Intersecting Families of Permutations

Balogh, Das, **Delcourt**, Liu, and Sharifzadeh

University of Illinois, at Urbana-Champaign

Iowa State University April 13, 2016

1. Definitions

• k-uniform hypergraphs

```
\{1,2,3\}
\{1,4,5\}
\{1,6,7\}
\{2,4,6\}
```

Definition
$$\mathcal{F}\subseteq \binom{[n]}{k} \text{ is intersecting if } \\ \forall F,G\in E(\mathcal{F}),\ |F\cap G|\geq 1$$

• k-uniform hypergraphs

$$\mathcal{F} \subseteq \binom{[n]}{k}$$
 is intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge 1$

k-uniform hypergraphs

$$\mathcal{F} \subseteq \binom{[n]}{k}$$
 is intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge 1$

• k-uniform hypergraphs

$$\mathcal{F} \subseteq \binom{[n]}{k}$$
 is intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge 1$

• k-uniform hypergraphs

$$\mathcal{F} \subseteq {[n] \choose k}$$
 is intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge 1$

k-uniform hypergraphs

```
{1,2,3} {1,3,7} {1,2,4} {1,4,5} {1,2,5} {1,4,6} {1,2,6} {1,4,7} {1,2,7} {1,5,6} {1,3,4} {1,5,7} {1,3,5} {1,6,7} {1,3,6}
```

Definition

intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ is **trivial** if all edges share some vertex

k-uniform hypergraphs

```
{1,2,3} {1,3,7} {1,2,4} {1,4,5} {1,2,5} {1,4,6} {1,2,6} {1,4,7} {1,2,7} {1,5,6} {1,3,4} {1,5,7} {1,3,5} {1,6,7} {1,3,6}
```

Definition

intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ is **trivial** if all edges share some vertex

2. Stability Results

Maximal intersecting families

• k-uniform hypergraphs

Definition

intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ is **maximal** if it is not contained in a larger intersecting family

Maximal intersecting families

• k-uniform hypergraphs

Definition

intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ is **maximal** if it is not contained in a larger intersecting family

k-uniform hypergraphs

for fixed
$$i \in [n]$$
,
$$\left\{ F \in {\binom{[n]}{k}} : i \in F \right\} \Big| = {\binom{n-1}{k-1}}$$

$${\binom{7-1}{3-1}} = {\binom{6}{2}} = 15$$

k-uniform hypergraphs

for fixed
$$i \in [n]$$
,
$$\left| \left\{ F \in {n \choose k} : i \in F \right\} \right| = {n-1 \choose k-1}$$

$${n-1 \choose 3-1} = {6 \choose 2} = 15$$

Theorem (Erdős-Ko-Rado 1961)

If $n \geq 2k$ and $\mathcal{F} \subseteq \binom{[n]}{k}$ is intersecting, then

$$e(\mathcal{F}) \leq \binom{n-1}{k-1}$$
.

For n > 2k we have equality only if \mathcal{F} is trivial.

Kneser graph KG(n, k) on $\binom{[n]}{k}$ has an edge if and only if the corresponding k-sets are disjoint

independent sets in KG(n, k) correspond to intersecting families from $\binom{[n]}{k}$

Observation (Lovász 1979)

Kneser graph KG(n, k) on $\binom{[n]}{k}$ has an edge if and only if the corresponding k-sets are disjoint

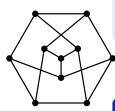
ndependent sets in KG(n, k) correspond to intersecting families from $\binom{[n]}{k}$

Observation (Lovász 1979)

Kneser graph KG(n, k) on $\binom{[n]}{k}$ has an edge if and only if the corresponding k-sets are disjoint

independent sets in KG(n, k) correspond to intersecting families from $\binom{[n]}{k}$

Öbservation (Lovász 1979)



Kneser graph KG(n, k) on $\binom{[n]}{k}$ has an edge if and only if the corresponding k-sets are disjoint

independent sets in KG(n, k) correspond to intersecting families from $\binom{[n]}{k}$

Observation (Lovász 1979)

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Theorem (Hoffman's bound)

Let G = (V, E) be a d-regular graph and λ be the smallest eigenvalue. If $I \subseteq V$ is an independent set, then

$$|I| \le |V| \frac{-\lambda}{d-\lambda}.$$

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Theorem (Hoffman's bound)

Let G = (V, E) be a d-regular graph and λ be the smallest eigenvalue. If $I \subseteq V$ is an independent set, then

$$|I| \leq |V| \frac{-\lambda}{d-\lambda}.$$

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Proof

Note that KG(n, k) is a regular graph on $\binom{n}{k}$ vertices. Each vertex has degree $d = \binom{n-k}{k}$ (need $n \ge 2k$). The minimum eigenvalue of KG(n, k) is $-\binom{n-k-1}{k-1}$. Using Hoffman's bound,

$$\alpha(KG(n,k)) \leq \binom{n}{k} \frac{-\lambda}{d-\lambda} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}.$$

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Proof.

Note that KG(n, k) is a regular graph on $\binom{n}{k}$ vertices. Each vertex has degree $d = \binom{n-k}{k}$ (need $n \ge 2k$). The minimum eigenvalue of KG(n, k) is $-\binom{n-k-1}{k-1}$. Using Hoffman's bound

$$\alpha(KG(n,k)) \leq \binom{n}{k} \frac{-\lambda}{d-\lambda} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}.$$

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Proof.

Note that KG(n, k) is a regular graph on $\binom{n}{k}$ vertices. Each vertex has degree $d = \binom{n-k}{k}$ (need $n \ge 2k$). The minimum eigenvalue of KG(n, k) is $-\binom{n-k-1}{k-1}$. Using Hoffman's bound,

$$\alpha(KG(n,k)) \le \binom{n}{k} \frac{-\lambda}{d-\lambda} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}$$

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Proof.

Note that KG(n, k) is a regular graph on $\binom{n}{k}$ vertices. Each vertex has degree $d = \binom{n-k}{k}$ (need $n \ge 2k$). The minimum eigenvalue of KG(n, k) is $-\binom{n-k-1}{k-1}$. Using Hoffman's bound,

$$\alpha(KG(n,k)) \leq \binom{n}{k} \frac{-\lambda}{d-\lambda} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}.$$

Theorem (Erdős-Ko-Rado Restated)

For $n \ge 2k$, the independence number of KG(n, k) is less than or equal to $\binom{n-1}{k-1}$.

Proof.

Note that KG(n,k) is a regular graph on $\binom{n}{k}$ vertices. Each vertex has degree $d=\binom{n-k}{k}$ (need $n\geq 2k$). The minimum eigenvalue of KG(n,k) is $-\binom{n-k-1}{k-1}$. Using Hoffman's bound,

$$\alpha(KG(n,k)) \leq \binom{n}{k} \frac{-\lambda}{d-\lambda} = \binom{n}{k} \frac{\binom{n-k-1}{k-1}}{\binom{n-k}{k} + \binom{n-k-1}{k-1}} = \binom{n-1}{k-1}.$$

What about non-trivial families?

Theorem (Hilton-Milner 1967)

For n > 2k, the largest non-trivial intersecting $\mathcal{F} \subseteq {[n] \choose k}$ have size

$$\binom{n-1}{k-1}-\binom{n-k-1}{k-1}+1.$$

3. Typical Structure

N_0 size of the largest trivial intersecting family

 N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any subset of a trivial intersecting family is itself trivial.

there are at least 2No trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any subset of a trivial intersecting family is itself trivial.

there are at least 2No trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any subset of a trivial intersecting family is itself trivial.

there are at least 2No trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any subset of a trivial intersecting family is itself trivial.

there are at least 2^{N_0} trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any subset of a trivial intersecting family is itself trivial.

there are at least 2^{N_0} trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any non-trivial intersecting family must be contained inside a maximal non-trivial intersecting family.

there are at most M2N1 non-trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any non-trivial intersecting family must be contained inside a maximal non-trivial intersecting family.

there are at most $M2^{N_1}$ non-trivial families

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

Observation

Any non-trivial intersecting family must be contained inside a maximal non-trivial intersecting family.

there are at most $M2^{N_1}$ non-trivial families

What does a "typical" family look like?

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

lf

$$\frac{M2^{N_1}}{2^{N_0}} \to 0,$$

then trivial families are typical.

Bounding the number of maximal families is interesting.

What does a "typical" family look like?

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

lf

$$\frac{M2^{N_1}}{2^{N_0}}\to 0,$$

then trivial families are typical.

Bounding the number of maximal families is interesting.

What does a "typical" family look like?

 N_0 size of the largest trivial intersecting family N_1 size of the largest non-trivial intersecting family M upper bound on the number of maximal families

lf

$$\frac{\textit{M2}^{\textit{N}_1}}{2^{\textit{N}_0}} \rightarrow 0,$$

then trivial families are typical.

Bounding the number of **maximal** families is interesting.

Proposition (BDDLS 2015)

The number of maximal intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ is at most

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

Corollary (BDDLS 2015)

Almost every intersecting family is trivially intersecting.

Set-pairs inequality

Proposition (BDDLS 2015)

The number of maximal intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ is at most

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

Corollary (BDDLS 2015)

Almost every intersecting family is trivially intersecting.

Set-pairs inequality

We will use the skew-symmetric Bollobás set-pairs inequality

Theorem (Frankl 1982)

Let A_1, \ldots, A_m be sets of size a and B_1, \ldots, B_m be sets of size b such that

$$A_i \cap B_i = \emptyset$$
 and $A_i \cap B_j \neq \emptyset$

for every
$$1 \le i < j \le m$$
. Then $m \le {a+b \choose a}$.

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\begin{array}{lll} \mathcal{H} & \mathcal{I}(\mathcal{H}) \\ \{1,2,3\} & \{1,2,3\}\{1,3,7\} \\ \{1,2,4\} & \{1,2,4\}\{1,4,5\} \\ \{1,3,4\} & \{1,2,5\}\{1,4,6\} \\ \{1,5,6\} & \{1,2,6\}\{1,4,7\} \\ \{1,5,7\} & \{1,2,7\}\{1,5,6\} \\ \{1,6,7\} & \{1,3,4\}\{1,5,7\} \\ & \{1,3,5\}\{1,6,7\} \\ & \{1,3,6\} \end{array} \qquad \begin{array}{ll} \mathcal{H} & \mathcal{H} \cap \mathcal{H$$

Proposition (BDDLS 2015)

 \mathcal{H}

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

•
$$\mathcal{H} \subseteq \binom{[n]}{k}$$

$$\begin{array}{l} \bullet \ \, \mathcal{I}(\mathcal{H}) := \\ \left\{ G \in \binom{[n]}{k} : \forall F \in \mathcal{H}, |G \cap F| \geq 1 \right\} \end{array}$$

- \mathcal{H} intersecting iff $\mathcal{H} \subseteq \mathcal{I}(\mathcal{H})$
- ullet ${\cal H}$ maximal intersecting iff ${\cal H}={\cal I}({\cal H})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\begin{array}{lll} \mathcal{H} & \mathcal{I}(\mathcal{H}) \\ \{1,2,3\} & \{1,2,3\}\{1,3,7\} \\ \{1,2,4\} & \{1,2,4\}\{1,4,5\} \\ \{1,3,4\} & \{1,2,5\}\{1,4,6\} \\ \{1,5,6\} & \{1,2,6\}\{1,4,7\} \\ \{1,5,7\} & \{1,2,7\}\{1,5,6\} \\ \{1,6,7\} & \{1,3,4\}\{1,5,7\} \\ \{1,3,5\}\{1,6,7\} & \{1,3,6\} \end{array}$$

•
$$\mathcal{H} \subseteq \binom{[n]}{k}$$

$$\begin{array}{l} \bullet \ \, \mathcal{I}(\mathcal{H}) := \\ \left\{ G \in {[n] \choose k} : \forall F \in \mathcal{H}, |G \cap F| \geq 1 \right\} \end{array}$$

- ullet \mathcal{H} intersecting iff $\mathcal{H}\subseteq\mathcal{I}(\mathcal{H})$
- ullet ${\cal H}$ maximal intersecting iff ${\cal H}={\cal I}({\cal H})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\begin{array}{lll} \mathcal{H} & \mathcal{I}(\mathcal{H}) \\ \{1,2,3\} & \{1,2,3\}\{1,3,7\} \\ \{1,2,4\} & \{1,2,4\}\{1,4,5\} \\ \{1,3,4\} & \{1,2,5\}\{1,4,6\} \\ \{1,5,6\} & \{1,2,6\}\{1,4,7\} \\ \{1,5,7\} & \{1,2,7\}\{1,5,6\} \\ \{1,6,7\} & \{1,3,4\}\{1,5,7\} \\ & \{1,3,5\}\{1,6,7\} \end{array}$$

•
$$\mathcal{H} \subseteq \binom{[n]}{k}$$

$$\begin{array}{l} \bullet \ \, \mathcal{I}(\mathcal{H}) := \\ \left\{ G \in \binom{[n]}{k} : \forall F \in \mathcal{H}, |G \cap F| \geq 1 \right\} \end{array}$$

- \mathcal{H} intersecting iff $\mathcal{H} \subseteq \mathcal{I}(\mathcal{H})$
- $\qquad \mathcal{H} \text{ maximal intersecting iff } \mathcal{H} = \mathcal{I}(\mathcal{H})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\begin{array}{lll} \mathcal{H} & \mathcal{I}(\mathcal{H}) \\ \{1,2,3\} & \{1,2,3\}\{1,3,7\} \\ \{1,2,4\} & \{1,2,4\}\{1,4,5\} \\ \{1,3,4\} & \{1,2,5\}\{1,4,6\} \\ \{1,5,6\} & \{1,2,6\}\{1,4,7\} \\ \{1,5,7\} & \{1,2,7\}\{1,5,6\} \\ \{1,6,7\} & \{1,3,4\}\{1,5,7\} \\ \{1,3,6\} & \{1,3,6\} \end{array}$$

•
$$\mathcal{H} \subseteq \binom{[n]}{k}$$

$$\begin{array}{l} \bullet \ \, \mathcal{I}(\mathcal{H}) := \\ \left\{ G \in {[n] \choose k} : \forall F \in \mathcal{H}, |G \cap F| \geq 1 \right\} \end{array}$$

- ullet \mathcal{H} intersecting iff $\mathcal{H}\subseteq\mathcal{I}(\mathcal{H})$
- ullet ${\mathcal H}$ maximal intersecting iff ${\mathcal H}={\mathcal I}({\mathcal H})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\mathcal{F} = \mathcal{I}(\mathcal{G})$$

$$\{1,2,3\}\{1,3,7\}$$

$$\{1,2,4\}\{1,4,5\}$$

$$\{1,2,5\}\{1,4,6\}$$

$$\{1,2,6\}\{1,4,7\}$$

$$\{1,5,6\}$$

$$\{1,2,7\}\{1,5,6\}$$

$$\{1,3,4\}\{1,5,7\}$$

$$\{1,3,5\}\{1,6,7\}$$

$$\{1,3,6\}$$

- $\mathcal{F} \subseteq \binom{[n]}{k}$ maximal intersecting
- $\mathcal{G} \subseteq \mathcal{F}$ is a generating set if $\mathcal{F} = \mathcal{I}(\mathcal{G})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\mathcal{F} = \mathcal{I}(\mathcal{G})$$

$$\{1,2,3\}\{1,3,7\}\\ \{1,2,4\}\{1,4,5\}\\ \{1,2,5\}\{1,4,6\}\\ \{1,2,6\}\{1,4,7\}\\ \{1,2,7\}\{1,5,6\}\\ \{1,3,4\}\{1,5,7\}\\ \{1,3,5\}\{1,6,7\}\\ \{1,3,6\}$$

- $\mathcal{F} \subseteq \binom{[n]}{k}$ maximal intersecting
- $\mathcal{G} \subseteq \mathcal{F}$ is a generating set if $\mathcal{F} = \mathcal{I}(\mathcal{G})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\mathcal{F} = \mathcal{I}(\mathcal{G})$$

$$\{1,2,3\}\{1,3,7\}$$

$$\{1,2,4\}\{1,4,5\}$$

$$\{1,2,5\}\{1,4,6\}$$

$$\{1,2,6\}\{1,4,7\}$$

$$\{1,2,7\}\{1,5,6\}$$

$$\{1,3,4\}\{1,5,7\}$$

$$\{1,3,4\}\{1,5,7\}$$

$$\{1,3,5\}\{1,6,7\}$$

- $\mathcal{F} \subseteq \binom{[n]}{k}$ maximal intersecting
- $\bullet \ \mathcal{G} \subseteq \mathcal{F} \text{ is a generating set if } \mathcal{F} = \mathcal{I}(\mathcal{G})$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

- ullet $\mathcal{F}\subseteq \binom{[n]}{k}$ maximal intersecting
- $\mathcal{F}_0 = \{F_1, \dots, F_s\} \subseteq \mathcal{F}$ minimal generating set of \mathcal{F}

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

- ullet $\mathcal{F}\subseteq {[n]\choose k}$ maximal intersecting
- $\mathcal{F}_0 = \{F_1, \dots, F_s\} \subseteq \mathcal{F}$ minimal generating set of \mathcal{F}

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\mathcal{I}(\mathcal{F}_0 \setminus \{F_1\})$$
 F_1 $\{1,2,3\}\{1,3,7\}$ $\{1,2,4\}\{1,4,5\}$ $\{1,2,5\}\{1,4,6\}$ $\{1,2,6\}\{1,4,7\}$ $\{1,2,7\}\{1,5,6\}$ $\{1,3,4\}\{1,5,7\}$ $\{1,3,5\}\{1,6,7\}$ $\{1,5,6\}$ $\{1,3,6\}\{4,5,6\}$ $\{4,5,6\}\{4,6,7\}$

- ullet $\mathcal{F}\subseteq \binom{[n]}{k}$ maximal intersecting
- $\mathcal{F}_0 = \{F_1, \dots, F_s\} \subseteq \mathcal{F}$ minimal generating set of \mathcal{F}
- by minimality $\forall i \in [s]$, $\mathcal{F} \subsetneq \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\})$
- $\bullet \ \forall i \ \exists G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\}) \setminus \mathcal{F}$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\mathcal{I}(\mathcal{F}_0 \setminus \{F_1\})$$

$$\{1,2,3\}\{1,3,7\}$$

$$\{1,2,4\}\{1,4,5\}$$

$$\{1,2,5\}\{1,4,6\}$$

$$\{1,2,6\}\{1,4,7\}$$

$$\{1,2,7\}\{1,5,6\}$$

$$\{1,3,4\}\{1,5,7\}$$

$$\{1,3,5\}\{1,6,7\}$$

$$\{1,3,6\}\{4,5,6\}$$

$$\{4,5,6\}\{4,6,7\}$$

- ullet $\mathcal{F}\subseteq \binom{[n]}{k}$ maximal intersecting
- $\mathcal{F}_0 = \{F_1, \dots, F_s\} \subseteq \mathcal{F}$ minimal generating set of \mathcal{F}
- by minimality $\forall i \in [s]$, $\mathcal{F} \subsetneq \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\})$
- $\bullet \ \forall i \ \exists G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\}) \setminus \mathcal{F}$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

- $\forall i \; \exists G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\}) \setminus \mathcal{F}$
- $G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\})$ $F_j \in \mathcal{F}_0 \setminus \{F_i\}, \forall j \neq i$ $\forall j \neq i, |G_i \cap F_j| \geq 1$
- $G_i \notin \mathcal{F} = \mathcal{I}(\mathcal{F}_0)$ $F_i \in \mathcal{F}_0$ $|G_i \cap F_i| < 1$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

- $\forall i \ \exists G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\}) \setminus \mathcal{F}$
- $G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\})$ $F_j \in \mathcal{F}_0 \setminus \{F_i\}, \forall j \neq i$ $\forall j \neq i, |G_i \cap F_j| \geq 1$
- $G_i \notin \mathcal{F} = \mathcal{I}(\mathcal{F}_0)$ $F_i \in \mathcal{F}_0$ $|G_i \cap F_i| < 1$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

- $\forall i \ \exists G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\}) \setminus \mathcal{F}$
- $G_i \in \mathcal{I}(\mathcal{F}_0 \setminus \{F_i\})$ $F_j \in \mathcal{F}_0 \setminus \{F_i\}, \forall j \neq i$ $\forall j \neq i, |G_i \cap F_j| \geq 1$
- $G_i \notin \mathcal{F} = \mathcal{I}(\mathcal{F}_0)$ $F_i \in \mathcal{F}_0$ $|G_i \cap F_i| < 1$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$A_1 = \{1, 2, 3\}$$
 $B_1 = \{4, 5, 6\}$

$$A_2 = \{1, 2, 4\}$$
 $B_2 = \{3, 5, 6\}$
 $A_3 = \{1, 3, 4\}$ $B_3 = \{2, 5, 6\}$

$$A_4 = \{1, 5, 6\}$$
 $B_4 = \{2, 3, 7\}$

$$A_4 = \{1, 5, 6\}$$
 $B_4 = \{2, 3, 7\}$

$$A_5 = \{1, 5, 7\}$$
 $B_5 = \{2, 3, 6\}$

$$\textit{A}_6 = \{1,6,7\} \ \textit{B}_6 = \{2,3,5\}$$

• For
$$1 \le i \le s$$
, $A_i = F_i$ and $B_i = G_i$

• Then
$$|\mathcal{F}_0| \leq {2k \choose k}$$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$A_1 = \{1, 2, 3\}$$
 $B_1 = \{4, 5, 6\}$
 $A_2 = \{1, 2, 4\}$ $B_2 = \{3, 5, 6\}$
 $A_3 = \{1, 3, 4\}$ $B_3 = \{2, 5, 6\}$

$$A_4 = \{1, 5, 6\}$$
 $B_4 = \{2, 3, 7\}$
 $A_5 = \{1, 5, 7\}$ $B_5 = \{2, 3, 6\}$

$$A_5 = \{1, 5, 7\}$$
 $B_5 = \{2, 3, 6\}$
 $A_4 = \{1, 6, 7\}$ $B_5 = \{2, 3, 6\}$

$$\textit{A}_6 = \{1,6,7\} \ \textit{B}_6 = \{2,3,5\}$$

• For
$$1 \le i \le s$$
, $A_i = F_i$ and $B_i = G_i$

• Then
$$|\mathcal{F}_0| \leq {2k \choose k}$$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

$$\begin{array}{l} \textbf{A}_1 = \{1,2,3\} \ \textbf{B}_1 = \{4,5,6\} \\ \textbf{A}_2 = \{1,2,4\} \ \textbf{B}_2 = \{3,5,6\} \\ \textbf{A}_3 = \{1,3,4\} \ \textbf{B}_3 = \{2,5,6\} \end{array}$$

$$A_4 = \{1, 5, 6\}$$
 $B_4 = \{2, 3, 7\}$

$$A_5 = \{1, 5, 7\}$$
 $B_5 = \{2, 3, 6\}$

$$A_6 = \{1, 6, 7\}$$
 $B_6 = \{2, 3, 5\}$

• For
$$1 \le i \le s$$
, $A_i = F_i$ and $B_i = G_i$

• Then
$$|\mathcal{F}_0| \leq {2k \choose k}$$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

${\mathcal F}_0$	${\mathcal F}_0^{'}$
$\{1, 2, 3\}$	{1,3,5}
$\{1, 2, 4\}$	$\{1, 3, 7\}$
$\{1, 3, 4\}$	$\{1, 5, 7\}$
$\{1, 5, 6\}$	{1,2,4}
$\{1, 5, 7\}$	{1,2,6}
$\{1, 6, 7\}$	{1,4,6}

- ullet \mathcal{F}_0 is not necessarily unique
- because $\mathcal{F} = \mathcal{I}(\mathcal{F}_0)$, $\mathcal{F} \mapsto \mathcal{F}_0$ is an injection
- \bullet $|\mathcal{F}_0| \leq {2k \choose k}$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

${\mathcal F}_0$	${\mathcal F}_0^{'}$
$\{1, 2, 3\}$	{1,3,5}
$\{1, 2, 4\}$	$\{1, 3, 7\}$
$\{1, 3, 4\}$	$\{1, 5, 7\}$
$\{1, 5, 6\}$	{1,2,4}
$\{1, 5, 7\}$	$\{1, 2, 6\}$
$\{1, 6, 7\}$	$\{1, 4, 6\}$

- \mathcal{F}_0 is not necessarily unique
- because $\mathcal{F} = \mathcal{I}(\mathcal{F}_0)$, $\mathcal{F} \mapsto \mathcal{F}_0$ is an injection

•
$$|\mathcal{F}_0| \leq {2k \choose k}$$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

\mathcal{F}_0	${\cal F}_0^{'}$
$\{1, 2, 3\}$	{1,3,5}
$\{1, 2, 4\}$	$\{1, 3, 7\}$
$\{1, 3, 4\}$	$\{1, 5, 7\}$
$\{1, 5, 6\}$	$\{1, 2, 4\}$
$\{1, 5, 7\}$	$\{1, 2, 6\}$
{1,6,7}	{1,4,6}

- \mathcal{F}_0 is not necessarily unique
- because $\mathcal{F} = \mathcal{I}(\mathcal{F}_0)$, $\mathcal{F} \mapsto \mathcal{F}_0$ is an injection
- $|\mathcal{F}_0| \leq {2k \choose k}$

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

${\mathcal F}_0$	$\mathcal{F}_{0}^{'}$
$\{1, 2, 3\}$	{1,3,5}
$\{1, 2, 4\}$	{1,3,7}
$\{1,3,4\}$	$\{1, 5, 7\}$
{1,5,6}	$\{1, 2, 4\}$
$\{1,5,7\}$	$\{1, 2, 6\}$
$\{1, 6, 7\}$	{1,4,6}

- the number of maximal intersecting hypergraphs is bounded by the number of sets of at most (^{2k}_k) edges
- being more clever we can get $\frac{1}{2}\binom{2k}{k}$ instead of $\binom{2k}{k}$ edges

Proposition (BDDLS 2015)

$$\sum_{i=0}^{\frac{1}{2}\binom{2k}{k}} \binom{\binom{n}{k}}{i} \leq \binom{n}{k}^{\frac{1}{2}\binom{2k}{k}}.$$

${\mathcal F}_0$	$\mathcal{F}_{0}^{'}$
$\{1, 2, 3\}$	{1,3,5}
$\{1, 2, 4\}$	$\{1, 3, 7\}$
$\{1, 3, 4\}$	$\{1, 5, 7\}$
$\{1, 5, 6\}$	{1,2,4}
$\{1, 5, 7\}$	{1,2,6}
$\{1, 6, 7\}$	{1,4,6}

- the number of maximal intersecting hypergraphs is bounded by the number of sets of at most (^{2k}_k) edges
- being more clever we can get $\frac{1}{2}\binom{2k}{k}$ instead of $\binom{2k}{k}$ edges

4. Other Settings

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- For example,
 - 1 2 3 4
 - 1 3 4 2
 - 2 3 1 4

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

• For example,

1 2 3 4

1 3 4 2

2 3 1 4

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- For example,
 - 1 2 3 4
 - 1 3 4 2
 - 2 3 1 4

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- For example,
 - 1 2 3 4
 - 1 3 4 2
 - 2 3 1 4

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- For example,
 - 1 2 3 4
 - 1 3 4 2
 - 2 3 1 4

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- $\mathcal{F} \subseteq S_n$ is **trivial** if $\exists i, j \in [n]$ such that $\pi(i) = j \ \forall \pi \in \mathcal{F}$
- For example,
 - 1 2 3 4
 - 1 2 4 3
 - 1 3 2 4
 - 1 3 4 2
 - 1 4 2 3
 - 1 4 3 2

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- $\mathcal{F} \subseteq S_n$ is **trivial** if $\exists i, j \in [n]$ such that $\pi(i) = j \ \forall \pi \in \mathcal{F}$
- For example,
 - 1 2 3 4
 - 1 2 4 3
 - 1 3 2 4
 - 1 3 4 2
 - 1 4 2 3
 - 1 4 3 2

- Let S_n denote the **symmetric group** on [n]
- $\mathcal{F} \subseteq S_n$ is intersecting if $\forall \sigma, \pi \in \mathcal{F}$

$$|\sigma \cap \pi| := |\{i \in [n] : \sigma(i) = \pi(i)\}| \ge 1$$

- $\mathcal{F} \subseteq S_n$ is **trivial** if $\exists i, j \in [n]$ such that $\pi(i) = j \quad \forall \pi \in \mathcal{F}$
- For example,
 - 1 2 3 4
 - 1 2 4 3
 - 1 3 2 4
 - 1 3 4 2
 - 1 4 2 3
 - 1 4 3 2

How large can an intersecting family be?

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
for fixed
$$i, j \in [n]$$
,
 $|\{\sigma \in S_n : \sigma(i) = j\}| = (n-1)!$
 $(4-1)! = 3! = 6$

Theorem (Frankl-Deza 1977)

If $\mathcal{F} \subseteq S_n$ is intersecting, then $|\mathcal{F}| \leq (n-1)!$

Theorem (Cameron-Ku / Larose-Malvenuto 2003)

We have equality above only if $\mathcal{F} \subseteq S_n$ is trivial.

How large can an intersecting family be?

1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
for fixed
$$i, j \in [n]$$
,
 $|\{\sigma \in S_n : \sigma(i) = j\}| = (n-1)!$
 $(4-1)! = 3! = 6$

Theorem (Frankl-Deza 1977)

If $\mathcal{F} \subseteq S_n$ is intersecting, then $|\mathcal{F}| \le (n-1)!$.

Theorem (Cameron-Ku / Larose-Malvenuto 2003)

We have equality above only if $\mathcal{F} \subseteq S_n$ is trivial.

How large can a non-trivial, intersecting family be?

Theorem (Ellis 2008)

For n sufficiently large, the largest non-trivial intersecting $\mathcal{F} \subseteq S_n$ have size

$$\left(1-\frac{1}{e}+o(1)\right)(n-1)!.$$

$$\{\sigma \in S_n : \sigma(1) = 1, \sigma(j) = j \text{ for some } j > 2\} \cup \{(1\ 2)\}$$

How large can a non-trivial, intersecting family be?

Theorem (Ellis 2008)

For n sufficiently large, the largest non-trivial intersecting $\mathcal{F} \subseteq S_n$ have size

$$\left(1-\frac{1}{e}+o(1)\right)(n-1)!.$$

$$\{\sigma \in S_n : \sigma(1) = 1, \sigma(j) = j \text{ for some } j > 2\} \cup \{(1\ 2)\}$$

How large can a non-trivial, intersecting family be?

Theorem (Ellis 2008)

For n sufficiently large, the largest non-trivial intersecting $\mathcal{F} \subseteq S_n$ have size

$$\left(1-\frac{1}{e}+o(1)\right)(n-1)!.$$

$$\{\sigma \in S_n : \sigma(1) = 1, \sigma(j) = j \text{ for some } j > 2\} \cup \{(1\ 2)\}$$

Theorem (BDDLS 2015)

The number of intersecting families of permutations is

$$(n^2 + o(1))2^{(n-1)!}$$
.

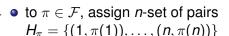
Almost every intersecting family of permutations is trivial.

Maximal intersecting families

Proposition (BDDLS 2015)

The number of maximal intersecting $\mathcal{F} \subseteq S_n$ is at most

$$\sum_{i=0}^{\frac{1}{2}\binom{2n}{n}} \binom{n!}{i} < n^{n2^{2n-1}}.$$



 proof follows the same framework as before

Maximal intersecting families

Proposition (BDDLS 2015)

The number of maximal intersecting $\mathcal{F} \subseteq S_n$ is at most

$$\sum_{i=0}^{\frac{1}{2}\binom{2n}{n}} \binom{n!}{i} < n^{n2^{2n-1}}.$$

- to $\pi \in \mathcal{F}$, assign *n*-set of pairs $H_{\pi} = \{(1, \pi(1)), \dots, (n, \pi(n))\}$
- proof follows the same framework as before

t-intersecting families

```
{1,2,3}
{1,2,4}
{1,2,5}
```

 $\{1, 2, 6\}$

 $\{1, 2, 7\}$

Definition

$$\mathcal{F} \subseteq \binom{[n]}{k}$$
 is t-intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge t$

Definition

t-intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ *is trivial if all edges share some t vertices*

t-intersecting families

```
{1,2,3}
{1,2,4}
{1,2,5}
```

 $\{1, 2, 6\}$

 $\{1, 2, 7\}$

Definition

$$\mathcal{F} \subseteq {[n] \choose k}$$
 is t-intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge t$

Definition

t-intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ *is trivial if all edges share some t vertices*

t-intersecting families

```
{1,2,3}
{1,2,4}
{1,2,5}
{1,2,6}
```

 $\{1, 2, 7\}$

Definition

$$\mathcal{F} \subseteq \binom{[n]}{k}$$
 is t-intersecting if $\forall F, G \in E(\mathcal{F}), |F \cap G| \ge t$

Definition

t-intersecting $\mathcal{F} \subseteq \binom{[n]}{k}$ *is trivial if all edges share some t vertices*

t-intersecting set-pairs inequality

Theorem (Füredi 1984)

Let A_1, \ldots, A_m be sets of size a and B_1, \ldots, B_m be sets of size b such that

$$|A_i \cap B_i| < t \text{ and } |A_i \cap B_j| \ge t$$

for every $1 \le i < j \le m$. Then $m \le {a+b-2t+2 \choose a-t+1}$.

Results

Theorem (BDDLS 2015)

• The number of t-intersecting families of $\binom{[n]}{k}$ is

$$\left(\binom{n}{t}+o(1)\right)2^{\binom{n-t}{k-t}}.$$

2 Almost every t-intersecting family is trivial.

Results

Theorem (BDDLS 2015)

1 The number of t-intersecting families of S_n is

$$\left(\binom{n}{t}^2 t! + o(1)\right) 2^{(n-t)!}.$$

2 Almost every t-intersecting family of permutations is trivial.

Theorem (Kohayakawa-Lee-Rödl-Samotij 2013)

Let G be a graph on N vertices, let R and ℓ be integers, and let $\beta > 0$ be a positive real. Then, provided

$$e^{-\beta\ell}N \le R,\tag{1}$$

and, for every subset $S \subset V(G)$ of at least R vertices, we have

$$e(S) \ge \beta {|S| \choose 2},$$
 (2)

there is a collection of sets $C_i \subset V(G)$, $1 \le i \le \binom{N}{\ell}$, such that $|C_i| \le R + \ell$ for every i and, for every independent set $I \subset V(G)$, there is some i satisfying $I \subset C_i$.

Proposition (BDDLS 2015)

The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}$$
.

Theorem (Alon-Chung Expander Mixing Lemma (form in Alon-Balogh-Morris-Samotij 2014))

Let G be a D-regular graph on N vertices with second largest eigenvalue (in absolute value) λ . Then for all $S \subseteq V$,

$$e(G[S]) \geq \frac{D}{2N}|S|^2 + \frac{\lambda}{2N}|S|(N-|S|).$$

Proposition (BDDLS 2015)

The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}$$

Consider the graph Γ with $V = S_n$ and edges non-intersecting pairs.

Theorem (Ellis 2008)

$$\lambda = -(\frac{1}{e} + o(1))(n-1)$$

$$N = n!$$
 and $D = (1 - \frac{1}{e} + o(1))N$.

Pick S with
$$|S| = (1 + o(1))(n-1)!$$
.

Because G[S] spans 'many' edges then G does not have 'many' independent sets

Proposition (BDDLS 2015)

The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}$$

Consider the graph Γ with $V = S_n$ and edges non-intersecting pairs.

Theorem (Ellis 2008)

$$\lambda = -(\frac{1}{e} + o(1))(n-1)!$$

$$N = n!$$
 and $D = (1 - \frac{1}{e} + o(1))N$.

Pick *S* with |S| = (1 + o(1))(n - 1)!

Because G[S] spans 'many' edges then G does not have 'many' independent sets.

Proposition (BDDLS 2015)

The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}$$

Consider the graph Γ with $V = S_n$ and edges non-intersecting pairs.

Theorem (Ellis 2008)

$$\lambda = -(\frac{1}{e} + o(1))(n-1)!$$

$$N = n!$$
 and $D = (1 - \frac{1}{e} + o(1))N$.

Pick S with
$$|S| = (1 + o(1))(n-1)!$$
.

Because G[S] spans 'many' edges then G does not have 'many' independent sets.

Proposition (BDDLS 2015)

The number of intersecting families of permutations is

$$2^{(1+o(1))(n-1)!}$$

Consider the graph Γ with $V = S_n$ and edges non-intersecting pairs.

Theorem (Ellis 2008)

$$\lambda = -(\tfrac{1}{e} + o(1))(n-1)!$$

$$N = n!$$
 and $D = (1 - \frac{1}{e} + o(1))N$.

Pick S with
$$|S| = (1 + o(1))(n-1)!$$
.

Because G[S] spans 'many' edges then G does not have 'many' independent sets.

Thank you for listening!