ALMOST COMPLEX MANIFOLDS - ASSIGNMENT 4 SOLUTIONS

1. Show that a principal $U(n)$-bundle P admits a reduction of structure group to $S U(n)$ if and only if $c_{1}(P)=0$.

Solution: There is a short exact sequence $1 \rightarrow S U(n) \xrightarrow{i} U(n) \rightarrow S^{1} \rightarrow 1$ so we have $U(n) / S U(n)=S^{1}$ and hence there is a fiber bundle

which is classified by a map $B U(n) \rightarrow B S^{1}=B K(\mathbb{Z}, 1)=K(\mathbb{Z}, 2)$ and therefore corresponds to an element $k_{2} \in H^{2}(B U(n) ; \mathbb{Z})$. This is the Moore-Postnikov tower of the map $B i: B S U(n) \rightarrow B U(n)$ and k_{2} is the only non-trivial k-invariant.

Note that $\pi_{1}(B S U(n)) \cong \pi_{0}(S U(n))=0$, and $\pi_{2}(B S U(n)) \cong \pi_{1}(S U(n))=0$ so $H_{1}(B S U(n) ; \mathbb{Z})=0$ and $H_{2}(B S U(n) ; \mathbb{Z})=0$ by the Hurewicz Theorem. Using the Universal Coefficient Theorem, we see that $H^{2}(B S U(n) ; \mathbb{Z}) \cong \operatorname{Hom}\left(H_{2}(B S U(n) ; \mathbb{Z}), \mathbb{Z}\right) \oplus \operatorname{Ext}\left(H_{1}(B S U(n) ; \mathbb{Z}), \mathbb{Z}\right)=0$. So (Bi)*: $H^{2}(B U(n) ; \mathbb{Z}) \rightarrow H^{2}(B S U(n) ; \mathbb{Z})$ is the zero map. As k_{2} generates the kernel of $(B i)^{*}: H^{2}(B U(n) ; \mathbb{Z}) \rightarrow$ $H^{2}(B S U(n) ; \mathbb{Z})$, namely $H^{2}(B U(n) ; \mathbb{Z})$, we see that $k_{2}= \pm c_{1}$ (we can arrange for it to be $\left.c_{1}\right)$.

A principal $U(n)$-bundle $P \rightarrow X$ admits a reduction of structure group to $S U(n)$ if and only if its classifying map $\phi_{P}: X \rightarrow B U(n)$ lifts to a classifying map $\widetilde{\phi}_{P}: X \rightarrow B S U(n)$.

Such a lift exists if and only if $\phi_{P}^{*} k_{2}=\phi_{P}^{*} c_{1}=c_{1}(P)$ vanishes.
2. Let M be a $2 n$-dimensional almost complex manifold. In question 6 of assignment 3, you were asked to show that there are two potential obstructions to $T M$ admitting a complex line subbundle. Show that the first one vanishes.

Solution: Recall that $T M$ admits a complex line subbundle if and only if $P_{U(n)}(T M)$ admits a reduction of structure group to $U(n-1) \times U(1)$. The two potential obstructions are $\gamma_{3} \in H^{3}(M ; \mathbb{Z})$ and $\gamma_{2 n} \in H^{2 n}(M ; \mathbb{Z})$. We have $U(n) /(U(n-1) \times U(1))=\mathbb{C P}^{n-1}$, so the Moore-Postnikov tower of
$B(U(n-1) \times U(1)) \rightarrow B U(n)$ takes the form

The first non-zero homotopy group of $\mathbb{C P}^{n-1}$ is $\pi_{2}\left(\mathbb{C P}^{n-1}\right) \cong \mathbb{Z}$. Therefore the first stage of the tower is

which is classified by an element $k_{3} \in H^{3}(B U(2) ; \mathbb{Z})$. Since $H^{3}(B U(2) ; \mathbb{Z})=0$, we have $k_{3}=0$. Since γ_{3} is the pullback of k_{3}, we see that $\gamma_{3}=0$.
3. Consider the Lie group G_{2}. It can be defined in many different ways. For example, as the simply connected Lie group with Lie algebra \mathfrak{g}_{2}, or as the subgroup of $G L^{+}(7, \mathbb{R})$ fixing a particular 3 -form on \mathbb{R}^{7}.

Let $E \rightarrow X$ be a real oriented rank 7 bundle. Determine the primary obstruction to E admitting a reduction of structure group to G_{2}.

Solution: The Moore-Postnikov tower of $B G_{2} \rightarrow B G L^{+}(7, \mathbb{R})$ takes the form

Note that $G L^{+}(7, \mathbb{R}) / G_{2}$ is the image of $G L^{+}(7, \mathbb{R})$ under the quotient map, so $G L^{+}(7, \mathbb{R}) / G_{2}$ is pathconnected, and hence $\pi_{0}\left(G L^{+}(7, \mathbb{R}) / G_{2}\right)=0$. Applying the long exact sequence in homotopy groups to the fiber bundle $G_{2} \rightarrow G L^{+}(7, \mathbb{R}) \rightarrow G L^{+}(7, \mathbb{R}) / G_{2}$, we have

$$
\cdots \rightarrow \pi_{1}\left(G_{2}\right) \rightarrow \pi_{1}\left(G L^{+}(7, \mathbb{R})\right) \rightarrow \pi_{1}\left(G L^{+}(7, \mathbb{R}) / G_{2}\right) \rightarrow \pi_{0}\left(G_{2}\right) \rightarrow \ldots
$$

Since G_{2} is simply connected, we have $\pi_{1}\left(G_{2}\right)=0$ and $\pi_{0}\left(G_{2}\right)=0$ so $\pi_{1}\left(G L^{+}(7, \mathbb{R}) / G_{2}\right) \cong \pi_{1}\left(G L^{+}(7, \mathbb{R})\right) \cong$ $\pi_{1}(S O(7)) \cong \mathbb{Z}_{2}$. Since the first non-zero homotopy group of $G L^{+}(7, \mathbb{R}) / G_{2}$ is $\pi_{1}\left(G L^{+}(7, \mathbb{R}) / G_{2}\right) \cong \mathbb{Z}_{2}$, the first stage of the tower is

which is classified by an element $k_{2} \in H^{2}\left(B G L^{+}(7, \mathbb{R}) ; \mathbb{Z}_{2}\right) \cong H^{2}\left(B S O(7) ; \mathbb{Z}_{2}\right)=\left\{0, w_{2}\right\}$.
Note that $\pi_{1}\left(B G_{2}\right) \cong \pi_{0}\left(G_{2}\right)=0$ and $\pi_{2}\left(B G_{2}\right) \cong \pi_{1}\left(G_{2}\right)=0$, so $H_{1}\left(B G_{2} ; \mathbb{Z}\right)=0$ and $H_{2}\left(B G_{2} ; \mathbb{Z}\right)=0$ by the Hurewicz Theorem. Using the Universal Coefficient Theorem, we see that $H^{2}\left(B G_{2} ; \mathbb{Z}_{2}\right) \cong$ $\operatorname{Hom}\left(H_{2}\left(B G_{2} ; \mathbb{Z}\right), \mathbb{Z}_{2}\right) \oplus \operatorname{Ext}\left(H_{1}\left(B G_{2} ; \mathbb{Z}\right), \mathbb{Z}_{2}\right)=0$.

So $(B i)^{*}: H^{2}\left(B G L^{+}(7, \mathbb{R}) ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(B G_{2} ; \mathbb{Z}_{2}\right)$ is the zero map. As k_{2} generates the kernel of $(B i)^{*}: H^{2}\left(B G L^{+}(7, \mathbb{R}) ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(B G_{2} ; \mathbb{Z}_{2}\right)$, namely $H^{2}\left(B G L^{+}(7, \mathbb{R}) ; \mathbb{Z}_{2}\right)=\left\{0, w_{2}\right\}$, we see that $k_{2}=w_{2}$.

The primary obstruction for a principal $G L^{+}(7, \mathbb{R})$-bundle $P \rightarrow X$ to admit a reduction of structure group to G_{2} vanishes if and only if a classifying map $\phi_{P}: X \rightarrow B G L^{+}(7, \mathbb{R})$ of P lifts to a classifying $\operatorname{map} \widetilde{\phi}_{P}: X \rightarrow E_{2}$.

Such a lift exists if and only if $\phi_{P}^{*} k_{2}=\phi_{P}^{*} w_{2}=w_{2}(P)$ vanishes. That is, $w_{2}(P)$ is the primary obstruction for a principal $G L^{+}(7, \mathbb{R})$-bundle to admit a reduction of structure group to G_{2}.

4. Let M be an almost complex manifold.

(a) Show that $\bar{\mu}$ is $C^{\infty}(M)$-linear.

By (a), we have a vector bundle homomorphism $\bar{\mu}: \Lambda^{1,0} T^{*} M \rightarrow \bigwedge^{0,2} T^{*} M$.
(b) Suppose that $\operatorname{dim} M=4$ and $\bar{\mu}$ is a surjective bundle homomorphism. Show that $5 \chi(M)+6 \sigma(M)=0$.

Solution: (a) Let $\alpha \in \mathcal{E}^{p, q}(M)$, and $f \in C^{\infty}(M)$. Then

$$
\begin{aligned}
d(f \alpha) & =d f \wedge \alpha+f d \alpha \\
& =(\partial f+\bar{\partial} f) \wedge \alpha+f(\mu \alpha+\partial \alpha+\bar{\partial} \alpha+\bar{\mu} \alpha) \\
& =\underbrace{f \mu \alpha}_{(p+2, q-1)}+\underbrace{(\partial f \wedge \alpha+f \partial \alpha)}_{(p+1, q)}+\underbrace{(\bar{\partial} f \wedge \alpha+f \bar{\partial} \alpha)}_{(p, q+1)}+\underbrace{f \bar{\mu} \alpha}_{(p-1, q+2)}
\end{aligned}
$$

Equating $(p-1, q+2)$-parts, we see that $\bar{\mu}(f \alpha)=f \bar{\mu} \alpha$, so $\bar{\mu}: \mathcal{E}^{p, q}(M) \rightarrow \mathcal{E}^{p-1, q+2}(M)$ is $C^{\infty}(M)$ linear. It follows by linearity that $\bar{\mu}: \mathcal{E}^{*}(M)_{\mathbb{C}} \rightarrow \mathcal{E}^{*}(M)_{\mathbb{C}}$ is $C^{\infty}(M)$-linear.
(b) Since $\bar{\mu}: \Lambda^{1,0} T^{*} M \rightarrow \bigwedge^{0,2} T^{*} M$ is surjective, it has constant rank, so its kernel K is a vector subbundle of $\bigwedge^{1,0} T^{*} M$ and we have a short exact sequence $0 \rightarrow K \rightarrow \bigwedge^{1,0} T^{*} M \rightarrow \bigwedge^{0,2} T^{*} M \rightarrow 0$. Choosing a hermitian bundle metric on $\bigwedge^{1,0} T^{*} M$, we obtain $\bigwedge^{1,0} T^{*} M \cong K \oplus \bigwedge^{0,2} T^{*} M$. Note that $\bigwedge^{1,0} T^{*} M \cong\left(T^{1,0} M\right)^{*} \cong(T M)^{*}$. Choosing a hermitian metric on M, this is in turn isomorphic to $\overline{T M}$. We also have $\bigwedge^{0,2} T^{*} M=\bigwedge^{2}\left(T^{0,1} M\right)^{*} \cong \bigwedge^{2}(\overline{T M})^{*} \cong \bigwedge^{2} T M=\operatorname{det}(T M)$, so $\overline{T M} \cong K \oplus \operatorname{det}(T M)$.
Therefore $-c_{1}(T M)=c_{1}(\overline{T M})=c_{1}(K)+c_{1}(\operatorname{det}(T M))=c_{1}(K)+c_{1}(T M)$, so $c_{1}(K)=-2 c_{1}(T M)$. Now $c_{2}(T M)=c_{2}(\overline{T M})=c_{1}(K) c_{1}(\operatorname{det}(T M))=\left(-2 c_{1}(T M)\right) c_{1}(T M)=-2 c_{1}(T M)^{2}$, so $c_{2}(T M)+$ $2 c_{1}(T M)^{2}=0$, and hence

$$
\begin{aligned}
0 & =\left\langle c_{2}(T M)+2 c_{1}(T M)^{2},[M]\right\rangle \\
& =\langle e(T M),[M]\rangle+2\left\langle c_{1}(T M)^{2},[M]\right\rangle \\
& =\chi(M)+2(2 \chi(M)+3 \sigma(M)) \\
& =5 \chi(M)+6 \sigma(M) .
\end{aligned}
$$

5. Recall, we defined an almost complex structure on $S^{6} \times \mathbb{O}$ which restricts to an almost complex structure on $T S^{6}$, and defines an almost complex structure on the normal bundle of S^{6} in \mathbb{O}.
(a) Show that if $0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0$ is a short exact sequence of complex vector bundles over a CW complex, with F and G trivial, then $c(E)=1$.
(b) Explain why $c\left(T S^{6}\right) \neq 1$ and why this does not contradict (a).

Solution: (a) First note that a trivial bundle has trivial Chern classes since the classifying map of a trivial bundle is nullhomotopic and hence the induced pullback map on cohomology is the zero map.

Choosing a hermitian bundle metric on F, we obtain $F \cong E \oplus G$. By Cartan's formula we have $1=c(F)=c(E) c(G)=c(E)$ since F and G are trivial.
(b) Note that $c_{3}\left(T S^{6}\right)=e\left(T S^{6}\right) \neq 0$ since $\left\langle e\left(T S^{6}\right),\left[S^{6}\right]\right\rangle=\chi\left(S^{6}\right)=2 \neq 0$, hence $c\left(T S^{6}\right) \neq 1$ (in fact, $\left.c\left(T S^{6}\right)=1+c_{3}\left(T S^{6}\right)\right)$.

We have a short exact sequence of vector bundles over S^{6} given by $0 \rightarrow T S^{6} \rightarrow S^{6} \times \mathbb{O} \rightarrow \nu \rightarrow 0$ where ν is the normal bundle. Note that the Euler vector field of $S^{6} \subset \operatorname{Im} \mathbb{O}$, defines a nowhere-zero section of the complex line bundle ν, so ν is trivial. While $S^{6} \times \mathbb{O}$ is trivial as a real bundle, it is not trivial as a complex vector bundle, which is why there is no contradiction to (a). To see that $S^{6} \times \mathbb{O}$ is non-trivial as a complex vector bundle, note that by choosing a hermitian metric on $S^{6} \times \mathbb{O}$, we obtain $S^{6} \times \mathbb{O} \cong T S^{6} \oplus \nu$, so $c\left(S^{6} \times \mathbb{O}\right)=c\left(T S^{6}\right) c(\nu)=c\left(T S^{6}\right) \neq 1$.
6. A manifold is called a integral/rational homology sphere if it has the same integral/rational cohomology groups as a sphere of the same dimension.
(a) Let M be a four-dimensional rational homology sphere. Show that M does not admit an almost complex structure (for either orientation).
(b) Let M be a four-dimensional integral homology sphere. Show that M^{n} does not admit an almost complex structure for any n (for either orientation).
Solution: (a) Note that M is orientable as $H^{4}(M ; \mathbb{Q}) \cong H^{4}\left(S^{4} ; \mathbb{Q}\right) \cong \mathbb{Q}$.
Since $H^{2}(M ; \mathbb{Q})=H^{2}\left(S^{4} ; \mathbb{Q}\right)=0$, the signature of M is zero (regardless of orientation). As $H^{i}(M ; \mathbb{Q}) \cong H^{i}\left(S^{4} ; \mathbb{Q}\right)$, we see that $\chi(M)=\sum_{k=0}^{4}(-1)^{k} b_{k}(M)=\sum_{k=0}^{4}(-1)^{k} b_{k}\left(S^{4}\right)=\chi\left(S^{4}\right)=2$. As $\chi(M) \not \equiv-\sigma(M) \bmod 4$, we see that M does not admit an almost complex structure (for either orientation).
(b) We can use induction to show that M^{n} has torsion-free integral cohomology which vanishes in degrees which are not a multiple of 4 . Since M has the same integral cohomology of S^{4}, the claim is true for $n=1$. Suppose it is true for M^{k}, then $M^{k+1}=M^{k} \times M$ so by the Künneth Theorem, we have a short exact sequence

$$
0 \rightarrow \bigoplus_{i+j=d} H^{i}\left(M^{k} ; \mathbb{Z}\right) \otimes H^{j}(M ; \mathbb{Z}) \rightarrow H^{d}\left(M^{k+1} ; \mathbb{Z}\right) \rightarrow \bigoplus_{i+j=d+1} \operatorname{Tor}\left(H^{i}\left(M^{k} ; \mathbb{Z}\right), H^{j}(M ; \mathbb{Z})\right) \rightarrow 0
$$

Since M has torsion-free cohomology, the Tor term vanishes. Therefore

$$
\begin{aligned}
H^{d}\left(M^{k+1} ; \mathbb{Z}\right) & \cong \bigoplus_{i+j=d} H^{i}\left(M^{k} ; \mathbb{Z}\right) \otimes H^{j}(M ; \mathbb{Z}) \\
& \cong \bigoplus_{i+j=d} H^{i}\left(M^{k} ; \mathbb{Z}\right) \otimes H^{j}\left(S^{4} ; \mathbb{Z}\right) \\
& \cong H^{d}\left(M^{k} ; \mathbb{Z}\right) \oplus H^{d-4}\left(M^{k} ; \mathbb{Z}\right)
\end{aligned}
$$

By the inductive hypothesis, M^{k} has torsion-free integral cohomology, so $H^{d}\left(M^{k+1} ; \mathbb{Z}\right)$ is torsion-free. In addition, the integral cohomology of M^{k} vanishes in degrees which are not a multiple of 4, so $H^{d}\left(M^{k+1} ; \mathbb{Z}\right)$ can only be non-zero if d is a multiple of 4 . By induction, the claim is proved for M^{n}.
As $H^{4}(M ; \mathbb{Z}) \cong H^{4}\left(S^{4} ; \mathbb{Z}\right) \cong \mathbb{Z}$, we see that M is orientable ${ }^{1}$. Since $H^{2}(M ; \mathbb{Z}) \cong H^{2}\left(S^{4} ; \mathbb{Z}\right)=0$, the signature of M is zero and hence $\left\langle\frac{1}{3} p_{1}(T M),[M]\right\rangle=0$. Therefore $p_{1}(T M)=0$, so $p(T M)=1$. As the integral cohomology of M^{n} has no 2-torsion,

$$
p\left(T\left(M^{n}\right)\right)=p\left(\pi_{1}^{*} T M \oplus \cdots \oplus \pi_{n}^{*} T M\right)=p\left(\pi_{1}^{*} T M\right) \ldots p\left(\pi_{n}^{*} T M\right)=\pi_{1}^{*} p(T M) \ldots \pi_{n}^{*} p(T M)=1
$$

where $\pi_{i}: M^{n} \rightarrow M$ denotes projection onto the $i^{\text {th }}$ factor.
Suppose now that M^{n} admits an almost complex structure. We can use induction to show that all the Chern classes vanish. Since $H^{2}\left(M^{n} ; \mathbb{Z}\right)=0$, we have $c_{1}\left(T\left(M^{n}\right)\right)=0$. Suppose now that $c_{i}\left(T\left(M^{n}\right)\right)=0$ for $i<k$. If k is odd, then $c_{k}\left(T\left(M^{n}\right)\right)=0$ since $H^{2 k}\left(M^{n} ; \mathbb{Z}\right)=0$. If k is even, say $k=2 r$, then we have
$p_{r}\left(T\left(M^{n}\right)\right)=c_{r}\left(T\left(M^{n}\right)\right)^{2}-2 c_{r-1}\left(T\left(M^{n}\right)\right) c_{r+1}\left(T\left(M^{n}\right)\right)+\cdots+2(-1)^{r} c_{2 r}\left(T\left(M^{n}\right)\right)=2(-1)^{r} c_{k}\left(T\left(M^{n}\right)\right)$. Since $p_{r}\left(T\left(M^{n}\right)\right)=0$ and the cohomology of M^{n} has no 2 -torsion, we conclude that $c_{k}\left(T\left(M^{n}\right)\right)=0$. Therefore all the Chern classes of M^{n} vanish, in particular, $c_{2 n}\left(T\left(M^{n}\right)\right)=0$. However $c_{2 n}\left(T\left(M^{n}\right)\right)=$ $e\left(T\left(M^{n}\right)\right)$ and $\left\langle e\left(T\left(M^{n}\right)\right),\left[M^{n}\right]\right\rangle=\chi\left(M^{n}\right)=\chi(M)^{n}=\chi\left(S^{4}\right)^{n}=2^{n} \neq 0$, so $c_{2 n}\left(T\left(M^{n}\right)\right) \neq 0$ which is a contradiction. Therefore M^{n} does not admit an almost complex structure (for either orientation).
7. For non-negative integers k and ℓ, let $M_{k, \ell}=k \mathbb{C P}^{2} \# \ell \overline{\mathbb{C P}^{2}}$. For which k and ℓ does $M_{k, \ell}$ admit an almost complex structure inducing the given orientation?

[^0]Solution: Under the isomorphism $H^{2}\left(M \# N ; \mathbb{Z}_{2}\right) \cong H^{2}\left(M ; \mathbb{Z}_{2}\right) \oplus H^{2}\left(N ; \mathbb{Z}_{2}\right)$, we have $w_{2}(T(M \# N)) \mapsto$ $w_{2}(T M)+w_{2}(T N)$. Therefore, under the isomorphism $H^{2}\left(M_{k, \ell} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}^{k+\ell}$, the element $w_{2}\left(M_{k, \ell}\right)$ corresponds to $(1, \ldots, 1)$. It follows that if c is an integral lift of $w_{2}\left(M_{k, \ell}\right)$, then under the isomorphism $H^{2}\left(M_{k, \ell} ; \mathbb{Z}\right) \cong \mathbb{Z}^{k+\ell}$, the element c corresponds to $\left(2 a_{1}+1, \ldots, 2 a_{k}+1,2 b_{1}+1, \ldots, 2 b_{\ell}+1\right)$ for some $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{\ell} \in \mathbb{Z}$. Since $M_{k, \ell}$ has intersection form $\operatorname{dia}(\underbrace{1, \ldots, 1}_{k}, \underbrace{-1, \ldots,-1}_{\ell})$, we see that

$$
\begin{aligned}
\left\langle c^{2},\left[M_{k, \ell}\right]\right\rangle & =\left(2 a_{1}+1\right)^{2}+\cdots+\left(2 a_{k}+1\right)^{2}-\left(2 b_{1}+1\right)^{2}-\cdots-\left(2 b_{\ell}+1\right)^{2} \\
& =4 a_{1}\left(a_{1}+1\right)+\cdots+4 a_{k}\left(a_{k}+1\right)-4 b_{1}\left(b_{1}+1\right)-\cdots-4 b_{\ell}\left(b_{\ell}+1\right)+k-\ell
\end{aligned}
$$

On the other hand $\chi\left(M_{k, \ell}\right)=2+k+\ell$ and $\sigma=k-\ell$, so $2 \chi\left(M_{k, \ell}\right)+3 \sigma\left(M_{k, \ell}\right)=2(2+k+\ell)+3(k-\ell)=$ $5 k-\ell+4$. Therefore $\left\langle c^{2},\left[M_{k, \ell}\right]\right\rangle=2 \chi\left(M_{k, \ell}\right)+3 \sigma\left(M_{k, \ell}\right)$ if and only if

$$
\begin{aligned}
4 a_{1}\left(a_{1}+1\right)+\cdots+4 a_{k}\left(a_{k}+1\right)-4 b_{1}\left(b_{1}+1\right)-\cdots-4 b_{\ell}\left(b_{\ell}+1\right)+k-\ell & =5 k-\ell+4 \\
4 a_{1}\left(a_{1}+1\right)+\cdots+4 a_{k}\left(a_{k}+1\right)-4 b_{1}\left(b_{1}+1\right)-\cdots-4 b_{\ell}\left(b_{\ell}+1\right) & =4 k+4 \\
a_{1}\left(a_{1}+1\right)+\cdots+a_{k}\left(a_{k}+1\right)-b_{1}\left(b_{1}+1\right)-\cdots-b_{\ell}\left(b_{\ell}+1\right) & =k+1
\end{aligned}
$$

Since the product of consecutive integers is always even, we see that the left hand side is even, and hence k is necessarily odd.
To see that k odd is sufficient, write $k+1=2 d$ and note that $d \leq k$. Now $a_{1}=\cdots=a_{d}=1$ and $a_{d+1}=\cdots=a_{k}=b_{1}=\cdots=b_{\ell}=0$ is a solution to the equation above, and hence we obtain an integral lift $c \in H^{2}\left(M_{k, \ell} ; \mathbb{Z}\right)$ of $w_{2}\left(M_{k, \ell}\right)$ satisfying $\left\langle c^{2},\left[M_{k, \ell}\right]\right\rangle=2 \chi\left(M_{k, \ell}\right)+3 \sigma\left(M_{k, \ell}\right)$. Therefore $M_{k, \ell}$ admits an almost complex structure inducing the given orientation.

[^0]: ${ }^{1}$ Since every integral homology sphere is a rational homology sphere, this already follows from (a).

