PMATH 764: Assignment 1

Due: Monday, 17 January, 2011

- 1. Suppose that X is an algebraic set and L is a line in $\mathbb{A}^n(k)$ such that $L \not\subset X$. Show that $L \cap X$ is either empty or a finite set of points.
- 2. Determine whether or not the following sets are algebraic.
 - (a) The set of points in \mathbb{R}^2 whose polar coordinates (r, θ) satisfy the equation $r = \theta$.
 - (b) The set of points in \mathbb{R}^2 whose polar coordinates (r, θ) satisfy $r = \cos \theta$.
 - (c) $\{(\cos t, 1, \sin t) \mid t \in \mathbb{R}\} \subset \mathbb{R}^3$.
 - (d) $\{(\cos t, t, \sin t) \mid t \in \mathbb{R}\} \subset \mathbb{R}^3$.
 - (e) $\{v \in \mathbb{R}^4 \mid |v|^2 = 1\} \subset \mathbb{R}^4$, where $|\cdot|$ represents length.
 - (f) $\{(z,w)\in\mathbb{C}^2\mid |z|^2+|w|^2=1\}\subset\mathbb{C}^2$, where $|x+iy|^2=x^2+y^2$ for $x,y\in\mathbb{R}$.
- 3. Consider the real line \mathbb{R} endowed with the Zariski topology. Verify that, given any two points $p, q \in \mathbb{R}$, any two open neighbourhoods of p and q have a non-empty intersection, thus proving that the Zariski topology on \mathbb{R} is not Hausdorff.
- 4. If k is a finite field, show that every subset of $\mathbb{A}^n(k)$ is both open and closed in the Zariski topology. Is the Zariski topology Hausdorff in this case?
- 5. Let k be any field and $M_{n\times n}(k)$ be the set of $n\times n$ matrices with entries in k. This set can naturally be identified with $\mathbb{A}^{n^2}(k)$, by considering the (ordered) n^2 entries of a matrix as a point in $\mathbb{A}^{n^2}(k)$, and is thus endowed with the Zariski topology. Show that the group GL(n,k) of all invertible matrices in $M_{n\times n}(k)$ is open in the Zariski topology on $M_{n\times n}(k)$.
- 6. Let $V \subset \mathbb{A}^n(k)$ and $W \subset \mathbb{A}^m(k)$ be algebraic sets. Show that $V \times W := \{(a_1, ..., a_n, b_1, ..., b_m) \mid (a_1, ..., a_n) \in V, (b_1, ..., b_m) \in W\}$ is an algebraic set in $\mathbb{A}^{n+m}(k)$. It is called the *product* of V and W.
- 7. The product topology on the Cartesian product $X \times Y$ of two topological spaces is defined as the topology whose open sets are the unions of subsets $A \times B$, where A and B are open subsets of X and Y, respectively. Let k be any field and consider the affine line $\mathbb{A}^1 = \mathbb{A}^1(k)$ and the affine plane $\mathbb{A}^2 = \mathbb{A}^2(k)$.
 - (a) Describe the product topology of the Zariski topologies on the two copies of \mathbb{A}^1 in $\mathbb{A}^1 \times \mathbb{A}^1$.
 - (b) Show that although \mathbb{A}^2 can be naturally identified with $\mathbb{A}^1 \times \mathbb{A}^1$, the Zariski topology on \mathbb{A}^2 is not equal to the product Zariski topology on $\mathbb{A}^1 \times \mathbb{A}^1$ you described in (a), if k is an infinite field.