
ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 4 SOLUTIONS

1. Show that a principal U(n)-bundle P admits a reduction of structure group to SU(n)
if and only if c1(P ) = 0.

Solution: There is a short exact sequence 1 → SU(n)
i−→ U(n) → S1 → 1 so we have U(n)/SU(n) = S1

and hence there is a fiber bundle

S1 BSU(n)

BU(n)

Bi

which is classified by a map BU(n) → BS1 = BK(Z, 1) = K(Z, 2) and therefore corresponds to an
element k2 ∈ H2(BU(n);Z). This is the Moore-Postnikov tower of the map Bi : BSU(n) → BU(n)
and k2 is the only non-trivial k-invariant.

Note that π1(BSU(n)) ∼= π0(SU(n)) = 0, and π2(BSU(n)) ∼= π1(SU(n)) = 0 so H1(BSU(n);Z) = 0
and H2(BSU(n);Z) = 0 by the Hurewicz Theorem. Using the Universal Coefficient Theorem, we
see that H2(BSU(n);Z) ∼= Hom(H2(BSU(n);Z),Z) ⊕ Ext(H1(BSU(n);Z),Z) = 0. So (Bi)∗ :
H2(BU(n);Z) → H2(BSU(n);Z) is the zero map. As k2 generates the kernel of (Bi)∗ : H2(BU(n);Z) →
H2(BSU(n);Z), namely H2(BU(n);Z), we see that k2 = ±c1 (we can arrange for it to be c1).

A principal U(n)-bundle P → X admits a reduction of structure group to SU(n) if and only if its

classifying map ϕP : X → BU(n) lifts to a classifying map ϕ̃P : X → BSU(n).

BSU(n)

X BU(n) K(Z, 2)

Bi
ϕ̃P

ϕP c1

Such a lift exists if and only if ϕ∗
P k2 = ϕ∗

P c1 = c1(P ) vanishes.

2. Let M be a 2n-dimensional almost complex manifold. In question 6 of assignment
3, you were asked to show that there are two potential obstructions to TM admitting a
complex line subbundle. Show that the first one vanishes.

Solution: Recall that TM admits a complex line subbundle if and only if PU(n)(TM) admits a reduction

of structure group to U(n − 1) × U(1). The two potential obstructions are γ3 ∈ H3(M ;Z) and
γ2n ∈ H2n(M ;Z). We have U(n)/(U(n − 1) × U(1)) = CPn−1, so the Moore-Postnikov tower of
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B(U(n− 1)× U(1)) → BU(n) takes the form

B(U(n− 1)× U(1))

...

K(πm(CPn−1),m) Em+1

Em K(πm(CPn−1),m+ 1)

...

BU(n)

km+1

The first non-zero homotopy group of CPn−1 is π2(CPn−1) ∼= Z. Therefore the first stage of the tower
is

K(Z, 2) E3

BU(2) K(Z, 3)k3

which is classified by an element k3 ∈ H3(BU(2);Z). Since H3(BU(2);Z) = 0, we have k3 = 0. Since
γ3 is the pullback of k3, we see that γ3 = 0.

3. Consider the Lie group G2. It can be defined in many different ways. For example,
as the simply connected Lie group with Lie algebra g2, or as the subgroup of GL+(7,R)
fixing a particular 3-form on R7.

Let E → X be a real oriented rank 7 bundle. Determine the primary obstruction to E
admitting a reduction of structure group to G2.
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Solution: The Moore-Postnikov tower of BG2 → BGL+(7,R) takes the form

BG2

...

K(πm(GL+(7,R)/G2),m) Em+1

Em K(πm(GL+(7,R)/G2),m+ 1)

...

BGL+(7,R)

km+1

Note that GL+(7,R)/G2 is the image of GL+(7,R) under the quotient map, so GL+(7,R)/G2 is path-
connected, and hence π0(GL+(7,R)/G2) = 0. Applying the long exact sequence in homotopy groups
to the fiber bundle G2 → GL+(7,R) → GL+(7,R)/G2, we have

· · · → π1(G2) → π1(GL+(7,R)) → π1(GL+(7,R)/G2) → π0(G2) → . . .

SinceG2 is simply connected, we have π1(G2) = 0 and π0(G2) = 0 so π1(GL+(7,R)/G2) ∼= π1(GL+(7,R)) ∼=
π1(SO(7)) ∼= Z2. Since the first non-zero homotopy group ofGL+(7,R)/G2 is π1(GL+(7,R)/G2) ∼= Z2,
the first stage of the tower is

K(Z2, 1) E2

BGL+(7,R) K(Z2, 2)
k2

which is classified by an element k2 ∈ H2(BGL+(7,R);Z2) ∼= H2(BSO(7);Z2) = {0, w2}.

Note that π1(BG2) ∼= π0(G2) = 0 and π2(BG2) ∼= π1(G2) = 0, soH1(BG2;Z) = 0 andH2(BG2;Z) = 0
by the Hurewicz Theorem. Using the Universal Coefficient Theorem, we see that H2(BG2;Z2) ∼=
Hom(H2(BG2;Z),Z2)⊕ Ext(H1(BG2;Z),Z2) = 0.

So (Bi)∗ : H2(BGL+(7,R);Z2) → H2(BG2;Z2) is the zero map. As k2 generates the kernel of
(Bi)∗ : H2(BGL+(7,R);Z2) → H2(BG2;Z2), namely H2(BGL+(7,R);Z2) = {0, w2}, we see that
k2 = w2.

The primary obstruction for a principal GL+(7,R)-bundle P → X to admit a reduction of structure
group to G2 vanishes if and only if a classifying map ϕP : X → BGL+(7,R) of P lifts to a classifying

map ϕ̃P : X → E2.

E2

X BGL+(7,R) K(Z2, 2)

Bi
ϕ̃P

ϕP w2

Such a lift exists if and only if ϕ∗
P k2 = ϕ∗

Pw2 = w2(P ) vanishes. That is, w2(P ) is the primary
obstruction for a principal GL+(7,R)-bundle to admit a reduction of structure group to G2.

4. Let M be an almost complex manifold.
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(a) Show that µ̄ is C∞(M)-linear.

By (a), we have a vector bundle homomorphism µ̄ :
∧1,0

T ∗M →
∧0,2

T ∗M .

(b) Suppose that dimM = 4 and µ̄ is a surjective bundle homomorphism. Show that
5χ(M) + 6σ(M) = 0.

Solution: (a) Let α ∈ Ep,q(M), and f ∈ C∞(M). Then

d(fα) = df ∧ α+ fdα

= (∂f + ∂̄f) ∧ α+ f(µα+ ∂α+ ∂̄α+ µ̄α)

= fµα︸︷︷︸
(p+2,q−1)

+(∂f ∧ α+ f∂α)︸ ︷︷ ︸
(p+1,q)

+(∂̄f ∧ α+ f∂̄α)︸ ︷︷ ︸
(p,q+1)

+ fµ̄α︸︷︷︸
(p−1,q+2)

Equating (p − 1, q + 2)-parts, we see that µ̄(fα) = fµ̄α, so µ̄ : Ep,q(M) → Ep−1,q+2(M) is C∞(M)-
linear. It follows by linearity that µ̄ : E∗(M)C → E∗(M)C is C∞(M)-linear.

(b) Since µ̄ :
∧1,0

T ∗M →
∧0,2

T ∗M is surjective, it has constant rank, so its kernel K is a vector

subbundle of
∧1,0

T ∗M and we have a short exact sequence 0 → K →
∧1,0

T ∗M →
∧0,2

T ∗M → 0.

Choosing a hermitian bundle metric on
∧1,0

T ∗M , we obtain
∧1,0

T ∗M ∼= K ⊕
∧0,2

T ∗M . Note that∧1,0
T ∗M ∼= (T 1,0M)∗ ∼= (TM)∗. Choosing a hermitian metric onM , this is in turn isomorphic to TM .

We also have
∧0,2

T ∗M =
∧2

(T 0,1M)∗ ∼=
∧2

(TM)∗ ∼=
∧2

TM = det(TM), so TM ∼= K ⊕ det(TM).

Therefore −c1(TM) = c1(TM) = c1(K) + c1(det(TM)) = c1(K) + c1(TM), so c1(K) = −2c1(TM).
Now c2(TM) = c2(TM) = c1(K)c1(det(TM)) = (−2c1(TM))c1(TM) = −2c1(TM)2, so c2(TM) +
2c1(TM)2 = 0, and hence

0 = ⟨c2(TM) + 2c1(TM)2, [M ]⟩
= ⟨e(TM), [M ]⟩+ 2⟨c1(TM)2, [M ]⟩
= χ(M) + 2(2χ(M) + 3σ(M))

= 5χ(M) + 6σ(M).

5. Recall, we defined an almost complex structure on S6 ×O which restricts to an almost
complex structure on TS6, and defines an almost complex structure on the normal bundle
of S6 in O.

(a) Show that if 0 → E → F → G → 0 is a short exact sequence of complex vector
bundles over a CW complex, with F and G trivial, then c(E) = 1.

(b) Explain why c(TS6) ̸= 1 and why this does not contradict (a).

Solution: (a) First note that a trivial bundle has trivial Chern classes since the classifying map of a
trivial bundle is nullhomotopic and hence the induced pullback map on cohomology is the zero map.

Choosing a hermitian bundle metric on F , we obtain F ∼= E ⊕ G. By Cartan’s formula we have
1 = c(F ) = c(E)c(G) = c(E) since F and G are trivial.

(b) Note that c3(TS
6) = e(TS6) ̸= 0 since ⟨e(TS6), [S6]⟩ = χ(S6) = 2 ̸= 0, hence c(TS6) ̸= 1 (in fact,

c(TS6) = 1 + c3(TS
6)).

We have a short exact sequence of vector bundles over S6 given by 0 → TS6 → S6 × O → ν → 0
where ν is the normal bundle. Note that the Euler vector field of S6 ⊂ ImO, defines a nowhere-zero
section of the complex line bundle ν, so ν is trivial. While S6 ×O is trivial as a real bundle, it is not
trivial as a complex vector bundle, which is why there is no contradiction to (a). To see that S6×O is
non-trivial as a complex vector bundle, note that by choosing a hermitian metric on S6×O, we obtain
S6 ×O ∼= TS6 ⊕ ν, so c(S6 ×O) = c(TS6)c(ν) = c(TS6) ̸= 1.
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6. A manifold is called a integral/rational homology sphere if it has the same inte-
gral/rational cohomology groups as a sphere of the same dimension.

(a) Let M be a four-dimensional rational homology sphere. Show that M does not
admit an almost complex structure (for either orientation).

(b) Let M be a four-dimensional integral homology sphere. Show that Mn does not
admit an almost complex structure for any n (for either orientation).

Solution: (a) Note that M is orientable as H4(M ;Q) ∼= H4(S4;Q) ∼= Q.

Since H2(M ;Q) = H2(S4;Q) = 0, the signature of M is zero (regardless of orientation). As

Hi(M ;Q) ∼= Hi(S4;Q), we see that χ(M) =
∑4

k=0(−1)kbk(M) =
∑4

k=0(−1)kbk(S
4) = χ(S4) = 2.

As χ(M) ̸≡ −σ(M) mod 4, we see that M does not admit an almost complex structure (for either
orientation).

(b) We can use induction to show that Mn has torsion-free integral cohomology which vanishes in
degrees which are not a multiple of 4. Since M has the same integral cohomology of S4, the claim is
true for n = 1. Suppose it is true for Mk, then Mk+1 = Mk × M so by the Künneth Theorem, we
have a short exact sequence

0 →
⊕

i+j=d

Hi(Mk;Z)⊗Hj(M ;Z) → Hd(Mk+1;Z) →
⊕

i+j=d+1

Tor(Hi(Mk;Z), Hj(M ;Z)) → 0.

Since M has torsion-free cohomology, the Tor term vanishes. Therefore

Hd(Mk+1;Z) ∼=
⊕

i+j=d

Hi(Mk;Z)⊗Hj(M ;Z)

∼=
⊕

i+j=d

Hi(Mk;Z)⊗Hj(S4;Z)

∼= Hd(Mk;Z)⊕Hd−4(Mk;Z).

By the inductive hypothesis, Mk has torsion-free integral cohomology, so Hd(Mk+1;Z) is torsion-free.
In addition, the integral cohomology of Mk vanishes in degrees which are not a multiple of 4, so
Hd(Mk+1;Z) can only be non-zero if d is a multiple of 4. By induction, the claim is proved for Mn.

As H4(M ;Z) ∼= H4(S4;Z) ∼= Z, we see that M is orientable1. Since H2(M ;Z) ∼= H2(S4;Z) = 0, the
signature of M is zero and hence ⟨ 13p1(TM), [M ]⟩ = 0. Therefore p1(TM) = 0, so p(TM) = 1. As the
integral cohomology of Mn has no 2-torsion,

p(T (Mn)) = p(π∗
1TM ⊕ · · · ⊕ π∗

nTM) = p(π∗
1TM) . . . p(π∗

nTM) = π∗
1p(TM) . . . π∗

np(TM) = 1

where πi : M
n → M denotes projection onto the ith factor.

Suppose now that Mn admits an almost complex structure. We can use induction to show that
all the Chern classes vanish. Since H2(Mn;Z) = 0, we have c1(T (M

n)) = 0. Suppose now that
ci(T (M

n)) = 0 for i < k. If k is odd, then ck(T (M
n)) = 0 since H2k(Mn;Z) = 0. If k is even, say

k = 2r, then we have

pr(T (M
n)) = cr(T (M

n))2−2cr−1(T (M
n))cr+1(T (M

n))+· · ·+2(−1)rc2r(T (M
n)) = 2(−1)rck(T (M

n)).

Since pr(T (M
n)) = 0 and the cohomology of Mn has no 2-torsion, we conclude that ck(T (M

n)) = 0.
Therefore all the Chern classes of Mn vanish, in particular, c2n(T (M

n)) = 0. However c2n(T (M
n)) =

e(T (Mn)) and ⟨e(T (Mn)), [Mn]⟩ = χ(Mn) = χ(M)n = χ(S4)n = 2n ̸= 0, so c2n(T (M
n)) ̸= 0 which

is a contradiction. Therefore Mn does not admit an almost complex structure (for either orientation).

7. For non-negative integers k and ℓ, let Mk,ℓ = kCP2#ℓCP2. For which k and ℓ does Mk,ℓ

admit an almost complex structure inducing the given orientation?

1Since every integral homology sphere is a rational homology sphere, this already follows from (a).
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Solution: Under the isomorphismH2(M#N ;Z2) ∼= H2(M ;Z2)⊕H2(N ;Z2), we have w2(T (M#N)) 7→
w2(TM) + w2(TN). Therefore, under the isomorphism H2(Mk,ℓ;Z2) ∼= Zk+ℓ

2 , the element w2(Mk,ℓ)
corresponds to (1, . . . , 1). It follows that if c is an integral lift of w2(Mk,ℓ), then under the isomorphism
H2(Mk,ℓ;Z) ∼= Zk+ℓ, the element c corresponds to (2a1 + 1, . . . , 2ak + 1, 2b1 + 1, . . . , 2bℓ + 1) for some
a1, . . . , ak, b1, . . . , bℓ ∈ Z. Since Mk,ℓ has intersection form diag(1, . . . , 1︸ ︷︷ ︸

k

,−1, . . . ,−1︸ ︷︷ ︸
ℓ

), we see that

⟨c2, [Mk,ℓ]⟩ = (2a1 + 1)2 + · · ·+ (2ak + 1)2 − (2b1 + 1)2 − · · · − (2bℓ + 1)2

= 4a1(a1 + 1) + · · ·+ 4ak(ak + 1)− 4b1(b1 + 1)− · · · − 4bℓ(bℓ + 1) + k − ℓ.

On the other hand χ(Mk,ℓ) = 2+k+ℓ and σ = k−ℓ, so 2χ(Mk,ℓ)+3σ(Mk,ℓ) = 2(2+k+ℓ)+3(k−ℓ) =
5k − ℓ+ 4. Therefore ⟨c2, [Mk,ℓ]⟩ = 2χ(Mk,ℓ) + 3σ(Mk,ℓ) if and only if

4a1(a1 + 1) + · · ·+ 4ak(ak + 1)− 4b1(b1 + 1)− · · · − 4bℓ(bℓ + 1) + k − ℓ = 5k − ℓ+ 4

4a1(a1 + 1) + · · ·+ 4ak(ak + 1)− 4b1(b1 + 1)− · · · − 4bℓ(bℓ + 1) = 4k + 4

a1(a1 + 1) + · · ·+ ak(ak + 1)− b1(b1 + 1)− · · · − bℓ(bℓ + 1) = k + 1

Since the product of consecutive integers is always even, we see that the left hand side is even, and
hence k is necessarily odd.

To see that k odd is sufficient, write k + 1 = 2d and note that d ≤ k. Now a1 = · · · = ad = 1 and
ad+1 = · · · = ak = b1 = · · · = bℓ = 0 is a solution to the equation above, and hence we obtain an
integral lift c ∈ H2(Mk,ℓ;Z) of w2(Mk,ℓ) satisfying ⟨c2, [Mk,ℓ]⟩ = 2χ(Mk,ℓ)+3σ(Mk,ℓ). Therefore Mk,ℓ

admits an almost complex structure inducing the given orientation.


