Combinatorial Models for Random Matrices with Gaussian Entries

Michael La Croix

Massachusetts Institute of Technology

January 27, 2015

- Random Matrices and Maps
 - What are Random Matrices?
 - Moments of random matrices count maps
 - What are Maps?
- 2 An Algebraic Perspective
 - Encoding Non-oriented Maps
 - Encoding Oriented Maps
 - Generalizing to Hypermaps
 - Generating Series
- 3 Combining Continuous and Discrete Perspectives
 - A Integration Formula for zonal polynomials
- $lue{4}$ Generalizing eta
 - Jack symmetric functions
 - A Recurrence

Collaborators

David M. Jackson

University of Waterloo Waterloo, ON, Canada

Alan Edelman

MIT Cambridge, MA, U.S.A.

Outline

- Random Matrices and Maps
 - What are Random Matrices?
 - Moments of random matrices count maps
 - What are Maps?
- 2 An Algebraic Perspective
 - Encoding Non-oriented Maps
 - Encoding Oriented Maps
 - Generalizing to Hypermaps
 - Generating Series
- 3 Combining Continuous and Discrete Perspectives
 - A Integration Formula for zonal polynomials
- 4 Generalizing 6
 - Jack symmetric functions
 - A Recurrence

Random Matrices

A **Random matrix** is a matrix with random elements.

Often:

questions involve eigenvalues,
entries are mostly independent,
entries are real or complex.

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1m} \\ A_{21} & A_{22} & \dots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nm} \end{bmatrix}$$

Some Combinatorial Random Matrices

Ginibre Hermite (Gaussian) Laguerre (Wishart)
$$A \qquad H = \frac{1}{2}(A + A^*) \qquad W = AA^*$$

Less Combinatorial Random Matrices

Jacobi / MANOVA Unitary Orthogonal Circular

Universality

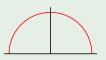
A typical theorem about random matrices:

- Shows dependence on entry distribution is weak.
- 2 Establishes the result when entries are i.i.d. Gaussian.

We'll focus on step 2.

Example (Wigner's Semicircle Law)

$$E(\operatorname{tr}(H^{2k})) = n^{k-1} \frac{1}{k+1} \binom{2k}{k} + O(n^{k-2})$$



Gaussian Random Variables Have Combinatorial Moments

Real Gaussians, X, with mean 0 and variance 1

$$E(X^n) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} x^n e^{-\frac{x^2}{2}} dx = \begin{cases} m!! & \text{if } n = 2m \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

Complex Gaussians, Z, with mean 0 and variance 1

$$E(Z^{k}\overline{Z}^{l}) = \frac{1}{\pi} \int_{\mathbb{C}} z^{k} \overline{z}^{l} e^{-|z|^{2}} dz = \begin{cases} k! & \text{if } k = l \\ 0 & \text{if } k \neq l \end{cases}$$

Gaussian Ensembles

For $\beta \in \{1,2,4\}$ an element of the β -Gaussian ensemble is constructed as

$$A = G + G^*$$

where G is $n \times n$ with i.i.d. Guassian entries selected from $\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$.

Motivating Question

What is the value of E(f(A)), when f is a symmetric function of the eigenvalues of its argument?

$$E(\operatorname{tr}(A^5)\operatorname{tr}(A^3)) = \begin{cases} 510n + 720n^2 + 360n^3 + 90n^4 & \beta = 1\\ 60n^2 + 45n^4 & \beta = 2\\ -\frac{255}{16}n + 45n^2 - 45n^3 + \frac{45}{2}n^4 & \beta = 4 \end{cases}$$

Gaussian Ensembles

For $\beta \in \{1,2,4\}$ an element of the β -Gaussian ensemble is constructed as

$$A = G + G^*$$

where G is $n \times n$ with i.i.d. Guassian entries selected from $\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$.

Motivating Question

What is the value of E(f(A)), when f is a symmetric function of the eigenvalues of its argument?

$$E(\operatorname{tr}(A^4)) = \begin{cases} 5n + 5n^2 + 2n^3 & \beta = 1\\ n + 2n^3 & \beta = 2\\ \frac{5}{4}n - \frac{5}{2}n^2 + 2n^3 & \beta = 4 \end{cases}$$

Gaussian Ensembles

For $\beta \in \{1,2,4\}$ an element of the β -Gaussian ensemble is constructed as

$$A = G + G^*$$

where G is $n \times n$ with i.i.d. Guassian entries selected from $\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$.

Motivating Question

What is the value of E(f(A)), when f is a symmetric function of the eigenvalues of its argument?

$$E(\operatorname{tr}(A^4)) = \begin{cases} 5n + 5n^2 + 2n^3 & \beta = 1\\ n + 2n^3 & \beta = 2\\ (1 + b + 3b^2)n + 5bn^2 + 2n^3 & \beta = \frac{2}{1+b} \end{cases}$$

$$\operatorname{tr}(A^{4}) = \sum_{i,j,k,l} A_{ij} A_{jk} A_{kl} A_{li} \qquad A_{li} \qquad A_{li} \qquad A_{jk} A_{kl} A_{li}$$

$$E(tr(A^{4})) = (n)_{1}E(A_{11}A_{11}A_{11}A_{11}) + (n)_{2}E(2A_{11}A_{12}A_{22}A_{21})$$

$$+ (n)_{2}E(4A_{11}A_{11}A_{12}A_{21}) + (n)_{4}E(A_{12}A_{23}A_{34}A_{41})$$

$$+ (n)_{2}E(A_{12}A_{21}A_{12}A_{21}) + (n)_{3}E(4A_{11}A_{12}A_{23}A_{31})$$

$$+ (n)_{3}E(2A_{12}A_{21}A_{13}A_{31})$$

$$\operatorname{tr}(A^{4}) = \sum_{i,j,k,l} A_{ij} A_{jk} A_{kl} A_{li} \qquad A_{li} \qquad A_{li} \qquad A_{jk} A_{jk}$$

$$\begin{split} \mathbf{E}\left(\mathrm{tr}(A^4)\right) &= (n)_1\mathbf{E}(A_{11}A_{11}A_{11}A_{11}) + (n)_2\mathbf{E}(2A_{11}A_{12}A_{22}A_{21}) \\ &+ (n)_2\mathbf{E}(4A_{11}A_{11}A_{12}A_{21}) + (n)_4\mathbf{E}(A_{12}A_{23}A_{34}A_{41}) \\ &+ (n)_2\mathbf{E}(A_{12}A_{21}A_{12}A_{21}) + (n)_3\mathbf{E}(4A_{11}A_{12}A_{23}A_{31}) \\ &+ (n)_3\mathbf{E}(2A_{12}A_{21}A_{13}A_{31}) \end{split}$$

$$\operatorname{tr}(A^{4}) = \sum_{i,j,k,l} A_{ij} A_{jk} A_{kl} A_{li} \qquad A_{li} \qquad A_{kl} \qquad A_{kl}$$

$$\mathbf{E}\left(\text{tr}(\mathbf{A}^{4})\right) = (n)_{1}\mathbf{E}(A_{11}A_{11}A_{11}A_{11}) + (n)_{2}\mathbf{E}(2A_{11}A_{12}A_{22}A_{21})$$

$$+ (n)_{2}\mathbf{E}(4A_{11}A_{11}A_{12}A_{21}) + (n)_{4}\mathbf{E}(A_{12}A_{23}A_{34}A_{41})$$

$$+ (n)_{2}\mathbf{E}(A_{12}A_{21}A_{12}A_{21}) + (n)_{3}\mathbf{E}(4A_{11}A_{12}A_{23}A_{31})$$

$$+ (n)_{3}\mathbf{E}(2A_{12}A_{21}A_{13}A_{31})$$

$$\operatorname{tr}(A^{4}) = \sum_{i,j,k,l} A_{ij} A_{jk} A_{kl} A_{li} \qquad A_{li} \qquad A_{kl} \qquad A_{kl}$$

$$\mathbf{E}\left(\mathbf{tr}(\mathbf{A}^{4})\right) = (n)_{1}\mathbf{E}(A_{11}A_{11}A_{11}A_{11}) + (n)_{2}\mathbf{E}(2A_{11}A_{12}A_{22}A_{21})$$

$$+ (n)_{2}\mathbf{E}(4A_{11}A_{11}A_{12}A_{21}) + (n)_{4}\mathbf{E}(A_{12}A_{23}A_{34}A_{41})$$

$$+ (n)_{2}\mathbf{E}(A_{12}A_{21}A_{12}A_{21}) + (n)_{3}\mathbf{E}(4A_{11}A_{12}A_{23}A_{31})$$

$$+ (n)_{3}\mathbf{E}(2A_{12}A_{21}A_{13}A_{31})$$

$$\operatorname{tr}(A^{4}) = \sum_{i,j,k,l} A_{ij} A_{jk} A_{kl} A_{li} \qquad A_{li} \qquad A_{kl} A_{kl} A_{kl}$$

$$E(tr(A^{4})) = (n)_{1}E(A_{11}A_{11}A_{11}A_{11}) + (n)_{2}E(2A_{11}A_{12}A_{22}A_{21})$$

$$+ (n)_{2}E(4A_{11}A_{11}A_{12}A_{21}) + (n)_{4}E(A_{12}A_{23}A_{34}A_{41})$$

$$+ (n)_{2}E(A_{12}A_{21}A_{12}A_{21}) + (n)_{3}E(4A_{11}A_{12}A_{23}A_{31})$$

$$+ (n)_{3}E(2A_{12}A_{21}A_{13}A_{31})$$

$$\operatorname{tr}(A^{4}) = \sum_{i,j,k,l} A_{ij} A_{jk} A_{kl} A_{li} \qquad A_{li} \qquad A_{kl} A_{kl}$$

$$E(tr(A^{4})) = (n)_{1}E(A_{11}A_{11}A_{11}A_{11})$$

$$+ (n)_{2}E(4A_{11}A_{11}A_{12}A_{21})$$

$$+ (n)_{2}E(A_{12}A_{21}A_{12}A_{21})$$

$$+ (n)_{3}E(2A_{12}A_{21}A_{13}A_{31})$$

Expectations as Sums

Since the entries of A are centred Gaussians, Wick's lemma applies

$$E(A_{i_1j_1}A_{i_2j_2}\dots A_{i_kj_k}) = \sum_{m} \prod_{(u,v)\in m} E(A_uA_v)$$

summed over perfect matchings of the multiset $\{i_1j_1,i_2j_2,\ldots,i_kj_k\}$

$$E(A_u A_v A_w A_x) = E(A_u A_v) E(A_w A_x)$$
$$+ E(A_u A_w) E(A_v A_x)$$
$$+ E(A_u A_x) E(A_v A_w)$$

Expectations as Sums

Since the entries of A are centred Gaussians, Wick's lemma applies

$$E(A_{i_1j_1}A_{i_2j_2}\dots A_{i_kj_k}) = \sum_{m} \prod_{(u,v)\in m} E(A_uA_v)$$

summed over perfect matchings of the multiset $\{i_1j_1,i_2j_2,\ldots,i_kj_k\}$

$$E(A_u A_v A_w A_x) = E(A_u A_v) E(A_w A_x)$$
$$+ E(A_u A_w) E(A_v A_x)$$
$$+ E(A_u A_x) E(A_v A_w)$$

Expectations as Sums

Since the entries of A are centred Gaussians, Wick's lemma applies

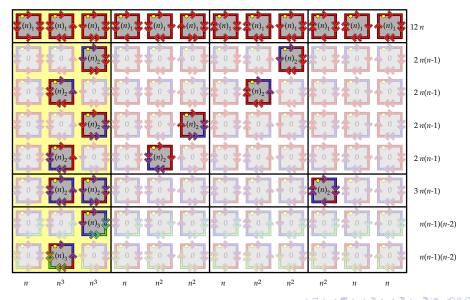
$$E(A_{i_1j_1}A_{i_2j_2}\dots A_{i_kj_k}) = \sum_{m} \prod_{(u,v)\in m} E(A_uA_v)$$

summed over perfect matchings of the multiset $\{i_1j_1,i_2j_2,\ldots,i_kj_k\}$

$$\sum_{p \text{ a painting}} \#\{\text{pairings consistent with } p\}$$

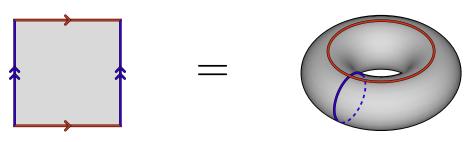
$$= \sum_{m \text{ a matching}} \#\{\text{paintings consistent with } m\}$$

Count the polygon glueings in 2 different ways



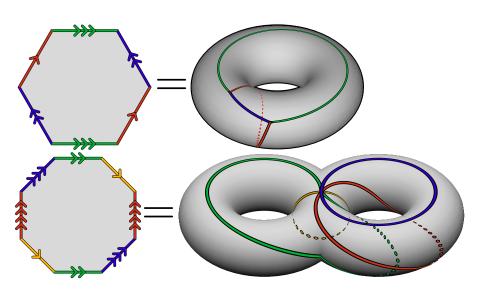
Polygon Glueings = Maps

Identifying the edges of a polygon creates a surface.



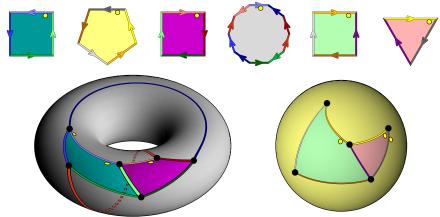
Its boundary is a graph embedded in the surface.

${\sf Polygon\ Glueings} = {\sf Maps}$



Polygon Glueings = Maps

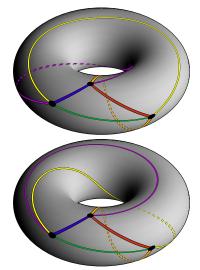
Extra polygons give extra faces (and possibles extra components)



This glueing contributes n^{11} to $E \left(p_{3,4^3,5,10}(A) \right)$

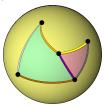
Equivalence of Maps

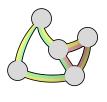
Two maps are equivalent if the embeddings are homeomorphic.

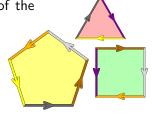


Vertices and Face

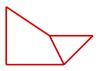
A map can be recovered from a neighbourhood of the graph, or from its faces and surgery instructions.

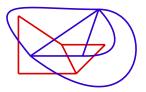


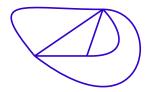




Vertex and face degrees are interchanged by duality.



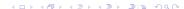




Duality

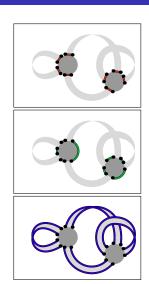
Outline

- Random Matrices and Maps
 - What are Random Matrices?
 - Moments of random matrices count maps
 - What are Maps?
- 2 An Algebraic Perspective
 - Encoding Non-oriented Maps
 - Encoding Oriented Maps
 - Generalizing to Hypermaps
 - Generating Series
- 3 Combining Continuous and Discrete Perspectives
 - A Integration Formula for zonal polynomials
- 4 Generalizing *b*
 - Jack symmetric functions
 - A Recurrence



Three Involutions

Three natural involutions reroot a map.



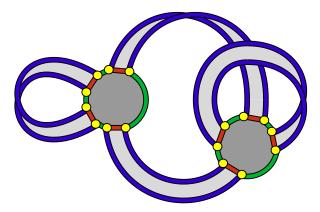
Across Edge

Around Vertex

Along Edge

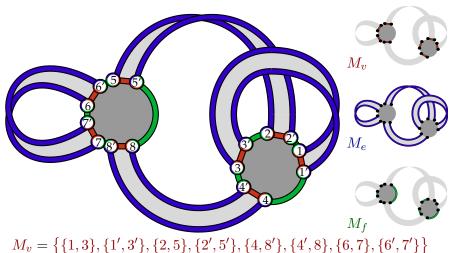
The Matchings Encode the Map

Each involution gives a perfect matching of flags.



Pairs of matchings recover vertices, edges, and faces.

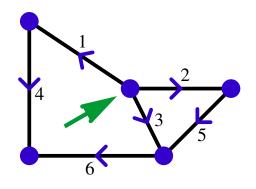
Encodinge Non-oriented Maps



$$M_{e} = \{\{1, 2'\}, \{1', 4\}, \{2, 3'\}, \{3, 4'\}, \{5, 6'\}, \{5', 8\}, \{6, 7'\}, \{7, 8'\}\}\}$$

$$M_{f} = \{\{1, 1'\}, \{2, 2'\}, \{3, 3'\}, \{4, 4'\}, \{5, 5'\}, \{6, 6'\}, \{7, 7'\}, \{8, 8'\}\}\}$$

- Orient and label the edges.
- 2 This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- **1** Face circulations are the cycles of $\epsilon \nu$.

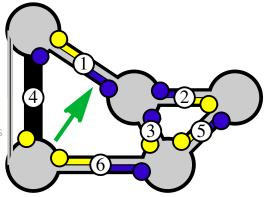


$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \phi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

- Orient and label the edges.
- 2 This induces labels on flags.
- 3 Clockwise circulations at each vertex determine ν .
- **1** Face circulations are the cycles of $\epsilon \nu$.

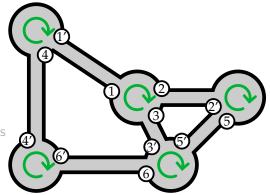


$$\epsilon = (1\ 1')(2\ 2')(3\ 3')(4\ 4')(5\ 5')(6\ 6')$$

$$\nu = (1\ 2\ 3)(1'\ 4)(2'\ 5)(3'\ 5'\ 6)(4'\ 6')$$

$$\epsilon\nu = \phi = (1\ 4\ 6'\ 3')(1'\ 2\ 5\ 6\ 4')(2'\ 3\ 5')$$

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- **1** Face circulations are the cycles of $\epsilon \nu$.

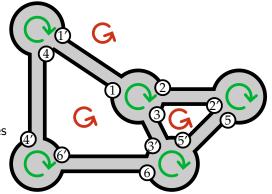


$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \phi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- Face circulations are the cycles of $\epsilon \nu$.



$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

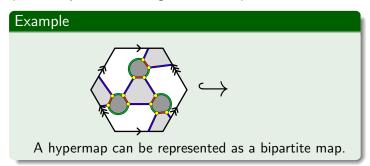
$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \phi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

Hypermaps

An **arbitrary** triple of perfect matchings determines a **hypermap** with cycles of $M_e \cup M_f$, $M_e \cup M_v$, and $M_v \cup M_f$ determining vertices, faces, and **hyperedges**. •Example

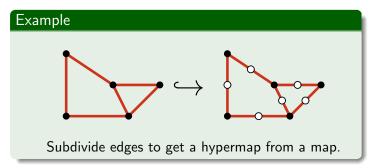
Hypermaps both specialize and generalize maps.



Hypermaps

An **arbitrary** triple of perfect matchings determines a **hypermap** with cycles of $M_e \cup M_f$, $M_e \cup M_v$, and $M_v \cup M_f$ determining vertices, faces, and **hyperedges**. •Example

Hypermaps both specialize and generalize maps.



The Hypermap Series

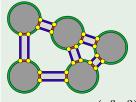
Definition

The **hypermap series** for a set \mathcal{H} of hypermaps is the combinatorial sum

$$H(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \sum_{\mathfrak{h} \in \mathcal{H}} \mathbf{x}^{\nu(\mathfrak{h})} \mathbf{y}^{\phi(\mathfrak{h})} \mathbf{z}^{\epsilon(\mathfrak{h})}$$

 $\nu(\mathfrak{h}), \phi(\mathfrak{h}), \text{ and } \epsilon(\mathfrak{h})$ are vertex-, hyperface-, and hyperedge- degrees.

Example



$$\nu = [2^3, 3^2]$$

$$\nu = [2^3, 3^2]$$
 $\phi = [3, 4, 5]$

$$\epsilon = [2^6]$$

contributes $12(x_2^3x_3^2)(y_3y_4y_5)(z_2^6)$.

Generating Series Algebraically

- Instead of counting rooted maps, we can count labelled hypermaps.
 This adds easily computable multiplicities.
- These in turn are reduced to computing a multiplication table for appropriate algebras.
 - ullet $\mathbb{C}[\mathfrak{S}]$ for oriented hypermaps
 - A double-coset algebra for non-oriented hypermaps.
- These can be evaluated via character theory.
- Appropriate characters appear as coefficients of symmetric functions.
- Standard enumerative techniques restrict the solution to connected maps and remove factors introduced by the labelling.

Explicit Generating Series

Some hypermap series can be computed explicitly.

Theorem (Jackson and Visentin - 1990)

► Matrix Derivation

When \mathcal{H} is the set of connected oriented hypermaps,

$$H_{\mathcal{O}}(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); 0) = t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} t^{|\theta|} H_{\theta} s_{\theta}(\mathbf{x}) s_{\theta}(\mathbf{y}) s_{\theta}(\mathbf{z}) \right) \bigg|_{t=1.}$$

Theorem (Goulden and Jackson - 1996)

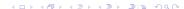
► Matrix Derivation

When ${\cal H}$ is the set of connected non-oriented hypermaps,

$$H_{\mathcal{A}}\Big(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); 1\Big) = 2t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} t^{|\theta|} \frac{1}{H_{2\theta}} Z_{\theta}(\mathbf{x}) Z_{\theta}(\mathbf{y}) Z_{\theta}(\mathbf{z}) \right) \bigg|_{t=1.}$$

Outline

- Random Matrices and Maps
 - What are Random Matrices?
 - Moments of random matrices count maps
 - What are Maps?
- 2 An Algebraic Perspective
 - Encoding Non-oriented Maps
 - Encoding Oriented Maps
 - Generalizing to Hypermaps
 - Generating Series
- 3 Combining Continuous and Discrete Perspectives
 - A Integration Formula for zonal polynomials
- 4 Generalizing 6
 - Jack symmetric functions
 - A Recurrence



Why do Schur functions and zonal polynomials appear?

This depends on your perspective.

Continuous

Edge labelled maps can be encoded as permutations.

Schur functions come from characters of the symmetric group.

Discrete

• Face-Painted maps can be counted by matrix integrals.

Schur functions are characters of Lie groups.

Two Perspectives at Once

An Integration Formula for the GOE

We can also build the generating series from matrix moments.

$$\begin{split} H_{\mathcal{A}}\Big(p(\mathbf{x}), p(\mathbf{y}), \mathbf{z}|_{z_{i}=z} \delta_{i,2}; 0\Big) \\ &= 2t \frac{\partial}{\partial t} \ln \int \mathrm{e}^{\sum_{k} \frac{1}{2k} p_{k}(XM) p_{k}(Y) \sqrt{z}^{k}} t^{k} \mathrm{e}^{-\frac{1}{4} \operatorname{tr}(M^{2})} \mathrm{d}M \bigg|_{t=1} \\ &= 2t \frac{\partial}{\partial t} \ln \int \sum_{\theta \in \mathcal{P}} \frac{Z_{\theta}(XM) Z_{\theta}(Y)}{\langle Z_{\theta}, Z_{\theta} \rangle_{2}} z^{|\theta|/2} t^{|\theta|} \mathrm{e}^{-\frac{1}{4} \operatorname{tr}(M^{2})} \mathrm{d}M \bigg|_{t=1} \end{split}$$

Corollary (Goulden and Jackson - 1997)

When A is taken from GOE_n ,

$$E(Z_{\theta})(XA) = Z_{\theta}(X) [p_{2^{|\theta|/2}}] Z_{\theta}$$

Example Using Zonal Polynomials

$$\begin{split} Z_{[1^4]} &= & 1p_{[1^4]} & -6p_{[2,1^2]} & +3p_{[2,2]} & +8p_{[3,1]} & -6p_{[4]} \\ Z_{[2,1^2]} &= & 1p_{[1^4]} & -p_{[2,1^2]} & -2p_{[2,2]} & -2p_{[3,1]} & +4p_{[4]} \\ Z_{[2^2]} &= & 1p_{[1^4]} & +2p_{[2,1^2]} & +7p_{[2,2]} & -8p_{[3,1]} & -2p_{[4]} \\ Z_{[3,1]} &= & 1p_{[1^4]} & +5p_{[2,1^2]} & -2p_{[2,2]} & +4p_{[3,1]} & -8p_{[4]} \\ Z_{[4]} &= & 1p_{[1^4]} & +12p_{[2,1^2]} & +12p_{[2,2]} & +32p_{[3,1]} & +48p_{[4]} \end{split}$$

θ $[1^4]$	$[2, 1^2]$	$[2^{2}]$	[3, 1]	[4]
$\langle p_{\theta}, p_{\theta} \rangle_2 \mid 4! \cdot 2^4 = 384$	$2! \cdot 2 \cdot 2^3 = 32$	$2! \cdot 2^2 \cdot 2^2 = 32$	$3 \cdot 2^2 = 12$	$4 \cdot 2 = 8$
$\langle Z_{\theta}, Z_{\theta} \rangle_2$ 2880	720	2880	2016	40320

$$\langle Z_{[4]}, Z_{[4]} \rangle = \mathbf{1}^2 \cdot 384 + \mathbf{12}^2 \cdot 32 + \mathbf{12}^2 \cdot 32 + \mathbf{32}^2 \cdot 12 + \mathbf{48}^2 \cdot 8 = 40320$$

Example Using Zonal Polynomials

$$\begin{split} Z_{[1^4]} &= & 1p_{[1^4]} & -6p_{[2,1^2]} & +3p_{[2,2]} & +8p_{[3,1]} & -6p_{[4]} \\ Z_{[2,1^2]} &= & 1p_{[1^4]} & -p_{[2,1^2]} & -2p_{[2,2]} & -2p_{[3,1]} & +4p_{[4]} \\ Z_{[2^2]} &= & 1p_{[1^4]} & +2p_{[2,1^2]} & +7p_{[2,2]} & -8p_{[3,1]} & -2p_{[4]} \\ Z_{[3,1]} &= & 1p_{[1^4]} & +5p_{[2,1^2]} & -2p_{[2,2]} & +4p_{[3,1]} & -8p_{[4]} \\ Z_{[4]} &= & 1p_{[1^4]} & +12p_{[2,1^2]} & +12p_{[2,2]} & +32p_{[3,1]} & +48p_{[4]} \end{split}$$

θ $[1^4]$	$[2,1^2]$	$[2^2]$	[3, 1]	[4]
$\langle p_{\theta}, p_{\theta} \rangle_2 \mid 4! \cdot 2^4 = 38$	$4 2! \cdot 2 \cdot 2^3 = 32$	$2! \cdot 2^2 \cdot 2^2 = 32$	$3 \cdot 2^2 = 12$	$4 \cdot 2 = 8$
$\langle Z_{\theta}, Z_{\theta} \rangle_2$ 2880	720	2880	2016	40320

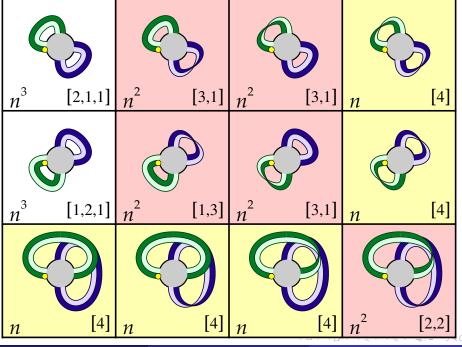
$$p_{[4]} = -6\frac{8}{2880}Z_{[1^4]} + 4\frac{8}{720}Z_{[2,1^2]} - 2\frac{8}{2880}Z_{[2^2]} - 8\frac{8}{2016}Z_{[3,1]} + 48\frac{8}{40320}Z_{[4]}$$

Example Using Zonal Polynomials

$$\begin{split} Z_{[1^4]} &= & 1p_{[1^4]} & -6p_{[2,1^2]} & +3p_{[2,2]} & +8p_{[3,1]} & -6p_{[4]} \\ Z_{[2,1^2]} &= & 1p_{[1^4]} & -p_{[2,1^2]} & -2p_{[2,2]} & -2p_{[3,1]} & +4p_{[4]} \\ Z_{[2^2]} &= & 1p_{[1^4]} & +2p_{[2,1^2]} & +7p_{[2,2]} & -8p_{[3,1]} & -2p_{[4]} \\ Z_{[3,1]} &= & 1p_{[1^4]} & +5p_{[2,1^2]} & -2p_{[2,2]} & +4p_{[3,1]} & -8p_{[4]} \\ Z_{[4]} &= & 1p_{[1^4]} & +12p_{[2,1^2]} & +12p_{[2,2]} & +32p_{[3,1]} & +48p_{[4]} \end{split}$$

$$p_{[4]} = -6\frac{8}{2880}Z_{[1^4]} + 4\frac{8}{720}Z_{[2,1^2]} - 2\frac{8}{2880}Z_{[2^2]} - 8\frac{8}{2016}Z_{[3,1]} + 48\frac{8}{40320}Z_{[4]}$$

$$E(p_{[4]}(YA)) = -6\frac{8}{2880}(3)(1y_1^4 - 6y_2y_1^2 + 3y_2^2 + 8y_3y_1 - 6y_4) + 4\frac{8}{720}(-2)(1y_1^4 - 1y_2y_1^2 - 2y_2^2 - 2y_3y_1 + 4y_4) -2\frac{8}{2880}(7)(1y_1^4 + 2y_2y_1^2 + 7y_2^2 - 8y_3y_1 - 2y_4) - 8\frac{8}{2016}(-2)(1y_1^4 + 5y_2y_1^2 - 2y_2^2 + 4y_3y_1 - 8y_4) +48\frac{8}{40320}(12)(1y_1^4 + 12y_2y_1^2 + 12y_2^2 + 32y_3y_1 + 48y_4) =2y_2y_1^2 + y_2^2 + 4y_3y_1 + 5y_4$$



Outline

- Random Matrices and Maps
 - What are Random Matrices?
 - Moments of random matrices count maps
 - What are Maps?
- 2 An Algebraic Perspective
 - Encoding Non-oriented Maps
 - Encoding Oriented Maps
 - Generalizing to Hypermaps
 - Generating Series
- 3 Combining Continuous and Discrete Perspectives
 - A Integration Formula for zonal polynomials
- 4 Generalizing β
 - Jack symmetric functions
 - A Recurrence

A Generalized Hypermap Series

A common generalization involves Jack symmetric functions, **Definition**.

b-Conjecture (Goulden and Jackson - 1996)

$$H\left(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); b\right)$$

$$:= (1+b)t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} t^{|\theta|} \frac{J_{\theta}^{(1+b)}(\mathbf{x}) J_{\theta}^{(1+b)}(\mathbf{y}) J_{\theta}^{(1+b)}(\mathbf{z})}{\langle J_{\theta}, J_{\theta} \rangle_{1+b} [p_{1^{|\theta|}}] J_{\theta}} \right) \Big|_{t=1}$$

$$= \sum_{n \geq 0} \sum_{\nu, \phi, \epsilon \vdash n} c_{\nu, \phi, \epsilon}(b) p_{\nu}(\mathbf{x}) p_{\phi}(\mathbf{y}) p_{\epsilon}(\mathbf{z}),$$

enumerates rooted hypermaps with $c_{\nu,\phi,\epsilon}(b) = \sum_{\mathfrak{h}\in\mathcal{H}_{\nu,\phi,\epsilon}} b^{\beta(\mathfrak{h})}$ for some β .

General Gaussian Ensembles

In terms of Jack functions, we get:

Corollary (Goulden and Jackson - 1997)

When A is taken from GUE_n ,

$$E(J_{\theta}^{(1)}(XA)) = J_{\theta}^{(1)}(X) [p_{2^{|\theta|/2}}] J_{\theta}^{(1)}$$

Corollary (Implicit in Jackson - 1995)

When A is taken from GOE_n ,

$$E(J_{\theta}^{(2)}(XA)) = J_{\theta}^{(2)}(X) [p_{2|\theta|/2}] J_{\theta}^{(2)}$$

$$X = \operatorname{diag}(x_1, x_2, \dots, x_n)$$

For general β , integrate over eigenvalues

We can generalize the eigenvalue density.

Definition

For a function $f \colon \mathbb{R}^n \to \mathbb{R}$, define an expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle_{1+b} := c_{1+b} \int_{\mathbb{R}^n} |V(\boldsymbol{\lambda})|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) e^{-\frac{1}{2(1+b)}p_2(\boldsymbol{\lambda})} d\boldsymbol{\lambda},$$

with c_{1+b} chosen such that $\langle 1 \rangle_{1+b} = 1$.

Theorem (Okounkov - 1997)

If n is a positive integer, 1+b>0, and $\theta \vdash 2n$, then

$$\langle J_{\theta}^{(1+b)}(\boldsymbol{\lambda}) \rangle_{1+b} = J_{\theta}^{(1+b)}(I_n)[p_{[2^n]}]J_{\theta}^{(1+b)}.$$

Expectations of power-sums are polynomials

The eigenvalues of \boldsymbol{A} are all real with joint density proportional to

$$\prod_{1 \le i < j \le n} |\lambda_i - \lambda_j|^{\beta} \exp\left(-\frac{\beta}{2} \sum_{i=1}^n \frac{\lambda_i^2}{2}\right)$$

Theorem

For every θ , $E(p_{\theta}(\lambda))_{\beta}$ is a polynomial in the variables n and $b = \frac{2}{\beta} - 1$.

$$E(p_4(\lambda))_{\beta} = (1+b+3b^2)n + 5bn^2 + 2n^3$$

Expectations of power-sums are polynomials

The eigenvalues of A are all real with joint density proportional to

$$\prod_{1 \le i < j \le n} |\lambda_i - \lambda_j|^{\beta} \exp\left(-\frac{\beta}{2} \sum_{i=1}^n \frac{\lambda_i^2}{2}\right)$$

Theorem

For every θ , $E(p_{\theta}(\lambda))_{\beta}$ is a polynomial in the variables n and $b = \frac{2}{\beta} - 1$.

$$E(p_{5,3}(\lambda))_{\beta} = (75b + 150b^2 + 180b^3 + 105b^4)n$$
$$+ (60 + 120b + 300b^2 + 240b^3)n^2$$
$$+ (180b + 180b^2)n^3 + (45 + 45b)n^4$$

Algebraic and Combinatorial Recurrences agree

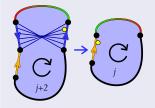
An Algebraic Recurrence

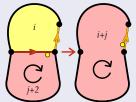
Derivation

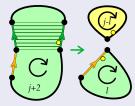
$$\langle p_{j+2}p_{\theta}\rangle = b(j+1)\langle p_{j}p_{\theta}\rangle + \alpha \sum_{i\in\theta} im_{i}(\theta)\langle p_{i+j}p_{\theta\setminus i}\rangle + \sum_{l=0}^{J}\langle p_{l}p_{j-l}p_{\theta}\rangle.$$

A Combinatorial Recurrence

It corresponds to a combinatorial recurrence for counting polygon glueings.

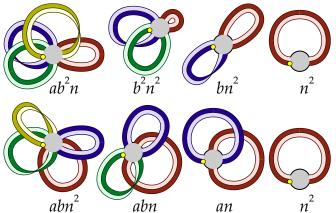




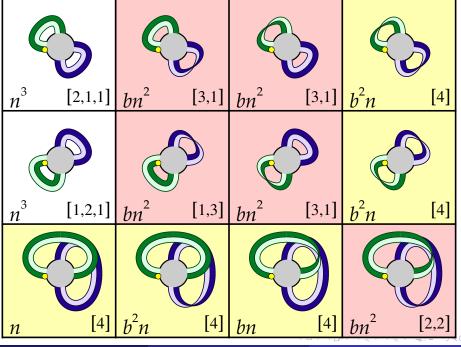


Root Edge Deletion

A rooted map with k edges can be thought of as a sequence of k maps.



Consecutive submaps differ in genus by 0, 1, or 2, and these steps are marked by 1, b, and a to assign a weight to a rooted map.

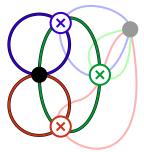


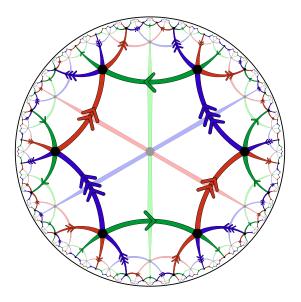
Other Ensembles

We also get combinatorial interpretations for the moments of:

- The Laguerre Unitary Ensemble (LUE)
- The Laguerre Orthogonal Ensemble (LOE)
- The Complex Ginibre Ensemble.
- Complex Symmetric Matrices.

The End Thank You





Outline

5 Appendix

6 Need Placement

Root-edge type	Schematic	Contribution to ${\cal M}$
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$
Border		$z \sum_{i \ge 0} \sum_{j=1}^{i+1} r_j y_{i-j+2} \frac{\partial}{\partial r_i} M$
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$
Bridge	070	$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$

Root-edge type	Schematic	Contribution to M
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$
Border		$z \sum_{i \ge 0} \sum_{j=1}^{i+1} r_j y_{i-j+2} \frac{\partial}{\partial r_i} M$
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$
Bridge		$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$

Root-edge type	Schematic	Contribution to M
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$
Border		$z\sum_{i\geq 0}\sum_{j=1}^{i+1}r_jy_{i-j+2}\frac{\partial}{\partial r_i}M$
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$
Bridge	070	$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$

Root-edge type	Schematic	Contribution to ${\cal M}$
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$
Border		$z\sum_{i\geq 0}\sum_{j=1}^{i+1}r_jy_{i-j+2}\frac{\partial}{\partial r_i}M$
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$
Bridge		$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$

Root-edge type	Schematic	Contribution to ${\cal M}$
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$
Border		$z\sum_{i\geq 0}\sum_{j=1}^{i+1}r_jy_{i-j+2}\frac{\partial}{\partial r_i}M$
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$
Bridge		$z \sum_{i,j \ge 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M \right) \left(\frac{\partial}{\partial r_j} M \right)$

Painted Faces • Return

There are $N^{\#f}$ ways to paint an f faced map.

A Recurrence behind the theorem

Set $\Omega := e^{-\frac{1}{2(1+b)}p_2(\mathbf{x})}|V(\mathbf{x})|^{\frac{2}{1+b}}$, so that $\langle f \rangle = E(f(\mathbf{x})) = c_{b,n} \int_{\mathbb{R}^n} f\Omega \, \mathrm{d}\mathbf{x}$. Integrate

$$\frac{\partial}{\partial x_1} x_1^{j+1} p_{\theta}(\mathbf{x}) \Omega = \frac{\partial}{\partial x_1} x_1^{j+1} p_{\theta}(\mathbf{x}) |V(\mathbf{x})|^{\frac{2}{1+b}} e^{-\frac{p_2(\mathbf{x})}{2(1+b)}}$$

$$= (j+1) x_1^j p_{\theta}(\mathbf{x}) \Omega + \sum_{i \in \theta} i m_i(\theta) x_1^{i+j} p_{\theta \setminus i}(\mathbf{x}) \Omega + \frac{2}{1+b} \sum_{i=2}^N \frac{x_1^{j+1} p_{\theta}(\mathbf{x})}{x_1 - x_i} \Omega - \frac{1}{1+b} x_1^{j+2} p_{\theta}(\mathbf{x}) \Omega$$

to get

An Algebraic recurrence

◆ Return

$$\langle p_{j+2}p_{\theta}\rangle = b(j+1)\langle p_{j}p_{\theta}\rangle + \alpha \sum_{i\in\theta} im_{i}(\theta)\langle p_{i+j}p_{\theta\setminus i}\rangle + \sum_{l=0}^{J}\langle p_{l}p_{j-l}p_{\theta}\rangle.$$

Recurrence Example

$$\langle p_{j+2}p_{\theta}\rangle = b(j+1)\langle p_{j}p_{\theta}\rangle + (1+b)\sum_{i\in\theta}im_{i}(\theta)\langle p_{i+j}p_{\theta\setminus i}\rangle + \sum_{l=0}^{j}\langle p_{l}p_{j-l}p_{\theta}\rangle$$

Example

$$\langle 1 \rangle = 1$$

$$\langle p_0 \rangle = n$$

$$\langle p_2 \rangle = b \langle p_0 \rangle + \langle p_0 p_0 \rangle = bn + n^2$$

$$\langle p_1 p_1 \rangle = (1+b) \langle p_0 \rangle = (1+b)n$$

$$\langle p_4 \rangle = 3b \langle p_2 \rangle + \langle p_0 p_2 \rangle + \langle p_1 p_1 \rangle + \langle p_2 p_0 \rangle = (1+b+3b^2)n + 5bn^2 + 2n^3$$

$$\langle p_3 p_1 \rangle = 2b \langle p_1 p_1 \rangle + (1+b) \langle p_2 \rangle + \langle p_0 p_1 p_1 \rangle + \langle p_1 p_0 p_1 \rangle = (3b+3b^2)n + (3+3b)n^2$$

$$\langle p_2 p_2 \rangle = b \langle p_0 p_2 \rangle + 2(1+b) \langle p_2 \rangle + \langle p_0 p_0 p_2 \rangle = 2b(1+b)n + (2+2b+b^2)n^2 + 2bn^3 + n^4$$

$$\langle p_2 p_{1,1} \rangle = b \langle p_0 p_{1,1} \rangle + 2(1+b) \langle p_{1,1} \rangle + \langle p_0 p_0 p_{1,1} \rangle = 2(1+b)^2n + (b+b^2)n^2 + (1+b)n^3$$

$$\langle p_1 p_3 \rangle = 3(1+b) \langle p_2 \rangle = (3b+3b^2)n + (3+3b)n^2$$

$$\langle p_1 p_{2,1} \rangle = 2(1+b) \langle p_{1,1} \rangle + (1+b) \langle p_0 p_2 \rangle = (2+4b+2b^2)n + (b+b^2)n^2 + (1+b)n^3$$

$$\langle p_{1,1,1,1} \rangle = 3(1+b) \langle p_0 p_{1,1} \rangle = (1+2b+b^2)n^2$$

Michael La Croix

Jack Symmetric Functions

With respect to the inner product defined by

$$\langle p_{\lambda}(\mathbf{x}), p_{\mu}(\mathbf{x}) \rangle_{\alpha} = \delta_{\lambda,\mu} \frac{|\lambda|!}{|C_{\lambda}|} \alpha^{\ell(\lambda)},$$

Jack symmetric functions are the unique family satisfying:

- (P1) (Orthogonality) If $\lambda \neq \mu$, then $\left\langle J_{\lambda}^{(\alpha)}, J_{\mu}^{(\alpha)} \right\rangle_{\alpha} = 0.$
- (P2) (Triangularity) $J_{\lambda}^{(\alpha)} = \sum_{\mu \preccurlyeq \lambda} v_{\lambda\mu}(\alpha) m_{\mu}$, where $v_{\lambda\mu}(\alpha)$ is a rational function in α , and ' \preccurlyeq ' denotes the natural order on partitions.
- (P3) (Normalization) If $|\lambda| = n$, then $v_{\lambda,\lceil 1^n \rceil}(\alpha) = n!$.

Jack Symmetric Functions

Jack symmetric functions, are a one-parameter family, denoted by $\{J_{\theta}^{(\alpha)}\}_{\theta}$, that generalizes both Schur functions and zonal polynomials.

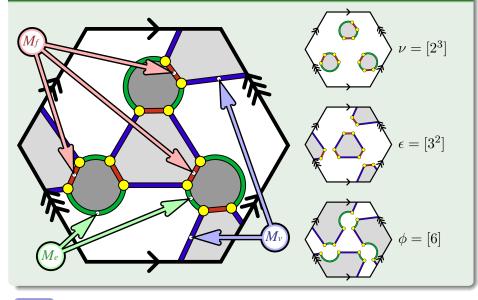
Proposition (Stanley - 1989)

Jack symmetric functions are related to Schur functions and zonal polynomials by:

$$\begin{split} J_{\lambda}^{(1)} &= H_{\lambda} s_{\lambda}, & \left\langle J_{\lambda}^{(1)}, J_{\lambda}^{(1)} \right\rangle_{1} = H_{\lambda}^{2}, \\ J_{\lambda}^{(2)} &= Z_{\lambda}, & \left\langle J_{\lambda}^{(2)}, J_{\lambda}^{(2)} \right\rangle_{2} = H_{2\lambda}, \end{split}$$

where 2λ is the partition obtained from λ by multiplying each part by two.

◆ Return



Oriented Derivation (Matrices over C)

With $X = \text{diag}(x_1, x_2, \dots, x_M)$, $Y = \text{diag}(y_1, y_2, \dots, y_N)$, $Z = \text{diag}(z_1, z_2, \dots, z_O)$

$$\begin{split} &H_{A}\Big(p(\mathbf{x}),p(\mathbf{y}),p(\mathbf{z}),t^{2};0\Big) \\ &= t\frac{\partial}{\partial t}\ln\int \mathrm{e}^{[\mathrm{tr}(XAYBZC)+\mathrm{tr}(C^{*}B^{*}A^{*})]t}\mathrm{e}^{-\mathrm{tr}(AA^{*}+BB^{*}+CC^{*})}\mathrm{d}A\,\mathrm{d}B\,\mathrm{d}C \\ &= t\frac{\partial}{\partial t}\ln\int \sum_{\theta,\phi\in\mathscr{P}} \frac{s_{\theta}(XAYBZC)s_{\phi}(C^{*}B^{*}A^{*})}{([p_{1}|\theta|]s_{\theta})^{-1}}t^{|\theta|+|\phi|}\mathrm{e}^{-\mathrm{tr}(AA^{*}+BB^{*}+CC^{*})}\mathrm{d}A\,\mathrm{d}B\,\mathrm{d}C \\ &= t\frac{\partial}{\partial t}\ln\int \sum_{\theta\in\mathscr{P}} \frac{s_{\theta}(X)s_{\theta}(Y)s_{\theta}(Z)s_{\theta}(ABC)s_{\theta}(C^{*}B^{*}A^{*})}{([p_{1}|\theta|]s_{\theta})^{-2}}t^{2|\theta|}\mathrm{e}^{-\mathrm{tr}(AA^{*}+BB^{*}+CC^{*})}\mathrm{d}A\,\mathrm{d}B\,\mathrm{d}C \\ &= t\frac{\partial}{\partial t}\ln\sum_{\theta\in\mathscr{P}} \frac{s_{\theta}(X)s_{\theta}(Y)s_{\theta}(Z)s_{\theta}(ABC)s_{\theta}(C^{*}B^{*}A^{*})}{s_{\theta}(I_{N})s_$$

Since
$$\int_{\mathbb{C}^{M\times N}} s_{\theta}(XAYA^*) \mathrm{e}^{-\operatorname{tr}(AA^*)} \; \mathrm{d}A = \frac{s_{\theta}(X)s_{\theta}(Y)}{[p_{1^{|\theta|}}]s_{\theta}}$$

∢ Return

40.40.45.45.55.50

Non-Oriented Derivation (Matrices over \mathbb{R})

With
$$\sqrt{X} = \text{diag}(\sqrt{x_1}, \sqrt{x_2}, \dots, \sqrt{x_M})$$
, $Y = \text{diag}(y_1, y_2, \dots, y_N)$, $Z = \text{diag}(z_1, z_2, \dots, z_O)$

$$\begin{split} H_{\mathcal{A}}\Big(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}), t; 1\Big) & \sqrt{x_i} \quad y_j \\ &= 2t \frac{\partial}{\partial t} \ln \int \mathrm{e}^{\frac{t}{2} \operatorname{tr}(\sqrt{X}AYA^{\mathrm{T}}\sqrt{X}BZB^{\mathrm{T}})} \, \mathrm{e}^{-\frac{1}{2} \operatorname{tr}(AA^{\mathrm{T}} + BB^{\mathrm{T}})} \mathrm{d}A \, \mathrm{d}B & b_{il} \\ &= 2t \frac{\partial}{\partial t} \ln \int \sum_{\theta \in \mathscr{P}} \frac{Z_{\theta}(\sqrt{X}AYA^{\mathrm{T}}\sqrt{X}BZB^{\mathrm{T}})}{\langle Z_{\theta}, Z_{\theta} \rangle_{2}} \, t^{|\theta|} \, \mathrm{e}^{-\frac{1}{2} \operatorname{tr}(AA^{\mathrm{T}} + BB^{\mathrm{T}})} \mathrm{d}A \, \mathrm{d}B \\ &= 2t \frac{\partial}{\partial t} \ln \int \sum_{\theta \in \mathscr{P}} \frac{Z_{\theta}(Y)Z_{\theta}(XBZB^{\mathrm{T}})}{\langle Z_{\theta}, Z_{\theta} \rangle_{2}} \, t^{|\theta|} \, \mathrm{e}^{-\frac{1}{2} \operatorname{tr}(BB^{\mathrm{T}})} \mathrm{d}B \\ &= 2t \frac{\partial}{\partial t} \ln \sum_{\theta \in \mathscr{P}} \frac{Z_{\theta}(X)Z_{\theta}(Y)Z_{\theta}(Z)}{\langle Z_{\theta}, Z_{\theta} \rangle_{2}} \, t^{|\theta|} \end{split}$$

Since
$$\int_{\mathbb{R}^{M\times N}} Z_{\theta}(XAYA^{\mathrm{T}}) \mathrm{e}^{-\frac{1}{2}\operatorname{tr}(AA^{\mathrm{T}})} dA = Z_{\theta}(X)Z_{\theta}(Y)$$

◆ Return

Outline

5 Appendix

6 Need Placement

Polynomiality and	half-integers -	combinatorial vs	bidiagonal	vs anti-GUE

How do we deal with additional β

Both our combinatorial and analytic descriptions, when specialized, satisfy the same partial differential equation

An \mathfrak{S}_3 Action on Hypermaps

Every permutation of the matchings gives a hypermap.

