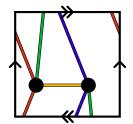
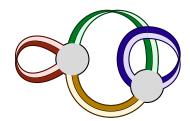
Jack Symmetric Functions and the Non-Orientability of Rooted Maps

Michael La Croix

University of Waterloo

January 4, 2012





Graphs, Surfaces, and Maps

Definition

A **surface** is a compact 2-manifold without boundary.

Definition

A **graph** is a finite set of *vertices* together with a finite set of *edges*, such that each edge is associated with either one or two vertices.

Definition

A **map** is a 2-cell embedding of a graph in a surface.



Graphs, Surfaces, and Maps

Definition

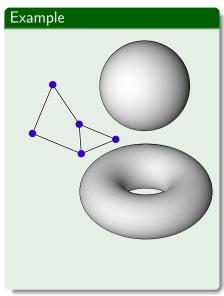
A **surface** is a compact 2-manifold without boundary.

Definition

A **graph** is a finite set of *vertices* together with a finite set of *edges*, such that each edge is associated with either one or two vertices.

Definition

A map is a 2-cell embedding of a graph in a surface.



Graphs, Surfaces, and Maps

Definition

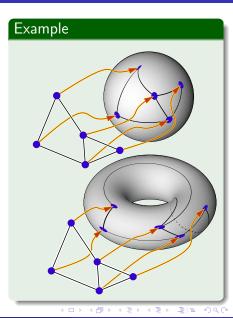
A **surface** is a compact 2-manifold without boundary.

Definition

A **graph** is a finite set of *vertices* together with a finite set of *edges*, such that each edge is associated with either one or two vertices.

Definition

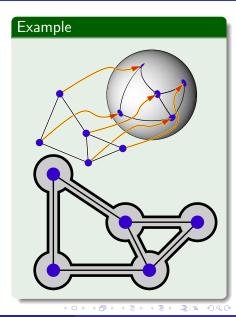
A **map** is a 2-cell embedding of a graph in a surface.



Definition

The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

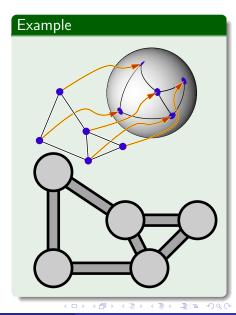
Definition



Definition

The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

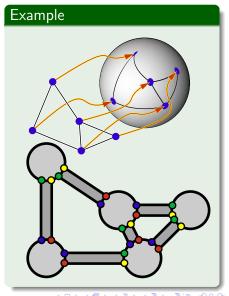
Definition



Definition

The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

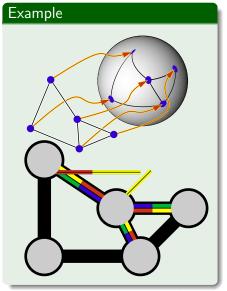
Definition



Definition

The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

Definition

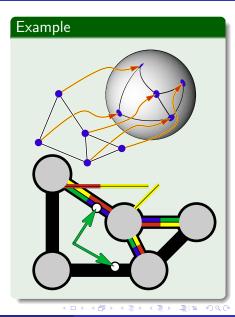


Rooted Maps

Definition

The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

Definition

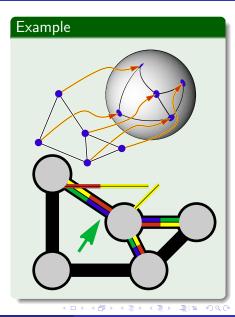


Rooted Maps

Definition

The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

Definition



Rooted Maps

Definition

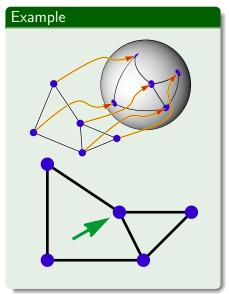
The neighbourhood of the graph determines a **ribbon graph**, and the boundaries of ribbons determine **flags**.

Definition

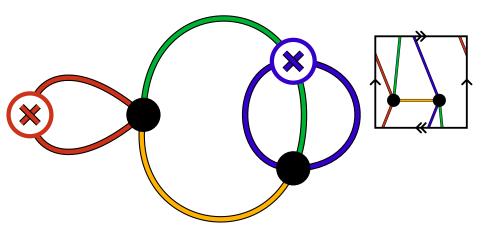
Automorphisms permute flags, and a **rooted map** is a map together with a distinguished orbit of flags.

Note

The map with no edges, , has a rooting.

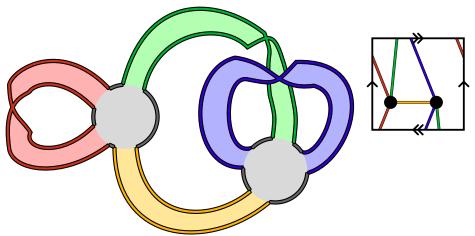


Equivalence classes can be encoded by perfect matchings of flags.



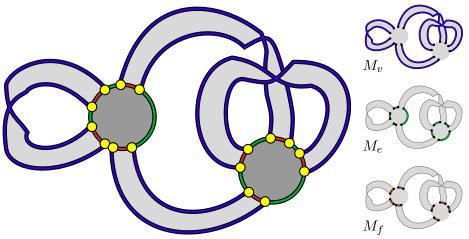
Start with a ribbon graph.

Equivalence classes can be encoded by perfect matchings of flags.



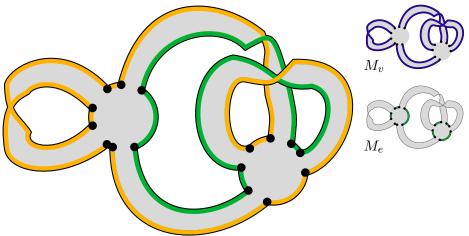
Start with a ribbon graph.

Equivalence classes can be encoded by perfect matchings of flags.



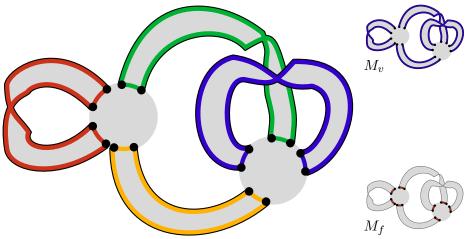
Ribbon boundaries determine 3 perfect matchings of flags.

Equivalence classes can be encoded by perfect matchings of flags.



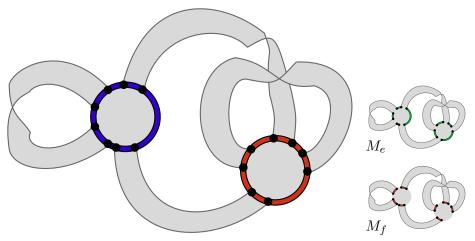
Pairs of matchings determine, faces,

Equivalence classes can be encoded by perfect matchings of flags.

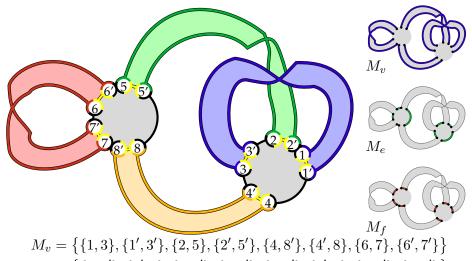


Pairs of matchings determine, faces, edges,

Equivalence classes can be encoded by perfect matchings of flags.



Pairs of matchings determine, faces, edges, and vertices.

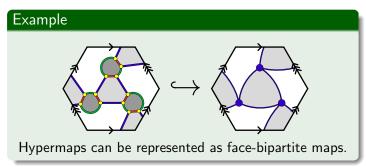


 $M_v = \{\{1,3\}, \{1',3'\}, \{2,5\}, \{2',5'\}, \{4,8'\}, \{4',8\}, \{6,7'\}, \{6',7'\}\}\}$ $M_e = \{\{1,2'\}, \{1',4\}, \{2,3'\}, \{3,4'\}, \{5,6'\}, \{5',8\}, \{6,7'\}, \{7,8'\}\}\}$ $M_f = \{\{1,1'\}, \{2,2'\}, \{3,3'\}, \{4,4'\}, \{5,5'\}, \{6,6'\}, \{7,7'\}, \{8,8'\}\}\}$

Hypermaps

Generalizing the combinatorial encoding, an arbitrary triple of perfect matchings determines a **hypermap** when the triple induces a connected graph, with cycles of $M_e \cup M_f$, $M_e \cup M_v$, and $M_v \cup M_f$ determining vertices, hyperfaces, and hyperedges. • Example

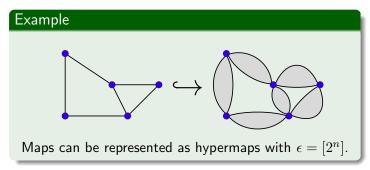
Hypermaps both **specialize** and generalize maps.



Hypermaps

Generalizing the combinatorial encoding, an arbitrary triple of perfect matchings determines a **hypermap** when the triple induces a connected graph, with cycles of $M_e \cup M_f$, $M_e \cup M_v$, and $M_v \cup M_f$ determining vertices, hyperfaces, and hyperedges. • Example

Hypermaps both specialize and **generalize** maps.



The Hypermap Series

Definition

The **hypermap series** for a set \mathcal{H} of hypermaps is the combinatorial sum

$$H(\mathbf{x},\mathbf{y},\mathbf{z}) := \sum_{\mathfrak{h} \in \mathcal{H}} \mathbf{x}^{\nu(\mathfrak{h})} \mathbf{y}^{\phi(\mathfrak{h})} \mathbf{z}^{\epsilon(\mathfrak{h})}$$

where $\nu(\mathfrak{h})$, $\phi(\mathfrak{h})$, and $\epsilon(\mathfrak{h})$ are the vertex-, hyperface-, and hyperedgedegree partitions of h. PExample

Example

Rootings of

contribute $12 \left(\boldsymbol{x_3^3 x_3^2} \right) \left(y_3 y_4 y_5 \right) z_2^6$ to the sum.

4 / 11

The Hypermap Series

Definition

The **hypermap series** for a set ${\mathcal H}$ of hypermaps is the combinatorial sum

$$H(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \sum_{\mathfrak{h} \in \mathcal{H}} \mathbf{x}^{\nu(\mathfrak{h})} \mathbf{y}^{\phi(\mathfrak{h})} \mathbf{z}^{\epsilon(\mathfrak{h})}$$

where $\nu(\mathfrak{h})$, $\phi(\mathfrak{h})$, and $\epsilon(\mathfrak{h})$ are the vertex-, hyperface-, and hyperedge-degree partitions of \mathfrak{h} . Example

Example¹

Rootings of

contribute $12 \left(\boldsymbol{x_2^3 x_3^2} \right) \left(\boldsymbol{y_3 y_4 y_5} \right) z_2^6$ to the sum.

→□→ →□→ → □→ □□ → ○

Explicit Formulae

The hypermap series can be computed explicitly when \mathcal{H} consists of orientable hypermaps or all hypermaps. \bullet sketch

Theorem (Jackson and Visentin - 1990)

When ${\cal H}$ is the set of orientable hypermaps, ullet encoding details

$$H_{\mathcal{O}}(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); 0) = t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} H_{\theta} s_{\theta}(\mathbf{x}) s_{\theta}(\mathbf{y}) s_{\theta}(\mathbf{z}) \right) \Big|_{t=0.}$$

Theorem (Goulden and Jackson - 1996)

When ${\cal H}$ is the set of all hypermaps (orientable and non-orientable),

$$H_{\mathcal{A}}\Big(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); 1\Big) = 2t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} \frac{1}{H_{2\theta}} Z_{\theta}(\mathbf{x}) Z_{\theta}(\mathbf{y}) Z_{\theta}(\mathbf{z}) \right) \bigg|_{t=0}$$

Jack Symmetric Functions

Jack symmetric functions, \bullet Definition, are a one-parameter family, denoted by $\{J_{\theta}(\alpha)\}_{\theta}$, that generalizes both Schur functions and zonal polynomials.

Proposition (Stanley - 1989)

Jack symmetric functions are related to Schur functions and zonal polynomials by:

$$J_{\lambda}(1) = H_{\lambda}s_{\lambda},$$
 $\langle J_{\lambda}, J_{\lambda} \rangle_{1} = H_{\lambda}^{2},$ $J_{\lambda}(2) = Z_{\lambda},$ and $\langle J_{\lambda}, J_{\lambda} \rangle_{2} = H_{2\lambda},$

where 2λ is the partition obtained from λ by multiplying each part by two.

A Generalized Series

b-Conjecture (Goulden and Jackson - 1996)

The generalized series,

$$\begin{split} H\left(p(\mathbf{x}), p(\mathbf{y}), p(\mathbf{z}); b\right) \\ &:= (1+b)t \frac{\partial}{\partial t} \ln \left(\sum_{\theta \in \mathscr{P}} \frac{J_{\theta}(\mathbf{x}; 1+b)J_{\theta}(\mathbf{y}; 1+b)J_{\theta}(\mathbf{z}; 1+b)}{\langle J_{\theta}, J_{\theta} \rangle_{1+b}} \right) \bigg|_{t=0} \\ &= \sum_{n \geq 0} \sum_{\nu, \phi, \epsilon \vdash n} c_{\nu, \phi, \epsilon}(b) p_{\nu}(\mathbf{x}) p_{\phi}(\mathbf{y}) p_{\epsilon}(\mathbf{z}), \end{split}$$

has an combinatorial interpretation involving hypermaps. In particular $c_{\nu,\phi,\epsilon}(b) = \sum_{\mathfrak{h}\in\mathcal{H}_{\nu,\phi,\epsilon}} b^{\beta(\mathfrak{h})}$ for some invariant β of rooted hypermaps.

40 140 140 15 15 15 100

The b-Conjecture assumes that $c_{\nu,\phi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- ② be positive for non-orientable hypermaps, and
- depend on rooting.

Example

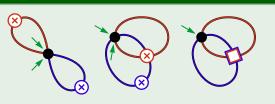
Rootings of precisely three maps are enumerated by $c_{[4],[4],[2^2]}(b) = 1 + b + 3b^2$.

The b-Conjecture assumes that $c_{\nu,\phi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

Example

Rootings of precisely three maps are enumerated by $c_{[4],[4],[2^2]}(b)=1+b+3b^2$.

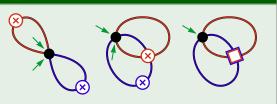


The b-Conjecture assumes that $c_{\nu,\phi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

Example

Rootings of precisely three maps are enumerated by $c_{[4],[4],[2^2]}(b)=1+b+3b^2$.

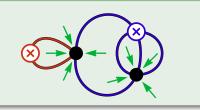


The b-Conjecture assumes that $c_{\nu,\phi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

Example

There are precisely eight rooted maps enumerated by $c_{[4,4],[3,5],[2^4]}(b) = 8b^2$.

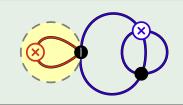


The b-Conjecture assumes that $c_{\nu,\phi,\epsilon}(b)$ is a polynomial, and numerical evidence suggests that its degree is the genus of the hypermaps it enumerates. A b-invariant must:

- 1 be zero for orientable hypermaps,
- 2 be positive for non-orientable hypermaps, and
- depend on rooting.

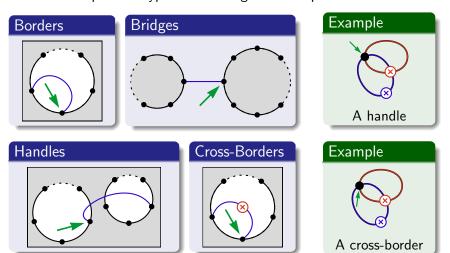
Example

There are precisely eight rooted maps enumerated by $c_{[4,4],[3,5],[2^4]}(b) = 8b^2$.



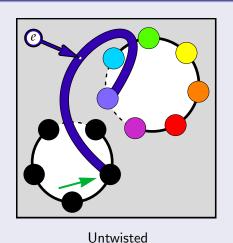
A root-edge classification

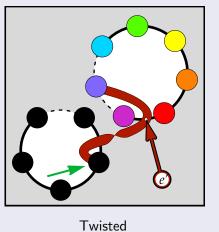
There are four possible types of root edges in a map.



A root-edge classification

Handles occur in pairs

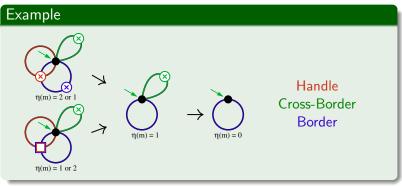




A family of invariants

The invariant η

- Iteratively deleting the root edge assigns a type to each edge in a map.
- An invariant, η , is given by $\eta(\mathfrak{m}) := (\# \text{ of cross-borders}) + (\# \text{ of twisted handles}) \,.$
- Different handle twisting determines a different invariant.



Main result (marginal b-invariants exist)

Theorem (La Croix)

If ϕ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\phi}(b) := \sum_{\ell(\nu) = v} c_{\nu,\phi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\phi}} b^{\eta(\mathfrak{m})}.$$

Proof (sketch).

- A generating series for maps with respect η satisfies a PDE with a unique solution.
- ullet The corresponding specialization of H has an analytic presentation. ullet Details
- An algebraic refinement to distinguish between root and non-root faces in the generating series satisfies the same PDE.

Main result (marginal b-invariants exist)

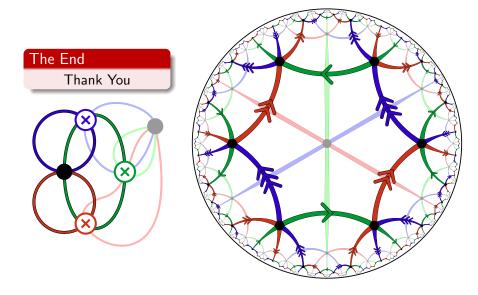
Theorem (La Croix)

If ϕ partitions 2n and η is a member of the family of invariants then,

$$d_{v,\phi}(b) := \sum_{\ell(\nu) = v} c_{\nu,\phi,[2^n]}(b) = \sum_{\mathfrak{m} \in \mathcal{M}_{v,\phi}} b^{\eta(\mathfrak{m})}.$$

Implications of the proof

- $d_{v,\phi}(b)$ is of the form $\sum_{0 \le i \le g/2} h_{v,\phi,i} b^{g-2i} (1+b)^i$.
- The degree of $d_{v,\phi}(b)$ is the genus of the maps it enumerates.
- The top coefficient, $h_{v,\phi,0}$, enumerates **unhandled** maps.
- ullet η and root-face degree are independent among maps with given ϕ .

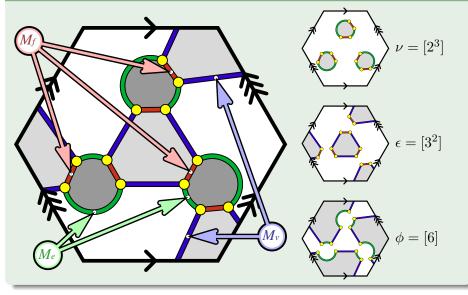


Finding a partial differential equation

Root-edge type	Schematic	Contribution to ${\cal M}$	
Cross-border		$z\sum_{i\geq 0}(i+1)br_{i+2}\frac{\partial}{\partial r_i}M$	
Border		$z \sum_{i \ge 0} \sum_{j=1}^{i+1} r_j y_{i-j+2} \frac{\partial}{\partial r_i} M$	
Handle		$z\sum_{i,j\geq 0} (1+b)jr_{i+j+2} \frac{\partial^2}{\partial r_i \partial y_j} M$	
Bridge		$z\sum_{i,j\geq 0} r_{i+j+2} \left(\frac{\partial}{\partial r_i} M\right) \left(\frac{\partial}{\partial r_j} M\right)$	

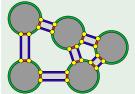
◆ Return

Example

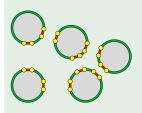


◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺灣 釣魚♡

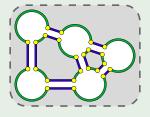
Example



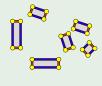
is enumerated by $\left(x_2^3\,x_3^2\right)\left(y_3\,y_4\,y_5\right)\left(z_2^6\right)$.



$$\nu = [2^3, 3^2]$$



$$\phi = [3, 4, 5]$$



$$\epsilon = [2^6]$$

Jack Symmetric Functions

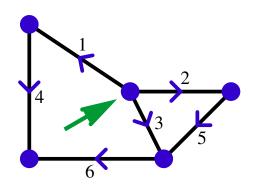
With respect to the inner product defined by

$$\langle p_{\lambda}(\mathbf{x}), p_{\mu}(\mathbf{x}) \rangle_{\alpha} = \delta_{\lambda,\mu} \frac{|\lambda|!}{|C_{\lambda}|} \alpha^{\ell(\lambda)},$$

Jack symmetric functions are the unique family satisfying:

- (P1) (Orthogonality) If $\lambda \neq \mu$, then $\langle J_{\lambda}, J_{\mu} \rangle_{\alpha} = 0$.
- (P2) (Triangularity) $J_{\lambda} = \sum v_{\lambda\mu}(\alpha)m_{\mu}$, where $v_{\lambda\mu}(\alpha)$ is a rational function in α , and ' \preccurlyeq ' denotes the natural order on partitions.
- (P3) (Normalization) If $|\lambda| = n$, then $v_{\lambda,\lceil 1^n \rceil}(\alpha) = n!$.

- Orient and label the edges.
- 2 This induces labels on flags.
- 3 Clockwise circulations at each vertex determine ν .
- Face circulations are the cycles of $\epsilon \nu$.

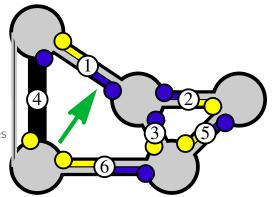


$$\epsilon = (1\ 1')(2\ 2')(3\ 3')(4\ 4')(5\ 5')(6\ 6')$$

$$\nu = (1\ 2\ 3)(1'\ 4)(2'\ 5)(3'\ 5'\ 6)(4'\ 6')$$

$$\epsilon\nu = \phi = (1\ 4\ 6'\ 3')(1'\ 2\ 5\ 6\ 4')(2'\ 3\ 5')$$

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- **1** Face circulations are the cycles of $\epsilon \nu$.

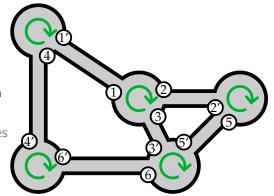


$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \phi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- **1** Face circulations are the cycles of $\epsilon \nu$.

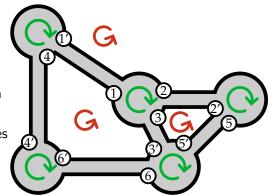


$$\epsilon = (1 \ 1')(2 \ 2')(3 \ 3')(4 \ 4')(5 \ 5')(6 \ 6')$$

$$\nu = (1 \ 2 \ 3)(1' \ 4)(2' \ 5)(3' \ 5' \ 6)(4' \ 6')$$

$$\epsilon \nu = \phi = (1 \ 4 \ 6' \ 3')(1' \ 2 \ 5 \ 6 \ 4')(2' \ 3 \ 5')$$

- Orient and label the edges.
- This induces labels on flags.
- **3** Clockwise circulations at each vertex determine ν .
- Face circulations are the cycles of $\epsilon \nu$.



$$\epsilon = (1\ 1')(2\ 2')(3\ 3')(4\ 4')(5\ 5')(6\ 6')$$

$$\nu = (1\ 2\ 3)(1'\ 4)(2'\ 5)(3'\ 5'\ 6)(4'\ 6')$$

$$\epsilon\nu = \phi = (1\ 4\ 6'\ 3')(1'\ 2\ 5\ 6\ 4')(2'\ 3\ 5')$$

The Map Series

An enumerative problem associated with maps is to determine the number of rooted maps with specified vertex- and face- degree partitions.

Definition

The map series for a set ${\mathcal M}$ of rooted maps is the combinatorial sum

$$M = M(x, \mathbf{y}, z, \mathbf{r}; b) := \sum_{\mathfrak{m} \in \mathcal{M}} x^{|V(\mathfrak{m})|} \mathbf{y}^{\phi(\mathfrak{m}) \smallsetminus \rho(\mathfrak{m})} z^{|E(\mathfrak{m})|} r_{\rho(\mathfrak{m})} b^{\eta(\mathfrak{m})},$$

where the sum is taken over all rooted maps, including the map with no edges, $V(\mathfrak{m})$ is the vertex set of \mathfrak{m} , $\phi(\mathfrak{m})$ is the face-degree partition of \mathfrak{m} , $\rho(\mathfrak{m})$ is the degree of the root face of \mathfrak{m} , and $E(\mathfrak{m})$ is the edge set of \mathfrak{m} .

Return
 Re

- Instead of counting rooted maps, we can count labelled hypermaps. This adds easily computable multiplicities.
- Labelled counting problems are turned into problems involving counting factorizations.
- These can be answered via character theory.
- Appropriate characters appear as coefficients of symmetric functions.
- The logarithms restrict to connected maps, and the differential operators remove the decoration.

- Instead of counting rooted maps, we can count labelled hypermaps. This adds easily computable multiplicities.
- Labelled counting problems are turned into problems involving counting factorizations.
- These can be answered via character theory.
- Appropriate characters appear as coefficients of symmetric functions.
- The logarithms restrict to connected maps, and the differential operators remove the decoration.

- Instead of counting rooted maps, we can count labelled hypermaps. This adds easily computable multiplicities.
- Labelled counting problems are turned into problems involving counting factorizations.
- These can be answered via character theory.
- Appropriate characters appear as coefficients of symmetric functions.
- The logarithms restrict to connected maps, and the differential operators remove the decoration.

- Instead of counting rooted maps, we can count labelled hypermaps. This adds easily computable multiplicities.
- Labelled counting problems are turned into problems involving counting factorizations.
- These can be answered via character theory.
- Appropriate characters appear as coefficients of symmetric functions.
- The logarithms restrict to connected maps, and the differential operators remove the decoration.

- Instead of counting rooted maps, we can count labelled hypermaps. This adds easily computable multiplicities.
- Labelled counting problems are turned into problems involving counting factorizations.
- These can be answered via character theory.
- Appropriate characters appear as coefficients of symmetric functions.
- The logarithms restrict to connected maps, and the differential operators remove the decoration.

A Specialization

Definition

For a function $f: \mathbb{R}^N \to \mathbb{R}$, define an expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle_{1+b} := c_{1+b} \int_{\mathbb{R}^N} |V(\boldsymbol{\lambda})|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) e^{-\frac{1}{2(1+b)} p_2(\boldsymbol{\lambda})} d\boldsymbol{\lambda},$$

with c_{1+b} chosen such that $\langle 1 \rangle_{1+b} = 1$.

Theorem (Okounkov - 1997)

If N is a positive integer, 1+b is a positive real number, and θ is an integer partition of 2n, then

$$\langle J_{\theta}(\boldsymbol{\lambda}, 1+b) \rangle_{1+b} = J_{\theta}(\mathbf{1}_N, 1+b)[p_{[2^n]}]J_{\theta},$$

where $\mathbf{1}_N = (1, \dots, 1, 0, 0, \dots)$ consists of N leading 1's followed by 0's.

A Specialization

Definition

For a function $f \colon \mathbb{R}^N \to \mathbb{R}$, define an expectation operator $\langle \cdot \rangle$ by

$$\langle f \rangle_{1+b} := c_{1+b} \int_{\mathbb{R}^N} |V(\boldsymbol{\lambda})|^{\frac{2}{1+b}} f(\boldsymbol{\lambda}) e^{-\frac{1}{2(1+b)} p_2(\boldsymbol{\lambda})} d\boldsymbol{\lambda},$$

with c_{1+b} chosen such that $\langle 1 \rangle_{1+b} = 1$.

$$M(N, \mathbf{y}, z, \mathbf{r}; b) = r_0 N + (1+b) \sum_{j \ge 1} r_j \frac{\partial}{\partial y_j} \ln \left\langle e^{\frac{1}{1+b} \sum_{k \ge 1} \frac{1}{k} y_k p_k(\boldsymbol{\lambda}) \sqrt{z}^k} \right\rangle_{1+b}$$

◆ Return

\boldsymbol{b} is ubiquitous

The many lives of b					
	b = 0		b = 1		
Hypermaps	Orientable	?	Locally Orientable		
Symmetric Functions	$s_{ heta}$	$J_{\theta}(b)$	$Z_{ heta}$		
Matrix Integrals	Hermitian	?	Real Symmetric		
Moduli Spaces	over $\mathbb C$?	over $\mathbb R$		
Matching Systems	Bipartite	?	All		
•		? ?			