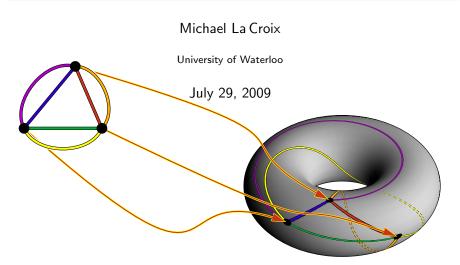
The combinatorics of the Jack Parameter and the genus series for topological maps



- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- 3 The *q*-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are *b*-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- 4 Future Work

Graphs, Surfaces, and Maps

Definition

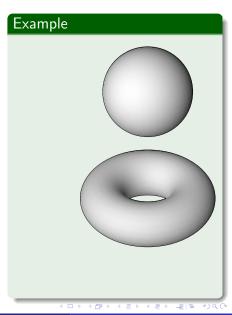
A **surface** is a compact 2-manifold without boundary.

Definition

A graph is a finite set of *vertices* together with a finite set of *edges*, such that each edge is associated with either one or two vertices.

Definition

A map is a 2-cell embedding of a graph in a surface.



Graphs, Surfaces, and Maps

Definition

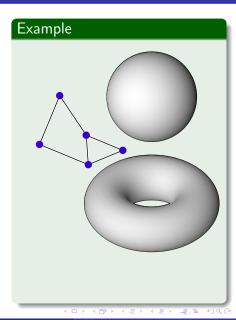
A **surface** is a compact 2-manifold without boundary.

Definition

A **graph** is a finite set of *vertices* together with a finite set of *edges*, such that each edge is associated with either one or two vertices.

Definition

A **map** is a 2-cell embedding of a graph in a surface.



Graphs, Surfaces, and Maps

Definition

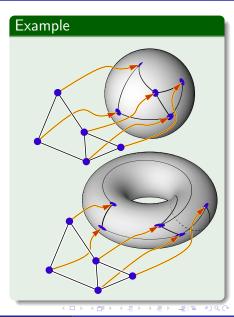
A **surface** is a compact 2-manifold without boundary.

Definition

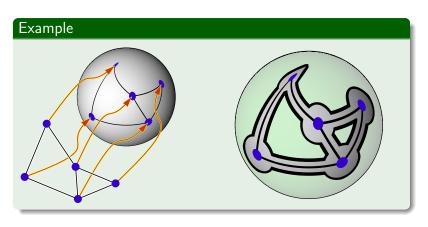
A **graph** is a finite set of *vertices* together with a finite set of *edges*, such that each edge is associated with either one or two vertices.

Definition

A **map** is a 2-cell embedding of a graph in a surface.

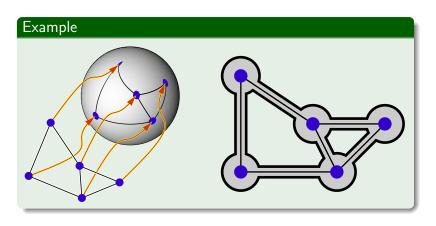


Ribbon Graphs



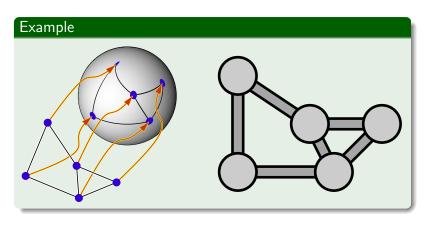
The homeomorphism class of an embedding is determined by a neighbourhood of the graph.

Ribbon Graphs



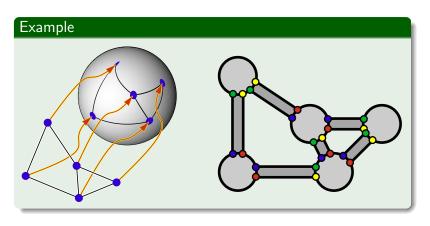
The homeomorphism class of an embedding is determined by a neighbourhood of the graph.

Ribbon Graphs



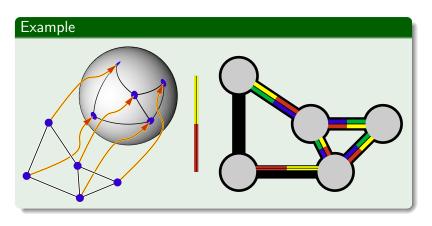
Neighbourhoods of vertices and edges can be replaced by discs and ribbons to form a ribbon graph. • Extra Examples

Flags



The boundaries of ribbons determine flags.

Flags

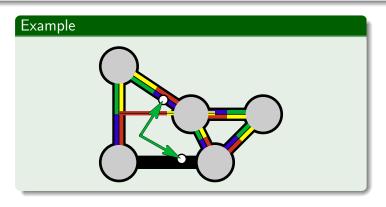


The boundaries of ribbons determine flags, and these can be associated with quarter edges.

Rooted Maps

Definition

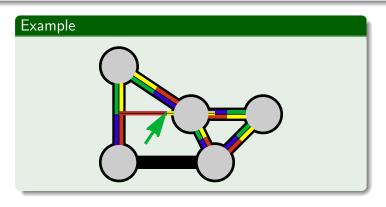
A **rooted map** is a map together with a distinguished orbit of flags under the action of its automorphism group.



Rooted Maps

Definition

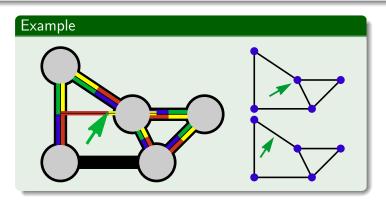
A **rooted map** is a map together with a distinguished orbit of flags under the action of its automorphism group.



Rooted Maps

Definition

A **rooted map** is a map together with a distinguished orbit of flags under the action of its automorphism group.



- Background
 - The objects
 - An enumerative problem, and two generating series
- The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are *b*-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- 4 Future Work

The Map Series

An enumerative problem associated with maps is to determine the number of rooted maps with specified vertex- and face- degree partitions.

Definition

The map series for a set ${\mathcal M}$ of rooted maps is the combinatorial sum

$$M(\mathbf{x}, \mathbf{y}, z) := \sum_{\mathfrak{m} \in \mathcal{M}} \mathbf{x}^{\nu(\mathfrak{m})} \mathbf{y}^{\varphi(\mathfrak{m})} z^{|E(\mathfrak{m})|}$$

where $\nu(\mathfrak{m})$ and $\varphi(\mathfrak{m})$ are the the vertex- and face-degree partitions of $\mathfrak{m}.$

Example

Rootings of

are enumerated by $(x_2^3 x_3^2) (y_3 y_4 y_5) z^6$.

The Map Series

An enumerative problem associated with maps is to determine the number of rooted maps with specified vertex- and face- degree partitions.

Definition

The map series for a set ${\mathcal M}$ of rooted maps is the combinatorial sum

$$M(\mathbf{x}, \mathbf{y}, z) := \sum_{\mathfrak{m} \in \mathcal{M}} \mathbf{x}^{\nu(\mathfrak{m})} \mathbf{y}^{\varphi(\mathfrak{m})} z^{|E(\mathfrak{m})|}$$

where $\nu(\mathfrak{m})$ and $\varphi(\mathfrak{m})$ are the the vertex- and face-degree partitions of $\mathfrak{m}.$

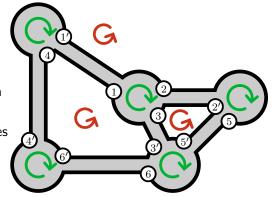
Example

Rootings of

are enumerated by $\left(\mathbf{z_2^3} \, \mathbf{z_3^2} \right) \left(\mathbf{y_3} \, \mathbf{y_4} \, \mathbf{y_5} \right) z^6.$

Encoding Orientable Maps

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- Face circulations are the cycles of $\epsilon \nu$.



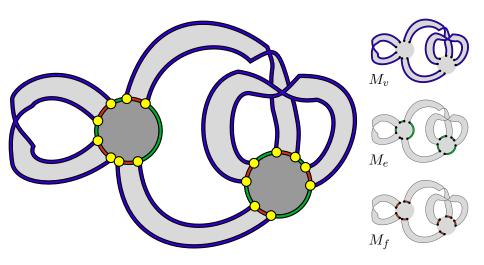
$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \varphi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

▶ Details

Encoding Locally Orientable Maps



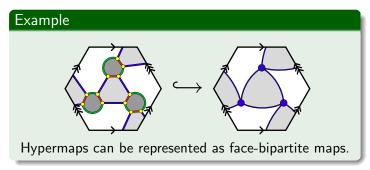
Ribbon boundaries determine 3 perfect matchings of flags. • Details

6 / 27

Hypermaps

Generalizing the combinatorial encoding, an arbitrary triple of perfect matchings determines a **hypermap** when the triple induces a connected graph, with cycles of $M_e \cup M_f$, $M_e \cup M_v$, and $M_v \cup M_f$ determining vertices, hyperfaces, and hyperedges. • Example

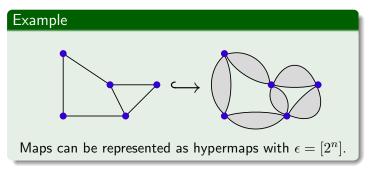
Hypermaps both **specialize** and generalize maps.



Hypermaps

Generalizing the combinatorial encoding, an arbitrary triple of perfect matchings determines a **hypermap** when the triple induces a connected graph, with cycles of $M_e \cup M_f$, $M_e \cup M_v$, and $M_v \cup M_f$ determining vertices, hyperfaces, and hyperedges. • Example

Hypermaps both specialize and **generalize** maps.



The Hypermap Series

Definition

The **hypermap** series for a set ${\mathcal H}$ of hypermaps is the combinatorial sum

$$H(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \sum_{\mathfrak{h} \in \mathcal{H}} \mathbf{x}^{\nu(\mathfrak{h})} \mathbf{y}^{\varphi(\mathfrak{h})} \mathbf{z}^{\epsilon(\mathfrak{h})}$$

where $\nu(\mathfrak{h})$, $\varphi(\mathfrak{h})$, and $\epsilon(\mathfrak{h})$ are the vertex-, hyperface-, and hyperedge-degree partitions of \mathfrak{h} . Example

Note

$$M(\mathbf{x}, \mathbf{y}, z) = H(\mathbf{x}, \mathbf{y}, \mathbf{z}) \Big|_{z_i = z\delta_{i,2}}$$

The Hypermap Series

Definition

The **hypermap** series for a set ${\mathcal H}$ of hypermaps is the combinatorial sum

$$H(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \sum_{\mathfrak{h} \in \mathcal{H}} \mathbf{x}^{\nu(\mathfrak{h})} \mathbf{y}^{\varphi(\mathfrak{h})} \mathbf{z}^{\epsilon(\mathfrak{h})}$$

where $\nu(\mathfrak{h})$, $\varphi(\mathfrak{h})$, and $\epsilon(\mathfrak{h})$ are the vertex-, hyperface-, and hyperedge-degree partitions of \mathfrak{h} . Example

Note

$$M(\mathbf{x}, \mathbf{y}, z) = H(\mathbf{x}, \mathbf{y}, \mathbf{z}) \Big|_{z_i = z\delta_{i,2}}$$

Explicit Formulae

The hypermap series can be computed explicitly when ${\cal H}$ consists of all orientable or locally orientable hypermaps.

Theorem (Jackson and Visentin)

When \mathcal{H} is the set of orientable hypermaps,

$$H(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); 0) = t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} H_{\theta} s_{\theta}(\mathbf{x}) s_{\theta}(\mathbf{y}) s_{\theta}(\mathbf{z}) \right) \Big|_{t=0.}$$

Theorem (Goulden and Jackson)

When ${\cal H}$ is the set of locally orientable hypermaps,

$$H\left(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); 1\right) = 2t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} \frac{1}{H_{2\theta}} Z_{\theta}(\mathbf{x}) Z_{\theta}(\mathbf{z}) \right) \bigg|_{t=0}$$

◆ロ > ◆部 > ◆き > ◆き > き = か 9 0 0

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - ullet An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are *b*-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- 4 Future Work

Jack Symmetric Functions

Jack symmetric functions, \bullet Definition, are a one-parameter family, denoted by $\{J_{\theta}(\alpha)\}_{\theta}$, that generalizes both Schur functions and zonal polynomials.

Proposition (Stanley)

Jack symmetric functions are related to Schur functions and zonal polynomials by:

$$J_{\lambda}(1) = H_{\lambda} s_{\lambda},$$
 $\langle J_{\lambda}, J_{\lambda} \rangle_{1} = H_{\lambda}^{2},$

$$J_{\lambda}(2)=Z_{\lambda}, \hspace{1cm} ext{and} \hspace{1cm} \langle J_{\lambda},J_{\lambda}
angle_2=H_{2\lambda},$$

where 2λ is the partition obtained from λ by multiplying each part by two.

A Generalized Series

b-Conjecture (Goulden and Jackson)

The generalized series,

$$H\left(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); b\right)$$

$$:= (1+b)t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} \frac{J_{\theta}(\mathbf{x}; 1+b)J_{\theta}(\mathbf{y}; 1+b)J_{\theta}(\mathbf{z}; 1+b)}{\langle J_{\theta}, J_{\theta} \rangle_{1+b}} \right) \Big|_{t=0}$$

$$= \sum_{n \geq 0} \sum_{\nu, \varphi, \epsilon \vdash n} c_{\nu, \varphi, \epsilon}(b) p_{\nu}(\mathbf{x}) p_{\varphi}(\mathbf{y}) p_{\epsilon}(\mathbf{z}),$$

has an combinatorial interpretation involving hypermaps. In particular $c_{\nu,\varphi,\epsilon}(b) = \sum_{\mathfrak{h}\in\mathcal{H}_{\nu,\varphi,\epsilon}} b^{\beta(\mathfrak{h})}$ for some invariant β of rooted hypermaps.

\boldsymbol{b} is ubiquitous

The many lives of b				
	b = 0		b = 1	
Hypermaps	Orientable	?	Locally Orientable	
Symmetric Function	is $s_{ heta}$	$J_{\theta}(b)$	$Z_{ heta}$	
Matrix Integrals	Hermitian	?	Real Symmetric	
Moduli Spaces	over $\mathbb C$?	over $\mathbb R$	
Matching Systems	Bipartite	?	All	

The b-Conjecture assumes that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

Example

The b-Conjecture assumes that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- Ø be positive for non-orientable hypermaps, and
- 3 depend on rooting.

Example

The b-Conjecture assumes that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- be positive for non-orientable hypermaps, and
- depend on rooting.

Example

The b-Conjecture assumes that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

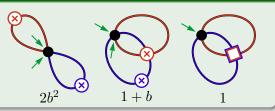
- be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

Example

The b-Conjecture assumes that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

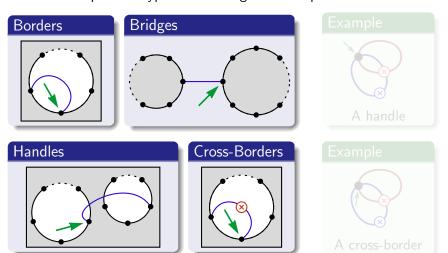
Example



- Background
 - The objects
 - An enumerative problem, and two generating series
- $oldsymbol{2}$ The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are *b*-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

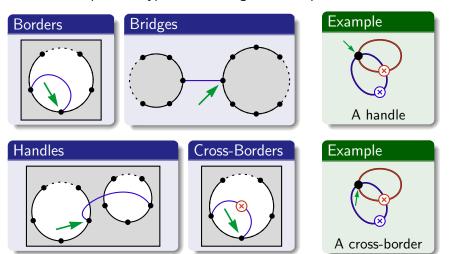
A root-edge classification

There are four possible types of root edges in a map.



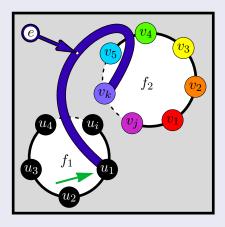
A root-edge classification

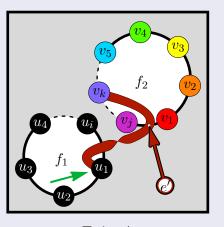
There are four possible types of root edges in a map.



A root-edge classification

Handles occur in pairs



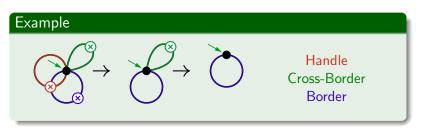


Untwisted

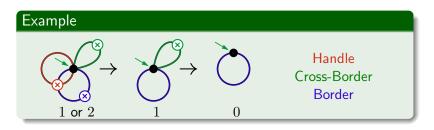
Twisted

- Iteratively deleting the root edge assigns a type to each edge in a map.
- An invariant, η , is given by $\eta(\mathfrak{m}) := (\# \text{ of cross-borders}) + (\# \text{ of twisted handles}) \,.$
- Different handle twisting determines a different invariant. Example

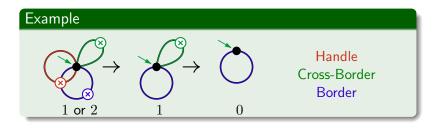
- Iteratively deleting the root edge assigns a type to each edge in a map.
- An invariant, η , is given by $\eta(\mathfrak{m}) := (\# \text{ of cross-borders}) + (\# \text{ of twisted handles})$
- Different handle twisting determines a different invariant. Example



- Iteratively deleting the root edge assigns a type to each edge in a map.
- An invariant, η , is given by $\eta(\mathfrak{m}) := (\# \text{ of cross-borders}) + (\# \text{ of twisted handles}) \,.$
- Different handle twisting determines a different invariant. Example



- Iteratively deleting the root edge assigns a type to each edge in a map.
- An invariant, η , is given by $\eta(\mathfrak{m}) := (\# \text{ of cross-borders}) + (\# \text{ of twisted handles}) \,.$
- Different handle twisting determines a different invariant. Example



Outline

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the *b*-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- 4 Future Work

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

Corollary

$$M(x, \mathbf{y}, z; b) = \sum_{\mathfrak{m} \in \mathcal{M}} x^{|V(\mathfrak{m})|} \mathbf{y}^{\varphi(\mathfrak{m})} z^{|E(\mathfrak{m})|} \text{ is an element of } \mathbb{Z}_{+}[x, \mathbf{y}, b][x].$$

Corollary

There is an uncountably infinite family of marginal b-invariants.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu) = v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

Corollary

$$M(x,\mathbf{y},z;b) = \sum_{\mathfrak{m} \in \mathcal{M}} x^{|V(\mathfrak{m})|} \mathbf{y}^{\varphi(\mathfrak{m})} z^{|E(\mathfrak{m})|} \text{ is an element of } \mathbb{Z}_+[x,\mathbf{y},b][\![z]\!].$$

Corollary

There is an uncountably infinite family of marginal b-invariants.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

Corollary

$$M(x,\mathbf{y},z;b) = \sum_{\mathfrak{m} \in \mathcal{M}} x^{|V(\mathfrak{m})|} \mathbf{y}^{\varphi(\mathfrak{m})} z^{|E(\mathfrak{m})|} \text{ is an element of } \mathbb{Z}_+[x,\mathbf{y},b][\![z]\!].$$

Corollary

There is an uncountably infinite family of marginal b-invariants.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu) = v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

- Distinguish between root and non-root faces in the generating series.
- Show that this series satisfies a PDE with a unique solution.
- Predict an expression for the corresponding algebraic refinement.
- Show that the refined series satisfies the same PDE.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu) = v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

- Distinguish between root and non-root faces in the generating series.
- Show that this series satisfies a PDE with a unique solution.
- Predict an expression for the corresponding algebraic refinement.
- Show that the refined series satisfies the same PDE.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

- Distinguish between root and non-root faces in the generating series.
- Show that this series satisfies a PDE with a unique solution.
- Predict an expression for the corresponding algebraic refinement.
- Show that the refined series satisfies the same PDE.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

- Distinguish between root and non-root faces in the generating series.
- Show that this series satisfies a PDE with a unique solution.
- Predict an expression for the corresponding algebraic refinement.
- Show that the refined series satisfies the same PDE.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu) = v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

- Distinguish between root and non-root faces in the generating series.
- Show that this series satisfies a PDE with a unique solution.
- Predict an expression for the corresponding algebraic refinement.
- Show that the refined series satisfies the same PDE.

Theorem (La Croix)

If φ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\varphi}(b) := \sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\varphi}} b^{\eta(\mathfrak{m})}.$$

Implications of the proof

- $d_{v,\varphi}(b) = \sum_{0 \le i \le g/2} h_{v,\varphi,i} b^{g-2i} (1+b)^i$ is an element of $\operatorname{span}_{\mathbb{Z}_+}(B_g)$.
- The degree of $d_{v,\varphi}(b)$ is the genus of the maps it enumerates.
- The top coefficient, $h_{v,\varphi,0}$, enumerates **unhandled** maps.
- ullet η and root-face degree are independent among maps with given φ .

Finding a partial differential equation

Root-edge type	Schematic	Contribution to M
Cross-border	(8)	$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$
Border		$z \sum_{i \ge 0} \sum_{j=1}^{i+1} r_j y_{i-j+2} \frac{\partial}{\partial r_i} M$
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$
Bridge		$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$

July 29, 2009

Finding a partial differential equation

Root-edge type	Schematic	tic Contribution to M		
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$		
Border		$z\sum_{i\geq 0}\sum_{j=1}^{i+1}r_jy_{i-j+2}\frac{\partial}{\partial r_i}M$		
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$		
Bridge		$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$		

An integral expression for $M(N, \mathbf{y}, z; b)$

Define the expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle := \int_{\mathbb{R}^N} \left| V(\boldsymbol{\lambda}) \right|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) \exp \left(-\frac{1}{2(1+b)} p_2(\boldsymbol{\lambda}) \right) d\boldsymbol{\lambda}.$$

Theorem (Goulden, Jackson, Okounkov)

$$M(N, \mathbf{y}, z; b) = (1+b)2z \frac{\partial}{\partial z} \ln \left\langle \exp\left(\frac{1}{1+b} \sum_{k \ge 1} \frac{1}{k} y_k p_k(\boldsymbol{\lambda}) \sqrt{z}^k\right) \right\rangle$$

An integral expression for $M(N, \mathbf{y}, z; b)$

Define the expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle := \int_{\mathbb{R}^N} \left| V(\boldsymbol{\lambda}) \right|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) \exp\left(-\frac{1}{2(1+b)} p_2(\boldsymbol{\lambda}) \right) \, \mathrm{d} \boldsymbol{\lambda}.$$

Theorem (Goulden, Jackson, Okounkov)

$$M(N, \mathbf{y}, z; b) = (1+b)\frac{2z}{\partial z} \ln \left\langle \exp\left(\frac{1}{1+b} \sum_{k\geq 1} \frac{1}{k} y_k p_k(\lambda) \sqrt{z}^k\right) \right\rangle$$

Predict that replacing $2z\frac{\partial}{\partial z}$ with $\sum_{j\geq 1} jr_j\frac{\partial}{\partial y_j}$ gives the refinement.

An integral expression for $M(N, \mathbf{y}, z; b)$

Define the expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle := \int_{\mathbb{R}^N} \left| V(\boldsymbol{\lambda}) \right|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) \exp\left(-\frac{1}{2(1+b)} p_2(\boldsymbol{\lambda}) \right) \, \mathrm{d} \boldsymbol{\lambda}.$$

Theorem (Goulden, Jackson, Okounkov)

$$M(N, \mathbf{y}, z; b) = (1+b)2z \frac{\partial}{\partial z} \ln \left\langle \exp\left(\frac{1}{1+b} \sum_{k \ge 1} \frac{1}{k} y_k p_k(\lambda) \sqrt{z}^k\right) \right\rangle$$

Verify the guess using the following lemma.

Lemma (La Croix)

If N is a fixed positive integer, then

$$\langle p_{j+2}p_{\theta}\rangle = (j+1)b\,\langle p_jp_{\theta}\rangle + (1+b)\sum_{i\in\theta}i\,m_i(\theta)\,\langle p_{j+i}p_{\theta\sim i}\rangle + \sum_{i=0}^{J}\langle p_ip_{j-i}p_{\theta}\rangle.$$

→ロト→部ト→ミト→ミト 三目 りなび

Outline

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

The basis B_g

Is $c_{\nu,\varphi,\epsilon}(b)$ in $\operatorname{span}_{\mathbb{Z}_+}(B_g)$

- The sum $\sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b)$ is.
- If so, then $c_{\nu,\varphi,\epsilon}(b)$ satisfies a functional equation.
- This has been verified.
- For polynomials Ξ_q equals $\operatorname{span}_{\mathbb{Z}}(B_q)$.

$$B_g := \left\{ b^{g-2i} (1+b)^i \colon 0 \le i \le g/2 \right\}$$

$$\Xi_g := \left\{ p \colon p(b-1) = (-b)^g p \left(\frac{1}{b} - 1 \right) \right\}$$

19 / 27

The basis B_g

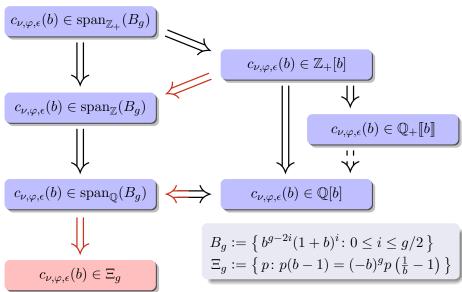
Is $c_{\nu,\varphi,\epsilon}(b)$ in $\operatorname{span}_{\mathbb{Z}_+}(B_g)$

- The sum $\sum_{\ell(\nu)=v} c_{\nu,\varphi,[2^n]}(b)$ is.
- If so, then $c_{\nu,\varphi,\epsilon}(b)$ satisfies a functional equation.
- This has been verified.
- For polynomials Ξ_g equals $\operatorname{span}_{\mathbb{Z}}(B_g)$.

$$B_g := \left\{ b^{g-2i} (1+b)^i \colon 0 \le i \le g/2 \right\}$$

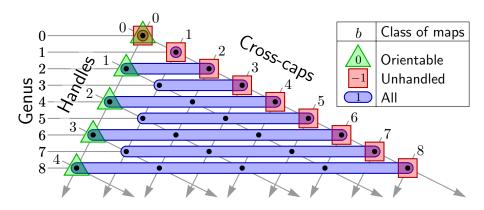
$$\Xi_g := \left\{ p \colon p(b-1) = (-b)^g p \left(\frac{1}{b} - 1 \right) \right\}$$

The basis B_g



Low genus coefficients can be verified

Each dot represents a coefficient of $c_{\nu,\varphi,[2^n]}(b)$ with respect to B_g .



Shaded sums can be obtained by evaluating M at special values of b.

Possible extensions							
	Genus	Edges	Vertices	What is needed?			
	≤ 1	any number	any number	0			
	≤ 2	any number	≤ 3	0			
	≤ 2	and number	any number	1 and 3			
	≤ 4	any number	≤ 2	1 and 2			
	≤ 4	any number	any number	 ♠, and 			
	any genus	≤ 4	any number	Verified			
	any genus	≤ 5	any number	3 or 4			
	any genus	≤ 6	any number	$oldsymbol{0}$ and $oldsymbol{0}$			
	any genus	any number	1	Verified			

- $\mathbf{0} \ c_{\nu,\varphi,\lceil 2^n \rceil}(b)$ is a polynomial
- **2** $M(-\mathbf{x}, -\mathbf{y}, -z; -1)$ enumerates unhandled maps
- **3** Combinatorial sums are in $\operatorname{span}(B_g)$
- 4 An analogue of duality

Outline

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- The q-Conjecture
 - A remarkable identity and the *q*-Conjecture
 - A refinement
- Future Work

Outline

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- 3 The *q*-Conjecture
 - A remarkable identity and the *q*-Conjecture
 - A refinement
- Future Work

A remarkable identity

Theorem (Jackson and Visentin)

$$\begin{split} Q(u^2, x, y, z) &= \frac{1}{2} M(4u^2, y + u, y, xz^2) + \frac{1}{2} M(4u^2, y - u, y, xz^2) \\ &= \operatorname{bis}_{\mathsf{even}\, u} \, M(4u^2, y + u, y, xz^2) \end{split}$$

M is the genus series for rooted orientable maps, and Q is the corresponding series for 4-regular maps.

$$\begin{split} M(u^2,x,y,z) &:= \sum_{\mathfrak{m} \in \mathcal{M}} u^{2g(\mathfrak{m})} x^{v(\mathfrak{m})} y^{f(\mathfrak{m})} z^{e(\mathfrak{m})} \\ Q(u^2,x,y,z) &:= \sum_{\mathfrak{m}} u^{2g(\mathfrak{m})} x^{v(\mathfrak{m})} y^{f(\mathfrak{m})} z^{e(\mathfrak{m})} \end{split}$$

 $g(\mathfrak{m})$, $v(\mathfrak{m})$, $f(\mathfrak{m})$, and $e(\mathfrak{m})$ are genus, #vertices, #faces, and #edges

A remarkable identity

Theorem (Jackson and Visentin)

$$\begin{split} Q(u^2, x, y, z) &= \frac{1}{2} M(4u^2, y + u, y, xz^2) + \frac{1}{2} M(4u^2, y - u, y, xz^2) \\ &= \operatorname{bis}_{\mathsf{even}\, u} \, M(4u^2, y + u, y, xz^2) \end{split}$$

The right hand side is a generating series for a set $\overline{\mathcal{M}}$ consisting of elements of \mathcal{M} with

- each handle decorated independently in one of 4 ways, and
- an even subset of vertices marked.

A remarkable identity

Theorem (Jackson and Visentin)

$$Q(u^2, x, y, z) = \frac{1}{2}M(4u^2, y + u, y, xz^2) + \frac{1}{2}M(4u^2, y - u, y, xz^2)$$

q-Conjecture (Jackson and Visentin)

The identity is explained by a **natural** bijection φ from $\overline{\mathcal{M}}$ to \mathcal{Q} .

A decorated map with

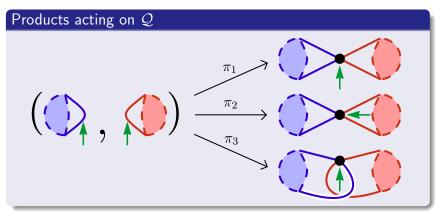
- ullet v vertices
- ullet 2k marked vertices
- ullet e edges
- f faces
- genus g

A 4-regular map with

- e vertices
- ullet 2e edges
- \bullet f + v 2k faces
- genus g + k

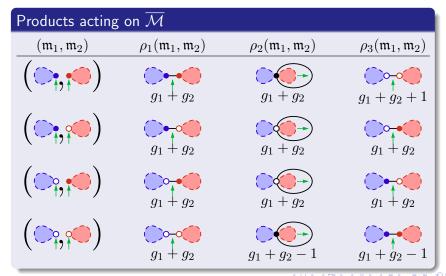
Products of rooted maps

Two special cases suggest comparing products on $\overline{\mathcal{M}}$ and \mathcal{Q} . Details



Products of rooted maps

Two special cases suggest comparing products on $\overline{\mathcal{M}}$ and \mathcal{Q} . Details



Outline

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are b-invariants
- 3 The *q*-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

A refined *q*-Conjecture

Conjecture (La Croix)

There is a natural bijection φ from $\overline{\mathcal{M}}$ to \mathcal{Q} such that:

A decorated map with

- v vertices
- ullet 2k marked vertices
- e edges
- f faces
- genus g

A 4-regular map with

- e vertices
- 2e edges
- \bullet f + v 2k faces
- genus g + k

and

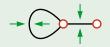
the root edge of $\varphi(\mathfrak{m})$ is face-separating

if and only if

the root vertex of m is not decorated.

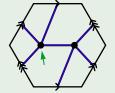
Root vertices in $\overline{\mathcal{M}}$ are related to root edges in \mathcal{Q}

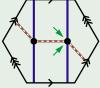
Example (planar maps with 2 edges and 2 decorated vertices)

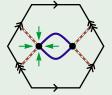


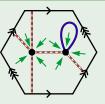
Nine of eleven rooted maps have a decorated root vertex.

Example (4-regular maps on the torus with two vertices)









Nine of fifteen rooted maps have face-non-separating root edges.

Testing the refined conjecture

The refined conjecture has been tested numerically for images of maps with at most 20 edges by expressing the relevant generating series as linear combination of Q and the generating series for (3,1)-pseudo-4-regular maps.

An analytic reformulation

The existence of an appropriate bijection, modulo the definition of 'natural', is equivalent to the following conjectured identity:

$$\langle (p_4 + p_1 p_3) e^{p_4 x} \rangle_{(N)} \langle e^{p_4 x} \rangle_{(N+1)} = - \langle m_{[1,3]} e^{p_4 x} \rangle_{(N+1)} \langle e^{p_4 x} \rangle_{(N)}.$$

for every positive integer N.

Outline

- Background
 - The objects
 - An enumerative problem, and two generating series
- 2 The b-Conjecture
 - An algebraic generalization and the b-Conjecture
 - A family of invariants
 - The invariants resolve a special case
 - Evidence that they are *b*-invariants
- The q-Conjecture
 - A remarkable identity and the q-Conjecture
 - A refinement
- Future Work

On the b-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps.
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection

On the b-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection

On the *b*-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g)$.
- Explicitly compute the generating series for unhandled maps
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection

On the b-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps.
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection

On the b-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps.
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the characterizes the characterizes that characterizes the characterizes that characterizes the characterizes that characterizes the characterizes that characterizes the characterizes the characterizes that characterizes the charact
- Use the refinement to determine additional structure of the bijection

On the *b*-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps.
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection

On the b-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps.
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection

On the *b*-Conjecture

- Show that $c_{\nu,\varphi,\epsilon}(b)$ is a polynomial for every ν , φ , and ϵ .
- ullet Show that the generating series for maps is an element of $\mathrm{span}(B_g).$
- Explicitly compute the generating series for unhandled maps.
- Extend the analysis to hypermaps.

- Verify one of the algebraic or analytic properties that characterizes the refinement.
- Use the refinement to determine additional structure of the bijection.

The End

Thank You

Appendices

Symmetric Functions

6 Computing η

Encodings

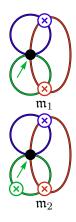
Jack Symmetric Functions

With respect to the inner product defined by

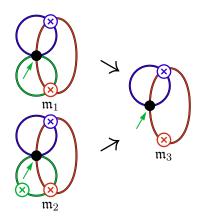
$$\langle p_{\lambda}(\mathbf{x}), p_{\mu}(\mathbf{x}) \rangle = \delta_{\lambda,\mu} \frac{|\lambda|!}{|C_{\lambda}|} \alpha^{\ell(\lambda)},$$

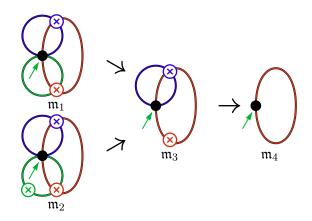
Jack symmetric functions are the unique family satisfying:

- (P1) (Orthogonality) If $\lambda \neq \mu$, then $\langle J_{\lambda}, J_{\mu} \rangle_{\alpha} = 0$.
- (P2) (Triangularity) $J_{\lambda} = \sum_{\mu \preccurlyeq \lambda} v_{\lambda\mu}(\alpha) m_{\mu}$, where $v_{\lambda\mu}(\alpha)$ is a rational function in α , and ' \preccurlyeq ' denotes the natural order on partitions.
- (P3) (Normalization) If $|\lambda| = n$, then $v_{\lambda,[1^n]}(\alpha) = n!$.

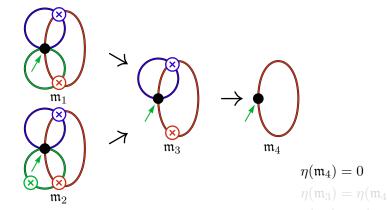


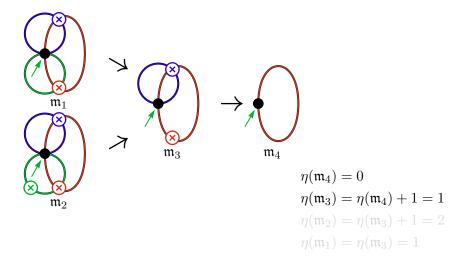
◆ Return

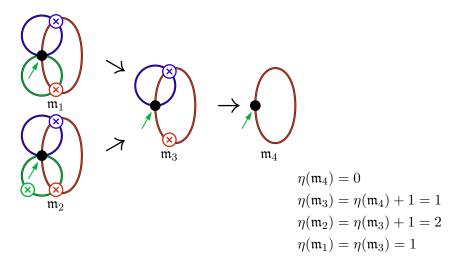




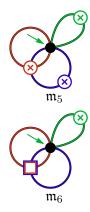
∢ Return

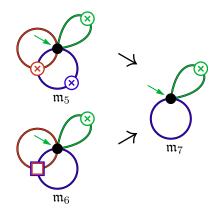


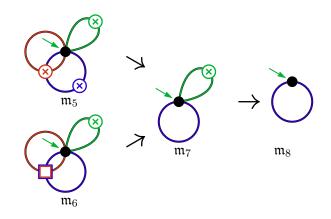


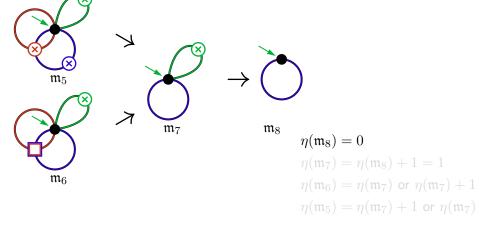


Return
 Re

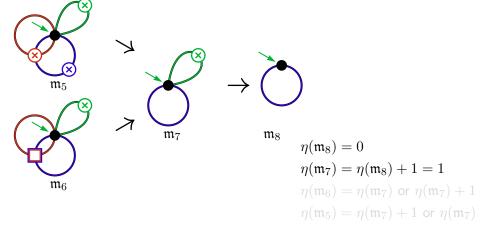




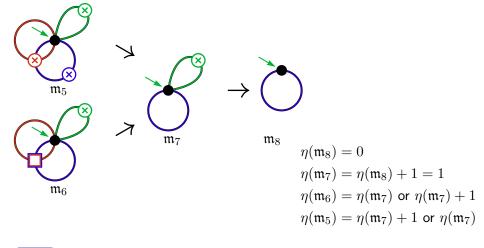




Michael La Croix (University of Waterloo)



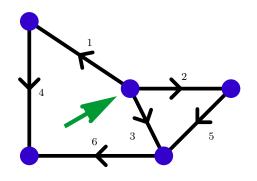
Michael La Croix (University of Waterloo)



Return

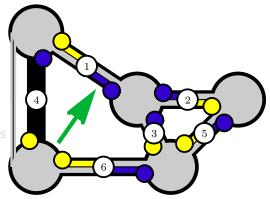
 $\{\eta(\mathfrak{m}_5),\eta(\mathfrak{m}_6)\}=\{1,2\}$

- Orient and label the edges.
- ② This induces labels on flags.
- Clockwise circulations at each vertex determine v.
- **1** Face circulations are the cycles of $\epsilon \nu$.



 $\epsilon = (1\ 1')(2\ 2')(3\ 3')(4\ 4')(5\ 5')(6\ 6')$ $\nu = (1\ 2\ 3)(1'\ 4)(2'\ 5)(3'\ 5'\ 6)(4'\ 6')$ $\epsilon \nu = \varphi = (1\ 4\ 6'\ 3')(1'\ 2\ 5\ 6\ 4')(2'\ 3\ 5')$

- Orient and label the edges.
- 2 This induces labels on flags.
- ① Clockwise circulations at each vertex determine ν .
- Face circulations are the cycles of $\epsilon \nu$.

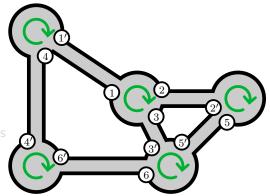


$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \varphi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- **①** Face circulations are the cycles of $\epsilon \nu$.

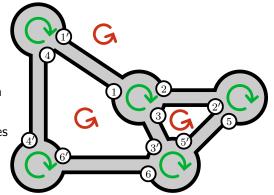


$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \varphi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

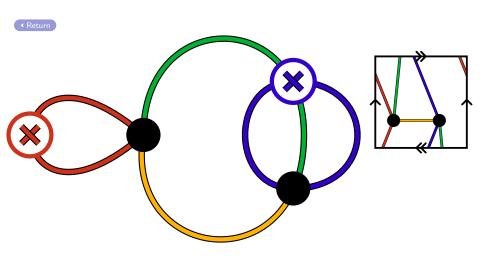
- Orient and label the edges.
- This induces labels on flags.
- **Solution** Clockwise circulations at each vertex determine ν .
- Face circulations are the cycles of $\epsilon \nu$.



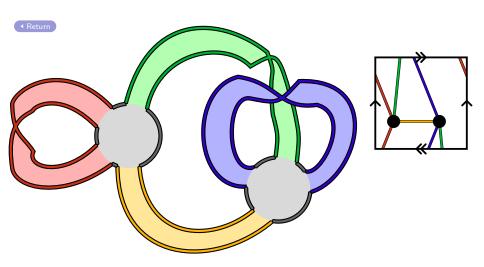
$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

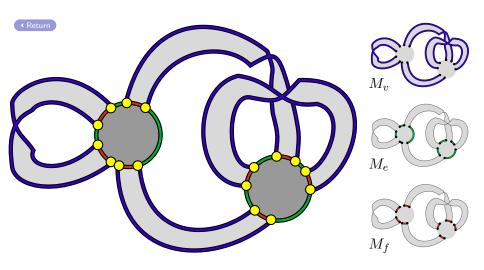
$$\epsilon \nu = \varphi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$



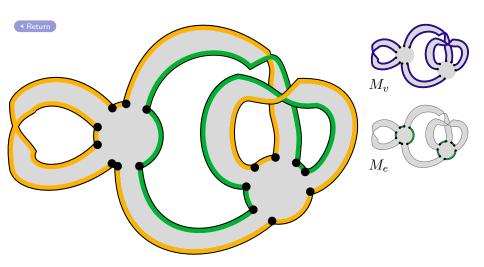
Start with a ribbon graph.



Start with a ribbon graph.



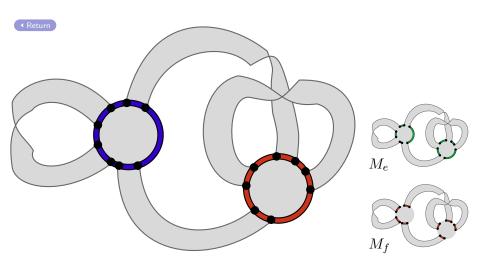
Ribbon boundaries determine $\boldsymbol{3}$ perfect matchings of flags.



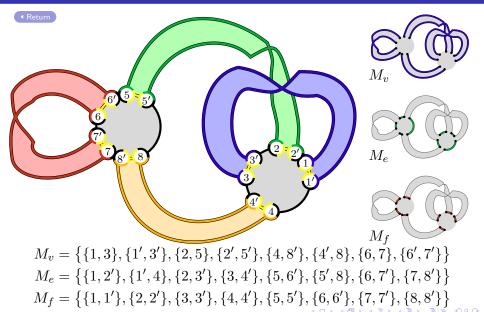
Pairs of matchings determine, faces,



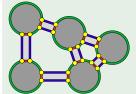
Pairs of matchings determine, faces, edges,



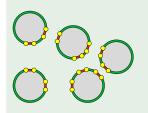
Pairs of matchings determine, faces, edges, and vertices.



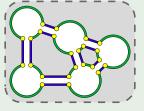
Example



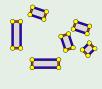
is enumerated by $\left(x_2^3\,x_3^2\right)\left(y_3\,y_4\,y_5\right)\left(z_2^6\right)$.



$$\nu = [2^3, 3^2]$$

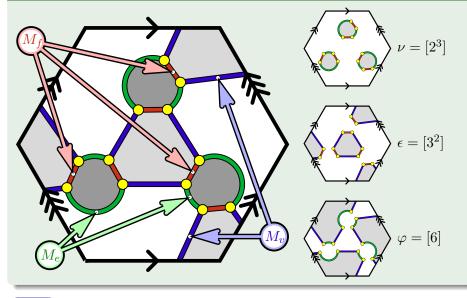


$$\varphi = [3, 4, 5]$$

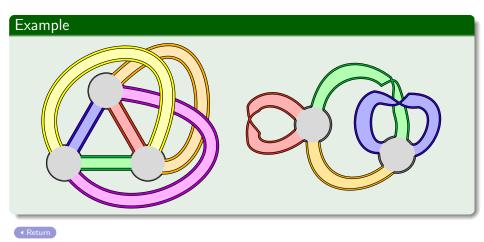


$$\epsilon = [2^6]$$

Example

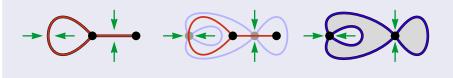


Ribbon Graphs



Two Clues

The radial construction for undecorated maps

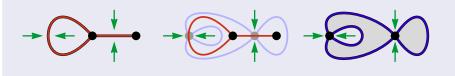


One extra image of φ

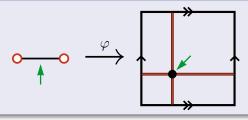
◆ Return to products

Two Clues

The radial construction for undecorated maps

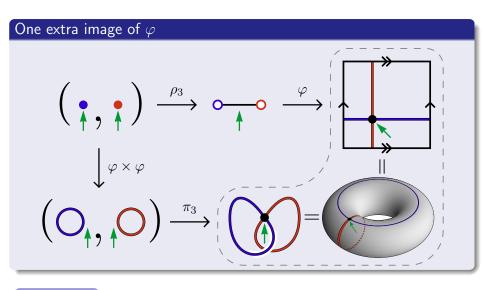


One extra image of φ

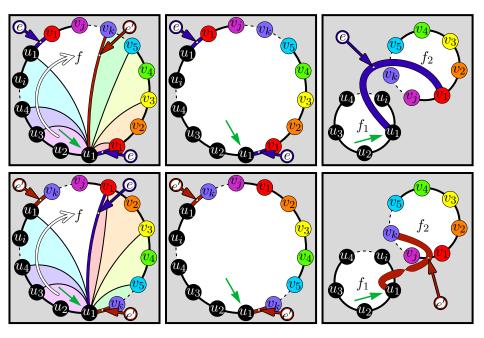


Return to products

Two Clues



Return to product:



The integration formula

Define the expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle := \int_{\mathbb{R}^N} \left| V(\boldsymbol{\lambda}) \right|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) \exp\left(-\frac{1}{2(1+b)} p_2(\boldsymbol{\lambda}) \right) d\boldsymbol{\lambda}.$$

Lemma (Okounkov)

$$\langle J_{\theta}(\boldsymbol{\lambda}, 1+b) \rangle = J_{\theta}(\mathbf{1}_{N}, 1+b)[p_{[2^{n}]}]J_{\theta}\langle 1 \rangle$$