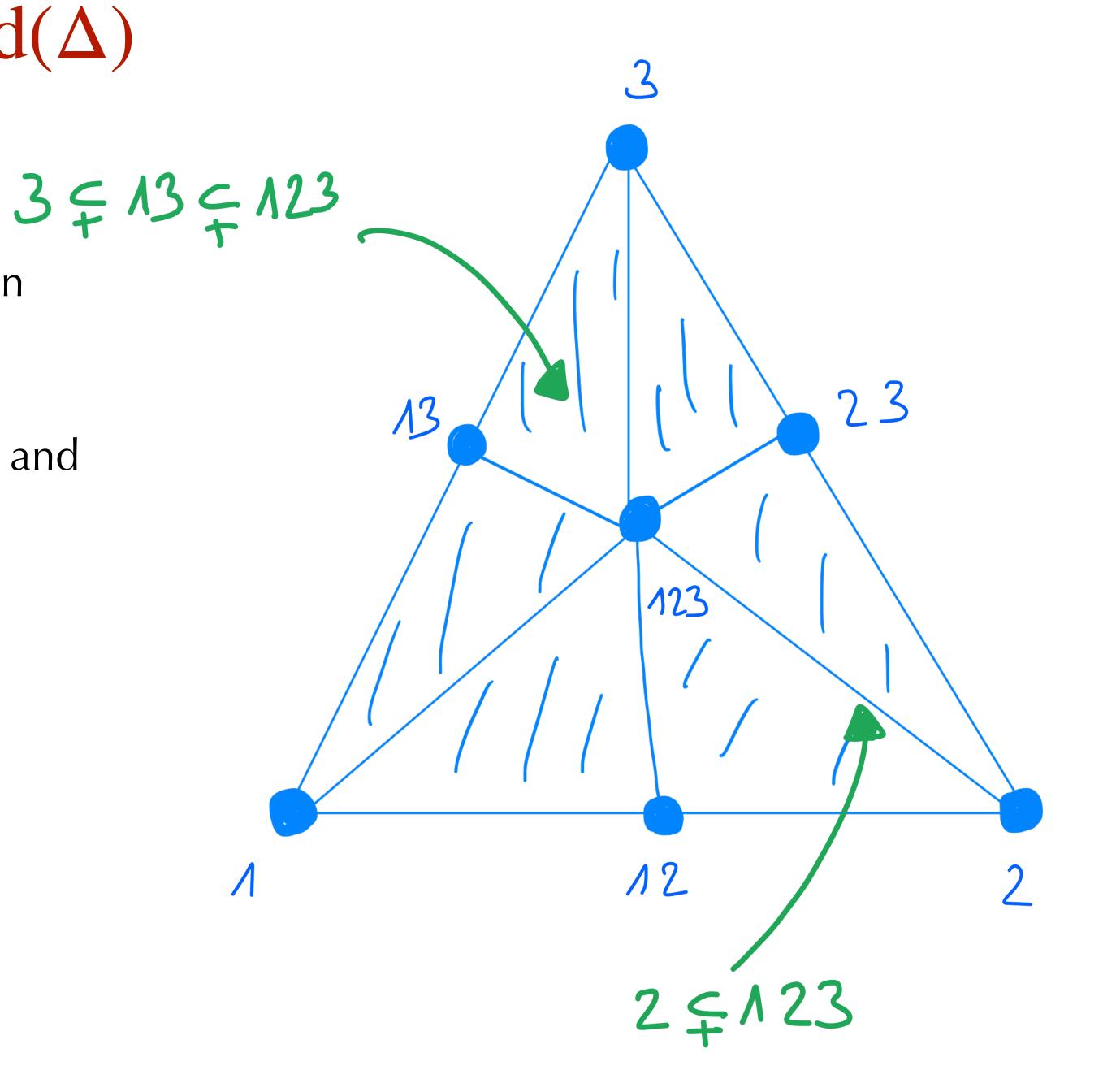
Geometrically:

stellar subdivide faces by decreasing dimension

Combinatorially:

clique complex of graph on vertex set $\Delta \setminus \{\emptyset\}$ and edges (F, G) if $F \subsetneq G$ or $G \subsetneq F$

k-faces = chains $\emptyset \neq F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_k$ where $F_i \in \Delta$ for $0 \le i \le k$



The barycentric subdivision $\mathrm{Sd}(\Delta)$

 Δ simplicial complex on vertex set V

Geometrically:

stellar subdivide faces by decreasing dimension

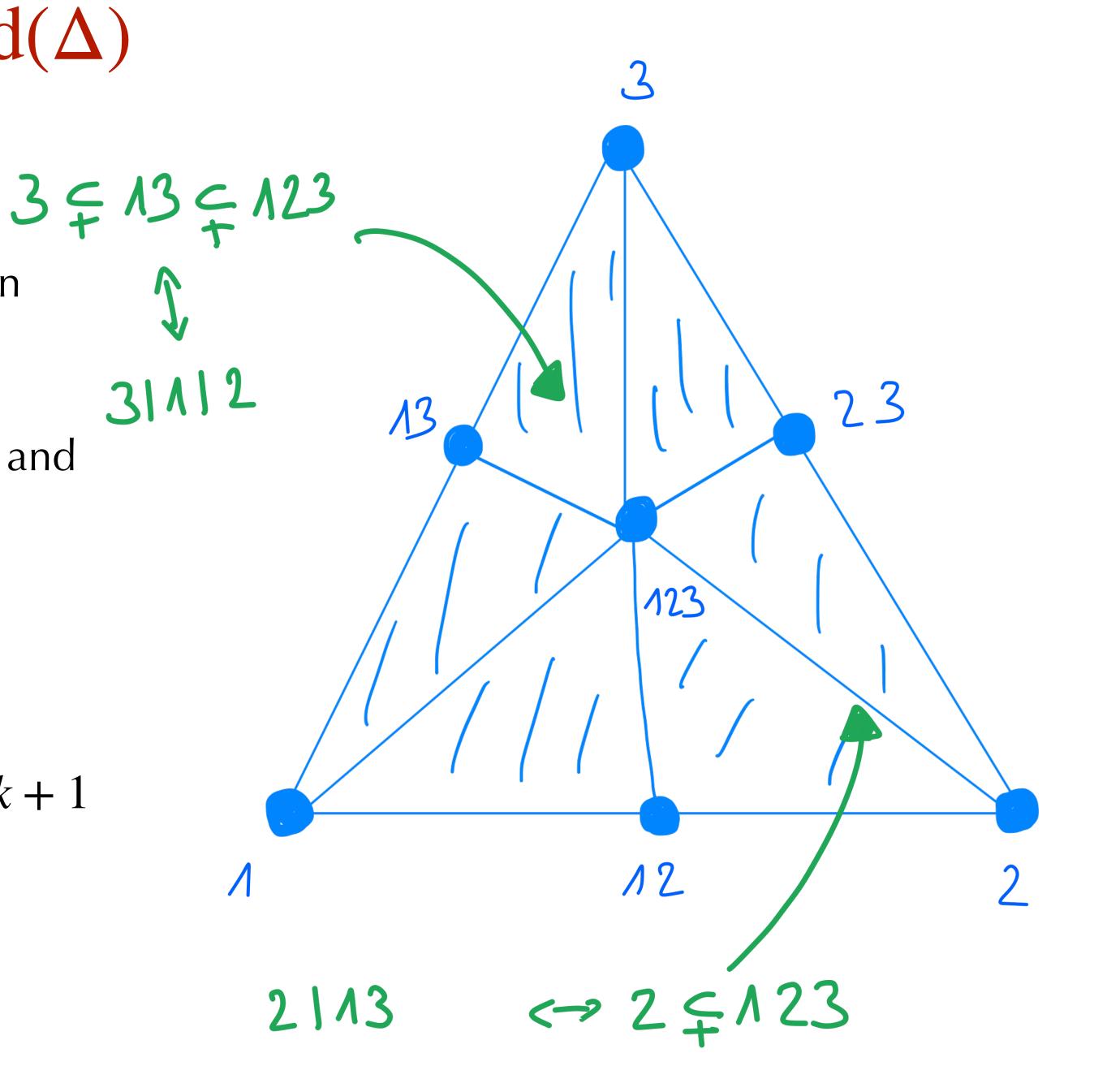
Combinatorially:

clique complex of graph on vertex set $\Delta \setminus \{\emptyset\}$ and edges (F,G) if $F \subsetneq G$ or $G \subsetneq F$

k-faces = chains $\emptyset \neq F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_k$ where $F_i \in \Delta$ for $0 \le i \le k$

= partial ordered partitions of faces of Δ with k+1 blocks

$$B_0 | B_1 | \cdots | B_k$$

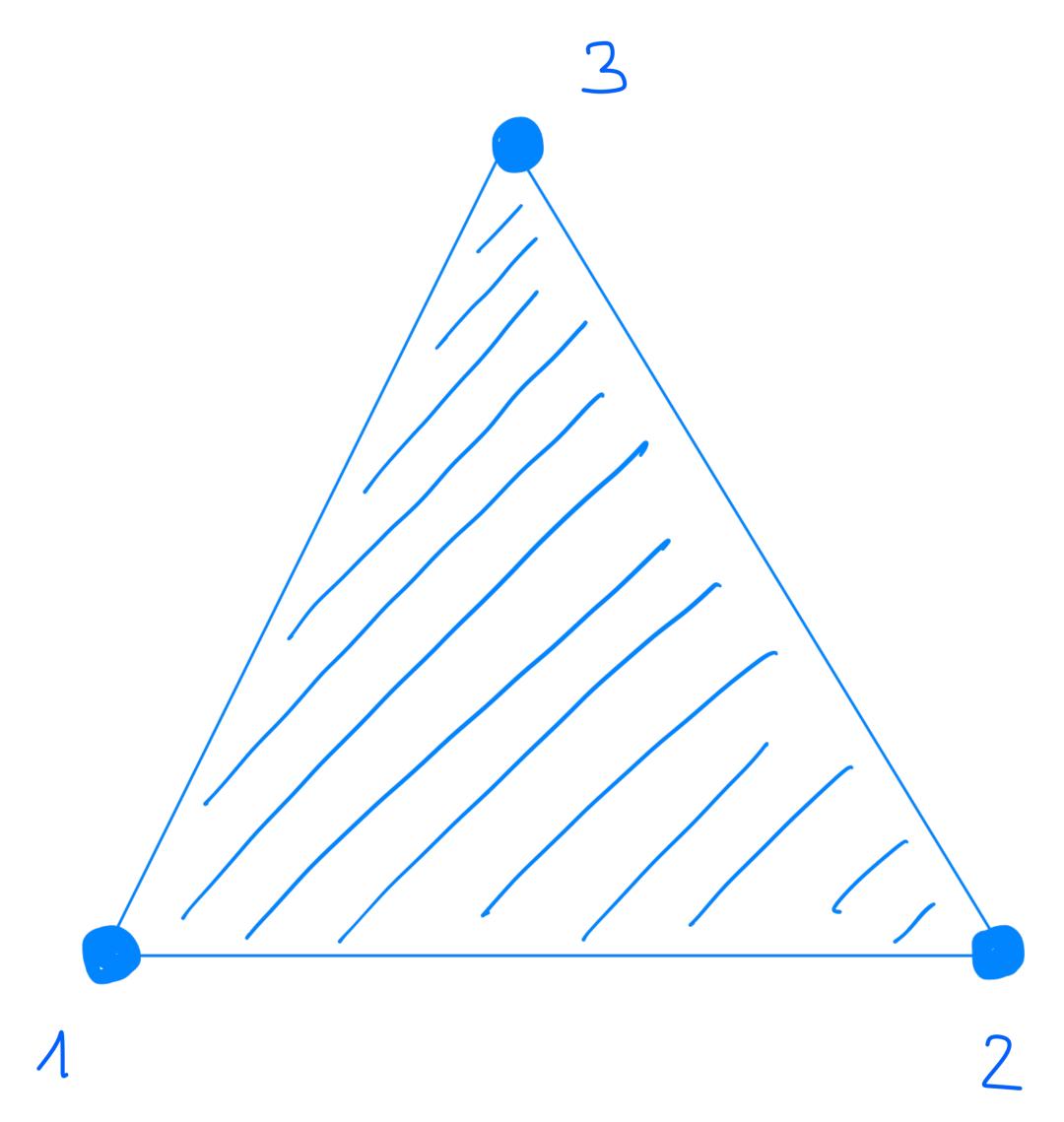


Results for barycentric subdivisions

- ► *f* and *h*-vector transformations (Brenti, Welker)
- real-rootedness of the h-polynomial if $h(\Delta) \ge 0$ (Brenti, Welker)
- ightharpoonup combinatorial interpretations of the γ -vector (Nevo, Petersen, Tenner)
- combinatorial interpretations of the local h-vector (Stanley)
- non-negativity of the local γ -vector for CW-regular subdivisions (Athanasiadis, Savvidou; J., Murai, Sieg)
- ightharpoonup almost strong Lefschetz property if Δ is shellable (J., Nevo)

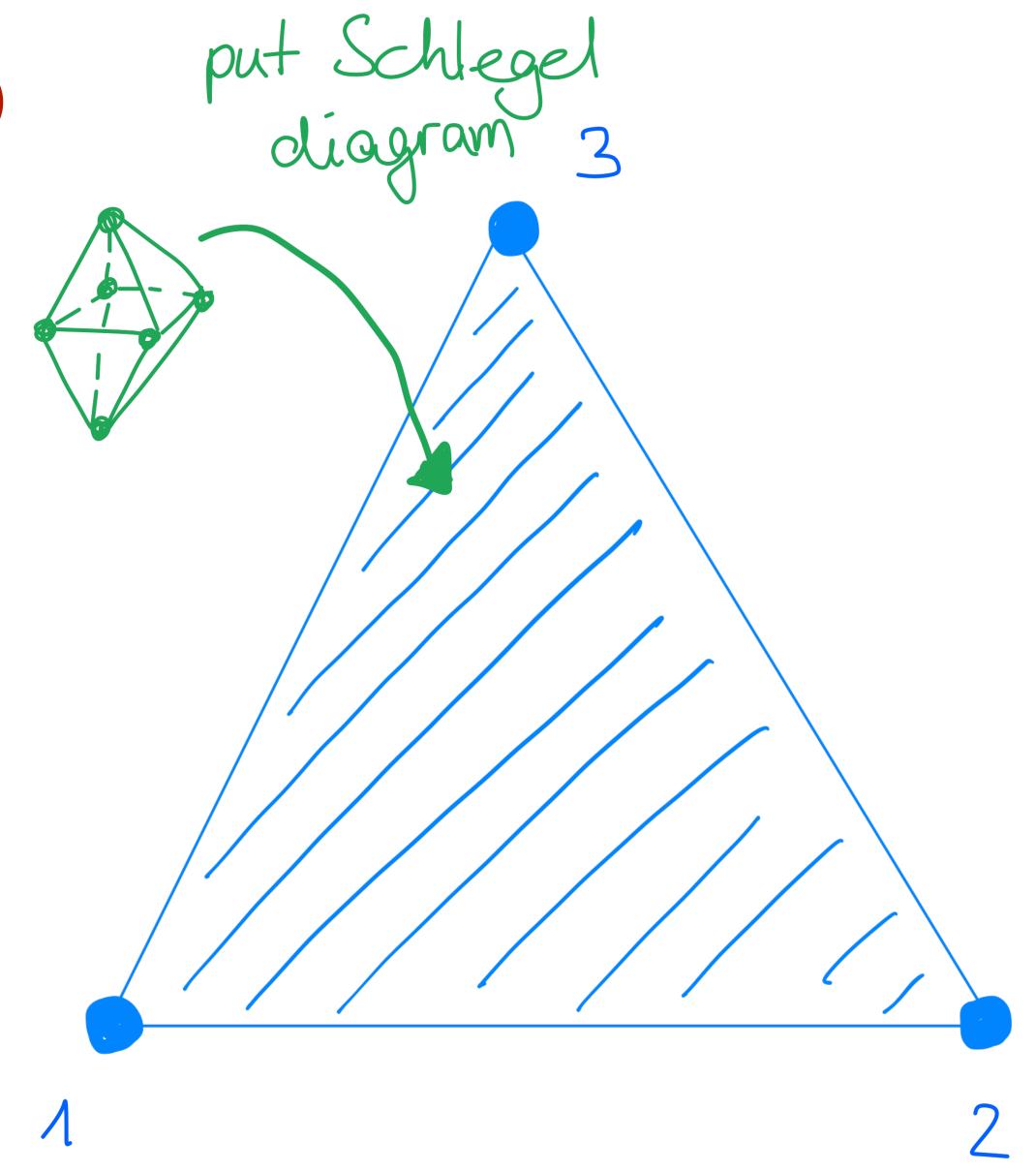
 Δ simplicial complex on vertex set V

Geometrically:



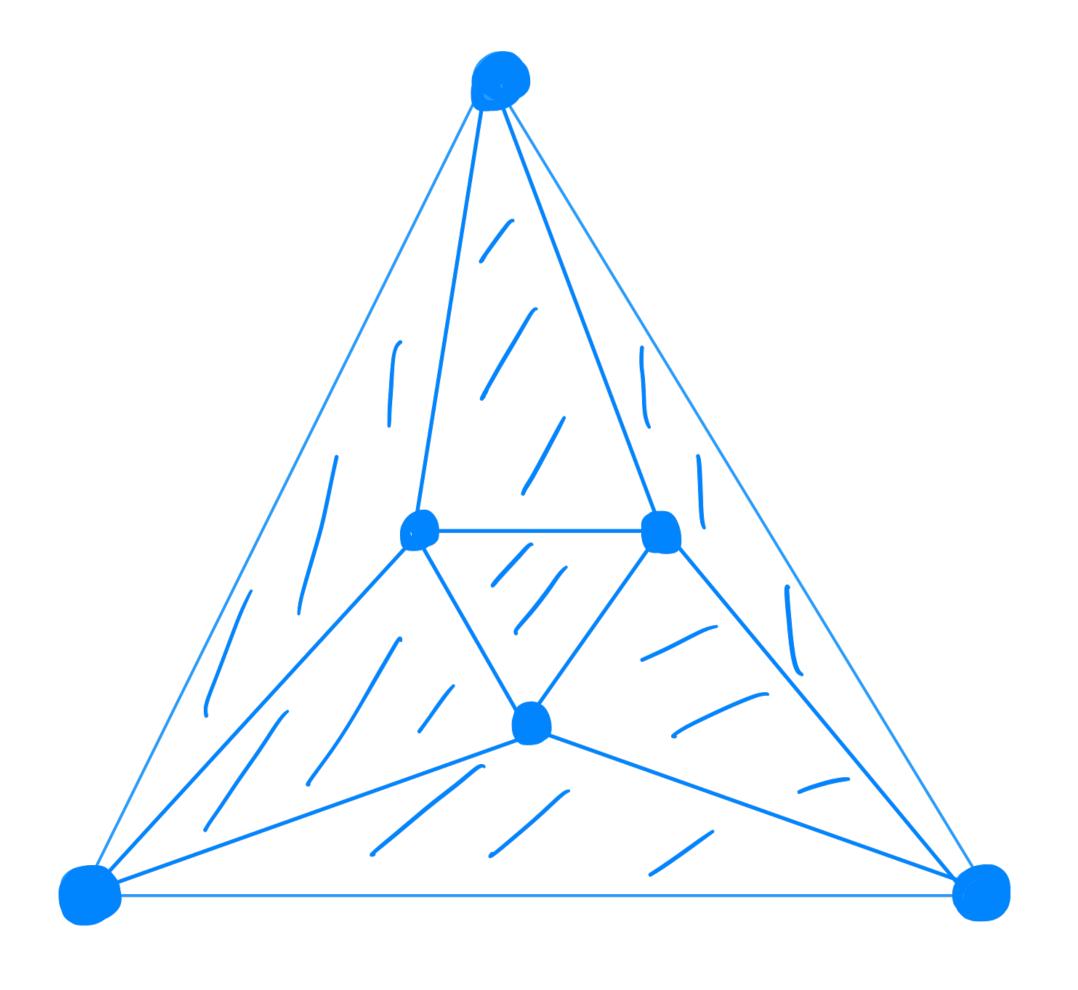
 Δ simplicial complex on vertex set V

Geometrically:



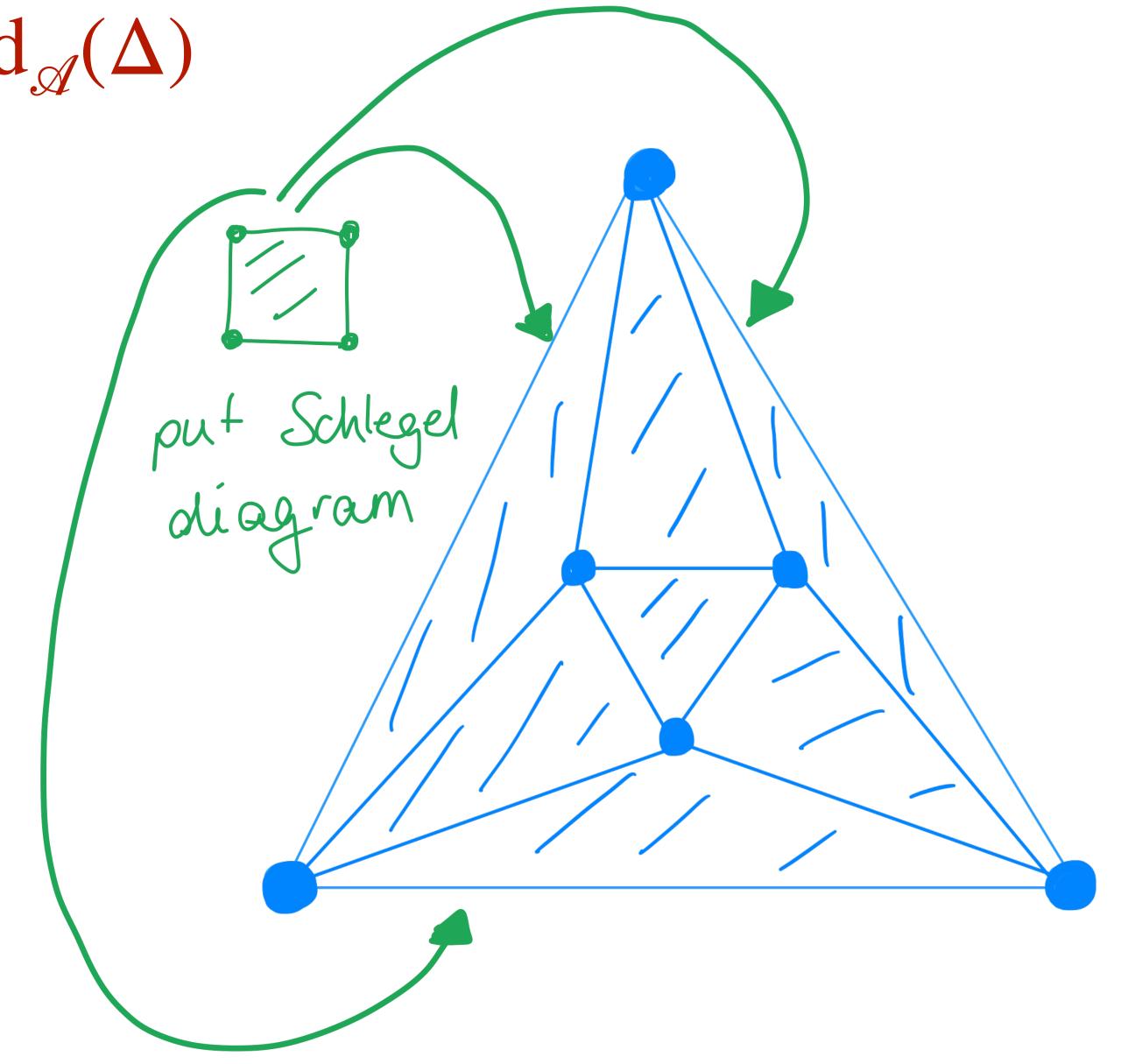
 Δ simplicial complex on vertex set V

Geometrically:



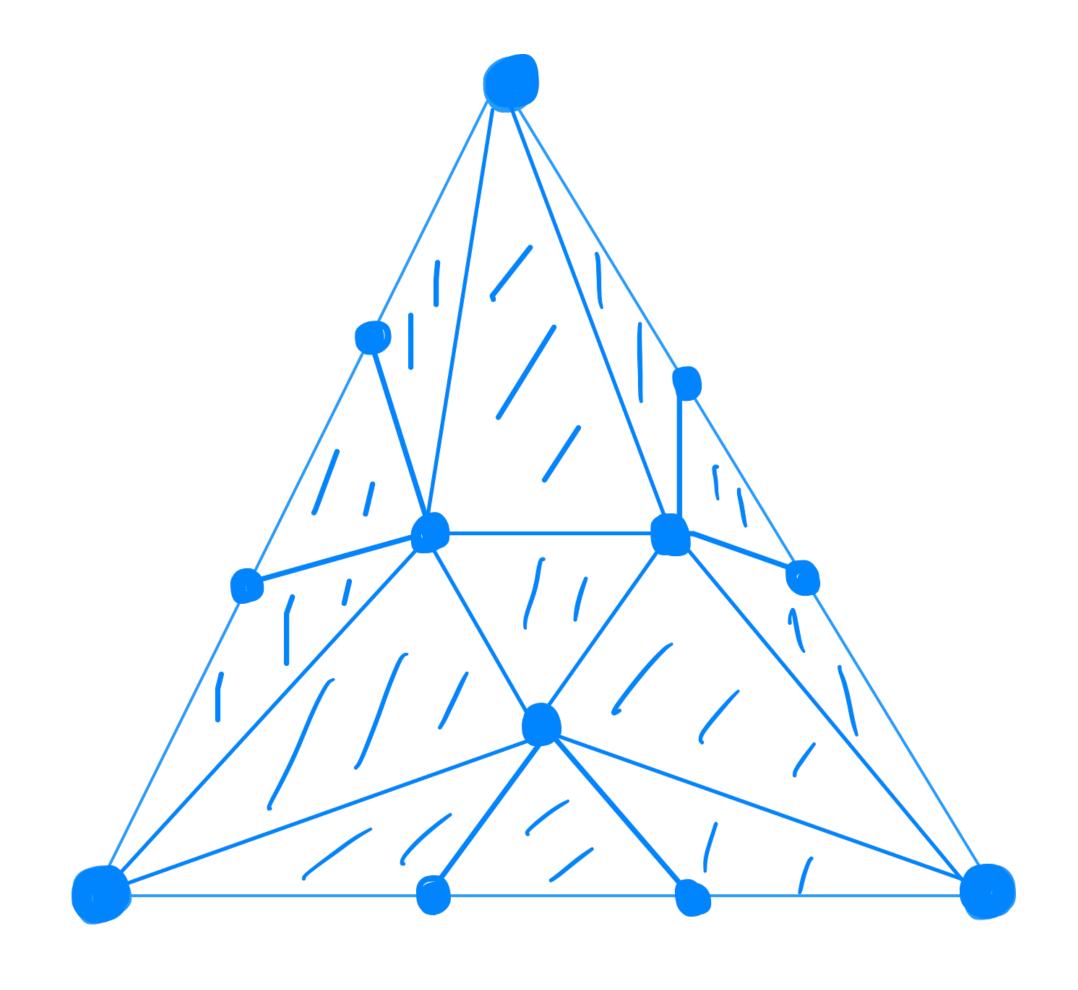
 Δ simplicial complex on vertex set V

Geometrically:



 Δ simplicial complex on vertex set V

Geometrically:



 Δ simplicial complex on vertex set V

Geometrically:

perform crossings by decreasing dimension

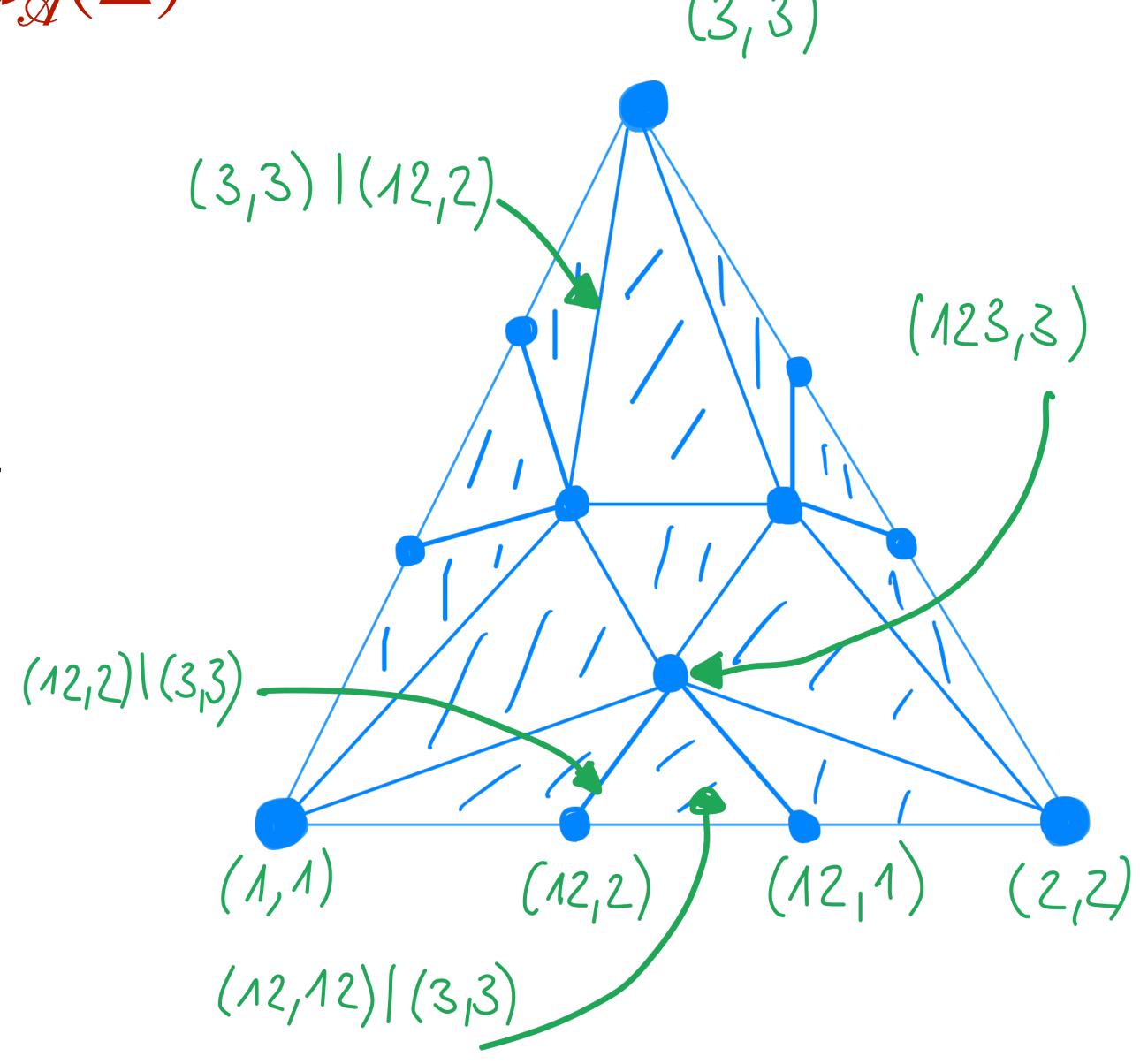
Combinatorially:

clique complex of graph on vertex set: $\{(F, v) \mid v \in F \in \Delta\}$ and edges (F, v), (G, w) if F = G, or $F \subsetneq G$ and $w \in G \setminus F$ or vice versa

k-faces = multipointed ordered partitions of faces of Δ of weight k+1

$$(B_1, C_1) | (B_2, C_2) | \cdots | (B_m, C_m)$$

with $B_i \supsetneq C_i$



Face enumeration

Let Δ be an (n-1)-dimensional simplicial complex.

The vector $f(\Delta)=(f_{-1}(\Delta),f_0(\Delta),\ldots,f_{n-1}(\Delta))$, where $f_i(\Delta)=\#\{F\in\Delta\mid \dim F=i\}$ is called *f*-vector of Δ .

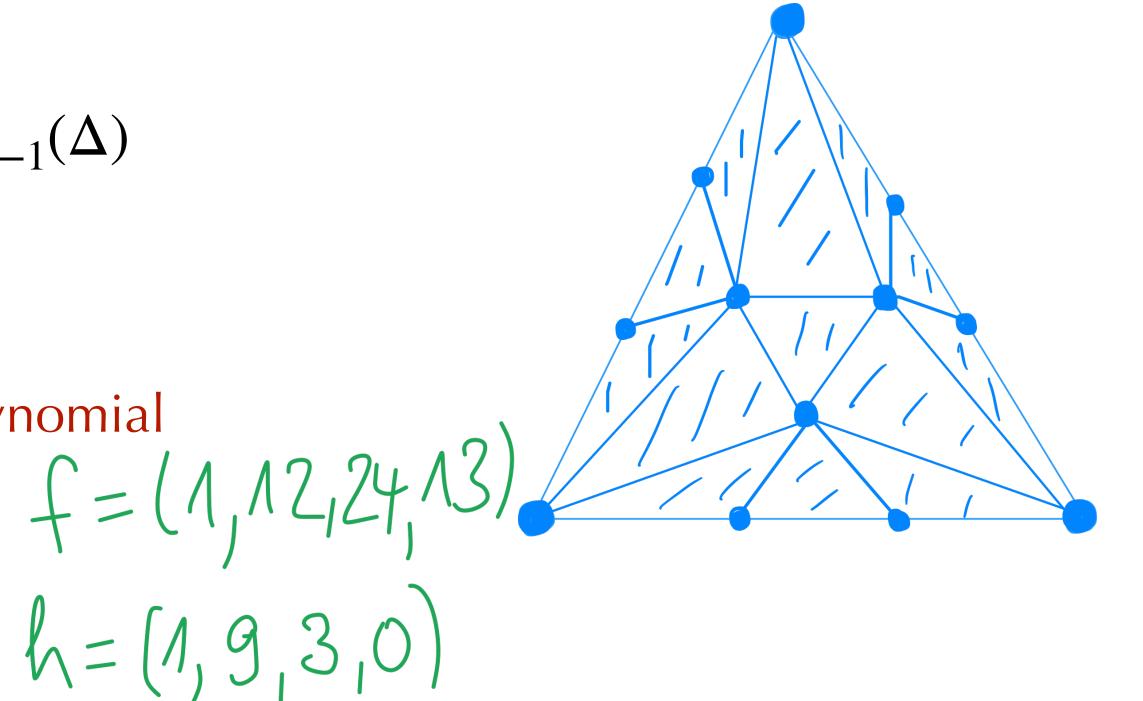
The vector $h(\Delta) = (h_0(\Delta), h_1(\Delta), ..., h_n(\Delta))$, where

$$h_i(\Delta) = \sum_{j=0}^{i} (-1)^{i-j} \binom{n-j}{i-j} f_{j-1}(\Delta)$$

is called h-vector of Δ .

The polynomial $h(\Delta, x) = \sum_{i=0}^{n} h_i(\Delta) x^i$ is called h-polynomial of Δ .

$$f = (1, 7, 12, 6)$$
 $h = (1, 4, 1, 0)$



Theorem (Athanasiadis, Brunink, J.; 2020)

Let σ_n be an (n-1)-simplex and $h(\operatorname{sd}_{\mathscr{A}}(\sigma_n)) = (h_0, \ldots, h_n)$ be the h-vector of $\operatorname{sd}_{\mathscr{A}}(\sigma_n)$. Then h_i is equal to:

- the number of proper multipointed partial ordered partitions of [n] of weight i,
- ▶ the number of ordered partitions $\pi = (B_1 | \cdots | B_m)$ of [n] such that $\# \bigcup_{j=1}^{\lfloor m/2 \rfloor} B_j = i$,
- $rac{n}{i}$ times the number of permutations in \mathfrak{S}_n with excedance set [i].

n = 3, i = 2 $h_2 = 3$

Theorem (Athanasiadis, Brunink, J.; 2020)

Let σ_n be an (n-1)-simplex and $h(\operatorname{sd}_{\mathscr{A}}(\sigma_n))=(h_0,\ldots,h_n)$ be the h-vector of $\operatorname{sd}_{\mathscr{A}}(\sigma_n)$. Then h_i is equal to:

- equal to:

 the number of proper multipointed partial ordered partitions of [n] of weight i, $(123 \mid 23)$ the number of ordered partitions $\pi = (B_1 \mid \cdots \mid B_m)$ of [n] such that $\# \bigcup B_j = i$, $(123 \mid 23)$
- ► $\binom{n}{i}$ times the number of permutations in \mathfrak{S}_n with excedance set [i]. 23 \bigwedge

Theorem (Athanasiadis, Brunink, J.; 2020)

The polynomial $h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x)$ is real-rooted and interlaces $h(\operatorname{sd}_{\mathscr{A}}(\sigma_{n+1}), x)$ for every $n \in \mathbb{N}$.

Moreover, $h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x)$ has a real-rooted and interlacing symmetric decomposition w.r.t. n-1:

$$h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) = h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x) + (h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) - h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x)).$$

Theorem (Athanasiadis, Brunink, J.; 2020)

The polynomial $h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x)$ is real-rooted and interlaces $h(\operatorname{sd}_{\mathscr{A}}(\sigma_{n+1}), x)$ for every $n \in \mathbb{N}$.

Moreover, $h(sd_{\mathcal{A}}(\sigma_n), x)$ has a real-rooted and interlacing symmetric decomposition w.r.t. n-1:

$$h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) = h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x) + (h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) - h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x)).$$

$$n=3: 1+9\times+3\times^{2} = (1+7\times+x^{2})+(2\times+2\times^{2})$$

= $\times(2+2\times)$

Theorem (Athanasiadis, Brunink, J.; 2020)

The polynomial $h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x)$ is real-rooted and interlaces $h(\operatorname{sd}_{\mathscr{A}}(\sigma_{n+1}), x)$ for every $n \in \mathbb{N}$.

Moreover, $h(\operatorname{sd}_{\mathcal{A}}(\sigma_n), x)$ has a real-rooted and interlacing symmetric decomposition w.r.t. n-1:

$$h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) = h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x) + (h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) - h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x)).$$

Conjecture: $h(\operatorname{sd}_{\mathscr{A}}(\sigma_{n-1}), x)$ interlaces $(h(\operatorname{sd}_{\mathscr{A}}(\sigma_n), x) - h(\operatorname{sd}_{\mathscr{A}}(\partial \sigma_n), x))$ for every $n \in \mathbb{N}$.

This would imply that $h(\operatorname{sd}_{\mathscr{A}}(\Delta), x)$ is real-rooted for every simplicial complex Δ with $h(\Delta) \geq 0$.

Face vector transformation — the f-vector

Let Δ be an (n-1)-dimensional simplicial complex. Then

$$f_{j-1}(\operatorname{sd}_{\mathscr{A}}(\Delta)) = \sum_{k=j}^{n} q_{\mathscr{A}}(k,j) f_{k-1}(\Delta),$$

where $q_{\mathcal{A}}(k,j)$ equals the number of multipointed ordered partitions of [k] of weight j:

$$q_{\mathcal{A}}(k,j) = {k \choose j} \sum_{i=0}^{j} i! S(j,i) i^{k-j}.$$

Remark: The existence and non-negativity of the numbers $q_{\mathscr{A}}(k,j)$ follows from a more general result by Athanasiadis for uniform triangulations.

Face vector transformation — the h-vector

Let Δ be an (n-1)-dimensional simplicial complex. Then

$$h_{j}(\mathrm{sd}_{\mathscr{A}}(\Delta)) = \sum_{k=0}^{n} p_{\mathscr{A}}(n, k, j) h_{k}(\Delta),$$

where $p_{\mathscr{A}}(n,k,j)$ equals the number of ordered partitions π of sets $[k] \subseteq S \subseteq [n]$ with:

- j elements colored black and the remaining ones white, and:
- If π has a monochromatic block B, then:

B is the first block,

all elements of B are black, and

$$B \subseteq [k]$$
.

Face vector transformation — the h-vector

Let Δ be an (n-1)-dimensional simplicial complex. Then

$$h_j(\operatorname{sd}_{\mathscr{A}}(\Delta)) = \sum_{k=0}^n p_{\mathscr{A}}(n, k, j) h_k(\Delta),$$

$$\Lambda = 3, \ h = 0, \ j = 1$$

12

12

12

123

123

where $p_{\mathcal{A}}(n,k,j)$ equals the number of ordered partitions π of sets $[k] \subseteq S \subseteq [n]$ with:

- j elements colored black and the remaining ones white, and: = 9
- If π has a monochromatic block B, then:

B is the first block,

all elements of B are black, and

$$B \subseteq [k].$$

$$S \subseteq [n]$$
 with:
 23 32
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31
 31

Lefschetz properties

Let Δ be an (n-1)-dimensional Cohen-Macaulay omplex with Stanley-Reisner ring $\mathbb{F}[\Delta]$.

 Δ is called almost strong Lefschetz if there exists an linear system of parameters Θ and a linear form ω such that

$$\times \omega^{n-2i-1} : (\mathbb{F}[\Delta]/\Theta\mathbb{F}[\Delta])_i \to (\mathbb{F}[\Delta]/\Theta\mathbb{F}[\Delta])_{n-1-i}$$

$$f \mapsto \omega^{n-2i-1} \cdot f$$

is injective for $0 \le i \le \lfloor (n-1)/2 \rfloor$.

Lefschetz properties

Let Δ be an (n-1)-dimensional Cohen-Macaulay omplex with Stanley-Reisner ring $\mathbb{F}[\Delta]$.

 Δ is called almost strong Lefschetz if there exists an linear system of parameters Θ and a linear form ω such that

$$\times \omega^{n-2i-1} : (\mathbb{F}[\Delta]/\Theta\mathbb{F}[\Delta])_i \to (\mathbb{F}[\Delta]/\Theta\mathbb{F}[\Delta])_{n-1-i}$$

$$f \mapsto \omega^{n-2i-1} \cdot f$$

is injective for $0 \le i \le \lfloor (n-1)/2 \rfloor$.

Consequences:

- $g(\Delta) = (1, h_1(\Delta) h_0(\Delta), ..., h_{\lfloor n/2 \rfloor}(\Delta) h_{\lfloor n/2 \rfloor 1}(\Delta))$ is an M-sequence.
- $h_i(\Delta) \le h_{n-1-i}(\Delta)$ for $0 \le i \le \lfloor (n-1)/2 \rfloor$
- $h_0(\Delta) \le h_1(\Delta) \le \dots \le h_{\lfloor n/2 \rfloor}(\Delta)$

Lefschetz property for antiprism triangulations

Theorem (Athanasiadis, Brunink, J.; 2020)

Let Δ be a shellable simplicial complex. Then $\mathrm{sd}_{\mathscr{A}}(\Delta)$ is almost strong Lefschetz. In particular, $h(\mathrm{sd}_{\mathscr{A}}(\Delta))$ is unimodal.

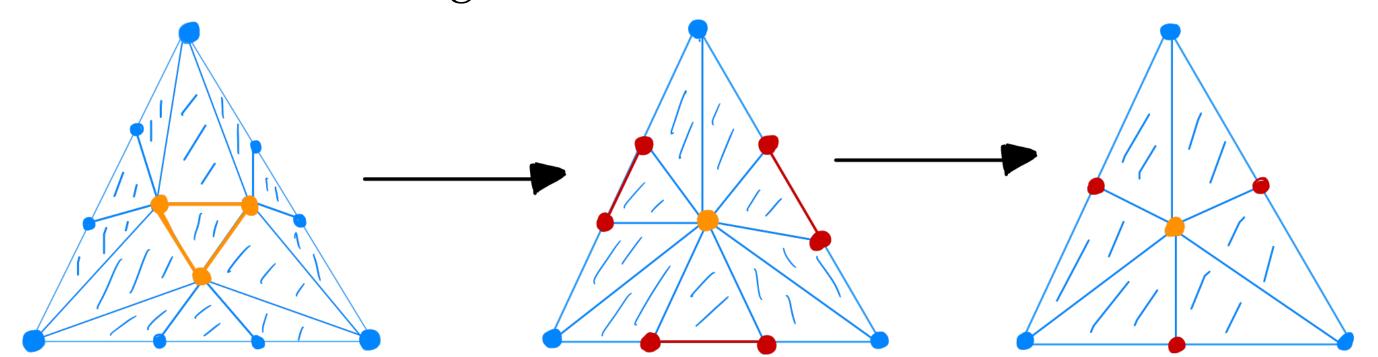
Lefschetz property for antiprism triangulations

Theorem (Athanasiadis, Brunink, J.; 2020)

Let Δ be a shellable simplicial complex. Then $\mathrm{sd}_{\mathscr{A}}(\Delta)$ is almost strong Lefschetz. In particular, $h(\mathrm{sd}_{\mathscr{A}}(\Delta))$ is unimodal.

Sketch of the proof:

- ▶ Induction on the number of facets of Δ and dim Δ
- ▶ Base case: Using nice edge contractions $\mathrm{sd}_{\mathscr{A}}(\sigma_n)$ can be transformed into $\mathrm{sd}(\sigma_n)$, which is known to be almost strong Lefschetz.



Lefschetz property for antiprism triangulations

Theorem (Athanasiadis, Brunink, J.; 2020)

Let Δ be a shellable simplicial complex. Then $\mathrm{sd}_{\mathscr{A}}(\Delta)$ is almost strong Lefschetz. In particular, $h(\mathrm{sd}_{\mathscr{A}}(\Delta))$ is unimodal.

Sketch of the proof:

- ▶ Induction on the number of facets of Δ and dim Δ
- ▶ Base case: Using nice edge contractions $\mathrm{sd}_{\mathscr{A}}(\sigma_n)$ can be transformed into $\mathrm{sd}(\sigma_n)$, which is known to be almost strong Lefschetz.
- ► The induction step works as in the case for barycentric subdivisions

Conclusion

Barycentric subdivision vs. antiprism triangulation

	Barycentric subdivision	Antiprism triangulation
f- and h-vector transformations		
Real-rootedness		conjectured
Local h-vector		
Lefschetz property		

Conclusion

Barycentric subdivision vs. antiprism triangulation

	Barycentric subdivision	Antiprism triangulation
f- and h-vector transformations		
Real-rootedness		conjectured
Local h-vector		
Lefschetz property		

Thank you!