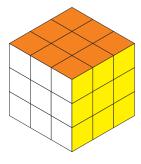
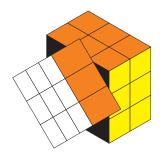
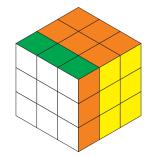


The Moves

Each face of the cube can be rotated.





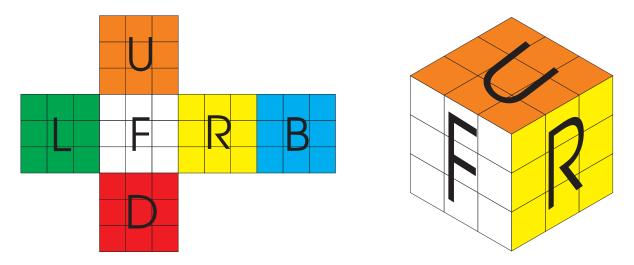


The result is a permutation of the stickers and physical pieces (cubies) that make up the cube.

The Puzzle

The faces of the cube are denoted:

(F)ront, (B)ack, (L)eft, (R)ight, (U)p, and (D)own



The cube group, G_{cube} , is the permutation group generated by the actions of the six face turns on the stickers.

Only Five Generators Required

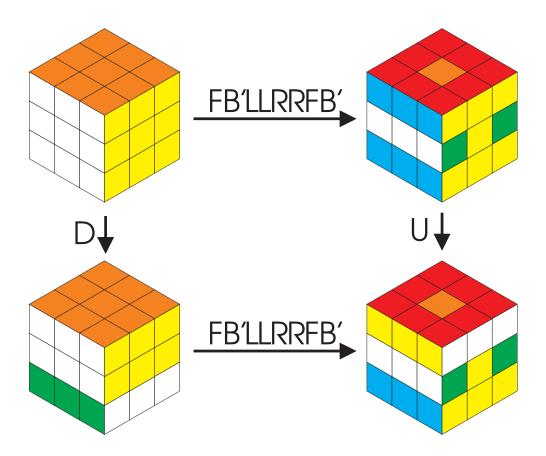


Figure 1: A commuting diagram

Counting the States

We consider first a larger permutation group, G of all permutations obtainable by taking apart the cube and putting it back together.

$$G \simeq G_{corner} \oplus G_{edge}$$

 G_{corner} and G_{edge} are wreath products.

$$G_{corner} \simeq S_8[A_3]$$
 $G_{edge} \simeq S_{12}[S_2]$

The order of G is thus:

$$|G| = |G_{corner}| \cdot |G_{edge}| = 8! \times 3^8 \times 12! \times 2^{12}$$

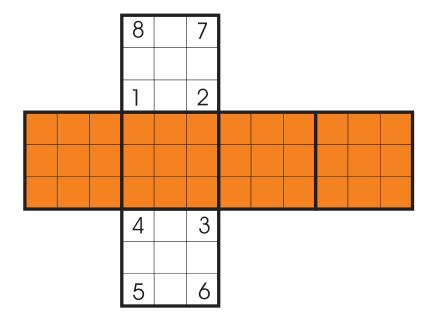
The Order of G_{cube}

We show that G_{cube} has index 12 in G and thus:

$$|G_{cube}| = 12! \times 8! \times 2^{10} \times 3^7$$

- 18 cubic positions determine the remaining 2
- 11 edges orientations determine the twelfth
- 7 corner orientations determine the eighth

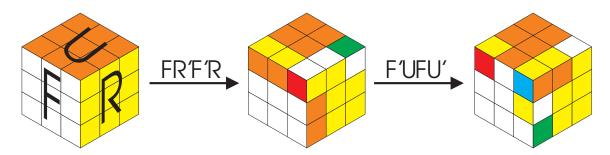
An Alternate Colouring



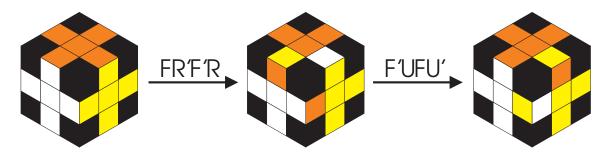
	-1	0 +1		-1	0 +1		-1	0	+1
1			1			1			
2			2			2			
3			3			3			
4			4			4			
5			5			5			
6			6			6			
7			7			7			
8			8			8			

The sum of the orientations of the corners is always zero.

Generating the Edge Group

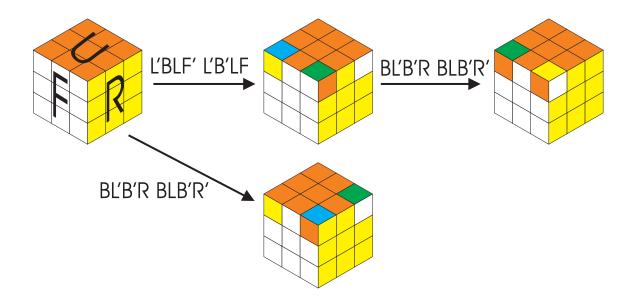


Two related commutators.



The restriction to the edge group.

Generating the Corner Group



Another commutator gives us a three cycle to position corners. Combining this with a related commutator lets us orient the corners.

Diameter of the Cayley graph

For the quarter turn metric. An edge when states differ by an element of $\{L, R, F, B, U, D, L', R', F', B', U', D'\}$.

• Lower bound of 24 for the super-flip

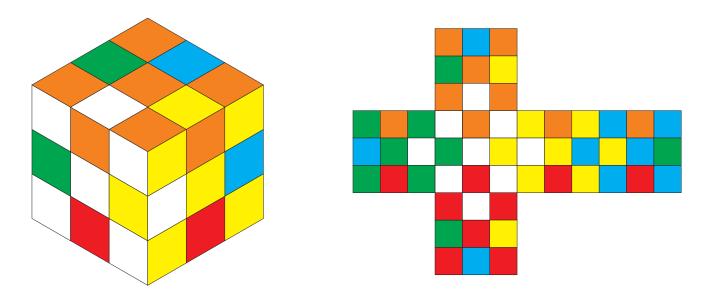


Figure 2: $R'U^2BL'FU'BDFUD'LD^2F'RB'DF'U'B'UD'$

• Upper bound of 42 using Kloosterman's modification of Thistlethwaite's algorithm.

$$G_0 = \langle L, R, F, B, U, D \rangle$$

 $G_1 = \langle L, R, F, B, U^2, D^2 \rangle$
 $G_2 = \langle L, R, F^2, B^2, U^2, D^2 \rangle$
 $G_3 = \langle L^2, R^2, F^2, B^2, U^2, D^2 \rangle$

See http://web.idirect.com/ cubeman/dotcs.txt for the face turn metric.

http://www.geocities.com/jaapsch/puzzles/cayley.htm puts the state

 $U^2D^2LF^2U'DR^2BU'D'RLF^2RUD'R'LUF'B'$

at distance 26q.