

Nested Models

$$M_0 : y = \underbrace{\beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1}}_{\dim(M_0)=q} + \varepsilon$$

$$M_A : y = \underbrace{\beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1}}_{\dim(M_A)=p} + \beta_q x_q + \dots + \beta_{p-1} x_{p-1} + \varepsilon$$

want to test the following null hypothesis

$$H_0 : \beta_q = \dots = \beta_{p-1} = 0$$

The F-Test

Theory Under M_0 (and normality of all y_i),

$$\frac{(\|\mathbf{y} - \hat{\mathbf{y}}_0\|^2 - \|\mathbf{y} - \hat{\mathbf{y}}_A\|^2)/(p - q)}{\|\mathbf{y} - \hat{\mathbf{y}}_A\|^2/(n - p)} \sim F_{(p-q, n-p)}.$$

So reject M_0 in favor of M_A if LHS is large, when measured by an *F-distribution*.

Ockham's Razor

Latin: Pluralitas non est ponenda sine necessitate.

—William of Ockham (1285–1349)

English: Pluralities should not be posited without necessity.

Just A Little More Detail

Numerator By Ockham's razor, "makes sense" to focus on the difference

$$\|\mathbf{y} - \hat{\mathbf{y}}_0\|^2 - \|\mathbf{y} - \hat{\mathbf{y}}_A\|^2.$$

Denominator Needs to be "*orthogonal*" to numerator for *F-distribution*, but projection geometry "clearly" shows

$$\|\mathbf{y} - \hat{\mathbf{y}}_0\|^2 - \|\mathbf{y} - \hat{\mathbf{y}}_A\|^2 = \|\hat{\mathbf{y}}_0 - \hat{\mathbf{y}}_A\|^2$$

and

$$\hat{\mathbf{y}}_0 - \hat{\mathbf{y}}_A \perp \mathbf{y} - \hat{\mathbf{y}}_A.$$

Special Case: $p = q + 1$

$$M_0 : y = \beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1} + \varepsilon$$

$$M_A : y = \beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1} + \beta_q x_q + \varepsilon$$

T vs F

Expect t -test of $\beta_q = 0$ to be equivalent to F -test.

Special Case: $p = q + 1$

$$M_0 : y = \beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1} + \varepsilon$$

$$M_A : y = \beta_0 + \beta_1 x_1 + \dots + \beta_{q-1} x_{q-1} + \beta_q x_q + \varepsilon$$

T vs F

Expect t -test of $\beta_q = 0$ to be equivalent to F -test.

Simple Example

Consider the set of nested models below.

$$M_0 : y = \alpha + \varepsilon \quad \text{vs} \quad M_A : y = \alpha + \beta x + \varepsilon$$

Let T_β be the t -statistic for testing $\beta = 0$ and F_β , the F -statistic for testing M_0 against M_A . Then, $T_\beta^2 = F_\beta$.

Details

$$M_A \quad \Rightarrow \quad \hat{\alpha} = \bar{y} - \hat{\beta} \bar{x}, \quad \hat{\beta} = \dots \quad \Rightarrow \quad \hat{y}_i^{(A)} = \hat{y}_i = \hat{\alpha} + \hat{\beta} x_i$$

$$M_0 \quad \Rightarrow \quad \widehat{\alpha} = \bar{y}, \quad \quad \quad \beta = 0 \quad \Rightarrow \quad \widehat{y}_i^{(0)} = \bar{y}$$

$$T_\beta = \frac{\widehat{\beta}}{\sqrt{\frac{\widehat{\sigma}^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}} \quad \text{whereas} \quad F_\beta = \frac{\sum_{i=1}^n (\widehat{y}_i - \bar{y})^2}{\frac{\sum_{i=1}^n (y_i - \widehat{y}_i)^2}{n-2}}$$

$$\text{suffices if } \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = \hat{\beta}^2 \sum_{i=1}^n (x_i - \bar{x})^2$$

$$\text{indeed } \sum_{i=1}^n (\widehat{\alpha} + \widehat{\beta}x_i - \bar{y})^2 = \sum_{i=1}^n (\bar{y} - \underbrace{\widehat{\beta}\bar{x} + \widehat{\beta}x_i - \bar{y}}_{\widehat{\alpha}})^2$$

T - and F -Tests \Leftrightarrow LRT

Example In the same spirit as Exercise 7.2 (p. 128), can show, for

$$y_i = \alpha + \beta x_i + \varepsilon_i, \quad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2),$$

(a)

$$\sum_{i=1}^n (y_i - \bar{y})^2 = \left[\sum_{i=1}^n (y_i - \hat{y}_i)^2 \right] + \hat{\beta}^2 \left[\sum_{i=1}^n (x_i - \bar{x})^2 \right],$$

(b)

$$2 \log \Lambda(\beta) = n \log \left[1 + \frac{(T(\beta))^2}{n-2} \right] \rightarrow (T(\beta))^2 \text{ as } n \rightarrow \infty,$$

where $\Lambda(\beta)$ and $T(\beta)$ are respectively the LR- and t -statistics for testing $H_0 : \beta = 0$. [Remark: If you try it, remember that the MLEs of α , σ^2 are different with and without the restriction $\beta = 0$.]

K -Fold Cross Validation

1. randomly partition the data set into K groups, $\mathcal{G}_1, \dots, \mathcal{G}_K$
2. **for** each $k = 1, 2, \dots, K$

$$\hat{\boldsymbol{\theta}}^{(-\mathcal{G}_k)} = \arg \min_{\boldsymbol{\theta}} \sum_{i \notin \mathcal{G}_k} [y_i - f(\mathbf{x}_i; \boldsymbol{\theta})]^2$$

$$\text{err}(k) = \sum_{i \in \mathcal{G}_k} \left[y_i - \hat{y}_i^{(-\mathcal{G}_k)} \right]^2 = \sum_{i \in \mathcal{G}_k} \left[y_i - f \left(\mathbf{x}_i; \hat{\boldsymbol{\theta}}^{(-\mathcal{G}_k)} \right) \right]^2$$

end for

3. assess the overall **prediction error** of model f as

$$\text{Err}(f) = \text{err}(1) + \text{err}(2) + \dots + \text{err}(K)$$

Remark Do this for a number of candidate models and choose the one with smallest “Err.” Usually implemented w/ $K = 2, 5, 10$.

Leave-One-Out CV

Special Case $K = n$ (aka **n-fold CV**)

$$\mathcal{G}_1 = \{1\}, \quad \mathcal{G}_2 = \{2\}, \quad \dots, \quad \mathcal{G}_n = \{n\}$$

Theorem For $f(\mathbf{x}; \boldsymbol{\theta})$ = linear regression model (in fact, any model such that $\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$ for some \mathbf{H} not depending on \mathbf{y}),

$$y_i - \hat{y}_i^{(-i)} = \frac{y_i - \hat{y}_i}{1 - \mathbf{H}_{ii}}.$$

Remark Can do leave-one-out (n -fold) CV without iteration.

Proof

$$\begin{bmatrix} \hat{y}_1 & \hat{y}_1^{(-i)} \\ \vdots & \\ \hat{y}_i & \hat{y}_i^{(-i)} \\ \vdots & \\ \hat{y}_n & \hat{y}_n^{(-i)} \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{H}_{i1} & \cdots & \mathbf{H}_{ii} & \cdots & \mathbf{H}_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ \hat{y}_i & \hat{y}_i^{(-i)} \\ \vdots \\ y_n \end{bmatrix}$$

$$\hat{y}_i = \sum_{j=1}^n \mathbf{H}_{ij} y_j \quad \Rightarrow \quad \hat{y}_i^{(-i)} = \sum_{j=1}^n \mathbf{H}_{ij} y_j - \mathbf{H}_{ii} y_i + \mathbf{H}_{ii} \hat{y}_i^{(-i)}$$

$$y_i - \text{LHS} = y_i - \text{RHS}$$

$$\Rightarrow y_i - \hat{y}_i^{(-i)} = y_i - \hat{y}_i + \mathbf{H}_{ii}(y_i - \hat{y}_i^{(-i)})$$

Generalized Cross Validation

$$\text{CV} = \sum_{i=1}^n \left(y_i - \hat{y}_i^{(-i)} \right)^2 = \sum_{i=1}^n \left(\frac{y_i - \hat{y}_i}{1 - \mathbf{H}_{ii}} \right)^2$$

“average \mathbf{H}_{ii} ” = $\frac{1}{n} \sum_{i=1}^n \mathbf{H}_{ii} = \frac{1}{n} \text{tr}(\mathbf{H}) = \frac{p}{n}$

$$\text{GCV} = \sum_{i=1}^n \left(\frac{y_i - \hat{y}_i}{1 - p/n} \right)^2$$

↑

a **penalty** on model size

Akaike Information Criterion (AIC)

Exercise If σ^2 is known, the so-called Akaike Information Criterion (AIC) for evaluating a linear regression model can be equivalently expressed by

$$\text{AIC} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + 2p\sigma^2,$$

which, again, puts a penalty on model size. Use the Taylor approximation, $1/(1 - u)^2 \approx 1 + 2u$ for u small, to explain why GCV and AIC are “more or less” equivalent to each other when n is relatively large.

Remark Usually, one ends up with similar answers when choosing a model according to either CV, GCV, or AIC.