Infinite Families of Ramanujan Hypergraphs

Michelle Delcourt

University of Illinois, at Urbana-Champaign

May 16, 2015

Ramanujan Graphs

Brief Review of Graph Expansion

Three classical views of graph expansion:

- Combinatorial—Isoperimetric inequalities
- Linear Algebraic—Spectral gap
- **Probabilistic**—Rapid convergence of the random walk

View from Linear Algebra

Definition

The adjacency matrix A of simple graph G = (V, E) is the $|V| \times |V|$ matrix with entries

$$A_{x,y} = \begin{cases} 1, & \text{if } xy \in E \\ 0, & \text{otherwise.} \end{cases}$$

Therefore, A has n real eigenvalues (including multiplicities),

$$\lambda_1(G) \geq \ldots \geq \lambda_n(G)$$

View from Linear Algebra

Definition

The adjacency matrix A of simple graph G = (V, E) is the $|V| \times |V|$ matrix with entries

$$A_{x,y} = \begin{cases} 1, & \text{if } xy \in E \\ 0, & \text{otherwise.} \end{cases}$$

Therefore, A has n real eigenvalues (including multiplicities),

$$\lambda_1(G) \geq \ldots \geq \lambda_n(G)$$
.

Simple Observations

■ If *G* is *d*-regular, then $\lambda_1(G) = d$.

■ *G* is connected if and only if $\lambda_1(G) > \lambda_2(G)$. The quantity $\lambda_1(G) - \lambda_2(G)$ is known as the **spectral gap**.

■ *G* is bipartite if and only if $\lambda_1(G) = -\lambda_n(G)$.

Simple Observations

■ If *G* is *d*-regular, then $\lambda_1(G) = d$.

■ *G* is connected if and only if $\lambda_1(G) > \lambda_2(G)$. The quantity $\lambda_1(G) - \lambda_2(G)$ is known as the **spectral gap**.

■ *G* is bipartite if and only if $\lambda_1(G) = -\lambda_n(G)$.

Simple Observations

■ If *G* is *d*-regular, then $\lambda_1(G) = d$.

■ *G* is connected if and only if $\lambda_1(G) > \lambda_2(G)$. The quantity $\lambda_1(G) - \lambda_2(G)$ is known as the **spectral gap**.

■ *G* is bipartite if and only if $\lambda_1(G) = -\lambda_n(G)$.

Combinatorial Definition

Definition

A graph G = (V, E) is said to be a c-expander if for every partition $S \subseteq V$ and $\overline{S} = V \setminus S$ with $|S| \le \frac{|V|}{2}$

$$e(S, \overline{S}) \geq c|S|$$
.

Spectral Gap

Lemma

Let G = (V, E) be a d-regular graph on n vertices. Then for $S \subseteq V$ with $|S| \leq \frac{n}{2}$

$$\frac{e(\mathcal{S},\overline{\mathcal{S}})}{|\mathcal{S}|} \geq \frac{n-|\mathcal{S}|}{n}(d-\lambda_2(G)) \geq \frac{1}{2}(d-\lambda_2(G)).$$

Thus, for d-regular G

$$e(S, \overline{S}) \ge \frac{1}{2}(\lambda_1(G) - \lambda_2(G))|S|$$

and a large spectral gap implies good expansion

Spectral Gap

Lemma

Let G = (V, E) be a d-regular graph on n vertices. Then for $S \subseteq V$ with $|S| \leq \frac{n}{2}$

$$\frac{e(S,\overline{S})}{|S|} \geq \frac{n-|S|}{n}(d-\lambda_2(G)) \geq \frac{1}{2}(d-\lambda_2(G)).$$

Thus, for *d*-regular *G*

$$e(S, \overline{S}) \geq \frac{1}{2}(\lambda_1(G) - \lambda_2(G))|S|,$$

and a large spectral gap implies good expansion.

Alon-Boppana

A natural question is: how large can the spectral gap of a *d*-regular graph be?

In other words, how small can $\lambda_2(G)$ be?

Theorem (Alon-Boppana 1984)

Let $\{G_m\}_{m\geq 1}$ be a family of finite, connected, d-regular graphs with $|V_m| \to +\infty$ as $m \to +\infty$. Then

$$\liminf_{m\to+\infty}\lambda_2(G_m)\geq 2\sqrt{d-1}$$

Alon-Boppana

A natural question is:

how large can the spectral gap of a d-regular graph be?

In other words, how small can $\lambda_2(G)$ be?

Theorem (Alon-Boppana 1984)

Let $\{G_m\}_{m\geq 1}$ be a family of finite, connected, d-regular graphs with $|V_m|\to +\infty$ as $m\to +\infty$. Then

$$\liminf_{m\to+\infty}\lambda_2(G_m)\geq 2\sqrt{d-1}$$

Alon-Boppana

A natural question is:

how large can the spectral gap of a d-regular graph be?

In other words, how small can $\lambda_2(G)$ be?

Theorem (Alon-Boppana 1984)

Let $\{G_m\}_{m\geq 1}$ be a family of finite, connected, d-regular graphs with $|V_m|\to +\infty$ as $m\to +\infty$. Then

$$\liminf_{m\to +\infty} \lambda_2(G_m) \geq 2\sqrt{d-1}.$$

Ramanujan Graphs

Definition

A finite, connected, d-regular graph G is said to be Ramanujan if for every eigenvalue $|\lambda| \neq d$ satisfies

$$|\lambda| \le 2\sqrt{d-1}.$$

Examples

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$K_{d+1}$$
 $\{d,-1,\ldots,-1\}$

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ K_{d,d} \\ \{d,0,\dots,0,-d\} \end{pmatrix}$$

Infinite Families

Conjecture (Lubotzky, Phillips, and Sarnak; Margulis 1988)

For all integers $d \ge 3$, there exists an infinite family of d-regular Ramanujan graphs.

Results

For the following values of d, there exist infinite families of d-regular (non-bipartite) Ramanujan graphs:

- d = p + 1, p an odd prime (1988 LPS and 1988 Margulis),
- 2 d = 2 + 1 = 3 (1992 Chiu),
- d = q + 1, q a prime power (1994 Morgenstern).

Infinite Families

Conjecture (Lubotzky, Phillips, and Sarnak; Margulis 1988)

For all integers $d \ge 3$, there exists an infinite family of d-regular Ramanujan graphs.

Results

For the following values of d, there exist infinite families of d-regular (non-bipartite) Ramanujan graphs:

- **1** d = p + 1, p an odd prime (1988 LPS and 1988 Margulis),
- 2 d = 2 + 1 = 3 (1992 Chiu),
- d = q + 1, q a prime power (1994 Morgenstern).

Applications

Infinite family of *d*-regular Ramanujan graphs are expanders which are "optimal" from a spectral point of view.

Ramanujan graphs have many applications.

Explicit constructions of the error correcting codes of Sipser and Spielman require non-bipartite Ramanujan expanders whereas improvements of this construction require bipartite Ramanujan expanders.

Applications

Infinite family of *d*-regular Ramanujan graphs are expanders which are "optimal" from a spectral point of view.

Ramanujan graphs have many applications.

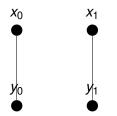
Explicit constructions of the error correcting codes of Sipser and Spielman require non-bipartite Ramanujan expanders whereas improvements of this construction require bipartite Ramanujan expanders.

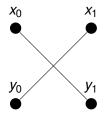
Graph 2-lifts

What are 2-lifts?

Take two copies of the vertex set of a base graph G = (V, E).

For each edge $xy \in E$, either add a pair of parallel edges or crossing edges:



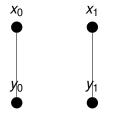


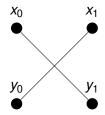
We can think of a 2-lift \widetilde{G} as a covering space of G.

What are 2-lifts?

Take two copies of the vertex set of a base graph G = (V, E).

For each edge $xy \in E$, either add a pair of parallel edges or crossing edges:





We can think of a 2-lift \widetilde{G} as a covering space of G.

"Old Eigenvalues" of \widehat{G}

Lemma (Bilu and Linial 2006)

The lifted graph inherits every eigenvalue of the base graph.

Proof.

Take any eigenfunction f of G, and assign the value f(x) to every vertex in \widetilde{G} in the preimage of x. This is an eigenfunction of \widetilde{G} with the same eigenvalue as f in G.

Bilu and Linial suggested trying to construct Ramanujan graphs by iteratively applying 2-lifts to a base graph, for example K_{d+1} .

"Old Eigenvalues" of \widehat{G}

Lemma (Bilu and Linial 2006)

The lifted graph inherits every eigenvalue of the base graph.

Proof.

Take any eigenfunction f of G, and assign the value f(x) to every vertex in \widetilde{G} in the preimage of x. This is an eigenfunction of \widetilde{G} with the same eigenvalue as f in G.

Bilu and Linial suggested trying to construct Ramanujan graphs by iteratively applying 2-lifts to a base graph, for example K_{d+1} .

Conjecture (Bilu-Linial 2006)

For integer valued $d \ge 3$, every d-regular graph G has a 2-lift \widetilde{G} where all "new" eigenvalues of \widetilde{G} , say λ , satisfy

$$|\lambda| \leq 2\sqrt{d-1}$$
.

Marcus, Spielman, and Srivastava take appropriate 2-lifts of $K_{d,d}$ using the "method of interlacing polynomials".

Lemma (Marcus, Spielman, and Srivastava 2015+)

For all $d \ge 3$, there are infinitely many d-regular, bipartite Ramanujan graphs.

Marcus, Spielman, and Srivastava take appropriate 2-lifts of $K_{d,d}$ using the "method of interlacing polynomials".

Lemma (Marcus, Spielman, and Srivastava 2015+)

For all $d \ge 3$, there are infinitely many d-regular, bipartite Ramanujan graphs.

Definition

For all $c, d \ge 3$, a (c, d)-biregular bipartite graph G is said to be Ramanujan if for every eigenvalue $|\lambda| \ne \sqrt{cd}$ satisfies

$$|\lambda| \leq \sqrt{c-1} + \sqrt{d-1}.$$

They also take appropriate 2-lifts of $K_{c,d}$ using the "method of interlacing polynomials".

Lemma (Marcus, Spielman, and Srivastava 2015+)

For every integer valued $c, d \ge 3$, there is an infinite sequence of (c, d)-biregular, bipartite Ramanujan graphs.

Definition

For all $c, d \ge 3$, a (c, d)-biregular bipartite graph G is said to be Ramanujan if for every eigenvalue $|\lambda| \ne \sqrt{cd}$ satisfies

$$|\lambda| \leq \sqrt{c-1} + \sqrt{d-1}.$$

They also take appropriate 2-lifts of $K_{c,d}$ using the "method of interlacing polynomials".

Lemma (Marcus, Spielman, and Srivastava 2015+)

For every integer valued $c, d \ge 3$, there is an infinite sequence of (c, d)-biregular, bipartite Ramanujan graphs.

Hypergraph Setting

Hypergraphs

Definition

A **hypergraph** \mathcal{H} has vertex set V and hyperedge set E consisting of nonempty subsets of V.

Definitior

 ${\cal H}$ is c**-uniform** if each hyperedge is a c-element subset of V .

Definition

H is d-regular if every vertex is contained in d hyperedges.

Hypergraphs

Definition

A **hypergraph** \mathcal{H} has vertex set V and hyperedge set E consisting of nonempty subsets of V.

Definition

 ${\cal H}$ is c**-uniform** if each hyperedge is a c-element subset of V.

Definition

H is d-regular if every vertex is contained in d hyperedges.

Hypergraphs

Definition

A **hypergraph** \mathcal{H} has vertex set V and hyperedge set E consisting of nonempty subsets of V.

Definition

 ${\cal H}$ is c**-uniform** if each hyperedge is a c-element subset of V.

Definition

 \mathcal{H} is d**-regular** if every vertex is contained in d hyperedges.

Hypergraph Eigenvalues

Definition

The adjacency matrix A of hypergraph $\mathcal{H} = (V, E)$ is the $|V| \times |V|$ matrix with entries

$$A_{x,y} = \begin{cases} |\{e \in E : \{x,y\} \subseteq e\}|, & \text{if } x \neq y, \text{ and } x,y \in V, \\ 0, & \text{if } x = y \in V. \end{cases}$$

Analogue of Alon-Boppana

Theorem (Li and Solé 1996)

For c-uniform, d-regular hypergraphs \mathcal{H} , one has

$$\liminf \lambda_2(\mathcal{H}) \geq c-2+2\sqrt{(d-1)(c-1)}$$

as the number of vertices in \mathcal{H} tends to infinity.

Ramanujan Hypergraphs

Definition

A c-uniform, d-regular hypergraph $\mathcal H$ is said to be **Ramanujan** if any eigenvalue $\lambda \neq d(c-1), \ \lambda \neq -d$ satisfies

$$|\lambda(\mathcal{H})-c+2|\leq 2\sqrt{(d-1)(c-1)}.$$

Infinite Families

Conjecture

For integers $c, d \ge 3$, there exists an infinite family of c-uniform, d-regular Ramanujan hypergraphs.

Theorem (D. 2015+)

For integer valued $d \ge 3$, there exists an infinite family of d-uniform, d-regular Ramanujan hypergraphs.

Infinite Families

Conjecture

For integers $c, d \ge 3$, there exists an infinite family of c-uniform, d-regular Ramanujan hypergraphs.

Theorem (D. 2015+)

For integer valued $d \ge 3$, there exists an infinite family of d-uniform, d-regular Ramanujan hypergraphs.

Incidence Graphs

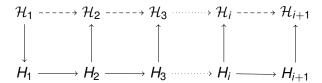
 \mathcal{H} can be represented by a (c, d)-biregular, bipartite graph.

Definition

The incidence graph H of hypergraph H has partitions V and E with $v \in V$ and $e \in E$ adjacent if and only if $\{v\} \subseteq e$ in H.

Proof Sketch

For \mathcal{H}_1 a *d*-uniform, *d*-regular Ramanujan hypergraph, we can construct an infinite family of Ramanujan hypergraphs:



2-lifts of Hypergraphs

Definition

A **2-lift** of a c-uniform hypergraph \mathcal{H} is a c-uniform hypergraph $\widetilde{\mathcal{H}}$ obtained by replacing each vertex of \mathcal{H} with a pair of vertices and each edge with two disjoint edges among the new corresponding vertices.

The process before is actually equivalent to taking good 2-lifts of Ramanujan hypergraphs.

2-lifts of Hypergraphs

Definition

A **2-lift** of a c-uniform hypergraph \mathcal{H} is a c-uniform hypergraph $\widetilde{\mathcal{H}}$ obtained by replacing each vertex of \mathcal{H} with a pair of vertices and each edge with two disjoint edges among the new corresponding vertices.

The process before is actually equivalent to taking good 2-lifts of Ramanujan hypergraphs.

Infinite Families

In particular, consider the d-uniform, d-regular hypergraph on d+1 vertices where every set of d vertices forms a hyperedge.

The eigenvalues are $d^2 - d$ with multiplicity 1 and 1 - d with multiplicity d.

Further Directions

Question

Can we apply the "method of interlacing polynomials" directly to the hypergraphs?

Question

These results show existence. Can we explicitly construct infinite families of graphs/hypergraphs?

Further Directions

Question

Can we apply the "method of interlacing polynomials" directly to the hypergraphs?

Question

These results show existence. Can we explicitly construct infinite families of graphs/hypergraphs?

Thank you for listening!

