

Compound Distributions

Definition Suppose an RV, X , follows a certain distribution with parameter θ ,

$$X \sim f(x; \theta),$$

but θ itself is another RV with its own distribution,

$$\theta \sim \pi(\theta; \cdot).$$

This effectively turns $f(x; \theta)$ into $f(x|\theta)$, and X now has a so-called **compound distribution**, with (marginal) distribution

$$f(x) = \sum_{\theta} f(x|\theta)\pi(\theta) \quad \text{or} \quad \int f(x|\theta)\pi(\theta)d\theta.$$

Remark Important concept for **hierarchical models**.

Example

Setting Suppose $X \sim \text{binomial}(n, p)$.

Question What's the (marginal) distribution of X if

- $n \sim \text{Poisson}(\lambda)$ also random? [Exercise 4.2 (p. 60)]
- $p \sim \text{uniform}(0, 1)$ also random? [Example 3.8 (p. 44–45)]

Context For example,

n = # of **hackers** who visit your system on a given day;
 p = probability of each hacker **crashing** your system; and
 X = total # of **crashes** they cause.

The “ n random” Case

$$f(x) = \sum_{n=0}^{\infty} \underbrace{\left[\frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \right]}_{f(x|n)} \times \underbrace{\left[\frac{e^{-\lambda} \lambda^n}{n!} \right]}_{f(n)}$$

⋮

$$= \frac{e^{-p\lambda} (p\lambda)^x}{x!} \sim \text{Poisson}(p\lambda)$$

The “ p random” Case

$$f(x) = \int_0^1 \underbrace{\left[\frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \right]}_{f(x|p)} \times \underbrace{(1)}_{f(p)} dp$$

⋮

$$= \frac{1}{n+1} \sim \text{uniform}\{0, 1, \dots, n\}$$

$U \sim \text{beta}(\alpha, \beta)$ if it has density function

$$f(u) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} u^{\alpha-1} (1-u)^{\beta-1}, \quad u \in [0, 1], \quad \alpha, \beta > 0$$

$\mathbb{E}(\cdot)$ and $\mathbb{V}\text{ar}(\cdot)$

- sometimes, $\mathbb{E}(\cdot)$ and $\mathbb{V}\text{ar}(\cdot)$ are enough, $f(\cdot)$ not necessary
- \exists easy formulae (of course!)
- $f(\cdot)$: law of total probability

$$f(y) = \int f(y|x)f(x)dx \quad \text{or} \quad \sum_x f(y|x)f(x)$$

- $\mathbb{E}(\cdot)$: law of total expectation (aka Adam's Law)[†]

$$\mathbb{E}(Y) = \mathbb{E}[\mathbb{E}(Y|X)]$$

- $\mathbb{V}\text{ar}(\cdot)$: law of total variance (aka Eve's Law)[†]

$$\mathbb{V}\text{ar}(Y) = \mathbb{E}[\mathbb{V}\text{ar}(Y|X)] + \mathbb{V}\text{ar}[\mathbb{E}(Y|X)]$$

[†]The textbook, *Essential Statistics*, does not cover these laws.

Law of Total Expectation

Theorem $\mathbb{E}(Y) = \mathbb{E}[\mathbb{E}(Y|X)]$. *[Note: Outside $\mathbb{E}[\cdot]$ w.r.t. X .]*

$$\mathbb{E}(Y) = \int y \mathbf{f}(y) dy = \int y \left[\int f(y|x) f(x) dx \right] dy = \dots$$

$$\dots = \int \int y f(y|x) f(x) dy dx = \int \left[\int y f(y|x) dy \right] \mathbf{f}(x) dx = \dots$$

$$\dots = \int \mathbb{E}(Y|X=x) f(x) dx = \mathbb{E}[\mathbb{E}(Y|X)]$$

$$\mathbb{E}[g(X)] = \sum_x g(x) f(x) \quad \text{or} \quad \int g(x) f(x) dx$$

Remark Nick name = **Adam's Law**.

Mean-Squared-Error Prediction

Theorem Let $g(X) = \mathbb{E}(Y|X)$ and $h(X)$ be any other function of X . Then,

$$\mathbb{E}\{[Y - g(X)]^2\} \leq \mathbb{E}\{[Y - h(X)]^2\},$$

i.e., $\mathbb{E}(Y|X)$ is best function of X to predict Y in terms of MSE.

$$\begin{aligned} \text{RHS} &= \mathbb{E}\{[Y - g(X) + g(X) - h(X)]^2\} \\ &= \mathbb{E}\{[Y - g(X)]^2 + [g(X) - h(X)]^2 + 2[Y - g(X)][g(X) - h(X)]\} \\ &= \text{LHS} + (\text{sth} \geq 0) + \underbrace{2\mathbb{E}\{[Y - g(X)][g(X) - h(X)]\}}_{=0} \end{aligned}$$

Exercise Apply the law of total expectation to show that, if $g(X) = \mathbb{E}(Y|X)$, then $\mathbb{E}\{[Y - g(X)][g(X) - h(X)]\} = 0$.

Law of Total Variance

Theorem $\text{Var}(Y) = \mathbb{E}[\text{Var}(Y|X)] + \text{Var}[\mathbb{E}(Y|X)].$

Intuition (Total Var) = (Within Var) + (Between Var)

x_1	x_2	...	x_m	
$y_{1,1}$	$y_{1,2}$...	$y_{1,m}$	
$y_{2,1}$	$y_{2,2}$...	$y_{2,m}$	
\vdots	\vdots	\vdots	\vdots	
$y_{n_1,1}$	$y_{n_2,2}$...	$y_{n_m,m}$	
$\mathbb{E}(Y x_1)$	$\mathbb{E}(Y x_2)$...	$\mathbb{E}(Y x_m)$	$\Rightarrow \text{Var}[\mathbb{E}(Y X)]$
$\text{Var}(Y x_1)$	$\text{Var}(Y x_2)$...	$\text{Var}(Y x_m)$	$\Rightarrow \mathbb{E}[\text{Var}(Y X)]$

Exercise Prove this law (nick name = Eve's Law).

The “ n random” Case

$$\mathbb{E}(X) = \mathbb{E}[\mathbb{E}(X|n)] = \dots$$

$$\mathbb{V}\text{ar}(X) = \mathbb{E}[\mathbb{V}\text{ar}(X|n)] + \mathbb{V}\text{ar}[\mathbb{E}(X|n)]$$

⋮

	$\mathbb{E}(\cdot)$	$\mathbb{V}\text{ar}(\cdot)$
binomial(n, p)	np	$np(1 - p)$
Poisson(λ)	λ	λ

Exercise Verify Adam’s Law + Eve’s Law in like fashion for the “ p random” case.

Random Sums

$$S_N = X_1 + X_2 + \cdots + X_N$$

- X_1, X_2, \dots are i.i.d. with $\mathbb{E}(X_i) = \mu_x$ and $\text{Var}(X_i) = \sigma_x^2$
- N is also random
- e.g., insurance (X_i = individual claim \$; N = # of claims)

$$\mathbb{E}(S_N) = \mathbb{E}[\mathbb{E}(S_N|N)] = \dots$$

$$\text{Var}(S_N) = \mathbb{E}[\text{Var}(S_N|N)] + \text{Var}[\mathbb{E}(S_N|N)]$$

⋮

Exercise Compare $\{\mathbb{E}(S_n), \text{Var}(S_n)\}$ with $\{\mathbb{E}(S_N), \text{Var}(S_N)\}$, where $N \sim \text{Poisson}(n)$.