ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 4 SOLUTIONS

1. Show that a principal U(n)-bundle P admits a reduction of structure group to SU(n) if and only if $c_1(P) = 0$.

Solution: There is a short exact sequence $1 \to SU(n) \xrightarrow{i} U(n) \to S^1 \to 1$ so we have $U(n)/SU(n) = S^1$ and hence there is a fiber bundle

$$S^1 \longrightarrow BSU(n)$$
$$\downarrow^{Bi}$$
$$BU(n)$$

which is classified by a map $BU(n) \to BS^1 = BK(\mathbb{Z}, 1) = K(\mathbb{Z}, 2)$ and therefore corresponds to an element $k_2 \in H^2(BU(n);\mathbb{Z})$. This is the Moore-Postnikov tower of the map $Bi : BSU(n) \to BU(n)$ and k_2 is the only non-trivial k-invariant.

Note that $\pi_1(BSU(n)) \cong \pi_0(SU(n)) = 0$, and $\pi_2(BSU(n)) \cong \pi_1(SU(n)) = 0$ so $H_1(BSU(n); \mathbb{Z}) = 0$ and $H_2(BSU(n); \mathbb{Z}) = 0$ by the Hurewicz Theorem. Using the Universal Coefficient Theorem, we see that $H^2(BSU(n); \mathbb{Z}) \cong \operatorname{Hom}(H_2(BSU(n); \mathbb{Z}), \mathbb{Z}) \oplus \operatorname{Ext}(H_1(BSU(n); \mathbb{Z}), \mathbb{Z}) = 0$. So $(Bi)^* :$ $H^2(BU(n); \mathbb{Z}) \to H^2(BSU(n); \mathbb{Z})$ is the zero map. As k_2 generates the kernel of $(Bi)^* : H^2(BU(n); \mathbb{Z}) \to$ $H^2(BSU(n); \mathbb{Z})$, namely $H^2(BU(n); \mathbb{Z})$, we see that $k_2 = \pm c_1$ (we can arrange for it to be c_1).

A principal U(n)-bundle $P \to X$ admits a reduction of structure group to SU(n) if and only if its classifying map $\phi_P : X \to BU(n)$ lifts to a classifying map $\widetilde{\phi}_P : X \to BSU(n)$.

$$BSU(n)$$

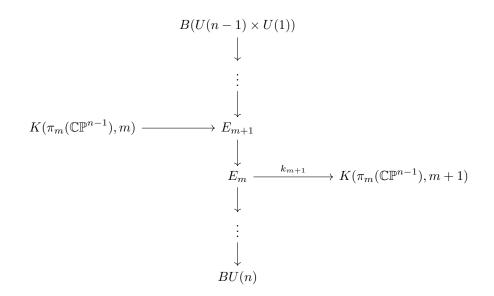
$$\downarrow^{\widetilde{\phi_P}} \qquad \downarrow^{\mathcal{B}i}$$

$$X \xrightarrow{\phi_P} BU(n) \xrightarrow{c_1} K(\mathbb{Z}, 2)$$

Such a lift exists if and only if $\phi_P^* k_2 = \phi_P^* c_1 = c_1(P)$ vanishes.

2. Let M be a 2n-dimensional almost complex manifold. In question 6 of assignment 3, you were asked to show that there are two potential obstructions to TM admitting a complex line subbundle. Show that the first one vanishes.

Solution: Recall that TM admits a complex line subbundle if and only if $P_{U(n)}(TM)$ admits a reduction of structure group to $U(n-1) \times U(1)$. The two potential obstructions are $\gamma_3 \in H^3(M; \mathbb{Z})$ and $\gamma_{2n} \in H^{2n}(M; \mathbb{Z})$. We have $U(n)/(U(n-1) \times U(1)) = \mathbb{CP}^{n-1}$, so the Moore-Postnikov tower of $B(U(n-1) \times U(1)) \to BU(n)$ takes the form



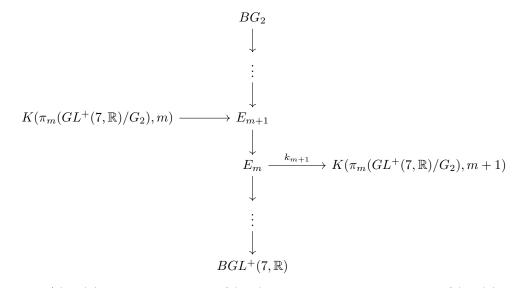
The first non-zero homotopy group of \mathbb{CP}^{n-1} is $\pi_2(\mathbb{CP}^{n-1}) \cong \mathbb{Z}$. Therefore the first stage of the tower is

which is classified by an element $k_3 \in H^3(BU(2); \mathbb{Z})$. Since $H^3(BU(2); \mathbb{Z}) = 0$, we have $k_3 = 0$. Since γ_3 is the pullback of k_3 , we see that $\gamma_3 = 0$.

3. Consider the Lie group G_2 . It can be defined in many different ways. For example, as the simply connected Lie group with Lie algebra \mathfrak{g}_2 , or as the subgroup of $GL^+(7,\mathbb{R})$ fixing a particular 3-form on \mathbb{R}^7 .

Let $E \to X$ be a real oriented rank 7 bundle. Determine the primary obstruction to E admitting a reduction of structure group to G_2 .

Solution: The Moore-Postnikov tower of $BG_2 \to BGL^+(7,\mathbb{R})$ takes the form



Note that $GL^+(7,\mathbb{R})/G_2$ is the image of $GL^+(7,\mathbb{R})$ under the quotient map, so $GL^+(7,\mathbb{R})/G_2$ is pathconnected, and hence $\pi_0(GL^+(7,\mathbb{R})/G_2) = 0$. Applying the long exact sequence in homotopy groups to the fiber bundle $G_2 \to GL^+(7,\mathbb{R}) \to GL^+(7,\mathbb{R})/G_2$, we have

$$\cdots \to \pi_1(G_2) \to \pi_1(GL^+(7,\mathbb{R})) \to \pi_1(GL^+(7,\mathbb{R})/G_2) \to \pi_0(G_2) \to \dots$$

Since G_2 is simply connected, we have $\pi_1(G_2) = 0$ and $\pi_0(G_2) = 0$ so $\pi_1(GL^+(7,\mathbb{R})/G_2) \cong \pi_1(GL^+(7,\mathbb{R})) \cong \pi_1(SO(7)) \cong \mathbb{Z}_2$. Since the first non-zero homotopy group of $GL^+(7,\mathbb{R})/G_2$ is $\pi_1(GL^+(7,\mathbb{R})/G_2) \cong \mathbb{Z}_2$, the first stage of the tower is

$$K(\mathbb{Z}_2, 1) \longrightarrow E_2$$

$$\downarrow$$

$$BGL^+(7, \mathbb{R}) \xrightarrow{k_2} K(\mathbb{Z}_2, 2)$$

which is classified by an element $k_2 \in H^2(BGL^+(7,\mathbb{R});\mathbb{Z}_2) \cong H^2(BSO(7);\mathbb{Z}_2) = \{0, w_2\}.$

Note that $\pi_1(BG_2) \cong \pi_0(G_2) = 0$ and $\pi_2(BG_2) \cong \pi_1(G_2) = 0$, so $H_1(BG_2; \mathbb{Z}) = 0$ and $H_2(BG_2; \mathbb{Z}) = 0$ by the Hurewicz Theorem. Using the Universal Coefficient Theorem, we see that $H^2(BG_2; \mathbb{Z}_2) \cong$ $\operatorname{Hom}(H_2(BG_2; \mathbb{Z}), \mathbb{Z}_2) \oplus \operatorname{Ext}(H_1(BG_2; \mathbb{Z}), \mathbb{Z}_2) = 0.$

So $(Bi)^*$: $H^2(BGL^+(7,\mathbb{R});\mathbb{Z}_2) \to H^2(BG_2;\mathbb{Z}_2)$ is the zero map. As k_2 generates the kernel of $(Bi)^*$: $H^2(BGL^+(7,\mathbb{R});\mathbb{Z}_2) \to H^2(BG_2;\mathbb{Z}_2)$, namely $H^2(BGL^+(7,\mathbb{R});\mathbb{Z}_2) = \{0,w_2\}$, we see that $k_2 = w_2$.

The primary obstruction for a principal $GL^+(7, \mathbb{R})$ -bundle $P \to X$ to admit a reduction of structure group to G_2 vanishes if and only if a classifying map $\phi_P : X \to BGL^+(7, \mathbb{R})$ of P lifts to a classifying map $\widetilde{\phi}_P : X \to E_2$.

$$\begin{array}{c} E_2 \\ & & \downarrow_{Bi} \\ X \xrightarrow{\phi_P} & BGL^+(7, \mathbb{R}) \xrightarrow{w_2} & K(\mathbb{Z}_2, 2) \end{array}$$

Such a lift exists if and only if $\phi_P^* k_2 = \phi_P^* w_2 = w_2(P)$ vanishes. That is, $w_2(P)$ is the primary obstruction for a principal $GL^+(7,\mathbb{R})$ -bundle to admit a reduction of structure group to G_2 .

4. Let M be an almost complex manifold.

- (a) Show that $\bar{\mu}$ is $C^{\infty}(M)$ -linear.
- By (a), we have a vector bundle homomorphism $\bar{\mu} : \bigwedge^{1,0} T^*M \to \bigwedge^{0,2} T^*M$.
 - (b) Suppose that dim M = 4 and $\bar{\mu}$ is a surjective bundle homomorphism. Show that $5\chi(M) + 6\sigma(M) = 0$.

Solution: (a) Let $\alpha \in \mathcal{E}^{p,q}(M)$, and $f \in C^{\infty}(M)$. Then

$$\begin{aligned} (f\alpha) &= df \wedge \alpha + fd\alpha \\ &= (\partial f + \bar{\partial} f) \wedge \alpha + f(\mu\alpha + \partial\alpha + \bar{\partial}\alpha + \bar{\mu}\alpha) \\ &= \underbrace{f\mu\alpha}_{(p+2,q-1)} + \underbrace{(\partial f \wedge \alpha + f\partial\alpha)}_{(p+1,q)} + \underbrace{(\bar{\partial} f \wedge \alpha + f\bar{\partial}\alpha)}_{(p,q+1)} + \underbrace{f\bar{\mu}\alpha}_{(p-1,q+2)} \end{aligned}$$

Equating (p-1, q+2)-parts, we see that $\bar{\mu}(f\alpha) = f\bar{\mu}\alpha$, so $\bar{\mu} : \mathcal{E}^{p,q}(M) \to \mathcal{E}^{p-1,q+2}(M)$ is $C^{\infty}(M)$ -linear. It follows by linearity that $\bar{\mu} : \mathcal{E}^*(M)_{\mathbb{C}} \to \mathcal{E}^*(M)_{\mathbb{C}}$ is $C^{\infty}(M)$ -linear.

(b) Since $\bar{\mu} : \bigwedge^{1,0} T^*M \to \bigwedge^{0,2} T^*M$ is surjective, it has constant rank, so its kernel K is a vector subbundle of $\bigwedge^{1,0} T^*M$ and we have a short exact sequence $0 \to K \to \bigwedge^{1,0} T^*M \to \bigwedge^{0,2} T^*M \to 0$. Choosing a hermitian bundle metric on $\bigwedge^{1,0} T^*M$, we obtain $\bigwedge^{1,0} T^*M \cong K \oplus \bigwedge^{0,2} T^*M$. Note that $\bigwedge^{1,0} T^*M \cong (T^{1,0}M)^* \cong (TM)^*$. Choosing a hermitian metric on M, this is in turn isomorphic to \overline{TM} . We also have $\bigwedge^{0,2} T^*M = \bigwedge^2 (T^{0,1}M)^* \cong \bigwedge^2 (\overline{TM})^* \cong \bigwedge^2 TM = \det(TM)$, so $\overline{TM} \cong K \oplus \det(TM)$.

Therefore $-c_1(TM) = c_1(\overline{TM}) = c_1(K) + c_1(\det(TM)) = c_1(K) + c_1(TM)$, so $c_1(K) = -2c_1(TM)$. Now $c_2(TM) = c_2(\overline{TM}) = c_1(K)c_1(\det(TM)) = (-2c_1(TM))c_1(TM) = -2c_1(TM)^2$, so $c_2(TM) + 2c_1(TM)^2 = 0$, and hence

$$0 = \langle c_2(TM) + 2c_1(TM)^2, [M] \rangle$$

= $\langle e(TM), [M] \rangle + 2 \langle c_1(TM)^2, [M] \rangle$
= $\chi(M) + 2(2\chi(M) + 3\sigma(M))$
= $5\chi(M) + 6\sigma(M).$

5. Recall, we defined an almost complex structure on $S^6 \times \mathbb{O}$ which restricts to an almost complex structure on TS^6 , and defines an almost complex structure on the normal bundle of S^6 in \mathbb{O} .

- (a) Show that if $0 \to E \to F \to G \to 0$ is a short exact sequence of complex vector bundles over a CW complex, with F and G trivial, then c(E) = 1.
- (b) Explain why $c(TS^6) \neq 1$ and why this does not contradict (a).

Solution: (a) First note that a trivial bundle has trivial Chern classes since the classifying map of a trivial bundle is nullhomotopic and hence the induced pullback map on cohomology is the zero map.

Choosing a hermitian bundle metric on F, we obtain $F \cong E \oplus G$. By Cartan's formula we have 1 = c(F) = c(E)c(G) = c(E) since F and G are trivial.

(b) Note that $c_3(TS^6) = e(TS^6) \neq 0$ since $\langle e(TS^6), [S^6] \rangle = \chi(S^6) = 2 \neq 0$, hence $c(TS^6) \neq 1$ (in fact, $c(TS^6) = 1 + c_3(TS^6)$).

We have a short exact sequence of vector bundles over S^6 given by $0 \to TS^6 \to S^6 \times \mathbb{O} \to \nu \to 0$ where ν is the normal bundle. Note that the Euler vector field of $S^6 \subset \text{Im }\mathbb{O}$, defines a nowhere-zero section of the complex line bundle ν , so ν is trivial. While $S^6 \times \mathbb{O}$ is trivial as a real bundle, it is not trivial as a complex vector bundle, which is why there is no contradiction to (a). To see that $S^6 \times \mathbb{O}$ is non-trivial as a complex vector bundle, note that by choosing a hermitian metric on $S^6 \times \mathbb{O}$, we obtain $S^6 \times \mathbb{O} \cong TS^6 \oplus \nu$, so $c(S^6 \times \mathbb{O}) = c(TS^6)c(\nu) = c(TS^6) \neq 1$. 6. A manifold is called a *integral/rational homology sphere* if it has the same integral/rational cohomology groups as a sphere of the same dimension.

- (a) Let M be a four-dimensional rational homology sphere. Show that M does not admit an almost complex structure (for either orientation).
- (b) Let M be a four-dimensional integral homology sphere. Show that M^n does not admit an almost complex structure for any n (for either orientation).

Solution: (a) Note that M is orientable as $H^4(M; \mathbb{Q}) \cong H^4(S^4; \mathbb{Q}) \cong \mathbb{Q}$.

Since $H^2(M; \mathbb{Q}) = H^2(S^4; \mathbb{Q}) = 0$, the signature of M is zero (regardless of orientation). As $H^i(M; \mathbb{Q}) \cong H^i(S^4; \mathbb{Q})$, we see that $\chi(M) = \sum_{k=0}^4 (-1)^k b_k(M) = \sum_{k=0}^4 (-1)^k b_k(S^4) = \chi(S^4) = 2$. As $\chi(M) \not\equiv -\sigma(M) \mod 4$, we see that M does not admit an almost complex structure (for either orientation).

(b) We can use induction to show that M^n has torsion-free integral cohomology which vanishes in degrees which are not a multiple of 4. Since M has the same integral cohomology of S^4 , the claim is true for n = 1. Suppose it is true for M^k , then $M^{k+1} = M^k \times M$ so by the Künneth Theorem, we have a short exact sequence

$$0 \to \bigoplus_{i+j=d} H^i(M^k; \mathbb{Z}) \otimes H^j(M; \mathbb{Z}) \to H^d(M^{k+1}; \mathbb{Z}) \to \bigoplus_{i+j=d+1} \operatorname{Tor}(H^i(M^k; \mathbb{Z}), H^j(M; \mathbb{Z})) \to 0.$$

Since M has torsion-free cohomology, the Tor term vanishes. Therefore

$$H^{d}(M^{k+1};\mathbb{Z}) \cong \bigoplus_{i+j=d} H^{i}(M^{k};\mathbb{Z}) \otimes H^{j}(M;\mathbb{Z})$$
$$\cong \bigoplus_{i+j=d} H^{i}(M^{k};\mathbb{Z}) \otimes H^{j}(S^{4};\mathbb{Z})$$
$$\cong H^{d}(M^{k};\mathbb{Z}) \oplus H^{d-4}(M^{k};\mathbb{Z}).$$

By the inductive hypothesis, M^k has torsion-free integral cohomology, so $H^d(M^{k+1};\mathbb{Z})$ is torsion-free. In addition, the integral cohomology of M^k vanishes in degrees which are not a multiple of 4, so $H^d(M^{k+1};\mathbb{Z})$ can only be non-zero if d is a multiple of 4. By induction, the claim is proved for M^n .

As $H^4(M;\mathbb{Z}) \cong H^4(S^4;\mathbb{Z}) \cong \mathbb{Z}$, we see that M is orientable¹. Since $H^2(M;\mathbb{Z}) \cong H^2(S^4;\mathbb{Z}) = 0$, the signature of M is zero and hence $\langle \frac{1}{3}p_1(TM), [M] \rangle = 0$. Therefore $p_1(TM) = 0$, so p(TM) = 1. As the integral cohomology of M^n has no 2-torsion,

$$p(T(M^{n})) = p(\pi_{1}^{*}TM \oplus \dots \oplus \pi_{n}^{*}TM) = p(\pi_{1}^{*}TM) \dots p(\pi_{n}^{*}TM) = \pi_{1}^{*}p(TM) \dots \pi_{n}^{*}p(TM) = 1$$

where $\pi_i: M^n \to M$ denotes projection onto the *i*th factor.

Suppose now that M^n admits an almost complex structure. We can use induction to show that all the Chern classes vanish. Since $H^2(M^n; \mathbb{Z}) = 0$, we have $c_1(T(M^n)) = 0$. Suppose now that $c_i(T(M^n)) = 0$ for i < k. If k is odd, then $c_k(T(M^n)) = 0$ since $H^{2k}(M^n; \mathbb{Z}) = 0$. If k is even, say k = 2r, then we have

 $p_r(T(M^n)) = c_r(T(M^n))^2 - 2c_{r-1}(T(M^n))c_{r+1}(T(M^n)) + \dots + 2(-1)^r c_{2r}(T(M^n)) = 2(-1)^r c_k(T(M^n)).$ Since $p_r(T(M^n)) = 0$ and the cohomology of M^n has no 2-torsion, we conclude that $c_k(T(M^n)) = 0.$ Therefore all the Chern classes of M^n vanish, in particular, $c_{2n}(T(M^n)) = 0.$ However $c_{2n}(T(M^n)) = e(T(M^n))$ and $\langle e(T(M^n)), [M^n] \rangle = \chi(M^n) = \chi(M)^n = \chi(S^4)^n = 2^n \neq 0$, so $c_{2n}(T(M^n)) \neq 0$ which is a contradiction. Therefore M^n does not admit an almost complex structure (for either orientation).

7. For non-negative integers k and ℓ , let $M_{k,\ell} = k\mathbb{CP}^2 \# \ell \overline{\mathbb{CP}^2}$. For which k and ℓ does $M_{k,\ell}$ admit an almost complex structure inducing the given orientation?

¹Since every integral homology sphere is a rational homology sphere, this already follows from (a).

Solution: Under the isomorphism $H^2(M\#N;\mathbb{Z}_2) \cong H^2(M;\mathbb{Z}_2) \oplus H^2(N;\mathbb{Z}_2)$, we have $w_2(T(M\#N)) \mapsto w_2(TM) + w_2(TN)$. Therefore, under the isomorphism $H^2(M_{k,\ell};\mathbb{Z}_2) \cong \mathbb{Z}_2^{k+\ell}$, the element $w_2(M_{k,\ell})$ corresponds to $(1,\ldots,1)$. It follows that if c is an integral lift of $w_2(M_{k,\ell})$, then under the isomorphism $H^2(M_{k,\ell};\mathbb{Z}) \cong \mathbb{Z}^{k+\ell}$, the element c corresponds to $(2a_1+1,\ldots,2a_k+1,2b_1+1,\ldots,2b_\ell+1)$ for some $a_1,\ldots,a_k,b_1,\ldots,b_\ell \in \mathbb{Z}$. Since $M_{k,\ell}$ has intersection form diag $(\underbrace{1,\ldots,1}_{k},\underbrace{-1,\ldots,-1}_{\ell})$, we see that

$$\langle c^2, [M_{k,\ell}] \rangle = (2a_1+1)^2 + \dots + (2a_k+1)^2 - (2b_1+1)^2 - \dots - (2b_\ell+1)^2$$

= $4a_1(a_1+1) + \dots + 4a_k(a_k+1) - 4b_1(b_1+1) - \dots - 4b_\ell(b_\ell+1) + k - \ell.$

On the other hand $\chi(M_{k,\ell}) = 2 + k + \ell$ and $\sigma = k - \ell$, so $2\chi(M_{k,\ell}) + 3\sigma(M_{k,\ell}) = 2(2 + k + \ell) + 3(k - \ell) = 5k - \ell + 4$. Therefore $\langle c^2, [M_{k,\ell}] \rangle = 2\chi(M_{k,\ell}) + 3\sigma(M_{k,\ell})$ if and only if

$$4a_{1}(a_{1}+1) + \dots + 4a_{k}(a_{k}+1) - 4b_{1}(b_{1}+1) - \dots - 4b_{\ell}(b_{\ell}+1) + k - \ell = 5k - \ell + 4$$

$$4a_{1}(a_{1}+1) + \dots + 4a_{k}(a_{k}+1) - 4b_{1}(b_{1}+1) - \dots - 4b_{\ell}(b_{\ell}+1) = 4k + 4$$

$$a_{1}(a_{1}+1) + \dots + a_{k}(a_{k}+1) - b_{1}(b_{1}+1) - \dots - b_{\ell}(b_{\ell}+1) = k + 1$$

Since the product of consecutive integers is always even, we see that the left hand side is even, and hence k is necessarily odd.

To see that k odd is sufficient, write k + 1 = 2d and note that $d \leq k$. Now $a_1 = \cdots = a_d = 1$ and $a_{d+1} = \cdots = a_k = b_1 = \cdots = b_\ell = 0$ is a solution to the equation above, and hence we obtain an integral lift $c \in H^2(M_{k,\ell};\mathbb{Z})$ of $w_2(M_{k,\ell})$ satisfying $\langle c^2, [M_{k,\ell}] \rangle = 2\chi(M_{k,\ell}) + 3\sigma(M_{k,\ell})$. Therefore $M_{k,\ell}$ admits an almost complex structure inducing the given orientation.