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Model-Based Derivative-Free Methods for Constrained Optimization
Llntroduction to DFO trust-region methods

The Problem

in f
g, f)
» f:R" — R continuously differentiable and possibly nonconvex

» Assume we cannot evaluate Vf(x)

» Black-box
» Noisy
» Computationally expensive

» Applications: climate modelling, experimental design, machine
learning, etc

» Seeking a local minimizer (approx. stationary point: [|[Vf(x*)|| <€)

Matthew Hough (mhough@uwaterloo.ca) 4



Model-Based Derivative-Free Methods for Constrained Optimization
Llntroduction to DFO trust-region methods

Model-Based DFO

» Classic approach:
T I 72
f(xk +8) ~ my(s) = f(xk) + VI(xk)'s+ 5S Vef(xk)s
» Instead, approximate:
T L 7
f(xk +s) =~ my(s) = f(xk) + 8 s+ 5S Hys

» Find gx and H, by interpolating f over a set of points
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Model-Based Derivative-Free Methods for Constrained Optimization
Llntroduction to DFO trust-region methods

Model-Based DFO: Algorithm

(assuming our interpolation model is a good approx.)

1. Build local interpolation model:
f(xk +s) = mk(s)
2. Minimize the model within the trust-region Ay to get the step

sk = argmin m(s)  s.t. ||s]]2 < Ax
seRd

3. Evaluate f(xx + sk), check sufficient decrease, select xk+1 and Agiq

4. Update interpolation set with the new point xx + sk
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Model-Based Derivative-Free Methods for Constrained Optimization
Llntroduction to DFO trust-region methods

Model-Based DFO: Interpolation Geometry

We may not get sufficient decrease if...
1. Ay is too large

2. my is not a good approximation to f (bad geometry)

Problems!
» How to ensure good geometry?

» How do we define good geometry?

Good geometry = accurate model = convergence
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Model-Based Derivative-Free Methods for Constrained Optimization
Llntroduction to DFO trust-region methods

Model-Based DFO: Interpolation Geometry

» Need interpolation set {yo,...,¥n} to be "well-poised” in B(yo, A)

» A-poised if all y; € B(yo, A) and exists A > 1 s.t.

max [le(y)| <A, Vy € B(y,A)

» (:(ys) = st for all s, t

» Points are " well-spaced”

[Conn, Scheinberg & Vicente, 2009]
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Model-Based Derivative-Free Methods for Constrained Optimization
Llntroduction to DFO trust-region methods

Model-based DFO: Interpolation Geometry

» A-poisedness = fully linear model:

> (i +5) — m(s)] < ker A
|f(xk ) (s)l ef By (Kef, Keg depend on A)

> |[Vf(xk+5s) — Vm(s)| < kegAk

for all y € B(yo, Ax), [Is]] < Ak

» Fully linear model = convergence
» Two important algorithms:

1. Checks {yo,...,¥n} is A-poised
2. Makes {yo,...,¥n} A-poised if it is not already

[Conn, Scheinberg & Vicente, 2009]
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

The Constrained Problem

min f(x

xeC ( )

» f:R" — R continuously differentiable and possibly nonconvex
> Assume we cannot evaluate Vf(x)

» C C RY has nonempty interior, closed, and convex

» Cannot evaluate f outside of C
» Only accessible via projection, Pe : RY — C
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Constrained DFO: Algorithm

1. Build local interpolation model from feasible points:
f(xx +s) = my(s)
2. Minimize the model within B(yo, Ax) NC to get the step

sk = argmin  my(s)
s€B(yo,Ak)NC

3. Evaluate f(xx + si), check sufficient decrease, select xx 41 and Agyq

4. Update interpolation set with the new point xx + sx
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Model-Based Derivative-Free Methods for Constrained Optimization

[ Handling constraints

Constrained DFO: Geometry T
> C={(x,%) : || <e CR? // ; \
L o
> Y ={(0,0),(1,0),(0,¢)} C B(0,1) -1l - =
\
» In B(0,1), points are A-poised with A ~ ¢1 \
= large Kef, Keg \\\\//
-1
12
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Constrained DFO: Geometry

> C= {(X17X2) : |X2| < 6} - R2 /

» Y ={(0,0),(1,0),(0,¢)} € B(0,1) =1l

» In B(0,1), points are A-poised with A ~ ¢1 \\\

= large Kef, Keg

> A-poised if all y; € B(yp, A) NC and exists A > 1 s.t.

max [4:(y)| <A, Yy e B(y,A)NC

» Now we have A < 3 independent of ¢ = improved error bounds
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Model-Based Derivative-Free Methods for Constrained Optimization
LHandIing constraints

Constrained DFO: Geometry

» A-poisedness = fully linear model in B(xx, Ag):

f - < Ker A2
xknlgécl (xk +8) — mi(s)| < rer A
[Is[| <Ak

-
ma f — < A
max (V) ~ g0 8| < g
lIsll<1

» Slightly weaker:

> Vm(y) = Vf(y) only at y = xi
» Only care about points in C

» Still have important algorithms

1. Check points are A-poised
2. Make points A-poised if not
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Constrained DFO: Measuring Progress

f _ T m —
7' (x) XT;chf(x) s = 71"(x) min_ g
lIsll<1 sli<1

> For C =R 7' (xi) = |V (xc)ll and 7&(xc) = [lgx]

> fully linear = |7f(xk) — 7™(xk)| < KegAk

[Conn, Gould & Toint, 2000]
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Model-Based Derivative-Free Methods for Constrained Optimization
LHandIing constraints

Constrained DFO: Measuring Progress

f : T m : T
= VF S = S
' (x) == | min Vf(x) = 7"(x):=]| min g
Islf<1 sl <1

» For C =R, 7f(xx) = || VF(xk)|, and m&(xx) = ||g«ll

> fully linear = |7f(xx) — 7™ (xk)| < Keg Dk

Solution to 7f(x) is given by s* := p(t,x) — x
» where p(t,x) = Pe(x — tV£(x)), t >0,
> and [|p(t, x) — x|| = 1
[Conn, Gould & Toint, 2000]
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Constrained DFO: Measuring Progress

> s* = Pe(x — tVF(x)) — x = —tVf(x)

. —Vf
> 1= st = V)| = t=okmr = 5" = Tond)

> = 7'(x) = |VF(x)|
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Constrained DFO: Measuring Progress

> Pc(x —tVF(x)) # x — tVf(x)
» s* = p(t,x) — x gets smaller near the boundary

» — 7f(x) — 0 as approach constraints in direction of x*
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Model-Based Derivative-Free Methods for Constrained Optimization
LHandIing constraints

Constrained DFO: Convergence Theory

Ensure we always have my fully linear (by ensuring good geometry)
Ensure 7" ~ Ay

When 7™(x;) — 0, we are also getting 71 (xx) — 0

sl

Standard convergence results follow

> Worst-case complexity: at most O(e~2) iterations to have 7 < ¢
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Application to composite minimization

f(x) = F(r(x))
» where r : R" — R™ is a black-box function

» Derivatives of r(x) are unavailable

> Classic example is F(r) = 1||r|]?
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Model-Based Derivative-Free Methods for Constrained Optimization
LHandIing constraints

Application to composite minimization

H 1 2 n
min f(x) = 5llr()l2. rlx) €R

» Typically linearize r at x; using » But in DFO, Jacobian is not
the Jacobian: available:
(x+s) = M(s) = () J(xe)s M(s) = r(x) + s

» Find Ji by interpolation

End up with a local quadratic model
f(xk + ) = mi(s) := ‘HMk(S)Hz
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Model-Based Derivative-Free Methods for Constrained Optimization

L Handling constraints

Implementation
Open-source Python implementation: DFO-LS

» Github: numericalalgorithmsgroup/dfols

» Replace gradient-descent step with projected gradient-descent (PGD)
» Dykstra's algorithm for projecting onto C

» New point becomes
Xk+1 = Po(xk — tgk)
Q:=Cn B(Xk,Ak)

[Beck, 2017]
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Model-Based Derivative-Free Methods for Constrained Optimization

L Numerical results

Numerical results

58 test problems with ball, box, halfspace, and no constraints

» [Moré & Wild, 2009], [Moré, Garbow, Hillstrom, 1981]
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Model-Based Derivative-Free Methods for Constrained Optimization

LSummary

Constrained DFO: Summary

» Can ensure good geometry
= fully linear model
= error bound on approx. criticality measure

== convergence

» Worst-case complexity same as in unconstrained case
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Model-Based Derivative-Free Methods for Constrained Optimization

I—Summary

Constrained DFO: Future Work

» Convergence and WCC theory for quadratic models

» Fully quadratic model, etc.
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