Combining Column Generation and Column Elimination

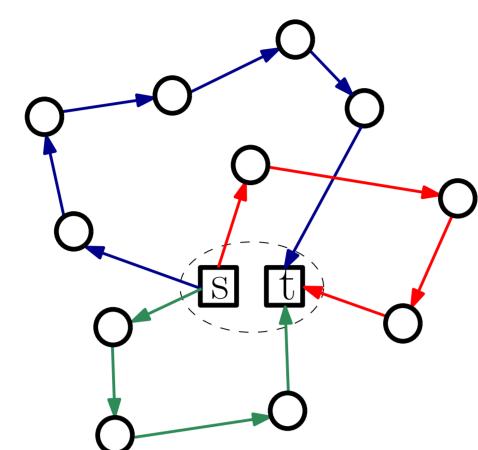
Andre A. Cire, Ricardo Fukasawa, Anthony Karahalios, <u>Matheus J. Ota</u> and Willem-J. van Hoeve

Institution: University of Waterloo, Department of Combinatorics and Optimization Email: mjota@uwaterloo.ca

Introduction

Let $D = (V = \{s, t\} \cup V_+, A)$ be a digraph and let \mathcal{P} be a set of s - t paths in D that satisfy some "complicating constraints". We consider routing problems that can be formulated as

(SP(
$$\mathcal{P}$$
)) min $\sum_{P \in \mathcal{P}} c(P) \cdot \lambda_P$
s.t. $\sum_{P \in \mathcal{P}} \text{COUNT}(v, P) \cdot \lambda_P = 1, \quad \forall v \in V_+,$
 $\sum_{P \in \mathcal{P}} \lambda_P = k,$
 $\lambda_P \in \{0, 1\}, \qquad \forall P \in \mathcal{P}.$



Motivation:

- State-of-the-art algorithms for (SP(P)) typically rely on **column generation (CG)**, where the **pricing problem** is modeled as a **resource-constrained shortest path problem (RCSPP)** and solved by a **labeling algorithm**.
- While successful in many cases, depending on the choice of \mathcal{P} , such an approach might still fail because it leads to an explosion on the number of explored labels.

Examples:

Chance-Constrained Vehicle Routing Problem (CCVRP):

Vehicle capacity is $C \in \mathbb{Q}_{++}$ and d is a random vector of customer demands. Then, $\mathcal{P} = \{s - t \text{ path } P : \mathbb{P}(d(P) \leq C) \geq 1 - \varepsilon\},$

where $\varepsilon \in (0,1)$ is a tolerance parameter.

- If \mathbb{P} is given by scenarios, even pricing non-elementary paths in \mathcal{P} (i.e., paths that might visit a customer more than once) is strongly \mathcal{NP} -hard [Dinh et al., 2018].
- 1-Commodity Pickup and Delivery Vehicle Routing Problem (1-PDVRP):

Vehicle capacity is $C \in \mathbb{Q}_{++}$ and each customer $v \in V_+$ has a demand d(v) that can be positive or negative. Then,

$$\mathcal{P} = \{s - t \text{ path } P = (s, v_1, \dots, v_\ell, t) : 0 \le d((v_1, \dots, v_j)) \le C, \ \forall j \in [\ell] \}.$$

• Non-monotone accumulated demand prevents the use of dominance rules, which are crucial for the good performance of labeling algorithms.

An Initial Formulation

Let $Q \supset P$ be such that **pricing over** Q is "easy". We can formulate (SP(P)) as follows.

min
$$\sum_{P \in \mathcal{Q}} c(P) \cdot \lambda_P$$

s.t. λ is feasible for $(SP(\mathcal{Q}))$,
$$x_a = \sum_{P \in \mathcal{Q}} \operatorname{count}(a, P) \cdot \lambda_P, \qquad \forall a \in A, \quad (1)$$

$$\sum_{l=0}^{\ell} \sum_{i=1}^{\ell+1} x_{v_i, v_j} \leq |V(P)| - 2, \quad \forall P = (v_0 = s, v_1, \dots, v_\ell, v_{\ell+1} = t) \in \mathcal{Q} \setminus \mathcal{P}. \quad (2)$$

Inequalities (2) are the **tournament inequalities** of Ascheuer et al. (2020). However, these inequalities are known to provide **weak LP bounds**.

Stronger Relaxations via Column Elimination

Assume that Q is a set of resource constrained s-t paths in D for some set of resources R. Let A(D,R) be an algorithm that solves the RCSPP over D with resources R.

procedure CG+CE $\mathcal{Q}' \leftarrow \mathcal{Q} \text{ (We don't store } \mathcal{Q}. \text{ This is just to describe the algorithm.)}$ $D' \leftarrow D$ repeat $\text{Solve the LP relaxation of SP}(\mathcal{Q}') \text{ using } \mathbb{A}(D',R) \text{ to solve the pricing problem.}$ Let $\bar{\lambda}$ be the obtained solution. $\text{for each } P \in \mathcal{Q}' \setminus \mathcal{P} \text{ with } \bar{\lambda}_P > 0 \text{ do }$ "Refine" D' to "eliminate" path P. $\mathcal{Q}' \leftarrow \mathcal{Q}' \setminus \{P\}$

until No refinement could be made (or stop earlier for practical reasons).

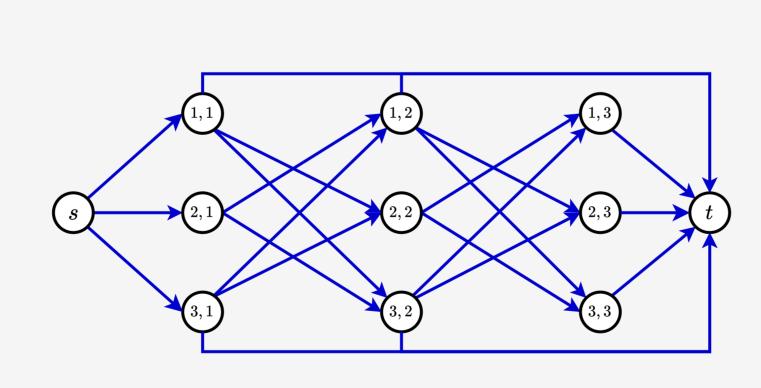
Proposition 1: By the end of CG+CE (if we run until no refinement could be made), the LP bound of SP(Q') is the same as the LP bound of SP(P).

Why combine?

- Advantages to CG: Standard CG fixes the set of columns Q in advance, which might not capture well the "complicating constraints" in set P. The CE approach is more flexible: it dynamically builds a relaxation using only the infeasible paths in $\bar{\lambda}$.
- Advantages to CE: The CE method [Karahalios and van Hoeve, 2024] solves SP(Q') via shortest paths in a state-transition graph. But state-of-the-art RCSPP solvers (i.e., algorithm A) already handle well some sources of path infeasibility (e.g., repeated customers). Our approach only refines when A cannot handle the infeasibility.
- In fact, because we use algorithm A, we don't even need the state-transition graph.

Column Elimination without State-Transition Graphs

- CE is based on **state-transition graphs** [Karahalios and van Hoeve, 2024], which are acyclic networks where **nodes** \iff **states** and **paths** \iff **solutions**.
- CE "refines" the network to "eliminate" certain paths.



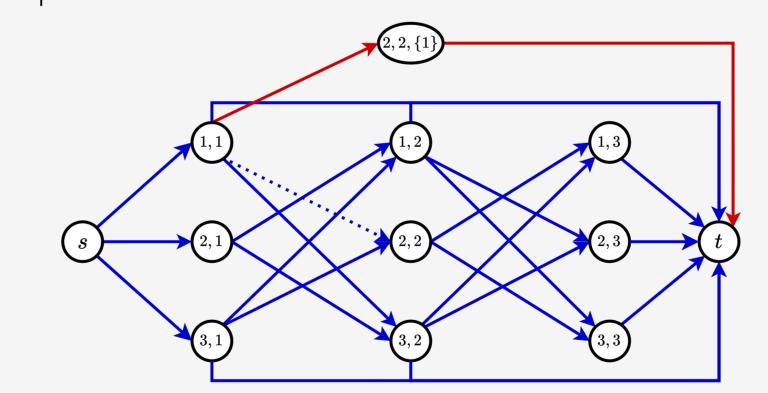
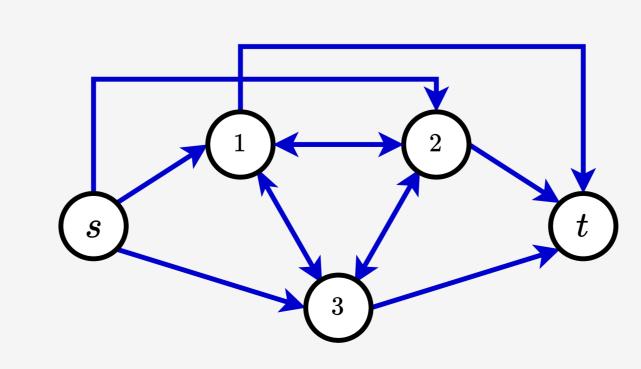


Figure 1. Example with a single resource r that has consumption 1 at every $v \in V_+$. States are in the form [customer, consumption of r]. The s-t paths P in the left network are such that $r(P) \leq 3$. The network in the right has no path that maps to (s,1,2,3,t) (and to other infeasible paths).

Proposition 2: The same refinement can be applied to the original graph D.



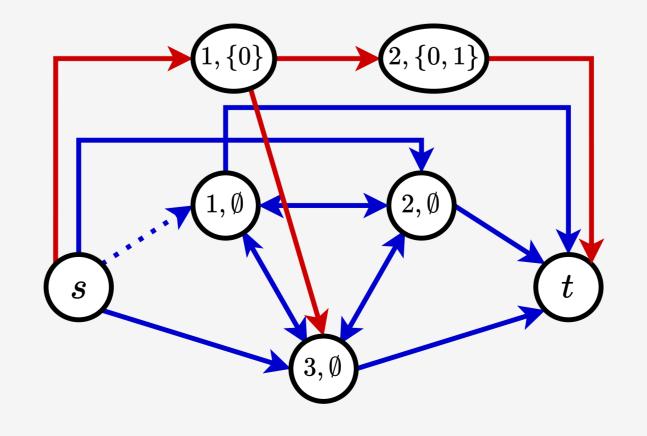


Figure 2. Applying refinement on the original graph D for the same instance as in Figure 1. Observe that the graph in the right do not contain path (s, 1, 2, 3, t) (and other infeasible paths).

Does it work?

Implementation and Setup

- Implemented in C++ and used **BaPCod/VRPSolver** to solve the set partitioning model.
- State-of-the-art branch-cut-and-price (BCP) algorithms features such as ng-path relaxation, labeling algorithms using bucket graphs, rank-1 cuts with limited memory, etc.
- We solve the root using CG+CE. We run for at most **20 iterations**. In each iteration, we eliminate at most **50 paths**.
- We omit results using CG+CE and the state-transition graph, since it often fails to solve the root in 1 hour.

Experiments for CCVRP

- Instances and cuts from Dinh et al. (2018). Time limit: 1 hour.
- (CG) uses only VRPSolver+cuts. (CG+CE) uses the proposed approach. (CE) is the method of [Karahalios and van Hoeve, 2024].

	Dinh et al.		CG		CE			CG+CE		
Instance	LPG	T(s)	LPG	T(s)	LPG	T(s)	El. Col.	LPG	T(s)	El. Col.
A-n32-k5-L	1.30%	86	0%	< 1	0%	2105	685	0%	< 1	0
A-n32-k6-H	5.90%	396	3.33%	789	3.07%	_	2285	0%	137	495
A-n44-k7-L	1.50%	2909	1.27%	21	0.38%	_	936	0.04%	50	113
A-n44-k8-H	8.80%	-	8.38%	_	4.53%	_	3961	4.84%	_	961
P-n50-k12-L	2.78%	-	1.63%	525	0%	1823	423	0%	45	240
P-n50-k13-H	7.07%	-	6.29%	_	0.16%	_	1546	0%	262	739
P-n51-k12-L	3.28%	-	1.55%	1265	0.13%	_	474	0%	34	267
P-n51-k13-H	7.50%	_	11.88%	-	6.41%	-	2284	5.99%	-	965

Conclusion: CG+CE is generally faster than all other approaches. Moreover, it achieves bounds similar to CE with less refinements.

Experiments for 1-PDVRP

- Instances from Gunes et al. (2010), whose best exact algorithm used constraint programming. Time limit: 30 minutes.
- Deactivated path enumeration and rank-1 cuts.
- (CG) solves a pricing problem with a non-monotone resource. ⇒ Billions of dominance checks between labels.
- (+Cuts) are new cuts that we derived based on previous work for 1-PDTSP.

	Gunes et al.	CG		CG+Cuts		CG+CE+Cuts		
Instance	T(s)	LPG	T(s)	LPG	T(s)	LPG	T(s)	Ref.
$ V_{+} = 13, \ k = 1$	< 120	0%	259	0%	< 1	0%	< 1	0
$ V_{+} = 14, \ k = 1$	< 120	0%	24	0%	< 1	0%	< 1	0
$ V_{+} = 15, \ k = 1$	< 120	_	-	0%	< 1	0%	< 1	0
$ V_{+} = 16, \ k = 1$	< 120	_	-	0%	< 1	0%	< 1	0
$ V_{+} = 18, \ k = 1$	< 120	_	-	0%	< 1	0%	< 1	0
$ V_{+} = 30, \ k = 2$	-	_	-	2.05%	169	0%	30	52
$ V_{+} = 60, \ k = 4$	-	-	_	0.24%	235	0.12%	469	35

Conclusion: Our cuts already do the job, but CG+CE improves the LP gap.

References

- [1] Thai Dinh, Ricardo Fukasawa, and James Luedtke.
 - Exact algorithms for the chance-constrained vehicle routing problem, Mathematical Programming, 2018.
- [2] Canan Gunes, Willem-Jan van Hoeve, and Sridhar Tayur. Vehicle routing for food rescue programs: A comparison of different approaches, *CPAIOR*, 2010.
- [3] Anthony Karahalios and Willem-Jan van Hoeve.
 - Column elimination: An iterative approach to solving integer programs, 2024.
- [4] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck.

 A generic exact solver for vehicle routing and related problems, *Mathematical Programming*, 2020.