Symmetric and self-adjoint matrices

A matrix A in $M_n(\mathbb{F})$ is called *symmetric* if $A^T = A$, i.e. $A_{ij} = A_{ji}$ for each i, j; and *self-adjoint* if $A^* = A$, i.e. $A_{ij} = \overline{A_{ji}}$ or each i, j. Note for A in $M_n(\mathbb{R})$ that $A^T = A^*$.

Notice that if $\mathbb{F} = \mathbb{R}$, then A is symmetric if and only if (Ax, y) = (x, Ay) for each x, y in \mathbb{R}^n . Observe that the set

$$\operatorname{Sym}_n(\mathbb{R}) = \{ A \in \operatorname{M}_n(\mathbb{R}) : A^T = A \}$$

is a linear subspace of $M_n(\mathbb{R})$.

A matrix A in $M_n(\mathbb{C})$ is called *self-adjoint* or *hermitian* if $A^* = A$. Notice that A is hermitian if and only if (Ax, y) = (x, Ay) for each x, y in \mathbb{C}^n . Observe that the set

$$\operatorname{Herm}(n) = \{ A \in \operatorname{M}_n(\mathbb{C}) : A^* = A \}$$

is a \mathbb{R} -linear subspace of $\mathrm{M}_n(\mathbb{C})$. Note that $\mathrm{Sym}_n(\mathbb{R}) \subset \mathrm{Herm}(n)$.

Consider the sets of *(real) orthonogonal* and *unitary* matrices:

$$O(n) = \{ u \in M_n(\mathbb{R}) : u^T u = I \} \text{ and } U(n) = \{ u \in M_n(\mathbb{R}) : u^* u = I \}$$

Clearly, $O(n) \subset U(n)$.

Remark. It is easy to see that for u in $M_n(\mathbb{R})$ (respectively, in $M_n(\mathbb{C})$) that $u \in O(n)$ (respectively, is in U(n)) if and only if the *columns* of u:

$$u_{(1)} = \begin{bmatrix} u_{11} \\ \vdots \\ u_{1n} \end{bmatrix}, \dots, u_{(n)} = \begin{bmatrix} u_{n1} \\ \vdots \\ u_{nn} \end{bmatrix}$$

form an orthonormal basis for \mathbb{R}^n (respectively \mathbb{C}^n).

Lemma. If $A \in M_n(\mathbb{R})$ admits a real eigenvalue, then there is a corresponding real eigenvector.

Proof. Let λ be a real eigenvalue of A and $z \neq 0$ in \mathbb{C}^n be an eigenvector. Write $x_j = \text{Re}z_j$ and $y_j = \text{Im}z_j$ so z = x + iy where $x, y \in \mathbb{R}^n$. Then

$$\lambda x + i\lambda y = \lambda z = Az = Ax + iAy.$$

Collecting the real and imaginary parts of each entries of each component of the above equality gives a non-zero real eigenvector: at least one of x or y. \Box

Diagonalization Theorem (i) If $A \in \text{Herm}(n)$, then the eigenvalues of A are real. Furthermore, for any two distinct eigenvalues λ, μ of A with corresponding eigenvectors x and y in \mathbb{C}^n , we have (x,y) = 0.

(ii) If $A \in M_n(\mathbb{R})$ (respectively, is in $M_n(\mathbb{C})$) then $A \in \operatorname{Sym}_n(\mathbb{R})$ (respectively, is in $\operatorname{Herm}(n)$) if and only if there is u in O(n) (respectively, u in U(n)) for which

$$u^*Au = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (with multiplicity).

Proof. (i) Let λ be an eigenvalue of A with corresponding eigenvector $x \neq 0$ in \mathbb{C}^n . Then

$$\lambda(x,x) = (\lambda x, x) = (Ax, x) = (x, Ax) = (x, \lambda x) = \bar{\lambda}(x, x).$$

Dividing by (x, x) we see that $\lambda = \bar{\lambda}$.

If eigenvalues $\lambda \neq \mu$ of A correspond to eigenvectors x and y then

$$\lambda(x,y) = (Ax,y) = (x,Ay) = \mu(x,y)$$

so
$$(\lambda - \mu)(x, y) = 0$$
.

(ii) Notice that sufficiency in both the real symmetric and hermitian cases in trivial.

Let us consider necessity. Let μ_1, \ldots, μ_k denote the full set of distinct eigenvalues of A with respective eigenspaces $\mathcal{E}_j = \ker_{\mathbb{F}^n}(\mu_j I - A), \ j = 1, \ldots, k$. Since $\mathcal{E}_i \perp \mathcal{E}_j$ for $i \neq j$, as observed in (i), we may find an orthonormal basis

$$u_{(1)} = \begin{bmatrix} u_{11} \\ \vdots \\ u_{1n} \end{bmatrix}, \dots, u_{(m)} = \begin{bmatrix} u_{n1} \\ \vdots \\ u_{mn} \end{bmatrix}$$

for $\mathcal{E} = \mathcal{E}_1 + \dots + \mathcal{E}_k$ such that $u_{(1)}, \dots, u_{(n_1)}$ is a basis for $\mathcal{E}_1, u_{(n_1+1)}, \dots, u_{(n_1+n_2)}$ is a basis for \mathcal{E}_2, \dots , and $u_{(n_1+\dots+n_{k-1})}, \dots, u_{(m)}$ is a basis for \mathcal{E}_k . (Here each $n_j = \dim_{\mathbb{C}} \mathcal{E}_j$.) Let for $j = 1, \dots, k$, P_j in $M_n(\mathbb{F})$ be the matrix corresponding to the orthogonal projection onto \mathcal{E}_j , i.e. with entries

$$P_{j,i'j'} = \left(\sum_{l=0+n_1+\dots+n_{j-1}}^{n_1+\dots+n_j} (e_{j'}, u_{(l)})u_{(l)}, e_{i'}\right) = \sum_{l=0+n_1+\dots+n_{j-1}}^{n_1+\dots+n_j} (e_{j'}, u_{(l)})(u_{(l)}, e_{i'})$$

which is easily seen to satisfy $P_j = P_j^*$. Let $B = A - \sum_{j=1}^k \mu_j P_j$, which is in $\operatorname{Herm}(n)$ (respectively, in $\operatorname{Sym}_n(\mathbb{R})$ if $\mathbb{F} = \mathbb{R}$) and satisfies $\mathcal{E} \subseteq \ker_{\mathbb{F}^n} B$. If $B \neq 0$, then it admits an eigenvalue $\mu \neq 0$ so (i) provides that its corresponding eigenvector $x \neq 0$ is in \mathcal{E}^{\perp} . But then $\mu x = Bx = Ax$, which means that μ is one of μ_1, \ldots, μ_k , above, contradicting that $x \notin \mathcal{E}$. Hence B = 0. Further, if $x \in \mathcal{E}^{\perp}$, then Ax = Bx = 0, so $x \in \mathcal{E} \cap \mathcal{E}^{\perp}$, so x = 0. Thus $\mathcal{E} = \mathbb{F}^n$, i.e. m = n.

Let u denote the matrix with columns $u_{(1)}, \ldots, u_{(n)}$, which, by the remark above, is unitary; and let $\lambda_1, \ldots, \lambda_n$ the respective eigenvalues μ_1 (n_1 times), \ldots , μ_k (n_k times). Let e_1, \ldots, e_n denote the standard basis for \mathbb{F}^n . Then $ue_j = u_{(j)}$ and we have that

$$(u^*Aue_j, e_i) = (Au_{(j)}, ue_i) = \lambda_j(u_{(j)}, u_{(i)}) = \lambda_j(e_j, e_i)$$

for each i, j = 1, ..., n, so u^*Au admits the claimed diagonal form.

A representation of a symmetric/hermitian matrix. The proof above tells us that if μ_1, \ldots, μ_k are the distinct eigenvalues of a symmetric (respectively, hermitian matrix) A and P_1, \ldots, P_n are the matrices representing the orthogonal projections onto the respective eigenspaces $\mathcal{E}_1, \ldots, \mathcal{E}_k$ (which span all of \mathbb{F}^n), then

$$A = \sum_{j=1}^{k} \mu_j P_j \text{ where } I = \sum_{j=1}^{k} P_j.$$
 (†)

Since $\mathcal{E}_i \perp \mathcal{E}_j$ if $i \neq j$, $P_i P_j = 0 = P_j P_i$.

Hence if $p(X) = \sum_{l=0} a_l X^l$ is any polynomial, we have

$$p(A) = \sum_{l=0}^{k} a_l A^l = \sum_{j=1}^{k} p(\mu_j) P_j$$

where $A^0 = I$, by convention.

Lemma. Given A and P_1, \ldots, P_k as above, another matrix B commutes with A, i.e. [A, B] = AB - BA = 0, if and only if $[P_j, B] = 0$ for each j.

Proof. Sufficiency is evident from (†).

To see necessity, let for each j

$$p_j(A) = \frac{(A - \mu_1 I) \dots (A - \mu_{j-1} I)(A - \mu_{j+1} I) \dots (A - \mu_k I)}{(\mu_j - \mu_1) \dots (\mu_j - \mu_{j-1})(\mu_j - \mu_{j+1}) \dots (\mu_j - \mu_k)}.$$

Clearly $[p_j(A), B] = 0$. Let $x \in \mathcal{E}_j = \ker_{\mathbb{F}^n}(A - \mu_j I)$. Then

$$p_j(A)x = \begin{cases} 0 & \text{if } i \neq j \\ x & \text{if } i = j. \end{cases}$$

Hence, since $\mathbb{F}^n = \mathcal{E}_1 + \cdots + \mathcal{E}_k$, $p_j(A)^2 = p_j(A)$. Also, it is obvious that $p_j(A)^* = p_j(A)$. Thus $p_j(A) = P_j$.

Simultaneous Diagonalization Theorem. If $A, B \in \operatorname{Sym}_n(\mathbb{R})$ (or in $\operatorname{Herm}(n)$), and [A, B] = 0, then there is v in O(n) (respectively, in U(n)) for which

$$v^*Av = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} \quad and \quad v^*Bv = \begin{bmatrix} \nu_1 & 0 & \dots & 0 \\ 0 & \nu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \nu_n \end{bmatrix}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and ν_1, \ldots, ν_n are the eigenvalues of B (each with multiplicity).

Proof. Consider the representations of A and B as in (\dagger) :

$$A = \sum_{i=1}^{k} \mu_j P_j$$
 and $B = \sum_{i=1}^{k'} \mu'_i P'_i$.

Since [A, B] = 0, the lemma above provides that $[A, P'_i] = 0 = [P_j, B]$ for any i, j, and the lemma again provides that $[P_j, P'_i] = 0$ for any i, j. Hence each $P_j P'_i$ is self-adjoint and squares to itself, and is hence the orthogonal

projection onto $\mathcal{E}_{ij} = \ker_{\mathbb{F}^n}(A - \mu_j I) \cap \ker_{\mathbb{F}^n}(B - \mu'_i I)$. Further (†) provides that

$$\sum_{j=1}^{k} \sum_{i=1}^{k'} P_j P_i' = \left(\sum_{j=1}^{k} P_k\right) \left(\sum_{i=1}^{k'} P_i'\right) = I \tag{*}$$

SO

$$A = AI = \sum_{j=1}^{k} \sum_{i=1}^{k'} \mu_j P_j P_i'$$
 and $B = IB = \sum_{j=1}^{k} \sum_{i=1}^{k'} \mu_i' P_j P_i'$.

Take orthonormal bases for each of the non-zero spaces \mathcal{E}_{ij} and combine them into an orthonormal basis

$$v_{(1)} = \begin{bmatrix} v_{11} \\ \vdots \\ v_{1n} \end{bmatrix}, \dots, v_{(n)} = \begin{bmatrix} v_{n1} \\ \vdots \\ v_{nn} \end{bmatrix}$$

for \mathbb{F}^n (this is possible by (*)). Let v be the matrix with columns $v_{(1)}, \ldots, v_{(n)}$, and we obtain the desired diagonal forms.

Corollary. A in $M_n(\mathbb{C})$ is normal, i.e. $[A, A^*] = 0$, if and only if there is v in U(n) for which

$$v^*Av = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (with multiplicity).

Proof. Sufficiency being evident, we show only necessity. Let

$$\operatorname{Re} A = \frac{1}{2}(A + A^*) \text{ and } \operatorname{Im} A = \frac{1}{2i}(A - A^*)$$

so $\operatorname{Re}A$, $\operatorname{Im}A \in \operatorname{Herm}(n)$ and $A = \operatorname{Re}A + i\operatorname{Im}A$. It is easy to verify that A is normal if and only if $[\operatorname{Re}A, \operatorname{Im}A] = 0$. Hence simultaneous diagonalization, above, provides the necessary unitary diagonalizing matrix v.

No real analogue. The real matrix $J_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is normal, but admits only purely imaginary eigenvalues, and hence cannot be diagonalized by orthogonal matrices (i.e. unitary matrices with real entries).

Real skew-symmetric matrices. A matrix B in $M_n(\mathbb{R})$ is skew-symmetric if $B^T = -B$.

Real Skew-symmetric Block Diagonalization Theorem. If $B^T = -B$ in $M_n(\mathbb{R})$ then there is u in O(n) and $\lambda_1, \ldots, \lambda_m > 0$ in \mathbb{R} such that

$$u^{T}Bu = \begin{bmatrix} \lambda_{1}J_{2} & 0 & \dots & \dots & 0 \\ 0 & \ddots & & & \vdots \\ \vdots & & \lambda_{m}J_{2} & & \vdots \\ \vdots & & & 0 & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{bmatrix}$$

where
$$J_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, i.e. $2m \le n$.

Proof. First, notice that $iB \in \text{Herm}(n)$ and hence has real eigenvalues so B has purely imaginary eigenvalues (including, possibly 0). In particular, the only real eigenvectors may be in ker B.

Consider B^TB , which is in $\operatorname{Sym}_n(\mathbb{R})$. Any eigenvalue μ of B^TB with eigenvector x in $\mathbb{R}^n \setminus \{0\}$ satisfies

$$\mu(x, x) = (B^T B x, x) = (B x, B x) \ge 0$$

so $\mu \geq 0$. Let μ_1, \ldots, μ_l denote the distinct non-zero eigenvalues of $B^T B$ and \mathcal{E}_j the eigenspace of μ_j , so $\mathcal{E}_i \perp \mathcal{E}_j$ for $i \neq j$ and each $\mathcal{E}_j \perp \ker B^T B$. Let $\mathcal{E} = \mathcal{E}_1 + \cdots + \mathcal{E}_l$.

Let $x \in \mathcal{E}_j \setminus \{0\}$ and $\mathcal{V}_x = \mathbb{R}x + \mathbb{R}Bx$. Then

$$B(Bx) = B^2x = -B^TBx = -\mu_j Bx \in \mathcal{V}_x$$

and it follows that \mathcal{V}_x is B-invariant, i.e. $B\mathcal{V}_x \subseteq \mathcal{V}_x$. Furthermore $\dim_{\mathbb{R}} \mathcal{V}_x = 2$ as B admits no non-zero real eigenvalues and $\ker B = \ker B^T B$. Now if $y \in \mathcal{E}_i \setminus \{0\}$ with $y \perp x$ then

$$(By, x) = (y, B^T x) = -(y, x) = 0$$
 and
 $(By, Bx) = (y, B^T Bx) = -\mu_i(y, Bx) = 0$

so $\mathcal{V}_y \perp \mathcal{V}_x$. Hence we may build an orthonormal basis $u_1^{(j)}, \ldots, u_{l_j}^{(j)}$ for \mathcal{E}_j such that each $u_{2i}^{(j)} \in \mathcal{V}_{u_{2i-1}^{(j)}}$ and $\mathcal{V}_{u_{2i-1+2i'}^{(j)}} \perp \mathcal{V}_{u_{2i-1}^{(j)}}$ for $i' = 1, \ldots, \lfloor l_j/2 \rfloor$, and, in particular, l_j is even.

Putting everything together we have that dim $\mathcal{E} = \sum_{j=1}^{l} \dim \mathcal{E}_j$ is even, and we can find an orthonormal basis $u_1, \ldots, u_{2m}, u_{2m+1}, \ldots, u_n$ for \mathbb{R}^n for which the spaces $\mathcal{V}_j = \mathcal{V}_{u_{2j-1}}$ are pairwise orthogonal and span \mathcal{E} , and $u_{2m+1}, \ldots, u_n \in \ker B$. Letting u be the matrix whose rows u_1, \ldots, u_n we find that

$$u^{T}Bu = \begin{bmatrix} B_{1} & 0 & \dots & \dots & 0 \\ 0 & \ddots & & & \vdots \\ \vdots & & B_{m} & & \vdots \\ \vdots & & & 0 & \vdots \\ \vdots & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{bmatrix}$$

where each $B_j \in \mathcal{M}_2(\mathbb{R})$. Since $(u^T B u)^T = u^T B^T u = -u^T B u$ we find that each block must have the form $B_j = \lambda_j J_2$ with λ_j in $\mathbb{R} \setminus \{0\}$, and by applying block permutations we may assume $\lambda_j > 0$. (One may further check that the values $\lambda_1, \ldots, \lambda_m$ are the values $\sqrt{\mu_1}, \ldots, \sqrt{\mu_k}$ with multiplicities.)

Remark. The complex analogue of this result is much easier. If $B \in M_n(\mathbb{C})$ with $B^* = -B$ we can B skew-hermitian. Notice that $iB \in \text{Herm}(n)$ and is hence unitarily diagonalizable with real eigenvalues, so B too is unitarily diagonalizable but with purely imaginary eigenvalues.

WRITTEN BY NICO SPRONK, FOR USE BY STUDENTS OF PMATH 763 AT UNIVERSITY OF WATERLOO.