PMATH 465/665: Assignment 4

Due: Monday, 7 November, 2011

Suggested problems:

- 1. Let M be a smooth manifold.
 - (a) Show that, for $\omega \in \Lambda^k(M)$ and $\eta \in \Lambda^l(M)$,

$$\omega \wedge \eta = (-1)^{kl} \eta \wedge \omega.$$

(b) Show that if $\omega_1, \ldots, \omega_k \in \Lambda^1(M)$, then for any $p \in M$ and $X_1, \ldots, X_k \in T_pM$,

$$(\omega_1 \wedge \cdots \wedge \omega_k)_p(X_1, \dots, X_p) = \det((\omega_j)_p(X_i)).$$

- 2. Exercise 12.5, p. 304.
- 3. Problem 12-6, p. 320.

Problems to be handed in:

1. Orientable manifolds. A smooth n-manifold is called orientable if it admits an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ whose transition functions have positive Jacobian:

$$\det(Jac(\varphi_{\alpha}\circ\varphi_{\beta}^{-1})(x))>0$$

for all $x \in \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$, for all α, β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$.

- (a) Show that S^n is orientable for all n > 1.
- (b) Show that \mathbb{RP}^n is orientable if and only if n is odd.
- (c) Show that every parallelisable manifold is orientable.
- (d) Is the converse of (c) true? Justify your answer.
- (e) Show that the product of two orientable manifolds is orientable.
- 2. Problem 12-7, p. 320.
- 3. Symplectic manifolds. Let M be a 2n-dimensional smooth manifold. A 2-form ω on M is called symplectic if it satisfies the following two conditions:
 - ω is closed;
 - ω is non-degenerate, i.e., for any $p \in M$ and $X \in T_pM$, if $\omega_p(X,Y) = 0$ for all $Y \in T_pM$, then X = 0.

A symplectic manifold is a pair (M, ω) , where M is smooth 2n-dimensional manifold and ω is a symplectic form on M.

Symplectic manifolds play a very important role in the Hamiltonian formulation of classical mechanics because, in the Hamiltonian formalism, the phase space of a mechanical system is identified with a (specific) symplectic manifold.

(a) Suppose that $M = \mathbb{R}^{2n}$ with coordinates $(x_1, y_1, \dots, x_n, y_n)$. Show that the 2-form

$$\omega = \sum_{i=1}^{2n} dx_i \wedge dy_i$$

is symplectic, implying that \mathbb{R}^{2n} is symplectic.

- (b) Show that S^2 admits a symplectic form. (*Hint:* Consider the 2-form $\omega = \sin \phi d\theta \wedge d\phi$.)
- (c) Let M be a symplectic manifold, and ω be a symplectic form on M. Show that

$$\omega^n := \omega \wedge \cdots \wedge \omega$$
,

defined as the wedge product of n copies of ω , is a nowhere vanishing 2n-form on M.

- (d) Prove that any symplectic manifold is orientable.
- (e) Is the converse of (d) true? Justify your answer.
- (f) (Optional) Let (M_1, ω_1) and (M_2, ω_2) be symplectic manifolds. Show that $M_1 \times M_2$ is symplectic with respect to the 2-form $\omega = p_1^* \omega_1 p_2^* \omega_2$, where $p_i : M_1 \times M_2 \to M_i$ denotes projection onto the *i*-th factor for i = 1, 2.

Bonus. Complex manifolds. A topological space M is called a complex manifold if it is an even dimensional topological manifold and admits an atlas $(U_{\alpha}, \varphi_{\alpha})$ whose transition functions $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ are complex analytic if we identify \mathbb{R}^{2n} , with coordinates $(x_1, y_1, \ldots, x_n, y_n)$, to \mathbb{C}^n , with coordinates (z_1, \ldots, z_n) , by setting $z_j = x_j + iy_j$ for all $j = 1, \ldots, n$.

- (a) Show that \mathbb{CP}^n is a complex manifold for all $n \geq 1$.
- (b) Show that any complex manifold is orientable.