A tale of two polytopes 2: the harmonic polytope

Based on arXiv:2006.0307

Joint work with Federico Ardila

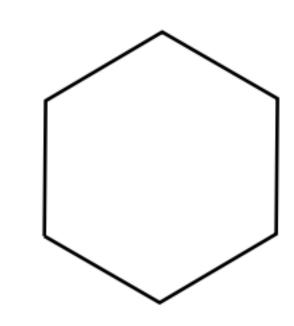
Laura Escobar
Washington University in St. Louis

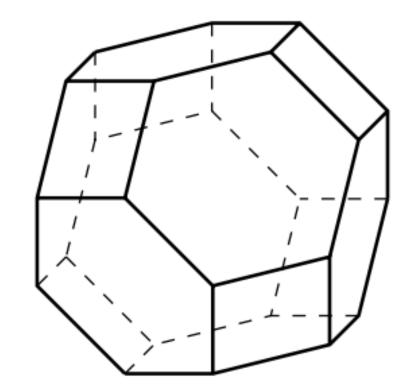
AICoVe

June 15, 2020

This talk will be recorded

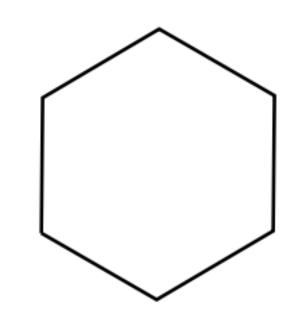
The harmonic polytope

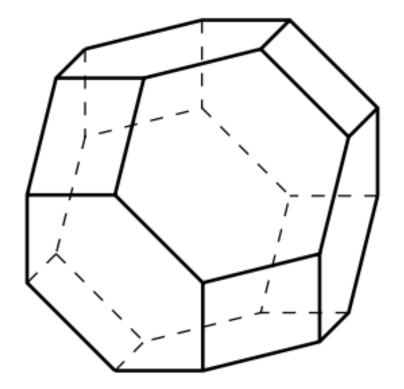




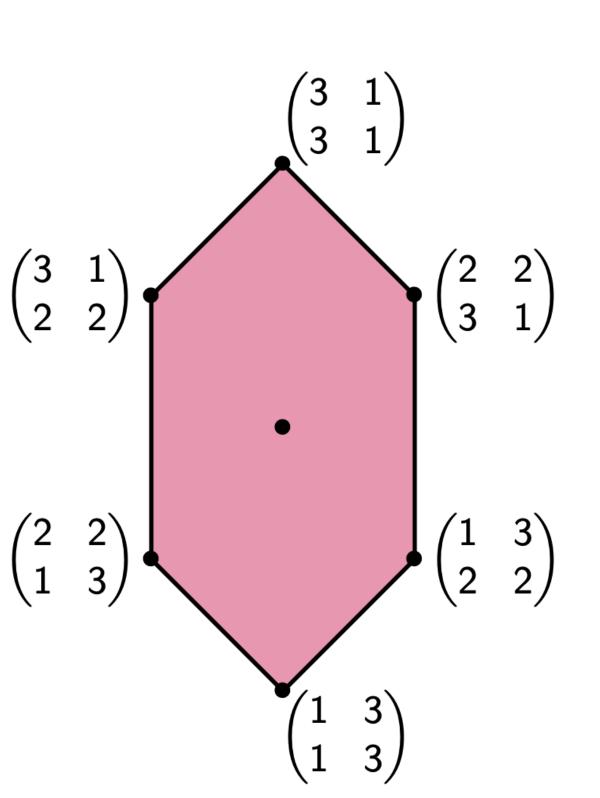
- The permutohedron is $\Pi_n = \text{conv}\{(z_1, ..., z_n) \mid z_1, ..., z_n \text{ is a permutation of } [n]\}.$
- Consider two copies of \mathbb{R}^n with standard bases $\{e_i:i\in[n]\}$ and $\{f_i:i\in[n]\}$.
- Let D_n be the (n-1)-dimensional simplex conv $\left\{\mathbf{e}_i+\mathbf{f}_i:i\in[n]\right\}\subseteq\mathbb{R}^n\times\mathbb{R}^n$.
- The harmonic polytope is $H_{n,n} = D_n + (\Pi_n \times \Pi_n) \subset \mathbb{R}^n \times \mathbb{R}^n$.

The harmonic polytope

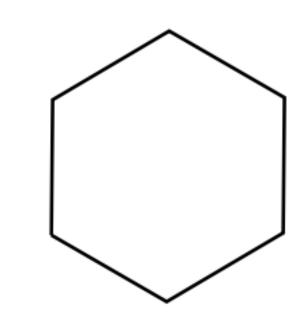


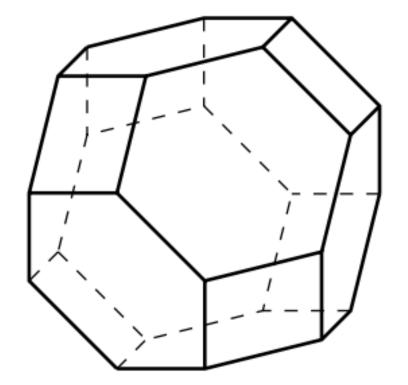


- The **permutohedron** is $\Pi_n = \text{conv}\{(z_1, ..., z_n) \mid z_1, ..., z_n \text{ is a permutation of } [n]\}.$
- Consider two copies of \mathbb{R}^n with standard bases $\{e_i : i \in [n]\}$ and $\{f_i : i \in [n]\}$.
- Let D_n be the (n-1)-dimensional simplex $\operatorname{conv}\Big\{\mathbf{e}_i+\mathbf{f}_i:i\in[n]\Big\}\subseteq\mathbb{R}^n\times\mathbb{R}^n$.
- The harmonic polytope is $H_{n,n} = D_n + (\Pi_n \times \Pi_n) \subset \mathbb{R}^n \times \mathbb{R}^n$.
- $H_{n,n}$ is (2n-2)-dimensional.

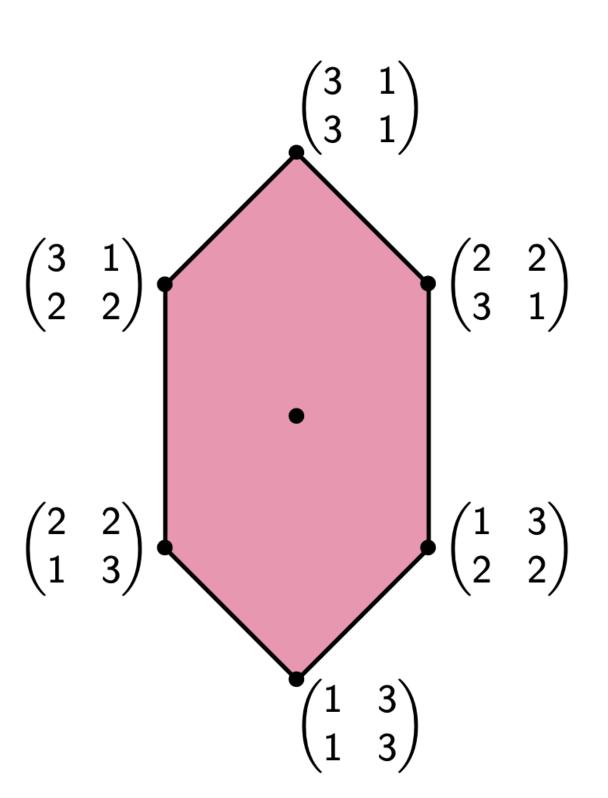


The harmonic polytope





- The **permutohedron** is $\Pi_n = \text{conv}\{(z_1, ..., z_n) \mid z_1, ..., z_n \text{ is a permutation of } [n]\}.$
- Consider two copies of \mathbb{R}^n with standard bases $\{e_i : i \in [n]\}$ and $\{f_i : i \in [n]\}$.
- Let D_n be the (n-1)-dimensional simplex conv $\left\{ \mathbf{e}_i + \mathbf{f}_i : i \in [n] \right\} \subseteq \mathbb{R}^n \times \mathbb{R}^n$.
- The harmonic polytope is $H_{n,n} = D_n + (\Pi_n \times \Pi_n) \subset \mathbb{R}^n \times \mathbb{R}^n$.
- $H_{n,n}$ is (2n-2)-dimensional.
- The harmonic polytope is a Minkowski summand of (a multiple of) the bipermutohedron of Ardila-Denham-Huh.

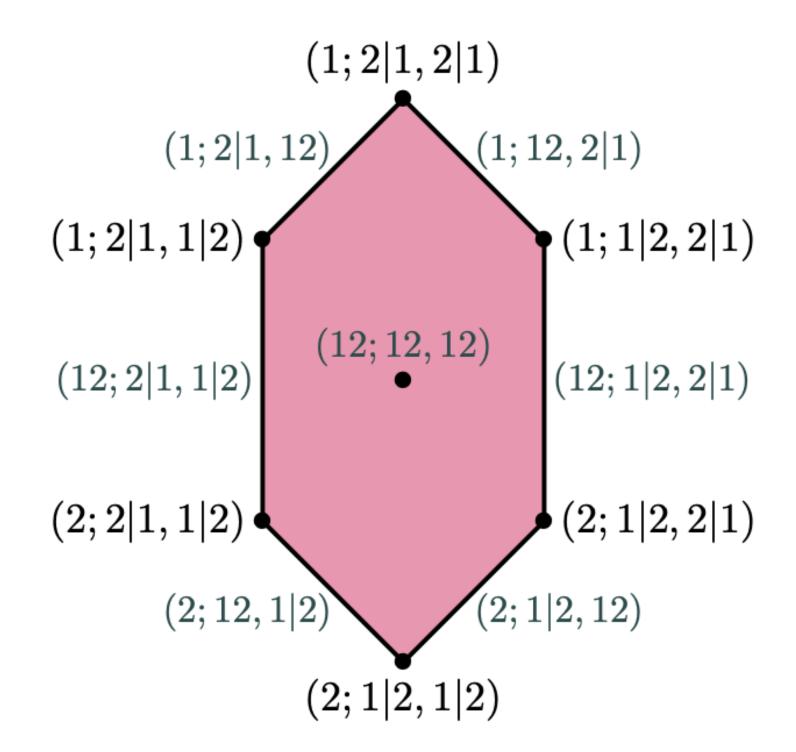


Faces of the harmonic polytope

- The faces of $H_{n,n}$ are in bijection with the harmonic triples on [n].
- A harmonic triple $(K; \pi_1, \pi_2)$ on [n] consists of $\emptyset \neq K \subseteq [n]$ and a pair of ordered set partitions π_1 , π_2 of [n] such that:
 - The restrictions $\pi_1 \mid_K$ and $\pi_2 \mid_K$ are opposite to each other, and
 - If $j \notin K$ appears in the same or a later block than $k \in K$ in one of the set partitions, then j must appear in an earlier block than k in the other set partition.

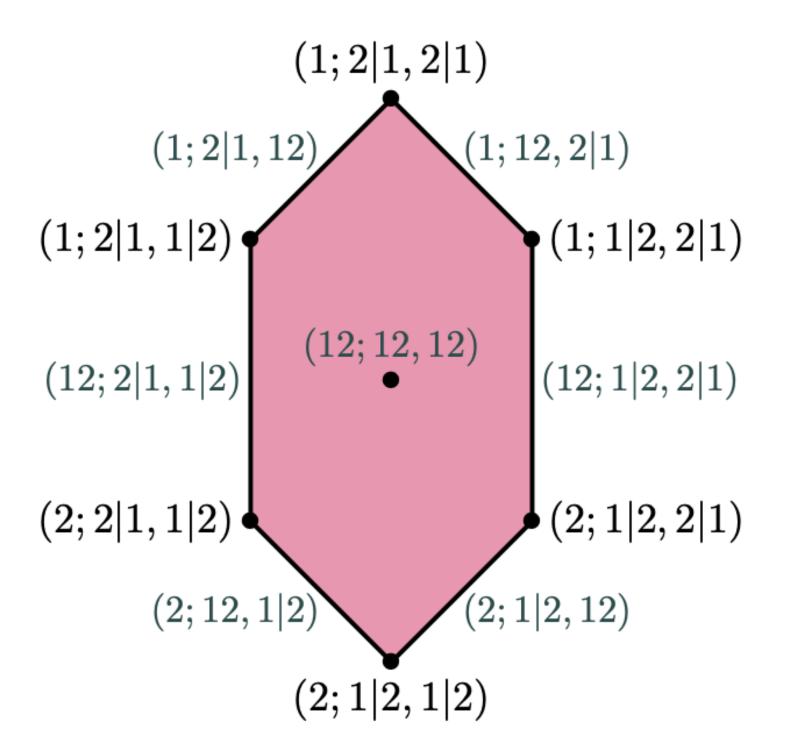
Faces of the harmonic polytope

- The faces of $H_{n,n}$ are in bijection with the harmonic triples on [n].
- A harmonic triple $(K; \pi_1, \pi_2)$ on [n] consists of $\emptyset \neq K \subseteq [n]$ and a pair of ordered set partitions π_1 , π_2 of [n] such that:
 - The restrictions $\pi_1 \mid_K$ and $\pi_2 \mid_K$ are opposite to each other, and
 - If $j \notin K$ appears in the same or a later block than $k \in K$ in one of the set partitions, then j must appear in an earlier block than k in the other set partition.



Faces of the harmonic polytope

- The faces of $H_{n,n}$ are in bijection with the harmonic triples on [n].
- A harmonic triple $(K; \pi_1, \pi_2)$ on [n] consists of $\emptyset \neq K \subseteq [n]$ and a pair of ordered set partitions π_1 , π_2 of [n] such that:
 - The restrictions $\pi_1 \mid_K$ and $\pi_2 \mid_K$ are opposite to each other, and
 - If $j \notin K$ appears in the same or a later block than $k \in K$ in one of the set partitions, then j must appear in an earlier block than k in the other set partition.
- The number of vertices of $H_{n,n}$ equals $(n!)^2 \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$.
- The number of facets of $H_{n,n}$ equals $3^n 3$.



What is the volume of the harmonic polytope?

- Let P be a d-dimensional polytope on an affine d-plane $L \subset \mathbb{R}^n$. The volume of P is measured on L and normalized appropriately.
- The **mixed volume** is the function such that for any collection of polytopes $P_1,\ldots,P_m\subset L$ $\mathrm{vol}(P_1+\cdots+P_m)=\sum_{i_1,\ldots,i_d}\mathrm{MV}(P_{i_1},\ldots,P_{i_d}).$

- Let P be a d-dimensional polytope on an affine d-plane $L \subset \mathbb{R}^n$. The volume of P is measured on L and normalized appropriately.
- The **mixed volume** is the function such that for any collection of polytopes $P_1,\ldots,P_m\subset L$ $\operatorname{vol}(P_1+\cdots+P_m)=\sum_{i_1,\ldots,i_d}\operatorname{MV}(P_{i_1},\ldots,P_{i_d}).$

The permutohedron Π_n is a translation of the Minkowski sum $\sum \Delta_{ij}$, where $\Delta_{ij} := \operatorname{conv}\{\mathbf{e}_i, \mathbf{e}_j\}$.

•
$$\Pi_3 = \begin{bmatrix} e_2 \\ e_1 \end{bmatrix} = \begin{bmatrix} e_1 \\ e_3 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_3 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_3 \end{bmatrix}$$

•

- Let P be a d-dimensional polytope on an affine d-plane $L \subset \mathbb{R}^n$. The volume of P is measured on L and normalized appropriately.
- The **mixed volume** is the function such that for any collection of polytopes $P_1,\ldots,P_m\subset L$ $\text{vol}(P_1+\cdots+P_m)=\sum_{i_1,\ldots,i_d} \text{MV}(P_{i_1},\ldots,P_{i_d}).$

The permutohedron Π_n is a translation of the Minkowski sum $\sum_{i < i} \Delta_{ij}$, where $\Delta_{ij} := \text{conv}\{e_i, e_j\}$.

•
$$\Pi_3 = \begin{bmatrix} e_2 \\ e_1 \end{bmatrix} = \begin{bmatrix} e_2 \\ e_1 \end{bmatrix} + \begin{bmatrix} e_3 \\ e_3 \end{bmatrix} = \begin{bmatrix} e_2 \\ e_3 \end{bmatrix}$$

 $\bullet \ \ \mathsf{vol}(\Pi_3) = \mathsf{MV}(\Delta_{12}, \Delta_{12}) + \mathsf{MV}(\Delta_{13}, \Delta_{13}) + \mathsf{MV}(\Delta_{23}, \Delta_{23}) + 2\mathsf{MV}(\Delta_{12}, \Delta_{13}) + 2\mathsf{MV}(\Delta_{12}, \Delta_{23}) + 2\mathsf{MV}(\Delta_{13}, \Delta_{23}) + 2$

- Let P be a d-dimensional polytope on an affine d-plane $L \subset \mathbb{R}^n$. The volume of P is measured on L and normalized appropriately.
- The **mixed volume** is the function such that for any collection of polytopes $P_1,\ldots,P_m\subset L$ $\mathrm{vol}(P_1+\cdots+P_m)=\sum_{i_1,\ldots,i_d}\mathrm{MV}(P_{i_1},\ldots,P_{i_d}).$
- The permutohedron Π_n is a translation of the Minkowski sum $\sum_{i < j} \Delta_{ij}$, where $\Delta_{ij} := \operatorname{conv}\{\mathbf{e}_i, \mathbf{e}_j\}$.
- Since $H_{n,n} = D_n + (\Pi_n \times \Pi_n)$, then $H_{n,n} = D_n + \sum_{i < j} \Delta_{ij} + \sum_{i < j} \Delta_{\bar{i}\bar{j}}$, where $\Delta_{\bar{i}\bar{j}} := \operatorname{conv}\{\mathsf{f}_i,\mathsf{f}_j\}$.
- We compute $\operatorname{vol}(H_{n,n})$ by evaluating the various $\operatorname{MV}(G,\bar{G}) = \operatorname{MV}(\Delta_{i_1j_1},...,\Delta_{i_rj_r},\Delta_{\bar{i}_1\bar{j}_1},...,\Delta_{\bar{i}_s\bar{j}_s},\underbrace{D_n,...,D_n}_{2n-2-r-s \text{ times}})$.

Bernstein-Khovanskii-Kushnirenko Theorem

• Bernstein-Khovanskii-Kushnirenko Theorem: Let $A_1, ..., A_d \subset \mathbb{Z}^d$ be finite, $Q_i = \text{conv}(A_i)$, and $\lambda_{i,\alpha} \in \mathbb{C}$ be sufficiently generic. The number of solutions in $(\mathbb{C}^*)^d$ to the system

$$\left\{ \sum_{\alpha \in A_1} \lambda_{1,\alpha} x^\alpha = 0, \dots, \sum_{\alpha \in A_d} \lambda_{d,\alpha} x^\alpha = 0 \right. \text{ is finite and equals } d! \mathsf{MV}(Q_1, \dots, Q_d). \right.$$

Bernstein-Khovanskii-Kushnirenko Theorem

• Bernstein-Khovanskii-Kushnirenko Theorem: Let $A_1, ..., A_d \subset \mathbb{Z}^d$ be finite, $Q_i = \text{conv}(A_i)$, and $\lambda_{i,\alpha} \in \mathbb{C}$ be sufficiently generic. The number of solutions in $(\mathbb{C}^*)^d$ to the system

$$\left\{ \sum_{\alpha \in A_1} \lambda_{1,\alpha} x^\alpha = 0, \dots, \sum_{\alpha \in A_d} \lambda_{d,\alpha} x^\alpha = 0 \right. \text{ is finite and equals } d! \mathsf{MV}(Q_1, \dots, Q_d). \right.$$

• Relevant Corollary 1: if $A_1, ..., A_d \subset \mathbb{Z}^n$ and $Q_1, ..., Q_d$ all lie on the affine (n-1)-plane \mathcal{L}_n the theorem above holds when counting solutions in $(\mathbb{C}^*)^n/\mathbb{C}^*$.

Bernstein-Khovanskii-Kushnirenko Theorem

• Bernstein-Khovanskii-Kushnirenko Theorem: Let $A_1, ..., A_d \subset \mathbb{Z}^d$ be finite, $Q_i = \text{conv}(A_i)$, and $\lambda_{i,\alpha} \in \mathbb{C}$ be sufficiently generic. The number of solutions in $(\mathbb{C}^*)^d$ to the system

$$\left\{ \sum_{\alpha \in A_1} \lambda_{1,\alpha} x^\alpha = 0, \dots, \sum_{\alpha \in A_d} \lambda_{d,\alpha} x^\alpha = 0 \right. \text{ is finite and equals } d! \mathsf{MV}(Q_1, \dots, Q_d). \right.$$

• Relevant Corollary 1: if $A_1, ..., A_d \subset \mathbb{Z}^n$ and $Q_1, ..., Q_d$ all lie on the affine (n-1)-plane \mathcal{L}_n the theorem above holds when counting solutions in $(\mathbb{C}^*)^n/\mathbb{C}^*$.

• Relevant Corollary 2: if $A_1, ..., A_d \subset \mathbb{Z}^n \times \mathbb{Z}^n$ and $Q_1, ..., Q_d$ all lie on the affine (n-2)-plane $\mathcal{L}_{n,n}$ the theorem above holds when counting solutions in $(\mathbb{C}^*)^n \times (\mathbb{C}^*)^n / \mathbb{C}^* \times \mathbb{C}^*$.

Towards the volume of the harmonic polytope

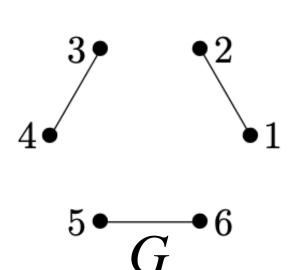
• Encode a sequence $i_1j_1, ..., i_rj_r$ as the edges of a graph G and $\bar{i}_1\bar{j}_1, ..., \bar{i}_s\bar{j}_s$ as the edges of a graph \bar{G} .

• Let
$$k = 2n - 2 - r - s$$
.

Denote by
$$\mathsf{MV}(G,\bar{G}) = \mathsf{MV}(\Delta_{i_1j_1},...,\Delta_{i_rj_r},\Delta_{\bar{i}_1\bar{j}_1},...,\Delta_{\bar{i}_s\bar{j}_s},\underbrace{D_n,...,D_n}).$$

• The system associated to the mixed volume $\mathsf{MV}(G,\bar{G})$ is

$$\mathcal{E}(G,G') = \begin{cases} x_i = \lambda_{ij} x_j, \text{ for } ij \in E(G) & \nu_{11} x_1 y_1 + \dots + \nu_{1n} x_n y_n = 0 \\ y_i = \mu_{ij} y_j, \text{ for } \overline{ij} \in E(\overline{G}) & \vdots \\ \nu_{k1} x_1 y_1 + \dots + \nu_{kn} x_n y_n = 0 \end{cases}$$



$$3 - 2$$

$$4 - 6$$

$$\overline{G}$$

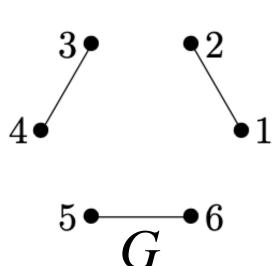
• $10! \cdot MV(G, G)$ is the number of solutions to

$$\mathcal{E}(G,\bar{G}) = \begin{cases} x_1 = \lambda_{12} x_2, & y_1 = \mu_{14} y_4, \\ x_3 = \lambda_{34} x_4, & y_2 = \mu_{23} y_3, \\ x_5 = \lambda_{56} x_6, & y_4 = \mu_{45} y_5, \\ y_5 = \mu_{56} y_6. \end{cases}$$

$$\nu_{11} x_1 y_1 + \dots + \nu_{16} x_6 y_6 = 0,$$

$$\nu_{21} x_1 y_1 + \dots + \nu_{26} x_6 y_6 = 0,$$

$$\nu_{31} x_1 y_1 + \dots + \nu_{36} x_6 y_6 = 0,$$

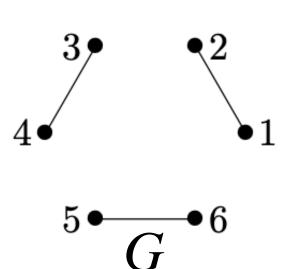


$$3 - 2$$
 $4 - 6$
 \overline{G}

• $10! \cdot MV(G, G)$ is the number of solutions to

$$\mathcal{E}(G,\bar{G}) = \begin{cases} x_1 = \lambda_{12} x_2, & y_1 = \mu_{14} y_4, & \nu_{11} x_1 y_1 + \dots + \nu_{16} x_6 y_6 = 0, \\ x_3 = \lambda_{34} x_4, & y_2 = \mu_{23} y_3, & \nu_{21} x_1 y_1 + \dots + \nu_{26} x_6 y_6 = 0, \\ x_5 = \lambda_{56} x_6, & y_4 = \mu_{45} y_5, & \nu_{31} x_1 y_1 + \dots + \nu_{36} x_6 y_6 = 0, \\ y_5 = \mu_{56} y_6. & v_{31} x_1 y_1 + \dots + \nu_{36} x_6 y_6 = 0, \end{cases}$$

Append variables x_{12} , x_{34} , x_{56} , y_{1456} , y_{23} and equations $x_{12} = x_1$, $x_{34} = x_3$, $x_{56} = x_5$, $y_{1456} = y_1$, $y_{23} = y_2$.



$$3 - 2$$
 $4 - 6$
 \overline{G}

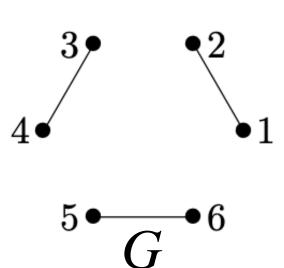
• $10! \cdot \mathsf{MV}(G, G)$ is the number of solutions to

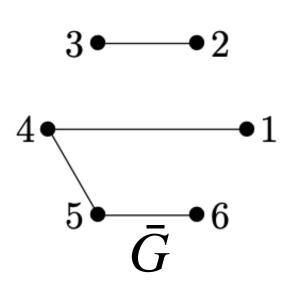
$$\mathscr{E}(G,\bar{G}) = \begin{cases} x_1 = \lambda_{12} x_2, & y_1 = \mu_{14} y_4, \\ x_3 = \lambda_{34} x_4, & y_2 = \mu_{23} y_3, \\ x_5 = \lambda_{56} x_6, & y_4 = \mu_{45} y_5, \\ y_5 = \mu_{56} y_6. \end{cases} \qquad \begin{matrix} \nu_{11} x_1 y_1 + \dots + \nu_{16} x_6 y_6 = 0, \\ \nu_{21} x_1 y_1 + \dots + \nu_{26} x_6 y_6 = 0, \\ \nu_{31} x_1 y_1 + \dots + \nu_{36} x_6 y_6 = 0, \\ \nu_{31} x_1 y_1 + \dots + \nu_{36} x_6 y_6 = 0, \\ \end{matrix}$$

- Append the variables x_{12} , x_{34} , x_{56} , y_{1456} , y_{23} and equations $x_{12} = x_1$, $x_{34} = x_3$, $x_{56} = x_5$, $y_{1456} = y_1$, $y_{23} = y_2$.
- Eliminating the variables $x_1, ..., x_n, y_1, ..., y_n$ we obtain

$$\mathcal{H}(G,\bar{G}) = \begin{cases} \eta_{11} x_{12} y_{1456} + \eta_{12} x_{12} y_{23} + \eta_{13} x_{34} y_{23} + \eta_{14} x_{34} y_{1456} + \eta_{15} x_{56} y_{1456} + \eta_{16} x_{56} y_{1456} = 0, \\ \eta_{21} x_{12} y_{1456} + \eta_{22} x_{12} y_{23} + \eta_{23} x_{34} y_{23} + \eta_{24} x_{34} y_{1456} + \eta_{25} x_{56} y_{1456} + \eta_{26} x_{56} y_{1456} = 0, \\ \eta_{31} x_{12} y_{1456} + \eta_{32} x_{12} y_{23} + \eta_{33} x_{34} y_{23} + \eta_{34} x_{34} y_{1456} + \eta_{35} x_{56} y_{1456} + \eta_{36} x_{56} y_{1456} = 0. \end{cases}$$

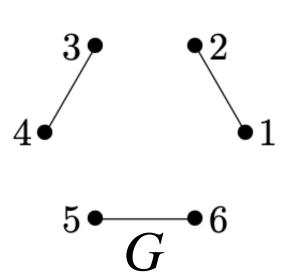
for some coefficients η_{ii} which are sufficiently generic.

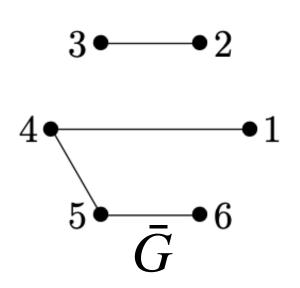




$$\mathscr{H}(G,\bar{G}) = \begin{cases} \eta_{11} x_{12} y_{1456} + \eta_{12} x_{12} y_{23} + \eta_{13} x_{34} y_{23} + \eta_{14} x_{34} y_{1456} + \eta_{15} x_{56} y_{1456} + \eta_{16} x_{56} y_{1456} = 0, \\ \eta_{21} x_{12} y_{1456} + \eta_{22} x_{12} y_{23} + \eta_{23} x_{34} y_{23} + \eta_{24} x_{34} y_{1456} + \eta_{25} x_{56} y_{1456} + \eta_{26} x_{56} y_{1456} = 0, \\ \eta_{31} x_{12} y_{1456} + \eta_{32} x_{12} y_{23} + \eta_{33} x_{34} y_{23} + \eta_{34} x_{34} y_{1456} + \eta_{35} x_{56} y_{1456} + \eta_{36} x_{56} y_{1456} = 0, \end{cases}$$

By the BKK Theorem, the number of solutions to $\mathscr{H}(G,\bar{G})$ is equal to 3! times the volume of $R = \text{conv}\{e_{12} + f_{1456}, e_{12} + f_{23}, e_{24} + f_{23}, e_{34} + f_{1456}, e_{56} + f_{1456}\} \subset \mathbb{R}^3 \times \mathbb{R}^2.$

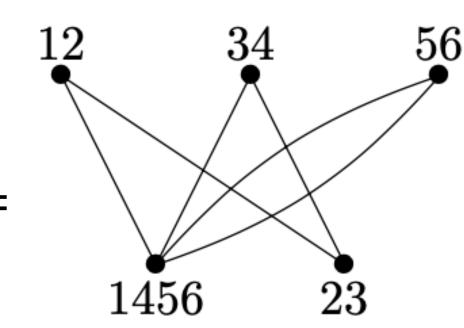




$$\mathcal{H}(G,\bar{G}) = \begin{cases} \eta_{11} x_{12} y_{1456} + \eta_{12} x_{12} y_{23} + \eta_{13} x_{34} y_{23} + \eta_{14} x_{34} y_{1456} + \eta_{15} x_{56} y_{1456} + \eta_{16} x_{56} y_{1456} = 0, \\ \eta_{21} x_{12} y_{1456} + \eta_{22} x_{12} y_{23} + \eta_{23} x_{34} y_{23} + \eta_{24} x_{34} y_{1456} + \eta_{25} x_{56} y_{1456} + \eta_{26} x_{56} y_{1456} = 0, \\ \eta_{31} x_{12} y_{1456} + \eta_{32} x_{12} y_{23} + \eta_{33} x_{34} y_{23} + \eta_{34} x_{34} y_{1456} + \eta_{35} x_{56} y_{1456} + \eta_{36} x_{56} y_{1456} = 0, \end{cases}$$

By the BKK Theorem, the number of solutions to $\mathscr{H}(G,G)$ is equal to 3! times volume of $R = \text{conv}\{e_{12} + f_{1456}, e_{12} + f_{23}, e_{24} + f_{23}, e_{34} + f_{1456}, e_{56} + f_{1456}\} \subset \mathbb{R}^3 \times \mathbb{R}^2.$

R is the *edge polytope* R_{Γ} of the bipartite graph $\Gamma=$

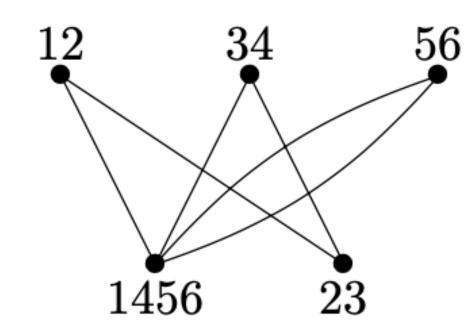


The volume of an edge polytope

- Given a bipartite graph $\Gamma = (U \cup V, E)$ let $\Delta_V = \text{conv}\{\mathbf{e}_v \mid v \in V\} \subset \mathbb{R}^{|V|}$ and, given $u \in U$, let $\Delta_{\text{nbr}(u)} = \text{conv}\{\mathbf{e}_v \mid uv \in \Gamma\} \subset \mathbb{R}^{|V|}$.
- Theorem (Postnikov, 2009): $(|U| + |V| 2)! \cdot \text{vol}(R_{\Gamma}) = \text{number of integer points in } P_{\Gamma}^-, \text{ where } P_{\Gamma}^- = \left(\sum_{u \in U} \Delta_{\text{nbr}(u)}\right) \Delta_V.$

The volume of an edge polytope

- Given a bipartite graph $\Gamma = (U \cup V, E)$ let $\Delta_V = \text{conv}\{\mathbf{e}_v \mid v \in V\} \subset \mathbb{R}^{|V|}$ and, given $u \in U$, let $\Delta_{\text{nbr}(u)} = \text{conv}\{\mathbf{e}_v \mid uv \in \Gamma\} \subset \mathbb{R}^{|V|}$.
- Theorem (Postnikov, 2009): $(|U|+|V|-2)! \cdot \text{vol}(R_{\Gamma}) = \text{number of integer points in } P_{\Gamma}^-, \text{ where } P_{\Gamma}^- = \left(\sum_{u \in U} \Delta_{\text{nbr}(u)}\right) \Delta_{V}.$
- Take Γ to be the graph on the right.
 - $P_{\Gamma}^- = 2\Delta_{1456,23} + \Delta_{1456} \Delta_{1456,23} = \Delta_{1456,23} + \Delta_{1456}$ which contains two lattice points.
 - Number of solutions to $\mathcal{H}(G,\bar{G})=3!\cdot \mathrm{vol}(R_{\Gamma})=2.$
 - Number of solutions to $\mathscr{E}(G,\bar{G})=10!\cdot \mathsf{MV}(G,\bar{G})=2.$



The volume of the harmonic polytope

• If G and \bar{G} are acyclic graphs then $\mathsf{MV}(G,\bar{G})=0$.

The volume of the harmonic polytope

- If G and \bar{G} are acyclic graphs then $\mathsf{MV}(G,\bar{G})=0$.
- Let G and \bar{G} be acyclic graphs with n vertices and Γ be the corresponding bipartite graph, having p and q vertices on each side of the bipartition. The following numbers are equal:
 - $(2n-2)! \cdot MV(G, \bar{G}).$
 - The volume of the edge polytope R_{Γ} multiplied by (p+q-2)!.
 - The number of lattice points in $P_{\Gamma}^- \subset \mathbb{R}^q$.
- Furthermore, the numbers above are zero if and only if Γ is disconnected.

The volume of the harmonic polytope

- If G and \bar{G} are acyclic graphs then $\mathsf{MV}(G,\bar{G})=0$.
- Let G and \bar{G} be acyclic graphs with n vertices and Γ be the corresponding bipartite graph, having p and q vertices on each side of the bipartition. The following numbers are equal:
 - $(2n-2)! \cdot MV(G, \bar{G}).$
 - The volume of the edge polytope R_{Γ} multiplied by (p+q-2)!.
 - The number of lattice points in $P_{\Gamma}^- \subset \mathbb{R}^q$.
- Furthermore, the numbers above are zero if and only if Γ is disconnected.
- Theorem (Ardila-E.): $\operatorname{vol}(H_{n,n}) = \sum_{\Gamma} \frac{i(P_{\Gamma}^{-})}{(v(\Gamma)-2)!} \prod_{v \in V(\Gamma)} \deg(v)^{\deg(v)-2}$, summing over all connected bipartite multigraphs Γ on edge set [n].
- $vol(H_{1,1}) = 1$, $vol(H_{2,2}) = 3$, $vol(H_{3,3}) = 33$, $vol(H_{4,4}) = 2848/3$.

Muchas Gracias!