PMATH 465/665: Assignment 3

Due: Monday, 24 October, 2011

Suggested problems:

- 1. Problem 4-4, p.101.
- 2. Problem 4-5, p. 101.
- 3. Problem 4-8, p.101.
- 4. Problem 6-5, p. 151.
- 5. Problem 6-6, (a), (b), p. 152.

Problems to be handed in:

- 1. Problem 4-6, p.101.
- 2. Parallelisable manifolds. A smooth n-manifold M is called parallelisable if it admits n smooth vector fields Y_1, \ldots, Y_n that are linearly independent at every point $p \in M$.
 - (a) Show that if M is parallelisable, then its tangent bundle TM is diffeomorphic to the Cartesian product $M \times \mathbb{R}^n$.
 - (b) Show that if M_1, \ldots, M_k are parallellisable manifolds, then so is $M_1 \times \cdots \times M_k$.
 - (c) Show that S^1 , S^3 , and n-tori $S^1 \times \cdots \times S^1$ are parallelisable.
 - (d) Show that S^{2n} is not parallelisable for any integer $n \geq 1$.

Note: The only spheres that are parallelisable are S^1 , S^3 , and S^7 . Showing that odd-dimensional spheres S^{2n+1} with $2n+1\neq 1,3,7$ are not parallelisable is, however, a highly non-trivial task, and was proved in 1958 independently by Bott and Milnor (see http://www.ams.org/journals/bull/1958-64-03/S0002-9904-1958-10166-4/S0002-9904-1958-10166-4.pdf), and by Kervaire.

- (e) Show that M is parallelisable if and only if there exist n smooth 1-forms $\omega_1, \ldots, \omega_n$ on M that are linearly independent at every $p \in M$. Conclude that if M is parallelisable, then its cotangent bundle T^*M is diffeomorphic to the Cartesian product $M \times (\mathbb{R}^n)^*$.
- 3. Problem 4-11, p. 101.
- 4. Problem 6-5, p. 151.