ALMOST COMPLEX MANIFOLDS — ASSIGNMENT 3 SOLUTIONS

1. Show that the twistor fibration of S%, namely S2 — CP? LN 5S4, does not admit a section,
and deduce that S* does not admit an almost complex structure.

Solution: Suppose o : S* — CP? is a section, so p o o = idga.
The fiber bundle S' — $2"*1 — CP" induces a long exact sequence in homotopy groups
s m(SY) = (ST = (CP™) — w1 (SY) — ..

It follows that 7o (CP™) = 71 (S?) 22 Z, and 71, (CP") =2 714 (S?" 1) for k # 2. Therefore o, : m4(S*) —
74(CP?) is the zero map since 74 (CP?) 2 7m4(S7) = 0, and hence p, o0, is the zero map. This contradicts
the fact that p, o 0, = (po o). = (idgs). = idy,(s4) Which is not the zero map as m4(5*) = Z # 0. So
p: CP® — S§* does not admit a section, and hence S* does not admit an almost complex structure.

2. Note that SO(2n)/U(n) is a closed smooth manifold of dimension n(n —1). For small
values of n we have

S? = CP!
CP3.
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When n = 4, we have n(n — 1) = 12. If the pattern were to continue, then we would be
able to identify SO(8)/U(4) with CP°. Show that SO(8)/U(4) and CP°® are not homotopy
equivalent.

Solution: Combining the fiber bundle SO(2n)/U(n) — SO(2n + 2)/U(n + 1) — S?" with the diffeo-
morphism between SO(6)/U(3) and CP?, we have a fiber bundle CP* — SO(8)/U(4) — SS. This
induces a long exact sequence in cohomology groups

oo = m6(CP?) — 76(SO(8)/U(4)) — m6(S®) — 75(CP?) — ...
From the solution to question 1, we have 7g(CP?) 2 74(S7) = 0 and 75(CP?) 2 75(S7) = 0, and hence

76(SO(8)/U(4)) = 76(S%) = Z. On the other hand 76(CP®) = 75(S'®) = 0. Therefore SO(8)/U(4)
and CP° are not homotopy equivalent as 7 (SO(8)/U(4)) 2 76 (CPP).

3. Recall, a space X is called m-connected if 7;(X) =0 for ¢ < m.

(a) Show that O(n)/O(n — k) is (n — k — 1)-connected.

(b) Show that U(n)/U(n — k) is (2n — 2k)-connected and 72y, _2,1+1(U(n)/U(n —k)) = Z.
Solution: (a) We have a principal bundle O(n — 1) — O(n) — S™~1, namely the orthonormal frame
bundle of S"~!. Quotienting by O(n—k) gives rise to the fiber bundle O(n—1)/0(n—k) — O(n)/O(n—

k) — S"~L. Setting Vi ,, = O(n)/O(n—k), we can rewrite the fiber bundle as Vi1 ,—1 — Vi, — S™7L.
Applying the long exact sequence in homotopy groups, we obtain

e — 7Ti+1(Sn_l) — Wi(kal’nfl) — m(Vkm) — Wi(Sn_l) — ...

Ifi+1<n-—1,ie i<n-—3, then m1(S" ') = m(S"1) =0, so mi(Vin) & m(Vie1n—1)-

Replacing n by n — j and k by k — j, where j < k, we see that m;(Vi—jn—j) = mi(Ve—j—1,n—j—1)

for i < mn —j —3, and hence m;(Viyn) = mi(Vicin—1) = o0 =2 (Ve join—jo1) for i <n —j5—3.

In particular, when j = k — 2, we have m; (Vi) = m(Vip—pt1) for ¢ < n—k — 1. Note that
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Vim-k41 =0n—k+1)/On—k+1-1)=0Mn—-k+1)/O(n—k)=8""F* sofori<n—k—1, we
have 7; (Vi) = mi(Vin—kt1) = m:(S" %) = 0. Therefore Vj ,, = O(n)/O(n—k) is (n—k—1)-connected.
(b) We have a principal bundle U(n — 1) — U(n) — S?"~! namely .... Quotienting by U(n — k) gives
rise to the fiber bundle U(n—1)/U(n—k) = U(n)/U(n—k) — S*"~1. Setting V7, = U(n)/U(n—k),
we can rewrite the fiber bundle as ch_l i — chn — §27=1 Applying the long exact sequence in
homotopy groups, we obtain ’ 7

e 7Ti+1(52n_1) — Wi(vk(chnfl) — WZ(VISn) — 7Ti(52n_1) — ...

Ifi+1<2n—1,ie i<2n—3,then m1(S*" 1) = 1;(S?""1) =0, so ﬂ'i(V,fn) = 771-(V,£1)n71).
Replacing n by n — j and k by k — j, where j < k, we see that ﬂi(VkC_j)n_j) >~ m(V,fz_j_l)n_j_l) for
1 < 2n — 25 — 3, and hence Wi(Vk(fn> = Wi(Vk(,c—1,n—1) ~ Wi(Vk(,c—j—Ln—j—l) for i < 2n — 25 — 3.
In particular, when j = k — 2, we have m(V,",) = m(ViS,_, ) for i < 2n — 2k + 1. Note that
Ve hir =Um—=k+1)/Un—k+1-1) =U(n—k+1)/U(n—k) = 5?21 5o for i < 2n—2k+1,
we have 7;(Vin) = mi(Vin—it1) = m:(S?"~2*+1). In particular, Vf’k =U(n)/U(n —k) is (2n — 2k)-
connected and 7r2n,2k+1(V7(5k) = Ton_okt1(UM)/U(n — k) = Ton_ops1(S2 2k = 7,

4. Let M be a closed simply connected four-manifold and let p € M.
(a) Show that M \ {p} admits an almost complex structure.
(b) Show that M x S? admits an almost complex structure.

Solution: (a) Let U be an open neighbourhood of p homeomorphic to a ball. Note that UU(M \{p}) =
M and UN(M\{p}) = U\{p} which is homotopy equivalent to S®. Using the fact that U is contractible,
the Mayer-Vietoris sequence gives

o= HX(S3,7) — H3(M;Z) — H¥(M \ {p};Z) — H3(S*,Z) - H*(M;Z) — H* (M \ {p};Z) — ...

Note that H2(S3;Z) = 0 and H*(M \ {p}; Z) = 0, because M \ {p} is a non-compact four-manifold. In
addition, we have H3(S%;Z) = Z and H*(M;Z) since M is orientable (because M is simply connected).
Therefore, we obtain the exact sequence

0— H3(M;Z) - H*(M\ {p};Z) = Z =7 — 0

Every surjective group homomorphism Z — Z is an isomorphism (its either the idz or —idyz), so the
map H3(M;Z) — H*(M \ {p};Z) is an isomorphism. Since M is orientable, we have H?(M;Z) =
H(M;7) = 7(M)*® = 0 by Poincaré Duality and the Hurewicz Theorem respectively, so H(M \
{r}:2) =0.

The obstructions to the existence of an almost complex structure on M \ {p} (inducing a given orien-
tation) lie in H**1(M \ {p}; 7 (SO(4)/U(2))) = H*1 (M \ {p}; 7(S?)). The primary obstruction lies
in H3(M \ {p}; m2(S?)) = H3*(M \ {p};Z) = 0 and therefore vanishes, as does the next obstruction as
HY(M \ {p};73(5?)) = HY(M \ {p};Z) = 0 because M \ {p} is non-compact. All the higher obstruc-
tions vanish as H**1(M \ {p}; mx(S?)) = 0 for k > 4 because dim(M \ {p}) = 4. Therefore M admits
an almost complex structure (for both choices of orientation).

(b) The obstructions to M x S? admitting an almost complex structure (inducing a given orientation)
lie in H*+1(M x 82; m,(SO(6)/U(3))) = H**' (M x S?; 7, (CP?)). This group vanishes for k > 5 since
dim(M x S?) = 6. For k < 5, we have m;,(CP*) = 0 except for k = 2 where mo(CP?) 2 Z. Therefore
the only obstruction to the existence of an almost complex structure on M x S? lies in H3(M x S?;7Z).
By the Kunneth Theorem for cohomology (see Theorem 5.5.11 of Spanier’s “Algebraic Topology” for
example), we have a short exact sequence

0— P H'(M;Z) @ H/(S*2Z) — H(M x $*Z) — P Tor(H'(M;Z), H (S*Z)) — 0
i+j=3 i+i=4
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Since H’(S?;7Z) is torsion-free for every j, we have Tor(H!(M;Z), H(S%Z)) = 0 for all i and j. From
part (a), we have H3(M;Z) = 0, but also Hy(M;Z) = 0, so H*(M;Z) = Hom(H,(M;Z),Z) = 0.
Since H'(S%;Z) = 0 and H3(S?;Z) = 0, we see that H3(M x S?;Z) = 0 and hence M x S? admits an
almost complex structure (for both choices of orientation).

5. Let £ — X be a rank m orientable vector bundle over a d-dimensional CW complex.
If m > d, show that £ = Ey @ ¢™~ ¢ where rank(E;) = d. Give an example to show that F,
is not unique (up to isomorphism).

Solution: The bundle FE splits as Ey @ e™~% if and only if Po(m)(E) admits a reduction of structure
group to O(d) which is equivalent to the bundle Py (E)/O(d) — X admitting a section. The
latter is a fiber bundle with fiber O(m)/O(d) = O(m)/O(m — (m — d)) which is N-connected for
N =m—(m—d)—1=4d—1 by question 3 (a). The obstructions to the existence of a section lie in
H*(X;7,(0O(m)/O(d))) which vanishes because either k < d— 1, in which case m,(O(m)/O(d)) = 0,
or k > d, in which case it vanishes because X is d-dimensional. Therefore every such bundle F is
isomorphic to Ey @ e™~¢ for some Fy — X with rank Ey = d.

To see that Ey is not unique, let E = %! be the trivial rank d + 1 bundle over S¢. We have
etl = cd gyl but also et =2 TS @ el. For d # 0,1,3,7, we have T'S? 2% €%, so it serves as a
counterexample to the uniqueness of Fj.

6. Let M be a 2n-dimensional almost complex manifold. Show that there are two potential
obstructions to T'M admitting a complex line subbundle.

Solution: The complex vector bundle T'M admits a complex line subbundle if and only if Py ,)(TM)
admits a reduction of structure group to U(n—1)xU (1) which is equivalent to the bundle Py, (T'M)/(U(n—
1) xU(1)) — M admitting a section. The latter is a fiber bundle with fiber U(n)/(U(n—1) x U(1)) =
CP"'. Therefore, the obstructions to the existence of a complex line subbundle of TM lie in
H*Y(M; 7, (CP"1)). From the solution to question 1, we have mo(CP"™ 1) 2 Z and 7, (CP" ') =
k(52" 71) for k # 2. Therefore, the primary obstruction lies in H?(M;Z) and the next obstruction

lies in H?"(M;mo,_1(CP"™ 1)) = H>(M;my,_1(S?"1)) = H?*(M;Z). All the higher obstructions
vanish because dim M = 2n.

7. Show that a smooth manifold M admits an almost complex structure if and only if it
admits a non-degenerate 2-form.

Solution: Suppose M admits an almost complex structure J. Then we can find a compatible Rie-
mannian metric g and construct the 2-form w given by w(u,v) = g(Ju,v). Note that for u # 0, we
have w(u, Ju) = g(Ju, Ju) = g(u,u) = |Ju||*> > 0, so w is non-degenerate.

Conversely, suppose M admits a non-degenerate 2-form w and let dim M = 2n. Then Pgp,onr)(TM)
admits a reduction of structure group to Sp(2n,R), namely Pgp2nr)(TM) = {f € Parnr) (TM) |
ffw=et Ae?+ -+ e 1 Ae?}. Since U(n) is a maximal compact subgroup of Sp(2n,R), the
quotient Sp(2n,R)/U(n) is contractible, so Pgy,2nr)(T'M) admits a reduction of structure group to
U(n). Therefore Pgr 2n,r)(T'M) admits a reduction of structure group to U(n) and hence M admits
an almost complex structure.



