
Derivative-Free Optimization for Constrained Least-Squares

Derivative-Free Optimization for Constrained
Least-Squares

Joint work with Lindon Roberts (ANU)

Matthew Hough, University of Queensland ⇒ University of Waterloo
mhough@uwaterloo.ca

INFORMS 2021 Annual Meeting, Oct. 24-27

Matthew Hough (mhough@uwaterloo.ca) 1



Derivative-Free Optimization for Constrained Least-Squares

Outline

Outline

1. Introduction to DFO trust-region methods

2. DFO for constrained least-squares

3. Numerical results

Matthew Hough (mhough@uwaterloo.ca) 2



Derivative-Free Optimization for Constrained Least-Squares

Introduction to DFO trust-region methods

The Problem

min
x∈Rn

f (x)

I f : Rn → R continuously differentiable and possibly nonconvex

I Assume we cannot evaluate ∇f (x)

I Black-box
I Noisy
I Computationally expensive

I Applications: climate modelling, experimental design, machine
learning, etc

I Seeking a local minimizer (approx. stationary point: ‖∇f (x∗)‖ ≤ ε)
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Introduction to DFO trust-region methods

Model-Based DFO

I Classic approach:

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

I Instead, approximate:

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

I Find gk and Hk by interpolating f over a set of points
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Introduction to DFO trust-region methods

Model-Based DFO: The Least-Squares Case

min
x∈Rd

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rn

I Typically linearize r at xk using
the Jacobian:

r(xk+s) ≈ M(s) = r(xk)+J(xk)s

I But in DFO, Jacobian is not
available:

M(s) = r(xk) + Jks

I Find Jk by interpolation

End up with a local quadratic model

f (xk + s) ≈ mk(s) :=
1

2
‖Mk(s)‖2

2
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Introduction to DFO trust-region methods

Model-Based DFO: Algorithm

(assuming our interpolation model is a good approx.)

1. Build local interpolation model:

f (xk + s) ≈ mk(s) =
1

2
‖Mk(s)‖2

2

2. Minimize the model within the trust-region ∆k to get the step

sk = arg min
s∈Rd

mk(s) s.t. ‖s‖2 ≤ ∆k

3. Evaluate f (xk + sk), check sufficient decrease, select xk+1 and ∆k+1

4. Update interpolation set with the new point xk + sk
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Introduction to DFO trust-region methods

Model-Based DFO: Interpolation Geometry

We may not get sufficient decrease if...

1. ∆k is too large

2. mk is not a good approximation to f (bad geometry)

I Good geometry =⇒ accurate model =⇒ convergence

I Need interpolation set {y0, . . . , yn} to be ”well-poised” in B(y0,∆)

I Λ-poised if all yt ∈ B(y0,∆) and exists Λ ≥ 1 s.t.

max |`t(y)| ≤ Λ, ∀y ∈ B(y0,∆)

I `t(ys) = δs,t for all s, t

I Points are ”well-spaced”
[Conn, Scheinberg & Vicente, 2009]
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Introduction to DFO trust-region methods

Model-based DFO: Interpolation Geometry

I Λ-poisedness =⇒ fully linear model:

I |f (xk + s)−m(s)| ≤ κef ∆2
k

I ‖∇f (xk + s)−∇m(s)‖ ≤ κeg∆k

for all y ∈ B(y0,∆k), ‖s‖ ≤ ∆k

(κef , κeg depend on Λ)

I Fully linear model =⇒ convergence

I Two important algorithms:

1. Checks {y0, . . . , yn} is Λ-poised
2. Makes {y0, . . . , yn} Λ-poised if it is not already

[Conn, Scheinberg & Vicente, 2009]
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DFO for constrained least-squares

The Constrained Problem

min
x∈C

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rn

I f : Rd → R continuously differentiable and possibly nonconvex

I Assume we cannot evaluate ∇f (x)

I C ⊆ Rd has nonempty interior, closed, and convex

I Cannot evaluate f outside of C
I Only accessible via projection, PC : Rd → C
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Derivative-Free Optimization for Constrained Least-Squares

DFO for constrained least-squares

Constrained DFO: Algorithm

1. Build local interpolation model:

f (xk + s) ≈ mk(s) =
1

2
‖Mk(s)‖2

2

2. Minimize the model within B(y0,∆k) ∩ C to get the step

sk = arg min
s∈B(y0,∆k )∩C

mk(s)

3. Evaluate f (xk + sk), check sufficient decrease, select xk+1 and ∆k+1

4. Update interpolation set with the new point xk + sk
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DFO for constrained least-squares

Constrained DFO: Geometry

I C = {(x1, x2) : |x2| ≤ ε} ⊆ R2

I Y = {(0, 0), (1, 0), (0, ε)} ⊆ B(0, 1)

I In B(0, 1), points are Λ-poised with Λ ∼ ε−1

=⇒ large κef , κeg

I Λ-poised if all yt ∈ B(y0,∆) ∩ C and exists Λ ≥ 1 s.t.

max |`t(y)| ≤ Λ, ∀y ∈ B(y0,∆) ∩ C

I Now we have Λ ≤ 3 independent of ε =⇒ improved error bounds
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DFO for constrained least-squares

Constrained DFO: Geometry

I Λ-poisedness =⇒ fully linear model in B(xk ,∆k):

max
xk+s∈C
‖s‖≤∆k

|f (xk + s)−mk(s)| ≤ κef ∆2
k

max
xk+s∈C
‖s‖≤1

|(∇f (xk)− gk)T s| ≤ κeg∆k

I Slightly weaker:

I ∇m(y) ≈ ∇f (y) only at y = xk
I Only care about points in C

I Still have important algorithms

1. Check points are Λ-poised
2. Make points Λ-poised if not
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DFO for constrained least-squares

Constrained DFO: Measuring Progress

πf (x) :=

∣∣∣∣∣∣ min
x+s∈C
‖s‖≤1

∇f (x)T s

∣∣∣∣∣∣ =⇒ πm(x) :=

∣∣∣∣∣∣ min
x+s∈C
‖s‖≤1

gk
T s

∣∣∣∣∣∣
I For C = Rd , πf (xk) = ‖∇f (xk)‖, and πg (xk) = ‖gk‖
I fully linear =⇒ |πf (xk)− πm(xk)| ≤ κeg∆k

[Conn, Gould & Toint, 2000]
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DFO for constrained least-squares

Constrained DFO: Measuring Progress

πf (x) :=

∣∣∣∣∣∣ min
x+s∈C
‖s‖≤1

∇f (x)T s

∣∣∣∣∣∣ =⇒ πm(x) :=

∣∣∣∣∣∣ min
x+s∈C
‖s‖≤1

gk
T s

∣∣∣∣∣∣
I For C = Rd , πf (xk) = ‖∇f (xk)‖, and πg (xk) = ‖gk‖
I fully linear =⇒ |πf (xk)− πm(xk)| ≤ κeg∆k

Solution to πf (x) is given by s? := p(t, x)− x

I where p(t, x) = PC(x − t∇f (x)), t ≥ 0,

I and ‖p(t, x)− x‖ = 1

[Conn, Gould & Toint, 2000]
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DFO for constrained least-squares

Constrained DFO: Measuring Progress

I s? = PC(x − t∇f (x))− x = −t∇f (x)

I 1 = ‖s?‖ = t‖∇f (x)‖ =⇒ t = 1
‖∇f (x)‖ =⇒ s? = −∇f (x)

‖∇f (x)‖

I =⇒ πf (x) = ‖∇f (x)‖

Matthew Hough (mhough@uwaterloo.ca) 15



Derivative-Free Optimization for Constrained Least-Squares

DFO for constrained least-squares

Constrained DFO: Measuring Progress

I PC (x − t∇f (x)) 6= x − t∇f (x)

I s? = p(t, x)− x gets smaller near the boundary

I =⇒ πf (x)→ 0 as approach constraints in direction of x?
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DFO for constrained least-squares

Constrained DFO: Convergence

1. Ensure we always have mk fully linear (by ensuring good geometry)

2. Ensure πm
k ∼ ∆k

3. When πm(xk)→ 0, we are also getting πf (xk)→ 0

4. Standard convergence results follow

I Worst-case complexity: at most O(ε−2) iterations to have πm
k ≤ ε
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DFO for constrained least-squares

Implementation
Open-source Python implementation: DFO-LS

I Github: numericalalgorithmsgroup/dfols

I Replace gradient-descent step with projected gradient-descent (PGD)

I Dykstra’s algorithm for projecting onto C
I New point becomes

xk+1 = PQ(xk − tgk)

Q := C ∩ B(xk ,∆k)

[Beck, 2017]
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Numerical results

Numerical results

58 test problems with ball, box, simplex, and no constraints

I [Moré & Wild, 2009], [Moré, Garbow, Hillstrom, 1981]

τ = 10−1 τ = 10−3
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Summary

Constrained DFO: Summary

I Can ensure good geometry

=⇒ fully linear model

=⇒ error bound on approx. criticality measure

=⇒ convergence

I Worst-case complexity same as in derivative-based case
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Summary

Constrained DFO: Future Work

I True quadratic models

⇓
I General objective function

I Extend to include regularization
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