-

Nested Models

Mo: y=0o+ Biz1 + ...+ Bg—1T¢g—1 +€

dim(Mjp)=q

My: y=pPo+b1x1 + ... + Bg—1Zg—1 + Bgxq + .. + Pp_12p—1 +¢

dim(Ma)=p

want to test the following null hypothesis

Hy : Bq:

=Py =0

-
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/ The F-Test \

Theory Under My (and normality of all y;),

(ly = Yoll* = ly —9all*)/(p — q)

— ~ F
|y —yall?/(n—Dp)

(p—gq,n—p)-

So reject My in favor of M4 if LHS is large, when measured by an
F'-distribution.

Ockham’s Razor

Latin: Pluralitas non est ponenda sine necesitate.
—William of Ockham (1285-1349)

English:  Pluralities should not be posited without necessity.

. /
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/ Just A Little More Detail \

Numerator By Ockham’s razor, “makes sense” to focus on the
difference

ly —goll® = lly — g4lI°

Denominator Needs to be “orthogonal” to numerator for

F'-distribution, but projection geometry “clearly” shows
ly = 3oll® = lly = Yall* = 9o — 9all®
and

@o—@Aly—@A-

. /
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/ Special Case: p=¢q+1 \

Moy: y=p00+bix1+ ...+ Bg—12q9-1 + €
My: y=p0o+ b1+ ... +Bg-12q-1+ Byry +€

T vs F
Expect t-test of 5,=0 to be equivalent to F-test.

. /
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/ Special Case: p=¢q+1

Moy: y=p00+bix1+ ...+ Bg—12q9-1 + €
Ma: y= 0o+ br1x1+ ... +Pg-12q-1+ Byrq +€

T vs F
Expect t-test of 5,=0 to be equivalent to F-test.

Simple Example

Consider the set of nested models below.
My:y=a+c¢ VS Mpy:y=a+ Bx+¢

Let T3 be the t-statistic for testing 5 = 0 and Fp, the ['-statistic
for testing My against M4. Then, T3 = Fp.

-

/
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/ Detalils

My = a:g_g_a E: = /y\gA):Az:a—i_
My = a=y, =0 = §§0)2§

Ts = whereas Fg = n

suffices if Z(@\z — ) = 52 Z(ﬂ% — z)?
i=1 i=1
U )

n mn

indeed Z(a + B\ZEZ —§)° = Z(g - Bf +//B\jS — )’

4

-
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/ T- and F-Tests <& LRT \

Example In the same spirit as Exercise 7.2 (p. 128), can show,
for

Yy = o+ Br; + €, € d N(0,0?),

n

Z(yz’ —7)° = Z(yz’ —5:)?| + B Z(%‘ ~ $)2] :
(b) a2
2log A(B) =nlog |1+ <n(€)2) > (T(ﬁ))2 as n — 00,

where A(SB) and T'(8) are respectively the LR~ and t-statistics for
testing Hy : 8 = 0. [Remark: If you try it, remember that the MLEs

| Y,
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/ K-Fold Cross Validation

1. randomly partition the data set into K groups, G, ...,k

2. foreach k=1,2,.... K

AN

(—Gk) . 2
0 — arg min i — f(x;; 0
g1 > lyi — f(i:0)]

1ZGp
N S0\
err(k) = Y |y = | =D i f (@0
1€Gk 1€Gy

end for

3. assess the overall prediction error of model f as

Err(f) = err(1) + err(2) + ... + err(K)

Remark Do this for a number of candidate models and choose

~

@e one with smallest “Err.” Usually implemented w/ K = 2,5, 10./
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/ Leave-One-Out CV

Special Case K =n (aka n-fold CV)

G =11}, Go={2}, .., G,={n}

Theorem For f(x;0) = linear regression model (in fact, any
model such that y = Hy for some H not depending on y),

AN

” _/y\(—i) _ Y~ Y
o 1-H;

-

Remark Can do leave-one-out (n-fold) CV without iteration.

~
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Proof

YT @E_w Y1
(=) H.. H .. H. ~(—1)
ly* Y, 11 X mn Y Y,
s e
Yi = Z Hijyj =4 y@( D= Z Hijyj_ iiYi + sz/y\z( ‘)
j=1 j=1
y; — LHS = y; — RHS
= -0 =y~ Gi+Hulyi— 7 ")

-
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Generalized Cross Validation

n n ~ 2
V=3 (w-i ) =3 (2R
i=1 v

1=1

o
(]
z
[
| —
N
=
3
[
S

“average H;;” = —
n

a penalty on model size

/
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/ Akaike Information Criterion (AIC) \

Exercise If 02 is known, the so-called Akaike Information
Criterion (AIC) for evaluating a linear regression model can be
equivalently expressed by

AIC = Z 2 + 2po?,

which, again, puts a penalty on model size. Use the Taylor
approximation, 1/(1 — u)? ~ 1 + 2u for u small, to explain why
GCV and AIC are “more or less” equivalent to each other when n

is relatively large.

Remark Usually, one ends up with similar answers when

\choosing a model according to either CV, GCV, or AIC. /
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