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Introduction to DFO trust-region methods

The Problem

min
x∈Rn

f (x)

▶ f : Rn → R continuously differentiable and possibly nonconvex

▶ Assume we cannot evaluate ∇f (x)
▶ Black-box
▶ Noisy
▶ Computationally expensive

▶ Applications: climate modelling, experimental design, machine
learning, etc

▶ Seeking a local minimizer (approx. stationary point: ∥∇f (x∗)∥ ≤ ϵ)
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Introduction to DFO trust-region methods

Model-Based DFO

▶ Classic approach:

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

▶ Instead, approximate:

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

▶ Find gk and Hk by interpolating f over a set of points
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Introduction to DFO trust-region methods

Model-Based DFO: Algorithm

(assuming our interpolation model is a good approx.)

1. Build local interpolation model:

f (xk + s) ≈ mk(s)

2. Minimize the model within the trust-region ∆k to get the step

sk = argmin
s∈Rd

mk(s) s.t. ∥s∥2 ≤ ∆k

3. Evaluate f (xk + sk), check sufficient decrease, select xk+1 and ∆k+1

4. Update interpolation set with the new point xk + sk
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Introduction to DFO trust-region methods

Model-Based DFO: Interpolation Geometry

We may not get sufficient decrease if...

1. ∆k is too large

2. mk is not a good approximation to f (bad geometry)

Problems!

▶ How to ensure good geometry?

▶ How do we define good geometry?

Good geometry =⇒ accurate model =⇒ convergence
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Introduction to DFO trust-region methods

Model-Based DFO: Interpolation Geometry

▶ Need interpolation set {y0, . . . , yn} to be ”well-poised” in B(y0,∆)

▶ Λ-poised if all yt ∈ B(y0,∆) and exists Λ ≥ 1 s.t.

max |ℓt(y)| ≤ Λ, ∀y ∈ B(y0,∆)

▶ ℓt(ys) = δs,t for all s, t

▶ Points are ”well-spaced”

[Conn, Scheinberg & Vicente, 2009]
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Introduction to DFO trust-region methods

Model-based DFO: Interpolation Geometry

▶ Λ-poisedness =⇒ fully linear model:

▶ |f (xk + s)−m(s)| ≤ κef∆
2
k

▶ ∥∇f (xk + s)−∇m(s)∥ ≤ κeg∆k

for all y ∈ B(y0,∆k), ∥s∥ ≤ ∆k

(κef , κeg depend on Λ)

▶ Fully linear model =⇒ convergence

▶ Two important algorithms:

1. Checks {y0, . . . , yn} is Λ-poised
2. Makes {y0, . . . , yn} Λ-poised if it is not already

[Conn, Scheinberg & Vicente, 2009]
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Handling constraints

The Constrained Problem

min
x∈C

f (x)

▶ f : Rn → R continuously differentiable and possibly nonconvex

▶ Assume we cannot evaluate ∇f (x)

▶ C ⊆ Rd has nonempty interior, closed, and convex

▶ Cannot evaluate f outside of C
▶ Only accessible via projection, PC : Rd → C
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Handling constraints

Constrained DFO: Algorithm

1. Build local interpolation model from feasible points:

f (xk + s) ≈ mk(s)

2. Minimize the model within B(y0,∆k) ∩ C to get the step

sk = argmin
s∈B(y0,∆k )∩C

mk(s)

3. Evaluate f (xk + sk), check sufficient decrease, select xk+1 and ∆k+1

4. Update interpolation set with the new point xk + sk
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Handling constraints

Constrained DFO: Geometry

▶ C = {(x1, x2) : |x2| ≤ ϵ} ⊆ R2

▶ Y = {(0, 0), (1, 0), (0, ϵ)} ⊆ B(0, 1)

▶ In B(0, 1), points are Λ-poised with Λ ∼ ϵ−1

=⇒ large κef , κeg

▶ Λ-poised if all yt ∈ B(y0,∆) ∩ C and exists Λ ≥ 1 s.t.

max |ℓt(y)| ≤ Λ, ∀y ∈ B(y0,∆) ∩ C

▶ Now we have Λ ≤ 3 independent of ϵ =⇒ improved error bounds
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Handling constraints

Constrained DFO: Geometry

▶ Λ-poisedness =⇒ fully linear model in B(xk ,∆k):

max
xk+s∈C
∥s∥≤∆k

|f (xk + s)−mk(s)| ≤ κef∆
2
k

max
xk+s∈C
∥s∥≤1

|(∇f (xk)− gk)
T s| ≤ κeg∆k

▶ Slightly weaker:

▶ ∇m(y) ≈ ∇f (y) only at y = xk
▶ Only care about points in C

▶ Still have important algorithms

1. Check points are Λ-poised
2. Make points Λ-poised if not
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Handling constraints

Constrained DFO: Measuring Progress

πf (x) :=

∣∣∣∣∣∣ min
x+s∈C
∥s∥≤1

∇f (x)T s

∣∣∣∣∣∣ =⇒ πm(x) :=

∣∣∣∣∣∣ min
x+s∈C
∥s∥≤1

gk
T s

∣∣∣∣∣∣
▶ For C = Rd , πf (xk) = ∥∇f (xk)∥, and πg (xk) = ∥gk∥
▶ fully linear =⇒ |πf (xk)− πm(xk)| ≤ κeg∆k

[Conn, Gould & Toint, 2000]
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Handling constraints

Constrained DFO: Measuring Progress

πf (x) :=

∣∣∣∣∣∣ min
x+s∈C
∥s∥≤1

∇f (x)T s

∣∣∣∣∣∣ =⇒ πm(x) :=

∣∣∣∣∣∣ min
x+s∈C
∥s∥≤1

gk
T s

∣∣∣∣∣∣
▶ For C = Rd , πf (xk) = ∥∇f (xk)∥, and πg (xk) = ∥gk∥
▶ fully linear =⇒ |πf (xk)− πm(xk)| ≤ κeg∆k

Solution to πf (x) is given by s⋆ := p(t, x)− x

▶ where p(t, x) = PC(x − t∇f (x)), t ≥ 0,

▶ and ∥p(t, x)− x∥ = 1

[Conn, Gould & Toint, 2000]
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Handling constraints

Constrained DFO: Measuring Progress

▶ s⋆ = PC(x − t∇f (x))− x = −t∇f (x)

▶ 1 = ∥s⋆∥ = t∥∇f (x)∥ =⇒ t = 1
∥∇f (x)∥ =⇒ s⋆ = −∇f (x)

∥∇f (x)∥

▶ =⇒ πf (x) = ∥∇f (x)∥
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Handling constraints

Constrained DFO: Measuring Progress

▶ PC (x − t∇f (x)) ̸= x − t∇f (x)

▶ s⋆ = p(t, x)− x gets smaller near the boundary

▶ =⇒ πf (x) → 0 as approach constraints in direction of x⋆

Matthew Hough (mhough@uwaterloo.ca) 17



Model-Based Derivative-Free Methods for Constrained Optimization

Handling constraints

Constrained DFO: Convergence Theory

1. Ensure we always have mk fully linear (by ensuring good geometry)

2. Ensure πm
k ∼ ∆k

3. When πm(xk) → 0, we are also getting πf (xk) → 0

4. Standard convergence results follow

▶ Worst-case complexity: at most O(ϵ−2) iterations to have πm
k ≤ ϵ
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Handling constraints

Application to composite minimization

f (x) = F (r(x))

▶ where r : Rn → Rm is a black-box function

▶ Derivatives of r(x) are unavailable

▶ Classic example is F (r) = 1
2∥r∥

2
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Handling constraints

Application to composite minimization

min
x∈Rd

f (x) =
1

2
∥r(x)∥22, r(x) ∈ Rn

▶ Typically linearize r at xk using
the Jacobian:

r(xk+s) ≈ M(s) = r(xk)+J(xk)s

▶ But in DFO, Jacobian is not
available:

M(s) = r(xk) + Jks

▶ Find Jk by interpolation

End up with a local quadratic model

f (xk + s) ≈ mk(s) :=
1

2
∥Mk(s)∥22
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Handling constraints

Implementation
Open-source Python implementation: DFO-LS

▶ Github: numericalalgorithmsgroup/dfols

▶ Replace gradient-descent step with projected gradient-descent (PGD)

▶ Dykstra’s algorithm for projecting onto C
▶ New point becomes

xk+1 = PQ(xk − tgk)

Q := C ∩ B(xk ,∆k)

[Beck, 2017]
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Numerical results

Numerical results

58 test problems with ball, box, halfspace, and no constraints

▶ [Moré & Wild, 2009], [Moré, Garbow, Hillstrom, 1981]
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Summary

Constrained DFO: Summary

▶ Can ensure good geometry

=⇒ fully linear model

=⇒ error bound on approx. criticality measure

=⇒ convergence

▶ Worst-case complexity same as in unconstrained case
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Summary

Constrained DFO: Future Work

▶ Convergence and WCC theory for quadratic models

▶ Fully quadratic model, etc.
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