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The Problem

min
x∈Rn

f (x)

• f : Rn → R continuously differentiable and possibly nonconvex

• Assume we cannot evaluate ∇f (x)
• Black-box

• Noisy

• Computationally expensive

• Applications: climate modelling, experimental design, machine

learning, etc

• Seeking a local minimizer (approx. stationary point: ∥∇f (x∗)∥ ≤ ϵ)
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Model-Based DFO

• Classic approach:

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

• Instead, approximate:

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

• Find gk and Hk by interpolating f over a set of points
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Model-Based DFO: Algorithm

1. Build local interpolation model mk(s)

2. Minimize the model within the trust-region ∆k to get the step

sk = argmin
s∈Rn

mk(s) s.t. ∥s∥2 ≤ ∆k

3. Accept/reject step and adjust ∆k based on quality of new point

f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease ← (maybe increase ∆k)

xk , otherwise ← (decrease ∆k)

4. Update interpolation set: add xk + sk to the interpolation set

5. If needed, ensure new interpolation set is ’good’
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Model-Based DFO: Theory

You may be wondering...

1. What does it mean for our interpolation model to be a ’good

approximation’?

2. What convergence/complexity guarantees do we have?
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Model-Based DFO: Theory

You may be wondering...

1. What does it mean for our interpolation model to be a ’good

approximation’?

2. What convergence/complexity guarantees do we have?

An interpolation model f (xk + s) ≈ mk(s) is fully linear if

|f (xk + s)−mk(s)| ≤ κef∆
2
k ,

||∇f (xk + s)−∇mk(s)||2 ≤ κeg∆k ,

for all ||s||2 ≤ ∆k (c.f. linear Taylor series).
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Model-Based DFO: Theory

You may be wondering...

1. What does it mean for our interpolation model to be a ’good

approximation’?

2. What convergence/complexity guarantees do we have?

An interpolation set is Λ-poised if

max
t

max
||s||2≤∆k

|ℓt(xk + s)| ≤ Λ,

where ℓt(ys) = δs,t .

Theorem

If the interpolation set is Λ-poised and is contained in B(xk ,∆k), then

the corresponding interpolation model is fully linear with constants

κef , κeg in O(Λ). (+ dependencies on n, f )
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Model-Based DFO: Theory

You may be wondering...

1. What does it mean for our interpolation model to be a ’good

approximation’?

2. What convergence/complexity guarantees do we have?

Convergence and worst-case complexity for nonconvex functions match

what we have for the derivative-based case.

Theorem (convergence)

Suppose f has Lipschitz continuous gradient and is bounded below.

Then limk→∞ ||∇f (xk)||2 = 0.

Theorem (complexity)

Under the same assumptions as above, we achieve ||∇f (xk)||2 ≤ ϵ for

the first time after at most O(ϵ−2) iterations. (+ dependencies on n, f )
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The Problem

min
x∈C

f (x)

• f : Rn → R continuously differentiable and possibly nonconvex

• Assume we cannot evaluate ∇f (x)
• C ⊆ Rn has nonempty interior, closed, and convex

• Strictly feasible algorithm: never evaluate f at points outside C;
• Access to C is only through a (cheap) projection operator

Examples: Rn, bound constraints, half-plane, Euclidean ball, . . .
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Existing work

• Unrelaxable constraints

– Only done for simple cases, no convergence theory

– Bounds [Powell, 2009; Wild, 2009; Gratton et al., 2011]

– Linear inequalities [Gumma, Hashim & Ali, 2014; Powell, 2015]

• Convex constraints with projection [Conejo et al., 2013]

• Convergence, no complexity

• Assume models are always fully linear

• Derivative-based complexity analysis [Cartis, Gould & Toint, 2012]

What is the problem? (Larson, Menickelly & Wild, 2019)

Model-based methods are more challenging to design in the presence of

unrelaxable constraints because enforcing guarantees of model quality

such as full linearity can be difficult. For fixed κef ,κeg it may be

impossible to obtain a fully linear model using only feasible points.
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What can we do?
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Convex Constraints: The Problem

• C = {(x1, x2) : |x2| ≤ ϵ} ⊆ R2

• Y = {(0, 0), (1, 0), (0, ϵ)} ⊆ B(0, 1)

In B(0, 1), points are Λ-poised with Λ = O(ϵ−1) =⇒ large interpolation

error. We cannot improve this using only feasible points.

If we only consider |ℓt(xk + s)| inside the feasible region =⇒ Λ = O(1).
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Convex Constraints: Geometry

Recall the old definition of a Λ-poised set:

max
t

max
||s||2≤∆k

|ℓt(xk + s)| ≤ Λ,

New definition:

max
t

max
xk+s∈C
||s||2≤∆k

|ℓt(xk + s)| ≤ Λ,

• We only care about the magnitude of Lagrange polynomials inside

the feasible region.

• Gives smaller values of Λ.
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Convex Constraints: Geometry

Recall the old definition of a fully linear model:

|f (xk + s)−mk(s)| ≤ κef∆
2
k ,

||∇f (xk + s)−∇mk(s)||2 ≤ κeg∆k

This is unnecessarily strong for our case!

New definition:

max
xk+s∈C
||s||2≤∆k

|f (xk + s)−mk(s)| ≤ κef∆
2
k ,

max
xk+s∈C
||s||2≤1

|| (∇f (xk)−∇mk(0))
T s||2 ≤ κeg∆k

Theorem (Hough & Roberts, 2021)

If the set of interpolation points is contained in B(xk ,∆k) ∩ C and is

Λ-poised, then the corresponding linear interpolation model is fully

linear with κef , κeg = O(Λ).
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Convex Constraints: The Algorithm

1. Build local interpolation model mk(s)

2. Minimize the model within the trust-region ∆k to get the step

sk = argmin
s∈Rn

mk(s) s.t. ∥s∥2 ≤ ∆k and xk + s ∈ C

3. Accept/reject step and adjust ∆k based on quality of new point

f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease ← (maybe increase ∆k)

xk , otherwise ← (decrease ∆k)

4. Update interpolation set: add xk + sk to the interpolation set

5. If needed, ensure new interpolation set is Λ-poised

15/23



Convex Constraints: Convergence & Complexity

A new question arises...

How can we measure stationarity? i.e. how do we measure progress?

πf (x) :=

∣∣∣∣∣∣ min
x+s∈C
∥s2∥≤1

∇f (x)T s

∣∣∣∣∣∣
Properties: [Conn, Gould & Toint, 2000]

• πf (x) ≥ 0 for all x

• πf (x∗) = 0 if and only if x∗ is a KKT point

• If C = Rn, then πf (x) = ||∇f (x)||2
• πf (x) is Lipschitz continuous in x , assuming ∇f is Lipschitz

continuous [Cartis, Gould & Toint, 2012]
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Properties: [Conn, Gould & Toint, 2000]

• πf (x) ≥ 0 for all x
• πf (x∗) = 0 if and only if x∗ is a KKT point

• If C = Rn, then πf (x) = ||∇f (x)||2
• πf (x) is Lipschitz continuous in x , assuming ∇f is Lipschitz

continuous [Cartis, Gould & Toint, 2012]

• If mk is fully linear, then |πf (xk)− πmk (xk)| ≤ κeg∆k [Hough &

Roberts, 2021]
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Convex Constraints: Convergence & Complexity

Convergence and worst-case complexity for nonconvex functions match

what we have for the unconstrained case:

Theorem (convergence) (Hough & Roberts, 2021)

If f has Lipschitz continuous gradient and is bounded below, then we

have limk→∞ πf (xk) = 0.

Theorem (complexity) (Hough & Roberts, 2021)

Under the same assumptions as above, we achieve πf (xk) ≤ ϵ for the

first time after at most O(ϵ−2) iterations.

Requires two important algorithms:

• Check a model is fully linear

• Change the interpolation set to make the model fully linear if it is

not
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The Least-Squares Case

min
x∈Rd

f (x) =
1

2
∥r(x)∥22, r(x) ∈ Rn

• Typically (Gauss-Newton)

linearize r at xk using the

Jacobian:

r(xk+s) ≈ mk(s) = r(xk)+J(xk)s

• But in DFO, Jacobian is not

available:

mk(s) = r(xk) + Jks

• Find Jk by interpolation [Cartis

& Roberts, 2019]

Either way, end up with a local quadratic model

f (xk + s) ≈ mk(s) :=
1

2
∥mk(s)∥22
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Least-Squares Implementation

Update the state-of-the-art solver DFO-LS: [Cartis et al., 2019]

• Use FISTA to solve the constrained trust-region subproblem

• Requires Dykstra’s algorithm to project onto B(xk ,∆k) ∩ C
• Github: numericalalgorithmsgroup/dfols

Tested on a collection of 58 low-dimensional least-squares problems with

box/ball/halfspace/second-order cone constraints.

Limited solvers to compare to (none exploit the least-squares structure):

• NOMAD: direct search DFO, models constraints using a barrier

method (i.e. f (x) = +∞ if x /∈ C) [Le Digabel, 2011]

• COBYLA: model-based DFO with inequality constraints [Powell,

1994]
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Numerical Results
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Measuring the proportion of problems solved vs. the number of objective

evaluations (higher is better).
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Summary & Future Work

Summary

• General model-based DFO method for convex-constrained problems

• Match/generalize existing convergence and complexity results

• Develop new theory of Λ-poisedness and full linearity1

• New software for least-squares problems

Future Work

• Second-order theory

• Generalize interpolation theory to quadratic interpolation

1Only for linear/composite models at present
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