
ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 3 SOLUTIONS

1. Show that the twistor fibration of S4, namely S2 → CP3 p−→ S4, does not admit a section,
and deduce that S4 does not admit an almost complex structure.

Solution: Suppose σ : S4 → CP3 is a section, so p ◦ σ = idS4 .

The fiber bundle S1 → S2n+1 → CPn induces a long exact sequence in homotopy groups

· · · → πk(S
1) → πk(S

2n+1) → πk(CPn) → πk−1(S
1) → . . .

It follows that π2(CPn) ∼= π1(S
1) ∼= Z, and πk(CPn) ∼= πk(S

2n+1) for k ̸= 2. Therefore σ∗ : π4(S
4) →

π4(CP3) is the zero map since π4(CP3) ∼= π4(S
7) = 0, and hence p∗◦σ∗ is the zero map. This contradicts

the fact that p∗ ◦ σ∗ = (p ◦ σ)∗ = (idS4)∗ = idπ4(S4) which is not the zero map as π4(S
4) ∼= Z ̸= 0. So

p : CP3 → S4 does not admit a section, and hence S4 does not admit an almost complex structure.

2. Note that SO(2n)/U(n) is a closed smooth manifold of dimension n(n − 1). For small
values of n we have

SO(2)/U(1) = ∗ = CP0

SO(4)/U(2) = S2 = CP1

SO(6)/U(3) = CP3.

When n = 4, we have n(n − 1) = 12. If the pattern were to continue, then we would be
able to identify SO(8)/U(4) with CP6. Show that SO(8)/U(4) and CP6 are not homotopy
equivalent.

Solution: Combining the fiber bundle SO(2n)/U(n) → SO(2n + 2)/U(n + 1) → S2n with the diffeo-
morphism between SO(6)/U(3) and CP3, we have a fiber bundle CP3 → SO(8)/U(4) → S6. This
induces a long exact sequence in cohomology groups

· · · → π6(CP3) → π6(SO(8)/U(4)) → π6(S
6) → π5(CP3) → . . .

From the solution to question 1, we have π6(CP3) ∼= π6(S
7) = 0 and π5(CP3) ∼= π5(S

7) = 0, and hence
π6(SO(8)/U(4)) ∼= π6(S

6) ∼= Z. On the other hand π6(CP6) = π6(S
13) = 0. Therefore SO(8)/U(4)

and CP6 are not homotopy equivalent as π6(SO(8)/U(4)) ̸∼= π6(CP6).

3. Recall, a space X is called m-connected if πi(X) = 0 for i ≤ m.

(a) Show that O(n)/O(n− k) is (n− k − 1)-connected.

(b) Show that U(n)/U(n− k) is (2n− 2k)-connected and π2n−2k+1(U(n)/U(n− k)) ∼= Z.

Solution: (a) We have a principal bundle O(n − 1) → O(n) → Sn−1, namely the orthonormal frame
bundle of Sn−1. Quotienting by O(n−k) gives rise to the fiber bundle O(n−1)/O(n−k) → O(n)/O(n−
k) → Sn−1. Setting Vk,n = O(n)/O(n−k), we can rewrite the fiber bundle as Vk−1,n−1 → Vk,n → Sn−1.
Applying the long exact sequence in homotopy groups, we obtain

· · · → πi+1(S
n−1) → πi(Vk−1,n−1) → πi(Vk,n) → πi(S

n−1) → . . .

If i + 1 < n − 1, i.e. i ≤ n − 3, then πi+1(S
n−1) = πi(S

n−1) = 0, so πi(Vk,n) ∼= πi(Vk−1,n−1).
Replacing n by n − j and k by k − j, where j < k, we see that πi(Vk−j,n−j) ∼= πi(Vk−j−1,n−j−1)
for i ≤ n − j − 3, and hence πi(Vk,n) ∼= πi(Vk−1,n−1) ∼= . . . ∼= πi(Vk−j−1,n−j−1) for i ≤ n − j − 3.
In particular, when j = k − 2, we have πi(Vk,n) ∼= πi(V1,n−k+1) for i ≤ n − k − 1. Note that
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V1,n−k+1 = O(n− k + 1)/O(n− k + 1− 1) = O(n− k + 1)/O(n− k) = Sn−k, so for i ≤ n− k − 1, we
have πi(Vk,n) = πi(V1,n−k+1) = πi(S

n−k) = 0. Therefore Vk,n = O(n)/O(n−k) is (n−k−1)-connected.

(b) We have a principal bundle U(n− 1) → U(n) → S2n−1, namely .... Quotienting by U(n− k) gives
rise to the fiber bundle U(n−1)/U(n−k) → U(n)/U(n−k) → S2n−1. Setting V C

k,n = U(n)/U(n−k),

we can rewrite the fiber bundle as V C
k−1,n−1 → V C

k,n → S2n−1. Applying the long exact sequence in
homotopy groups, we obtain

· · · → πi+1(S
2n−1) → πi(V

C
k−1,n−1) → πi(V

C
k,n) → πi(S

2n−1) → . . .

If i + 1 < 2n − 1, i.e. i ≤ 2n − 3, then πi+1(S
2n−1) = πi(S

2n−1) = 0, so πi(V
C
k,n)

∼= πi(V
C
k−1,n−1).

Replacing n by n − j and k by k − j, where j < k, we see that πi(V
C
k−j,n−j)

∼= πi(V
C
k−j−1,n−j−1) for

i ≤ 2n − 2j − 3, and hence πi(V
C
k,n)

∼= πi(V
C
k−1,n−1)

∼= . . . ∼= πi(V
C
k−j−1,n−j−1) for i ≤ 2n − 2j − 3.

In particular, when j = k − 2, we have πi(V
C
k,n)

∼= πi(V
C
1,n−k+1) for i ≤ 2n − 2k + 1. Note that

V C
1,n−k+1 = U(n−k+1)/U(n−k+1−1) = U(n−k+1)/U(n−k) = S2n−2k+1, so for i ≤ 2n−2k+1,

we have πi(Vk,n) = πi(V1,n−k+1) = πi(S
2n−2k+1). In particular, V C

n,k = U(n)/U(n − k) is (2n − 2k)-

connected and π2n−2k+1(V
C
n,k) = π2n−2k+1(U(n)/U(n− k)) = π2n−2k+1(S

2n−2k+1) ∼= Z.

4. Let M be a closed simply connected four-manifold and let p ∈ M .

(a) Show that M \ {p} admits an almost complex structure.

(b) Show that M × S2 admits an almost complex structure.

Solution: (a) Let U be an open neighbourhood of p homeomorphic to a ball. Note that U ∪(M \{p}) =
M and U∩(M\{p}) = U\{p} which is homotopy equivalent to S3. Using the fact that U is contractible,
the Mayer-Vietoris sequence gives

· · · → H2(S3;Z) → H3(M ;Z) → H3(M \ {p};Z) → H3(S3;Z) → H4(M ;Z) → H4(M \ {p};Z) → . . .

Note that H2(S3;Z) = 0 and H4(M \{p};Z) = 0, because M \{p} is a non-compact four-manifold. In
addition, we haveH3(S3;Z) ∼= Z andH4(M ;Z) sinceM is orientable (becauseM is simply connected).
Therefore, we obtain the exact sequence

0 → H3(M ;Z) → H3(M \ {p};Z) → Z → Z → 0

Every surjective group homomorphism Z → Z is an isomorphism (its either the idZ or − idZ), so the
map H3(M ;Z) → H3(M \ {p};Z) is an isomorphism. Since M is orientable, we have H3(M ;Z) ∼=
H1(M ;Z) ∼= π1(M)ab = 0 by Poincaré Duality and the Hurewicz Theorem respectively, so H3(M \
{p};Z) = 0.

The obstructions to the existence of an almost complex structure on M \ {p} (inducing a given orien-
tation) lie in Hk+1(M \{p};πk(SO(4)/U(2))) ∼= Hk+1(M \{p};πk(S

2)). The primary obstruction lies
in H3(M \ {p};π2(S

2)) ∼= H3(M \ {p};Z) = 0 and therefore vanishes, as does the next obstruction as
H4(M \ {p};π3(S

2)) ∼= H4(M \ {p};Z) = 0 because M \ {p} is non-compact. All the higher obstruc-
tions vanish as Hk+1(M \ {p};πk(S

2)) = 0 for k ≥ 4 because dim(M \ {p}) = 4. Therefore M admits
an almost complex structure (for both choices of orientation).

(b) The obstructions to M ×S2 admitting an almost complex structure (inducing a given orientation)
lie in Hk+1(M ×S2;πk(SO(6)/U(3))) ∼= Hk+1(M ×S2;πk(CP3)). This group vanishes for k > 5 since
dim(M × S2) = 6. For k ≤ 5, we have πk(CP3) = 0 except for k = 2 where π2(CP3) ∼= Z. Therefore
the only obstruction to the existence of an almost complex structure on M ×S2 lies in H3(M ×S2;Z).
By the Kunneth Theorem for cohomology (see Theorem 5.5.11 of Spanier’s “Algebraic Topology” for
example), we have a short exact sequence

0 →
⊕

i+j=3

Hi(M ;Z)⊗Hj(S2;Z) → H3(M × S2;Z) →
⊕

i+j=4

Tor(Hi(M ;Z), Hj(S2;Z)) → 0
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Since Hj(S2;Z) is torsion-free for every j, we have Tor(Hi(M ;Z), Hj(S2;Z)) = 0 for all i and j. From
part (a), we have H3(M ;Z) = 0, but also H1(M ;Z) = 0, so H1(M ;Z) ∼= Hom(H1(M ;Z),Z) = 0.
Since H1(S2;Z) = 0 and H3(S2;Z) = 0, we see that H3(M ×S2;Z) = 0 and hence M ×S2 admits an
almost complex structure (for both choices of orientation).

5. Let E → X be a rank m orientable vector bundle over a d-dimensional CW complex.
If m > d, show that E ∼= E0 ⊕ εm−d where rank(E0) = d. Give an example to show that E0

is not unique (up to isomorphism).

Solution: The bundle E splits as E0 ⊕ εm−d if and only if PO(m)(E) admits a reduction of structure
group to O(d) which is equivalent to the bundle PO(m)(E)/O(d) → X admitting a section. The
latter is a fiber bundle with fiber O(m)/O(d) = O(m)/O(m − (m − d)) which is N -connected for
N = m− (m− d)− 1 = d− 1 by question 3 (a). The obstructions to the existence of a section lie in
Hk+1(X;πk(O(m)/O(d))) which vanishes because either k ≤ d−1, in which case πk(O(m)/O(d)) = 0,
or k ≥ d, in which case it vanishes because X is d-dimensional. Therefore every such bundle E is
isomorphic to E0 ⊕ εm−d for some E0 → X with rankE0 = d.

To see that E0 is not unique, let E = εd+1 be the trivial rank d + 1 bundle over Sd. We have
εd+1 ∼= εd ⊕ ε1, but also εd+1 ∼= TSd ⊕ ε1. For d ̸= 0, 1, 3, 7, we have TSd ̸∼= εd, so it serves as a
counterexample to the uniqueness of E0.

6. Let M be a 2n-dimensional almost complex manifold. Show that there are two potential
obstructions to TM admitting a complex line subbundle.

Solution: The complex vector bundle TM admits a complex line subbundle if and only if PU(n)(TM)
admits a reduction of structure group to U(n−1)×U(1) which is equivalent to the bundle PU(n)(TM)/(U(n−
1)×U(1)) → M admitting a section. The latter is a fiber bundle with fiber U(n)/(U(n− 1)×U(1)) =
CPn−1. Therefore, the obstructions to the existence of a complex line subbundle of TM lie in
Hk+1(M ;πk(CPn−1)). From the solution to question 1, we have π2(CPn−1) ∼= Z and πk(CPn−1) =
πk(S

2n−1) for k ̸= 2. Therefore, the primary obstruction lies in H3(M ;Z) and the next obstruction
lies in H2n(M ;π2n−1(CPn−1)) ∼= H2n(M ;π2n−1(S

2n−1)) ∼= H2n(M ;Z). All the higher obstructions
vanish because dimM = 2n.

7. Show that a smooth manifold M admits an almost complex structure if and only if it
admits a non-degenerate 2-form.

Solution: Suppose M admits an almost complex structure J . Then we can find a compatible Rie-
mannian metric g and construct the 2-form ω given by ω(u, v) = g(Ju, v). Note that for u ̸= 0, we
have ω(u, Ju) = g(Ju, Ju) = g(u, u) = ∥u∥2 > 0, so ω is non-degenerate.

Conversely, suppose M admits a non-degenerate 2-form ω and let dimM = 2n. Then PGL(2n,R)(TM)
admits a reduction of structure group to Sp(2n,R), namely PSp(2n,R)(TM) = {f ∈ PGL(2n,R)(TM) |
f∗ω = e1 ∧ e2 + · · · + e2n−1 ∧ e2n}. Since U(n) is a maximal compact subgroup of Sp(2n,R), the
quotient Sp(2n,R)/U(n) is contractible, so PSp(2n,R)(TM) admits a reduction of structure group to
U(n). Therefore PGL(2n,R)(TM) admits a reduction of structure group to U(n) and hence M admits
an almost complex structure.


