An enumerative relationship between maps and 4-regular maps

Michael La Croix

April 9, 2008

Outline

- 1 Background
 - Surfaces
 - Maps
 - Rooted Maps
- 2 Map Enumeration
 - A Counting Problem
 - A Remarkable Identity
 - Planar Maps
 - Non-Planar Maps
- 3 A Refinement
 - A Recurrence
 - Speculation
 - Refining the Conjecture
 - Structural Evidence

Outline

- 1 Background
 - Surfaces
 - Maps
 - Rooted Maps
- 2 Map Enumeration
 - A Counting Problem
 - A Remarkable Identity
 - Planar Maps
 - Non-Planar Maps
- 3 A Refinement
 - A Recurrence
 - Speculation
 - Refining the Conjecture
 - Structural Evidence

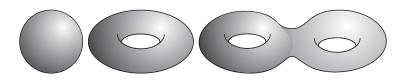
Background

Surfaces

Surfaces

Definition

A Surface is a compact connected 2-manifold without boundary.



This talk will focus on orientable surfaces.

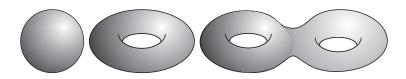
Background

Surfaces

Surfaces

Theorem (Classification Theorem)

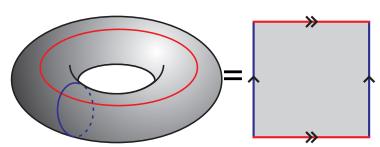
Every orientable surface is an n-torus for some $n \ge 0$.



n is the genus of the surface.

Polygonal Representations

Surfaces can be represented by polygons with sides identified.

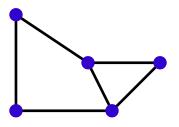


∟_{Maps}

Maps

Definition

A **map** is a 2-cell embedding of a multigraph in a surface.



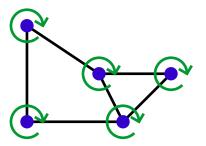
The graph is necessarily connected.

Maps

Maps

Definition

A **map** is a 2-cell embedding of a multigraph in a surface.



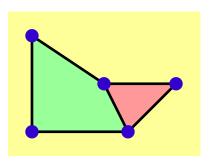
The embedding provides a cyclic order to edges at each vertex.

∟_{Maps}

Maps

Definition

A **map** is a 2-cell embedding of a multigraph in a surface.



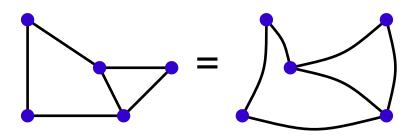
The embedding also defines faces.

∟ _{Maps}

Maps

Definition

A map is a 2-cell embedding of a multigraph in a surface.



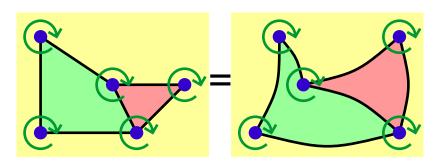
Maps are considered up to topological deformations.

∟ Maps

Maps

Definition

A **map** is a 2-cell embedding of a multigraph in a surface.



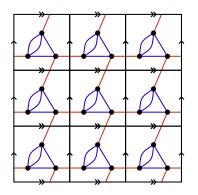
Deformations preserve faces and cyclic orders.

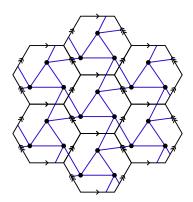
Maps on the Torus

Polygonal representations obfuscate structure.

Maps on the Torus

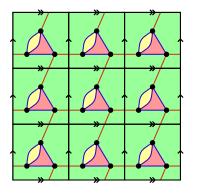
Tiling the fundamental domain produces the universal cover,

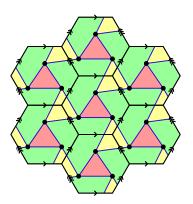




Maps on the Torus

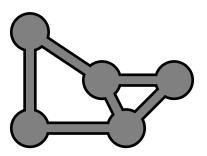
and reveals face structure.





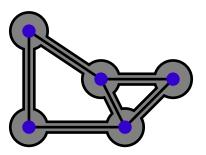
Ribbon Graphs and Flags

The neighbourhood of a map defines a ribbon graph.



Ribbon Graphs and Flags

A ribbon graph determines the surface and embedding.

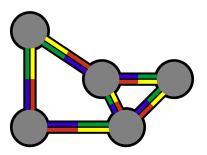


Background

Rooted Maps

Ribbon Graphs and Flags

Vertex-edge intersections define flags.

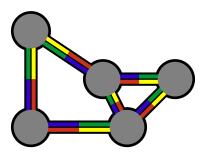


Background

Rooted Maps

Ribbon Graphs and Flags

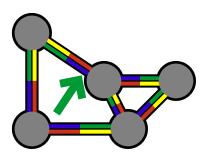
Flags are permuted by map automorphisms.



Rooted Maps

Definition

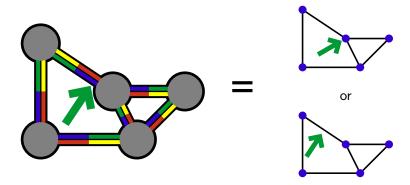
A **rooted map** is a map together with a distinguished orbit of flags under the action of its automorphism group.



Rooted Maps

Rooted Maps

Rootings are indicated with arrows.



Note: A map with no edges has a single rooting.

Outline

- 1 Background
 - Surfaces
 - Maps
 - Rooted Maps
- 2 Map Enumeration
 - A Counting Problem
 - A Remarkable Identity
 - Planar Maps
 - Non-Planar Maps
- 3 A Refinement
 - A Recurrence
 - Speculation
 - Refining the Conjecture
 - Structural Evidence

Map Enumeration

A Counting Problem

How Many Maps are There?

Denote the set of rooted orientable maps by \mathcal{M} .

■ How many elements of \mathcal{M} have genus g, v vertices, f faces, and e edges?

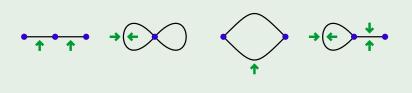
How Many Maps are There?

Denote the set of rooted orientable maps by \mathcal{M} .

■ How many elements of \mathcal{M} have genus g, v vertices, f faces, and e edges?

Example

Of the planar rooted maps with 2 edges, two have 3 vertices, five have 2 vertices, and two have 1 vertex.



Map Enumeration

LA Counting Problem

How Many Maps are There?

The restriction of \mathcal{M} to 4-regular maps is \mathcal{Q} .

■ How many elements of Q have genus g, v vertices, f faces, and e edges?

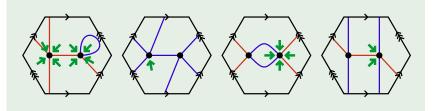
How Many Maps are There?

The restriction of \mathcal{M} to 4-regular maps is \mathcal{Q} .

■ How many elements of *Q* have genus *g*, *v* vertices, *f* faces, and *e* edges?

Example

There are 15 maps rooted maps that are 4-regular with 2 vertices, 4 edges, 2 faces, and genus 1.



Generating Series

The genus series for rooted orientable maps is

$$M(u^2, x, y, z) = \sum_{\mathfrak{m} \in \mathcal{M}} u^{2g(\mathfrak{m})} x^{v(\mathfrak{m})} y^{f(\mathfrak{m})} z^{e(\mathfrak{m})}.$$

The weights $g(\mathfrak{m})$, $v(\mathfrak{m})$, $f(\mathfrak{m})$, and $e(\mathfrak{m})$ are the genus, number of vertices, number of faces, and number of edges of \mathfrak{m} .

Generating Series

The genus series for rooted orientable maps is

$$M(u^2, x, y, z) = \sum_{\mathfrak{m} \in \mathcal{M}} u^{2g(\mathfrak{m})} x^{v(\mathfrak{m})} y^{f(\mathfrak{m})} z^{e(\mathfrak{m})}.$$

The corresponding series for 4-regular maps is

$$Q(u^2, x, y, z) = \sum_{\mathfrak{m} \in \mathcal{Q}} u^{2g(\mathfrak{m})} x^{v(\mathfrak{m})} y^{f(\mathfrak{m})} z^{e(\mathfrak{m})}.$$

The weights $g(\mathfrak{m})$, $v(\mathfrak{m})$, $f(\mathfrak{m})$, and $e(\mathfrak{m})$ are the genus, number of vertices, number of faces, and number of edges of \mathfrak{m} .

A Remarkable Identity

Jackson and Visentin derived the functional relation

$$Q(u^{2}, x, y, z) = \frac{1}{2}M(4u^{2}, y + u, y, xz^{2}) + \frac{1}{2}M(4u^{2}, y - u, y, xz^{2})$$

= $\underset{\text{even } u}{\text{bis}} M(4u^{2}, y + u, y, xz^{2}).$

A Combinatorial Interpretation

Jackson and Visentin derived the functional relation

$$Q(u^{2}, x, y, z) = \frac{1}{2}M(4u^{2}, y + u, y, xz^{2}) + \frac{1}{2}M(4u^{2}, y - u, y, xz^{2})$$

= $\underset{\text{even } u}{\text{bis}} M(4u^{2}, y + u, y, xz^{2}).$

The right hand side is a generating series for a set $\bar{\mathcal{M}}$.

A Combinatorial Interpretation

Jackson and Visentin derived the functional relation

$$Q(u^{2}, x, y, z) = \frac{1}{2}M(4u^{2}, y + u, y, xz^{2}) + \frac{1}{2}M(4u^{2}, y - u, y, xz^{2})$$

= $\underset{\text{even } u}{\text{bis}} M(4u^{2}, y + u, y, xz^{2}).$

The right hand side is a generating series for a set $\bar{\mathcal{M}}$.

- each handle is decorated independently in one of 4 ways
- an even subset of vertices is marked

A Combinatorial Interpretation

Jackson and Visentin derived the functional relation

$$Q(u^{2}, x, y, z) = \frac{1}{2}M(4u^{2}, y + u, y, xz^{2}) + \frac{1}{2}M(4u^{2}, y - u, y, xz^{2})$$

= $\underset{\text{even } u}{\text{bis}} M(4u^{2}, y + u, y, xz^{2}).$

The right hand side is a generating series for a set $\bar{\mathcal{M}}$.

- each handle is decorated independently in one of 4 ways
- an even subset of vertices is marked

They conjectured that this bijection has a natural interpretation.

Conjecture (The *q*-Conjecture)

There is a natural bijection ϕ from $\bar{\mathcal{M}}$ to \mathcal{Q} .

$$\phi \colon \bar{\mathcal{M}} \to \mathcal{Q}$$

A decorated map with

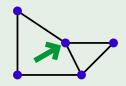
- v vertices
- 2k marked vertices
- *e* edges
- f faces
- genus g

A 4-regular map with

- e vertices
- 2*e* edges
- f + v 2k faces
- \blacksquare genus g + k

Jackson and Visentin proved the identity indirectly.

Example (Encoding a Map)

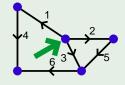


Begin with a rooted map.

Jackson and Visentin proved the identity indirectly.

Maps are decorated with edge labels and orientations.

Example (Encoding a Map)



$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')$$

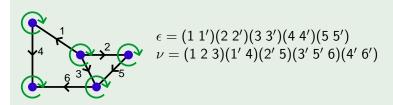
Decorate the edges.

- ☐ Map Enumeration
 - A Remarkable Identity

Jackson and Visentin proved the identity indirectly.

- Maps are decorated with edge labels and orientations.
- Decorated maps are encoded as permutations.

Example (Encoding a Map)



The labels and cyclic orders give a vertex permutation.

Jackson and Visentin proved the identity indirectly.

- Maps are decorated with edge labels and orientations.
- Decorated maps are encoded as permutations.

Example (Encoding a Map)

$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\varphi = \nu \epsilon = (1 \ 2' \ 5' \ 6' \ 4)(1' \ 4' \ 6 \ 3)(2 \ 3' \ 5)$$

Multiplying produces the face permutation.

- ☐ Map Enumeration
 - A Remarkable Identity

Jackson and Visentin proved the identity indirectly.

- Maps are decorated with edge labels and orientations.
- Decorated maps are encoded as permutations.
- The permutations are enumerated using character sums.

Example (Encoding a Map)

$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\varphi = \nu \epsilon = (1 \ 2' \ 5' \ 6' \ 4)(1' \ 4' \ 6 \ 3)(2 \ 3' \ 5)$$

Fixing 1' as the root, the encoding is $1:2^55!$.

- Map Enumeration
 - A Remarkable Identity

Jackson and Visentin proved the identity indirectly.

- Maps are decorated with edge labels and orientations.
- Decorated maps are encoded as permutations.
- The permutations are enumerated using character sums.
- Maps can be recovered using standard techniques.

Example (Encoding a Map)

$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\varphi = \nu \epsilon = (1 \ 2' \ 5' \ 6' \ 4)(1' \ 4' \ 6 \ 3)(2 \ 3' \ 5)$$

Fixing 1' as the root, the encoding is $1:2^55!$.

Using this encoding,

$$M(u^{2}, x, y, z) = 2u^{2}z \frac{\partial}{\partial z} \ln R\left(\frac{x}{u}, \frac{y}{u}, \frac{zu}{2}\right)$$
$$Q(u^{2}, x, y, z) = 2u^{2}z \frac{\partial}{\partial z} \ln R_{4}\left(\frac{x}{u}, \frac{y}{u}, \frac{zu}{2}\right)$$

where R and R_4 are exponential generating series for edge-labelled not-necessarily-connected maps. The proof involved factoring R_4 .

Using this encoding,

$$M(u^{2}, x, y, z) = 2u^{2}z \frac{\partial}{\partial z} \ln R\left(\frac{x}{u}, \frac{y}{u}, \frac{zu}{2}\right)$$
$$Q(u^{2}, x, y, z) = 2u^{2}z \frac{\partial}{\partial z} \ln R_{4}\left(\frac{x}{u}, \frac{y}{u}, \frac{zu}{2}\right)$$

where R and R_4 are exponential generating series for edge-labelled not-necessarily-connected maps. The proof involved factoring R_4 .

$$R_4(x, y, z) = R\left(\frac{1}{2}x, \frac{1}{2}(x+1), 4z^2y\right) \cdot R\left(\frac{1}{2}x, \frac{1}{2}(x-1), 4z^2y\right)$$

It is difficult to interpret the factorization in terms of maps.

$$R_4(x, y, z) = R\left(\frac{1}{2}x, \frac{1}{2}(x+1), 4z^2y\right) \cdot R\left(\frac{1}{2}x, \frac{1}{2}(x-1), 4z^2y\right)$$

It is difficult to interpret the factorization in terms of maps.

$$R_4(x,y,z) = R\left(\frac{1}{2}x, \frac{1}{2}(x+1), 4z^2y\right) \cdot R\left(\frac{1}{2}x, \frac{1}{2}(x-1), 4z^2y\right)$$

The factorization is the key to the proof, but

it works at the level of edge-labelled maps,

It is difficult to interpret the factorization in terms of maps.

$$R_4(x, y, z) = R\left(\frac{1}{2}x, \frac{1}{2}(x+1), 4z^2y\right) \cdot R\left(\frac{1}{2}x, \frac{1}{2}(x-1), 4z^2y\right)$$

- it works at the level of edge-labelled maps,
- the factors lack a direct combinatorial interpretation,

It is difficult to interpret the factorization in terms of maps.

$$R_4(x,y,z) = R\left(\frac{1}{2}x, \frac{1}{2}(x+1), 4z^2y\right) \cdot R\left(\frac{1}{2}x, \frac{1}{2}(x-1), 4z^2y\right)$$

- it works at the level of edge-labelled maps,
- the factors lack a direct combinatorial interpretation,
- the proof requires more refinement than the identity it proves,

It is difficult to interpret the factorization in terms of maps.

$$R_4(x,y,z) = R\left(\frac{1}{2}x, \frac{1}{2}(x+1), 4z^2y\right) \cdot R\left(\frac{1}{2}x, \frac{1}{2}(x-1), 4z^2y\right)$$

- it works at the level of edge-labelled maps,
- the factors lack a direct combinatorial interpretation,
- the proof requires more refinement than the identity it proves,
- it uses character sums.

The Planar Case

Evaluating the series at u = 0 restricts the sums to planar maps and gives

$$Q(0, x, y, z) = M(0, y, y, xz^{2}).$$

The Planar Case

Evaluating the series at u = 0 restricts the sums to planar maps and gives

$$Q(0, x, y, z) = M(0, y, y, xz^{2}).$$

Combinatorially, the number of 4-regular planar maps with n vertices is equal to the number of planar maps with n edges.

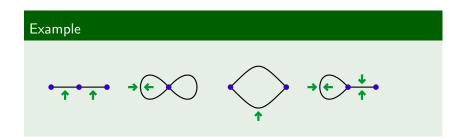
The Planar Case

Evaluating the series at u = 0 restricts the sums to planar maps and gives

$$Q(0, x, y, z) = M(0, y, y, xz^{2}).$$

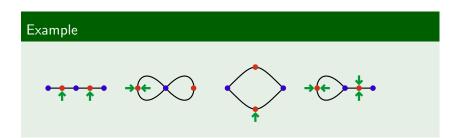
Combinatorially, the number of 4-regular planar maps with n vertices is equal to the number of planar maps with n edges. Tutte's medial construction explains this bijectively.

Tutte's medial construction explains the planar case.



Tutte's medial construction explains the planar case.

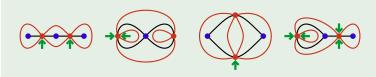
■ Place a vertex on each edge.



Tutte's medial construction explains the planar case.

- Place a vertex on each edge.
- Join edges that are incident around a vertex circulation.

Example



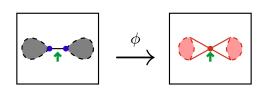
Tutte's medial construction explains the planar case.

- Place a vertex on each edge.
- Join edges that are incident around a vertex circulation.
- The medials of planar duals are the same map.

Example

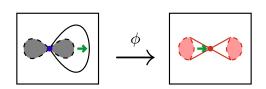
The construction has several properties that make it natural.

Cut edges become cut vertices.



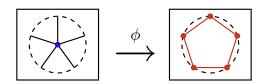
The construction has several properties that make it natural.

- Cut edges become cut vertices.
- So do loops.



The construction has several properties that make it natural.

- Cut edges become cut vertices.
- So do loops.
- \blacksquare Faces and vertices of degree k become faces of degree k.



The construction has several properties that make it natural.

- Cut edges become cut vertices.
- So do loops.
- \blacksquare Faces and vertices of degree k become faces of degree k.
- Duality in \mathcal{M} corresponds to reflection in \mathcal{Q} .

The Medial Construction at Higher Genus

The medial construction extends to all surfaces.

- It produces all face-bipartite 4-regular maps.
- It preserves genus.

This gives an injection from undecorated maps to 4-regular maps.

The Medial Construction at Higher Genus

The medial construction extends to all surfaces.

- It produces all face-bipartite 4-regular maps.
- It preserves genus.

This gives an injection from undecorated maps to 4-regular maps.

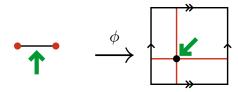
Conjecture

The medial construction is the restriction of ϕ to \mathcal{M} .

- Map Enumeration
 - Non-Planar Maps

What Else do we know?

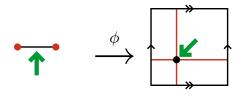
There is only one 4-regular map with one vertex on the torus.



- Map Enumeration
 - Non-Planar Maps

What Else do we know?

There is only one 4-regular map with one vertex on the torus.



It is impossible to construct ϕ such that it preserves face degrees.

Outline

- 1 Background
 - Surfaces
 - Maps
 - Rooted Maps
- 2 Map Enumeration
 - A Counting Problem
 - A Remarkable Identity
 - Planar Maps
 - Non-Planar Maps
- 3 A Refinement
 - A Recurrence
 - Speculation
 - Refining the Conjecture
 - Structural Evidence

A Differential Equation

By considering root deletion, a refinement of M can be shown to satisfy a combinatorially significant differential equation.

$$M(1, x, \vec{y}, z, \vec{r}) = r_0 x + z \sum_{i \ge 0} \sum_{j=1}^{i+1} r_j y_{i-j+2} \frac{\partial}{\partial r_i} M$$
$$+ z \sum_{i,j \ge 0} j r_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$$
$$+ z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right).$$

Here y_i marks non-root faces of degree i and r_i marks a root face of degree i.

A Differential Equation

By considering root deletion, a refinement of M can be shown to satisfy a combinatorially significant differential equation.

$$M(1, x, \vec{y}, z, \vec{r}) = r_0 x + z \sum_{i \ge 0} \sum_{j=1}^{i+1} r_j y_{i-j+2} \frac{\partial}{\partial r_i} M$$

$$+ z \sum_{i,j \ge 0} j r_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$$

$$+ z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right).$$

Both M and Q are evaluations of this series.

The differential equations allows a proof of the following theorem within the realm of connected maps.

Theorem

With N a positive integer and $\langle \cdot \rangle_e$ defined by

$$\langle f \rangle_{e} = \frac{\int_{\mathbb{R}^{N}} |V(\lambda)|^{2} f(\lambda) \exp\left(\sum_{k \geq 1} \frac{1}{k} x_{k} p_{k} \sqrt{z}^{k}\right) e^{-\frac{1}{2} p_{2}(\lambda)} d\lambda}{\int_{\mathbb{R}^{N}} |V(\lambda)|^{2} \exp\left(\sum_{k \geq 1} \frac{1}{k} x_{k} p_{k} \sqrt{z}^{k}\right) e^{-\frac{1}{2} p_{2}(\lambda)} d\lambda}$$

evaluations of the map series are given by

$$M(1, \vec{x}, N, z) = \sum_{k=0}^{\infty} x_k \sqrt{z}^k \langle p_k \rangle_e.$$

└A Recurrence

A Recurrence

It also gives an integral recurrence for computing M.

A Recurrence

It also gives an integral recurrence for computing M.

■ The terms of the DE correspond to the three root types.

Border Cut edge Handle

A Recurrence

It also gives an integral recurrence for computing M.

- The terms of the DE correspond to the three root types.
- The number of edges of each type determines the number of decorations of a map.

Border	Cut edge	Handle
1	2	4

A Recurrence

It also gives an integral recurrence for computing M.

- The terms of the DE correspond to the three root types.
- The number of edges of each type determines the number of decorations of a map.

Border	Cut edge	Handle
1	2	4

This suggests an inductive approach to identifying ϕ . All that remains (!) is to determine how $\phi(\mathfrak{m})$ and $\phi(\mathfrak{m}\backslash e)$ differ when e is a root edge of each type.

A Refinement

└─ Speculation

Cut-Edges

For decorated maps, root edges come in two forms:

Even cut edge have an even number of decorated vertices on each side of the cut.

Cut-Edges

For decorated maps, root edges come in two forms:

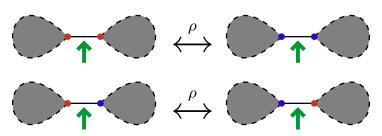
- Even cut edge have an even number of decorated vertices on each side of the cut.
- Odd cut edges have an odd number of decorated vertices on each side of the cut.

Cut-Edges

For decorated maps, root edges come in two forms:

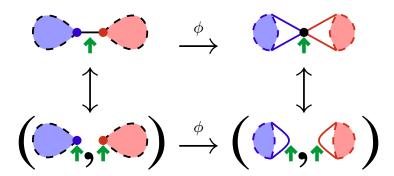
- Even cut edge have an even number of decorated vertices on each side of the cut.
- Odd cut edges have an odd number of decorated vertices on each side of the cut.

An involution ρ switches the form.



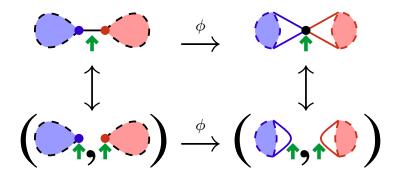
Even Cut-Edges

The action of ϕ , when the root edge is an even cut-edge, can speculated from the following commutative diagram.



Even Cut-Edges

The action of ϕ , when the root edge is an even cut-edge, can speculated from the following commutative diagram.



The induced product on $Q \times Q$ is genus additive.

Odd Cut-Edges

If $\mathfrak m$ is rooted at an odd cut-edge, then $\mathfrak m'=\rho(\mathfrak m)$ is rooted at an even cut-edge.

Odd Cut-Edges

If $\mathfrak m$ is rooted at an odd cut-edge, then $\mathfrak m'=\rho(\mathfrak m)$ is rooted at an even cut-edge.

$$\mathfrak{m} \xrightarrow{\rho} \mathfrak{m}' \longrightarrow (\mathfrak{m}_1, \mathfrak{m}_2)$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi} \qquad \downarrow^{\phi \otimes \phi}$$

$$\mathfrak{q} \longleftarrow \mathfrak{q}' \longleftarrow (\mathfrak{q}_1, \mathfrak{q}_2)$$

Odd Cut-Edges

If $\mathfrak m$ is rooted at an odd cut-edge, then $\mathfrak m'=\rho(\mathfrak m)$ is rooted at an even cut-edge.

$$\mathfrak{m} \xrightarrow{\rho} \mathfrak{m}' \longrightarrow (\mathfrak{m}_1, \mathfrak{m}_2)$$

$$\downarrow^{\phi} \qquad \downarrow^{\phi} \qquad \downarrow^{\phi \otimes \phi}$$

$$\mathfrak{q} \longleftarrow \mathfrak{q}' \longleftarrow (\mathfrak{q}_1, \mathfrak{q}_2)$$

 ϕ and ρ induce a product π .

$$\pi: \mathcal{Q} \times \mathcal{Q} \to \mathcal{Q}$$

$$(\mathfrak{q}_1, \mathfrak{q}_2) \mapsto \mathfrak{q}$$

The Product π

 π is nearly genus additive.

The Product π

 π is nearly genus additive.

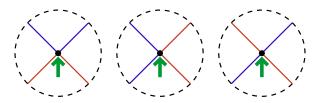
The genus of $\pi(q_1, q_2)$ is determined by the genus of q_1 , the genus of q_2 , and how many of the root vertices of \mathfrak{m}_1 and \mathfrak{m}_2 are marked.

The Product π

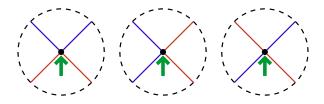
 π is nearly genus additive.

The genus of $\pi(q_1, q_2)$ is determined by the genus of q_1 , the genus of q_2 , and how many of the root vertices of \mathfrak{m}_1 and \mathfrak{m}_2 are marked. π can be used to distinguish between marked and unmarked root vertices.

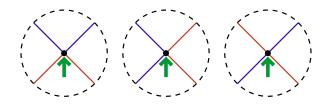
In arbitrary genus, the root vertex of a 4-regular map can be a cut-vertex in three distinct ways.



In arbitrary genus, the root vertex of a 4-regular map can be a cut-vertex in three distinct ways.



The first two cuts correspond to genus additive products.



The third corresponds to the product:

$$\pi': (\bullet, \bullet) \mapsto \bullet$$

The third corresponds to the product:

$$\pi': (\bullet, \bullet) \mapsto \bullet$$

 π' is nearly genus additive.

The third corresponds to the product:

$$\pi': (\bullet, \bullet) \mapsto \bullet$$

 π' is nearly genus additive. The correction term depends on how many factors have root edges that are face-separating, but π' is never subadditive with respect to genus.

A Hidden Relationship?

The qualitative similarities between π' and π suggest a relationship between decorated maps with a decorated root-vertex and 4-regular maps with a face-non-separating root-edge.

A Numerical Surprise!

Constructing all maps with up to 5 edges, and all 4-regular maps with up to 5 vertices suggests that the sets are bijective.

$$\begin{array}{c|ccccc} & \text{Total} & \text{Non-Sep} & \text{Sep} \\ \hline g = 0 & 2916 & 0 & 2916 \\ g = 1 & 31266 & 7290 & 23976 \\ g = 2 & 56646 & 28674 & 27972 \\ g = 3 & 9450 & 9450 & 0 \\ \hline \text{5-vertex, 4-regular maps} \end{array}$$

$$\begin{split} &2916 = 42 + 386 + 1030 + 1030 + 386 + 42 \\ &23979 = \binom{2}{2}1030 + \binom{3}{2}1030 + \binom{4}{2}386 + \binom{5}{2}42 + 4(420 + 1720 + 1720 + 420) \\ &27972 = \binom{4}{4}386 + \binom{5}{4}42 + 4\left(\binom{2}{2}1720 + \binom{3}{2}420\right) + 16(483 + 483) \\ &7920 = \binom{1}{1}386 + \binom{2}{1}1030 + \binom{3}{1}1030 + \binom{4}{1}386 + \binom{5}{1}42 \\ &28674 = \binom{3}{3}1030 + \binom{4}{3}386 + \binom{5}{3}42 + 4\left(\binom{1}{1}1720 + \binom{2}{1}1720 + \binom{3}{1}420\right) \\ &9450 = \binom{1}{1}42 + 4\binom{1}{1}420 + 16\binom{1}{1}483 \end{split}$$

Conjecture (Refined q-Conjecture)

If \mathcal{Q}_1 is the restriction of \mathcal{Q} to maps rooted on face-separating edges, and $\hat{\mathcal{M}}_1$ is the restriction of $\hat{\mathcal{M}}$ to maps with undecorated root vertices, then

$$\phi(\hat{\mathcal{M}}_1) = \mathcal{Q}_1.$$

Conjecture (Refined *q*-Conjecture)

If \mathcal{Q}_1 is the restriction of \mathcal{Q} to maps rooted on face-separating edges, and $\hat{\mathcal{M}}_1$ is the restriction of $\hat{\mathcal{M}}$ to maps with undecorated root vertices, then

$$\phi(\hat{\mathcal{M}}_1) = \mathcal{Q}_1.$$

In terms of generating series

$$Q_1(u^2, x, y, z) = \underset{even}{\text{bis}} u \frac{y}{y+u} M \left(4u^2, y+u, y, xz^2\right)$$
, and $Q_2(u^2, x, y, z) = \underset{even}{\text{bis}} u \frac{u}{y+u} M \left(4u^2, y+u, y, xz^2\right)$.

LA Refinement

Refining the Conjecture

Determining Q_1 and Q_2

The integral expression for M does not allow a simultaneous refinement to track root-edge-type and vertex degrees.

A Refinement

Refining the Conjecture

Determining Q_1 and Q_2

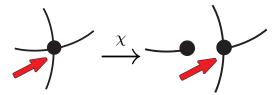
David Jackson indirectly suggested an indirect approach to computing \mathcal{Q}_1 and \mathcal{Q}_2 .

M gives an expression for the generating series for \mathcal{P} , the set of maps that have a root vertex of degree 3, a vertex of degree 1, and are otherwise 4-regular.

$$P(1,x,N,1) = x^2 \frac{\left\langle p_3 p_1 \exp(\frac{1}{4} p_4 x) \right\rangle}{\left\langle \exp(\frac{1}{4} p_4 x) \right\rangle}$$

M gives an expression for the generating series for \mathcal{P} , the set of maps that have a root vertex of degree 3, a vertex of degree 1, and are otherwise 4-regular.

Root-cutting is a bijection from $\mathcal Q$ to $\mathcal P$.



M gives an expression for the generating series for \mathcal{P} , the set of maps that have a root vertex of degree 3, a vertex of degree 1, and are otherwise 4-regular.

Root-cutting is a bijection from $\mathcal Q$ to $\mathcal P$.

$$Q(u^{2}, x, y, z) = Q_{1}(u^{2}, x, y, z) + Q_{2}(u^{2}, x, y, z)$$

$$P(u^{2}, x, y, z) = \frac{x}{y}Q_{1}(u^{2}, x, y, z) + \frac{xy}{u^{2}}Q_{2}(u^{2}, x, y, z)$$

M gives an expression for the generating series for \mathcal{P} , the set of maps that have a root vertex of degree 3, a vertex of degree 1, and are otherwise 4-regular.

Root-cutting is a bijection from Q to P.

$$\begin{split} Q(u^2, x, y, z) &= Q_1(u^2, x, y, z) + Q_2(u^2, x, y, z) \\ P(u^2, x, y, z) &= \frac{x}{y} Q_1(u^2, x, y, z) + \frac{xy}{u^2} Q_2(u^2, x, y, z) \end{split}$$

The equations can be solved for Q_1 and Q_2 .

L A Refinement

Refining the Conjecture

Implications

Proving the enumerative portion of the refined q-Conjecture reduces to a factorization problem, similar to the existing proof of Jackson and Visentin.

A Refinement

Refining the Conjecture

Implications

Proving the enumerative portion of the refined q-Conjecture reduces to a factorization problem, similar to the existing proof of Jackson and Visentin.

One of the factors is the same.

L A Refinement

Refining the Conjecture

Implications

Proving the enumerative portion of the refined q-Conjecture reduces to a factorization problem, similar to the existing proof of Jackson and Visentin.

- One of the factors is the same.
- The other factor is messier.

Implications

Proving the enumerative portion of the refined q-Conjecture reduces to a factorization problem, similar to the existing proof of Jackson and Visentin.

- One of the factors is the same.
- The other factor is messier.
- This work remains to be done.

Implications

Proving the enumerative portion of the refined *q*-Conjecture reduces to a factorization problem, similar to the existing proof of Jackson and Visentin.

- One of the factors is the same.
- The other factor is messier.
- This work remains to be done.

A consequence would be the interpretation

$$P(u^2, x, y, z) = \frac{x}{u} \underset{\text{odd}}{\text{bis }} u M(4u^2, y + u, y, xz^2).$$

As a special case of the refined conjecture, we get the concrete statement:

Conjecture

The bijection ϕ specializes to a bijection from planar maps with a decorated non-root vertex to 4-regular maps on the torus rooted at a face-non-separating edge.

As a special case of the refined conjecture, we get the concrete statement:

Conjecture

The bijection ϕ specializes to a bijection from planar maps with a decorated non-root vertex to 4-regular maps on the torus rooted at a face-non-separating edge.

This case avoids the product of 4-regular maps with face-non-separating root-edges.

The following cases occur.

■ The root edge joins two marked vertices.

- The root edge joins two marked vertices.
- The root edge is a loop

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.
 - The unmarked vertex has degree 1.

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.
 - The unmarked vertex has degree 1.
 - The unmarked vertex has degree 2.

The following cases occur.

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.
 - The unmarked vertex has degree 1.
 - The unmarked vertex has degree 2.
 - The unmarked vertex has degree \geq 3.

The following cases occur.

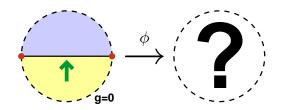
- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.
 - The unmarked vertex has degree 1.
 - The unmarked vertex has degree 2.
 - The unmarked vertex has degree ≥ 3 .

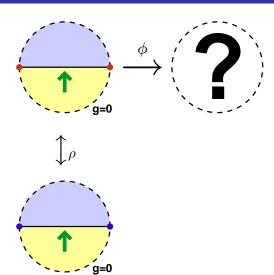
I can inductively construct ϕ in all but the final case.

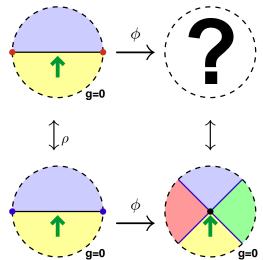
The following cases occur.

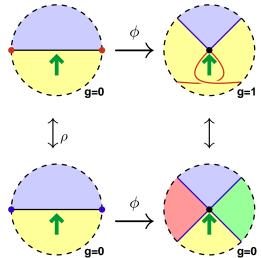
- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.
 - The unmarked vertex has degree 1.
 - The unmarked vertex has degree 2.
 - The unmarked vertex has degree ≥ 3 .

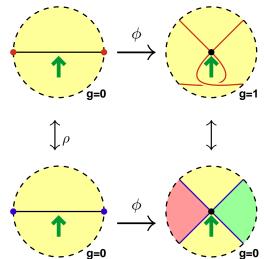
I can inductively construct ϕ in all but the final case.

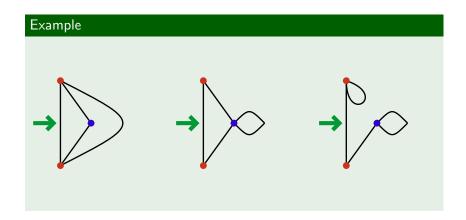






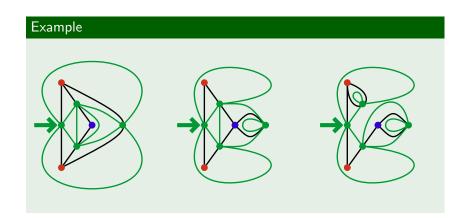


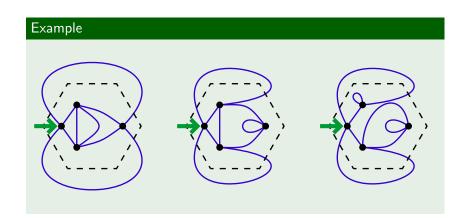




A Refinement

Structural Evidence

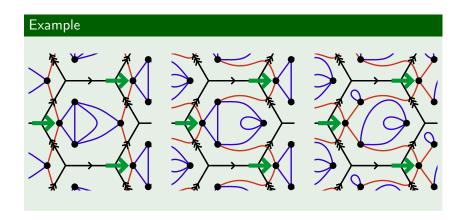




Example

A Refinement

Structural Evidence

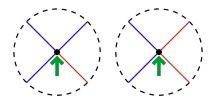


The following cases occur.

- The root edge joins two marked vertices.
- The root edge is a loop
 - The marked vertex is inside the loop
 - The marked vertex is outside the loop
- The root edge joins a marked root-vertex to an unmarked non-root-vertex.
 - The unmarked vertex has degree 1.
 - The unmarked vertex has degree 2.
 - The unmarked vertex has degree \geq 3.

The Missing Case

The remaining maps have images with one of two root configurations.



It should be possible to treat them like contraction.

