
✬

✫

✩

✪

Nested Models

M0 : y = β0 + β1x1 + ...+ βq−1xq−1︸ ︷︷ ︸
dim(M0)=q

+ε

MA : y = β0 + β1x1 + ...+ βq−1xq−1 + βqxq + ...+ βp−1xp−1︸ ︷︷ ︸
dim(MA)=p

+ε

want to test the following null hypothesis

H0 : βq = ... = βp−1 = 0

STAT 845 | Lecture 19, Fall 2023 © 2017-23 by M. Zhu, PhD 1 of 12



✬

✫

✩

✪

The F-Test

Theory Under M0 (and normality of all yi),

(‖y − ŷ0‖
2 − ‖y − ŷA‖

2)/(p− q)

‖y − ŷA‖
2/(n− p)

∼ F(p−q,n−p).

So reject M0 in favor of MA if LHS is large, when measured by an

F -distribution.

Ockham’s Razor

Latin: Pluralitas non est ponenda sine necesitate.

—William of Ockham (1285–1349)

English: Pluralities should not be posited without necessity.
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✬

✫

✩

✪

Just A Little More Detail

Numerator By Ockham’s razor, “makes sense” to focus on the

difference

‖y − ŷ0‖
2 − ‖y − ŷA‖

2.

Denominator Needs to be “orthogonal” to numerator for

F -distribution, but projection geometry “clearly” shows

‖y − ŷ0‖
2 − ‖y − ŷA‖

2 = ‖ŷ0 − ŷA‖
2

and

ŷ0 − ŷA ⊥ y − ŷA.
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✬

✫

✩

✪

Special Case: p = q + 1

M0 : y = β0 + β1x1 + ...+ βq−1xq−1 + ε

MA : y = β0 + β1x1 + ...+ βq−1xq−1 + βqxq + ε

T vs F

Expect t-test of βq=0 to be equivalent to F -test.
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✬

✫

✩

✪

Special Case: p = q + 1

M0 : y = β0 + β1x1 + ...+ βq−1xq−1 + ε

MA : y = β0 + β1x1 + ...+ βq−1xq−1 + βqxq + ε

T vs F

Expect t-test of βq=0 to be equivalent to F -test.

Simple Example

Consider the set of nested models below.

M0 : y = α+ ε vs MA : y = α+ βx+ ε

Let Tβ be the t-statistic for testing β = 0 and Fβ, the F -statistic

for testing M0 against MA. Then, T
2
β = Fβ .
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✬

✫

✩

✪

Details

MA ⇒ α̂ = ȳ − β̂x̄, β̂ = ... ⇒ ŷ
(A)
i = ŷi = α̂+ β̂xi

M0 ⇒ α̂ = ȳ, β = 0 ⇒ ŷ
(0)
i = ȳ

Tβ =
β̂√
σ̂2

∑n
i=1(xi − x̄)2

whereas Fβ =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ŷi)

2

n− 2

suffices if
n∑

i=1

(ŷi − ȳ)2

⇓

= β̂2
n∑

i=1

(xi − x̄)2

⇑

indeed

n∑

i=1

(α̂+ β̂xi︸ ︷︷ ︸
ŷi

−ȳ)2 =

n∑

i=1

(ȳ − β̂x̄︸ ︷︷ ︸
α̂

+β̂xi − ȳ)2
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✬

✫

✩

✪

T - and F -Tests ⇔ LRT

Example In the same spirit as Exercise 7.2 (p. 128), can show,

for

yi = α+ βxi + εi, εi
iid
∼ N(0, σ2),

(a) n∑

i=1

(yi − ȳ)2 =

[
n∑

i=1

(yi − ŷi)
2

]
+ β̂2

[
n∑

i=1

(xi − x̄)2

]
,

(b)

2 log Λ(β) = n log

[
1 +

(
T (β)

)2

n− 2

]
→

(
T (β)

)2
as n → ∞,

where Λ(β) and T (β) are respectively the LR- and t-statistics for

testing H0 : β = 0. [Remark: If you try it, remember that the MLEs

of α, σ2 are different with and without the restriction β = 0.]
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✬

✫

✩

✪

K-Fold Cross Validation

1. randomly partition the data set into K groups, G1, ...,GK

2. for each k = 1, 2, ..., K

θ̂
(−Gk)

= argmin
θ

∑

i 6∈Gk

[yi − f(xi; θ)]
2

err(k) =
∑

i∈Gk

[
yi − ŷ

(−Gk)
i

]2
=

∑

i∈Gk

[
yi − f

(
xi; θ̂

(−Gk)
)]2

end for

3. assess the overall prediction error of model f as

Err(f) = err(1) + err(2) + ...+ err(K)

Remark Do this for a number of candidate models and choose

the one with smallest “Err.” Usually implemented w/ K = 2, 5, 10.
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✬

✫

✩

✪

Leave-One-Out CV

Special Case K = n (aka n-fold CV)

G1 = {1}, G2 = {2}, ..., Gn = {n}

Theorem For f(x; θ) = linear regression model (in fact, any

model such that ŷ = Hy for some H not depending on y),

yi − ŷ
(−i)
i =

yi − ŷi
1−Hii

.

Remark Can do leave-one-out (n-fold) CV without iteration.
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✬

✫

✩

✪

Proof



ŷ1 ŷ
(−i)
1

...

ŷi ŷ
(−i)
i

...

ŷn ŷ
(−i)
n




=




...
...

...
...

...

Hi1 · · · Hii · · · H in

...
...

...
...

...







y1
...

yi ŷ
(−i)
i

...

yn




ŷi =
n∑

j=1

Hijyj ⇒ ŷ
(−i)
i =

n∑

j=1

H ijyj−Hiiyi +Hiiŷ
(−i)
i

yi − LHS = yi − RHS

⇒ yi − ŷ
(−i)
i = yi − ŷi +Hii(yi − ŷ

(−i)
i )
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✬

✫

✩

✪

Generalized Cross Validation

CV =
n∑

i=1

(
yi − ŷ

(−i)
i

)2

=
n∑

i=1

(
yi − ŷi
1−Hii

)2

“average Hii” =
1

n

n∑

i=1

Hii =
1

n
tr(H) =

p

n

GCV =
n∑

i=1

(
yi − ŷi
1− p/n

)2

⇑

a penalty on model size
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✬

✫

✩

✪

Akaike Information Criterion (AIC)

Exercise If σ2 is known, the so-called Akaike Information

Criterion (AIC) for evaluating a linear regression model can be

equivalently expressed by

AIC =
n∑

i=1

(yi − ŷi)
2 + 2pσ2,

which, again, puts a penalty on model size. Use the Taylor

approximation, 1/(1− u)2 ≈ 1 + 2u for u small, to explain why

GCV and AIC are “more or less” equivalent to each other when n

is relatively large.

Remark Usually, one ends up with similar answers when

choosing a model according to either CV, GCV, or AIC.
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