ALMOST COMPLEX MANIFOLDS – ASSIGNMENT 3 SOLUTIONS

1. Show that the twistor fibration of S^4 , namely $S^2 \to \mathbb{CP}^3 \xrightarrow{p} S^4$, does not admit a section, and deduce that S^4 does not admit an almost complex structure.

Solution: Suppose $\sigma: S^4 \to \mathbb{CP}^3$ is a section, so $p \circ \sigma = \mathrm{id}_{S^4}$.

The fiber bundle $S^1 \to S^{2n+1} \to \mathbb{CP}^n$ induces a long exact sequence in homotopy groups

$$\cdots \to \pi_k(S^1) \to \pi_k(S^{2n+1}) \to \pi_k(\mathbb{CP}^n) \to \pi_{k-1}(S^1) \to \dots$$

It follows that $\pi_2(\mathbb{CP}^n) \cong \pi_1(S^1) \cong \mathbb{Z}$, and $\pi_k(\mathbb{CP}^n) \cong \pi_k(S^{2n+1})$ for $k \neq 2$. Therefore $\sigma_* : \pi_4(S^4) \to \pi_4(\mathbb{CP}^3)$ is the zero map since $\pi_4(\mathbb{CP}^3) \cong \pi_4(S^7) = 0$, and hence $p_* \circ \sigma_*$ is the zero map. This contradicts the fact that $p_* \circ \sigma_* = (p \circ \sigma)_* = (\operatorname{id}_{S^4})_* = \operatorname{id}_{\pi_4(S^4)}$ which is not the zero map as $\pi_4(S^4) \cong \mathbb{Z} \neq 0$. So $p : \mathbb{CP}^3 \to S^4$ does not admit a section, and hence S^4 does not admit an almost complex structure.

2. Note that SO(2n)/U(n) is a closed smooth manifold of dimension n(n-1). For small values of n we have

$$SO(2)/U(1) = * = \mathbb{CP}^0$$

$$SO(4)/U(2) = S^2 = \mathbb{CP}^1$$

$$SO(6)/U(3) = \mathbb{CP}^3.$$

When n = 4, we have n(n-1) = 12. If the pattern were to continue, then we would be able to identify SO(8)/U(4) with \mathbb{CP}^6 . Show that SO(8)/U(4) and \mathbb{CP}^6 are not homotopy equivalent.

Solution: Combining the fiber bundle $SO(2n)/U(n) \to SO(2n+2)/U(n+1) \to S^{2n}$ with the diffeomorphism between SO(6)/U(3) and \mathbb{CP}^3 , we have a fiber bundle $\mathbb{CP}^3 \to SO(8)/U(4) \to S^6$. This induces a long exact sequence in cohomology groups

$$\cdots \to \pi_6(\mathbb{CP}^3) \to \pi_6(SO(8)/U(4)) \to \pi_6(S^6) \to \pi_5(\mathbb{CP}^3) \to \ldots$$

From the solution to question 1, we have $\pi_6(\mathbb{CP}^3) \cong \pi_6(S^7) = 0$ and $\pi_5(\mathbb{CP}^3) \cong \pi_5(S^7) = 0$, and hence $\pi_6(SO(8)/U(4)) \cong \pi_6(S^6) \cong \mathbb{Z}$. On the other hand $\pi_6(\mathbb{CP}^6) = \pi_6(S^{13}) = 0$. Therefore SO(8)/U(4) and \mathbb{CP}^6 are not homotopy equivalent as $\pi_6(SO(8)/U(4)) \cong \pi_6(\mathbb{CP}^6)$.

3. Recall, a space X is called *m*-connected if $\pi_i(X) = 0$ for $i \leq m$.

- (a) Show that O(n)/O(n-k) is (n-k-1)-connected.
- (b) Show that U(n)/U(n-k) is (2n-2k)-connected and $\pi_{2n-2k+1}(U(n)/U(n-k)) \cong \mathbb{Z}$.

Solution: (a) We have a principal bundle $O(n-1) \to O(n) \to S^{n-1}$, namely the orthonormal frame bundle of S^{n-1} . Quotienting by O(n-k) gives rise to the fiber bundle $O(n-1)/O(n-k) \to O(n)/O(n-k)$ $k) \to S^{n-1}$. Setting $V_{k,n} = O(n)/O(n-k)$, we can rewrite the fiber bundle as $V_{k-1,n-1} \to V_{k,n} \to S^{n-1}$. Applying the long exact sequence in homotopy groups, we obtain

$$\cdots \to \pi_{i+1}(S^{n-1}) \to \pi_i(V_{k-1,n-1}) \to \pi_i(V_{k,n}) \to \pi_i(S^{n-1}) \to \dots$$

If i + 1 < n - 1, i.e. $i \le n - 3$, then $\pi_{i+1}(S^{n-1}) = \pi_i(S^{n-1}) = 0$, so $\pi_i(V_{k,n}) \cong \pi_i(V_{k-1,n-1})$. Replacing n by n - j and k by k - j, where j < k, we see that $\pi_i(V_{k-j,n-j}) \cong \pi_i(V_{k-j-1,n-j-1})$ for $i \le n - j - 3$, and hence $\pi_i(V_{k,n}) \cong \pi_i(V_{k-1,n-1}) \cong \ldots \cong \pi_i(V_{k-j-1,n-j-1})$ for $i \le n - j - 3$. In particular, when j = k - 2, we have $\pi_i(V_{k,n}) \cong \pi_i(V_{1,n-k+1})$ for $i \le n - k - 1$. Note that
$$\begin{split} V_{1,n-k+1} &= O(n-k+1)/O(n-k+1-1) = O(n-k+1)/O(n-k) = S^{n-k}, \text{ so for } i \leq n-k-1, \text{ we} \\ \text{have } \pi_i(V_{k,n}) &= \pi_i(V_{1,n-k+1}) = \pi_i(S^{n-k}) = 0. \text{ Therefore } V_{k,n} = O(n)/O(n-k) \text{ is } (n-k-1)\text{-connected.} \end{split}$$

(b) We have a principal bundle $U(n-1) \to U(n) \to S^{2n-1}$, namely Quotienting by U(n-k) gives rise to the fiber bundle $U(n-1)/U(n-k) \to U(n)/U(n-k) \to S^{2n-1}$. Setting $V_{k,n}^{\mathbb{C}} = U(n)/U(n-k)$, we can rewrite the fiber bundle as $V_{k-1,n-1}^{\mathbb{C}} \to V_{k,n}^{\mathbb{C}} \to S^{2n-1}$. Applying the long exact sequence in homotopy groups, we obtain

$$\cdots \to \pi_{i+1}(S^{2n-1}) \to \pi_i(V_{k-1,n-1}^{\mathbb{C}}) \to \pi_i(V_{k,n}^{\mathbb{C}}) \to \pi_i(S^{2n-1}) \to \ldots$$

If i + 1 < 2n - 1, i.e. $i \le 2n - 3$, then $\pi_{i+1}(S^{2n-1}) = \pi_i(S^{2n-1}) = 0$, so $\pi_i(V_{k,n}^{\mathbb{C}}) \cong \pi_i(V_{k-1,n-1}^{\mathbb{C}})$. Replacing n by n - j and k by k - j, where j < k, we see that $\pi_i(V_{k-j,n-j}^{\mathbb{C}}) \cong \pi_i(V_{k-j-1,n-j-1}^{\mathbb{C}})$ for $i \le 2n - 2j - 3$, and hence $\pi_i(V_{k,n}^{\mathbb{C}}) \cong \pi_i(V_{k-1,n-1}^{\mathbb{C}}) \cong \dots \cong \pi_i(V_{k-j-1,n-j-1}^{\mathbb{C}})$ for $i \le 2n - 2j - 3$. In particular, when j = k - 2, we have $\pi_i(V_{k,n}^{\mathbb{C}}) \cong \pi_i(V_{1,n-k+1}^{\mathbb{C}})$ for $i \le 2n - 2k + 1$. Note that $V_{1,n-k+1}^{\mathbb{C}} = U(n-k+1)/U(n-k+1-1) = U(n-k+1)/U(n-k) = S^{2n-2k+1}$, so for $i \le 2n-2k+1$, we have $\pi_i(V_{k,n}) = \pi_i(S^{2n-2k+1})$. In particular, $V_{n,k}^{\mathbb{C}} = U(n)/U(n-k)$ is (2n-2k)-connected and $\pi_{2n-2k+1}(V_{n,k}^{\mathbb{C}}) = \pi_{2n-2k+1}(U(n)/U(n-k)) = \pi_{2n-2k+1}(S^{2n-2k+1}) \cong \mathbb{Z}$.

4. Let M be a closed simply connected four-manifold and let $p \in M$.

(a) Show that $M \setminus \{p\}$ admits an almost complex structure.

(b) Show that $M \times S^2$ admits an almost complex structure.

Solution: (a) Let U be an open neighbourhood of p homeomorphic to a ball. Note that $U \cup (M \setminus \{p\}) = M$ and $U \cap (M \setminus \{p\}) = U \setminus \{p\}$ which is homotopy equivalent to S^3 . Using the fact that U is contractible, the Mayer-Vietoris sequence gives

$$\dots \to H^2(S^3;\mathbb{Z}) \to H^3(M;\mathbb{Z}) \to H^3(M \setminus \{p\};\mathbb{Z}) \to H^3(S^3;\mathbb{Z}) \to H^4(M;\mathbb{Z}) \to H^4(M \setminus \{p\};\mathbb{Z}) \to \dots$$

Note that $H^2(S^3; \mathbb{Z}) = 0$ and $H^4(M \setminus \{p\}; \mathbb{Z}) = 0$, because $M \setminus \{p\}$ is a non-compact four-manifold. In addition, we have $H^3(S^3; \mathbb{Z}) \cong \mathbb{Z}$ and $H^4(M; \mathbb{Z})$ since M is orientable (because M is simply connected). Therefore, we obtain the exact sequence

$$0 \to H^3(M; \mathbb{Z}) \to H^3(M \setminus \{p\}; \mathbb{Z}) \to \mathbb{Z} \to \mathbb{Z} \to 0$$

Every surjective group homomorphism $\mathbb{Z} \to \mathbb{Z}$ is an isomorphism (its either the $\mathrm{id}_{\mathbb{Z}}$ or $-\mathrm{id}_{\mathbb{Z}}$), so the map $H^3(M;\mathbb{Z}) \to H^3(M \setminus \{p\};\mathbb{Z})$ is an isomorphism. Since M is orientable, we have $H^3(M;\mathbb{Z}) \cong H_1(M;\mathbb{Z}) \cong \pi_1(M)^{\mathrm{ab}} = 0$ by Poincaré Duality and the Hurewicz Theorem respectively, so $H^3(M \setminus \{p\};\mathbb{Z}) = 0$.

The obstructions to the existence of an almost complex structure on $M \setminus \{p\}$ (inducing a given orientation) lie in $H^{k+1}(M \setminus \{p\}; \pi_k(SO(4)/U(2))) \cong H^{k+1}(M \setminus \{p\}; \pi_k(S^2))$. The primary obstruction lies in $H^3(M \setminus \{p\}; \pi_2(S^2)) \cong H^3(M \setminus \{p\}; \mathbb{Z}) = 0$ and therefore vanishes, as does the next obstruction as $H^4(M \setminus \{p\}; \pi_3(S^2)) \cong H^4(M \setminus \{p\}; \mathbb{Z}) = 0$ because $M \setminus \{p\}$ is non-compact. All the higher obstructions vanish as $H^{k+1}(M \setminus \{p\}; \pi_k(S^2)) = 0$ for $k \ge 4$ because $\dim(M \setminus \{p\}) = 4$. Therefore M admits an almost complex structure (for both choices of orientation).

(b) The obstructions to $M \times S^2$ admitting an almost complex structure (inducing a given orientation) lie in $H^{k+1}(M \times S^2; \pi_k(SO(6)/U(3))) \cong H^{k+1}(M \times S^2; \pi_k(\mathbb{CP}^3))$. This group vanishes for k > 5 since $\dim(M \times S^2) = 6$. For $k \leq 5$, we have $\pi_k(\mathbb{CP}^3) = 0$ except for k = 2 where $\pi_2(\mathbb{CP}^3) \cong \mathbb{Z}$. Therefore the only obstruction to the existence of an almost complex structure on $M \times S^2$ lies in $H^3(M \times S^2; \mathbb{Z})$. By the Kunneth Theorem for cohomology (see Theorem 5.5.11 of Spanier's "Algebraic Topology" for example), we have a short exact sequence

$$0 \to \bigoplus_{i+j=3} H^i(M;\mathbb{Z}) \otimes H^j(S^2;\mathbb{Z}) \to H^3(M \times S^2;\mathbb{Z}) \to \bigoplus_{i+j=4} \operatorname{Tor}(H^i(M;\mathbb{Z}), H^j(S^2;\mathbb{Z})) \to 0$$

Since $H^j(S^2; \mathbb{Z})$ is torsion-free for every j, we have $\operatorname{Tor}(H^i(M; \mathbb{Z}), H^j(S^2; \mathbb{Z})) = 0$ for all i and j. From part (a), we have $H^3(M; \mathbb{Z}) = 0$, but also $H_1(M; \mathbb{Z}) = 0$, so $H^1(M; \mathbb{Z}) \cong \operatorname{Hom}(H_1(M; \mathbb{Z}), \mathbb{Z}) = 0$. Since $H^1(S^2; \mathbb{Z}) = 0$ and $H^3(S^2; \mathbb{Z}) = 0$, we see that $H^3(M \times S^2; \mathbb{Z}) = 0$ and hence $M \times S^2$ admits an almost complex structure (for both choices of orientation).

5. Let $E \to X$ be a rank *m* orientable vector bundle over a *d*-dimensional CW complex. If m > d, show that $E \cong E_0 \oplus \varepsilon^{m-d}$ where $\operatorname{rank}(E_0) = d$. Give an example to show that E_0 is not unique (up to isomorphism).

Solution: The bundle E splits as $E_0 \oplus \varepsilon^{m-d}$ if and only if $P_{O(m)}(E)$ admits a reduction of structure group to O(d) which is equivalent to the bundle $P_{O(m)}(E)/O(d) \to X$ admitting a section. The latter is a fiber bundle with fiber O(m)/O(d) = O(m)/O(m - (m - d)) which is N-connected for N = m - (m - d) - 1 = d - 1 by question 3 (a). The obstructions to the existence of a section lie in $H^{k+1}(X; \pi_k(O(m)/O(d)))$ which vanishes because either $k \leq d-1$, in which case $\pi_k(O(m)/O(d)) = 0$, or $k \geq d$, in which case it vanishes because X is d-dimensional. Therefore every such bundle E is isomorphic to $E_0 \oplus \varepsilon^{m-d}$ for some $E_0 \to X$ with rank $E_0 = d$.

To see that E_0 is not unique, let $E = \varepsilon^{d+1}$ be the trivial rank d+1 bundle over S^d . We have $\varepsilon^{d+1} \cong \varepsilon^d \oplus \varepsilon^1$, but also $\varepsilon^{d+1} \cong TS^d \oplus \varepsilon^1$. For $d \neq 0, 1, 3, 7$, we have $TS^d \ncong \varepsilon^d$, so it serves as a counterexample to the uniqueness of E_0 .

6. Let M be a 2n-dimensional almost complex manifold. Show that there are two potential obstructions to TM admitting a complex line subbundle.

Solution: The complex vector bundle TM admits a complex line subbundle if and only if $P_{U(n)}(TM)$ admits a reduction of structure group to $U(n-1) \times U(1)$ which is equivalent to the bundle $P_{U(n)}(TM)/(U(n-1) \times U(1)) \to M$ admitting a section. The latter is a fiber bundle with fiber $U(n)/(U(n-1) \times U(1)) = \mathbb{CP}^{n-1}$. Therefore, the obstructions to the existence of a complex line subbundle of TM lie in $H^{k+1}(M; \pi_k(\mathbb{CP}^{n-1}))$. From the solution to question 1, we have $\pi_2(\mathbb{CP}^{n-1}) \cong \mathbb{Z}$ and $\pi_k(\mathbb{CP}^{n-1}) = \pi_k(S^{2n-1})$ for $k \neq 2$. Therefore, the primary obstruction lies in $H^3(M; \mathbb{Z})$ and the next obstruction lies in $H^{2n}(M; \pi_{2n-1}(\mathbb{CP}^{n-1})) \cong H^{2n}(M; \pi_{2n-1}(S^{2n-1})) \cong H^{2n}(M; \mathbb{Z})$. All the higher obstructions vanish because dim M = 2n.

7. Show that a smooth manifold M admits an almost complex structure if and only if it admits a non-degenerate 2-form.

Solution: Suppose M admits an almost complex structure J. Then we can find a compatible Riemannian metric g and construct the 2-form ω given by $\omega(u, v) = g(Ju, v)$. Note that for $u \neq 0$, we have $\omega(u, Ju) = g(Ju, Ju) = g(u, u) = ||u||^2 > 0$, so ω is non-degenerate.

Conversely, suppose M admits a non-degenerate 2-form ω and let $\dim M = 2n$. Then $P_{GL(2n,\mathbb{R})}(TM)$ admits a reduction of structure group to $Sp(2n,\mathbb{R})$, namely $P_{Sp(2n,\mathbb{R})}(TM) = \{f \in P_{GL(2n,\mathbb{R})}(TM) \mid f^*\omega = e^1 \wedge e^2 + \cdots + e^{2n-1} \wedge e^{2n}\}$. Since U(n) is a maximal compact subgroup of $Sp(2n,\mathbb{R})$, the quotient $Sp(2n,\mathbb{R})/U(n)$ is contractible, so $P_{Sp(2n,\mathbb{R})}(TM)$ admits a reduction of structure group to U(n). Therefore $P_{GL(2n,\mathbb{R})}(TM)$ admits a reduction of structure group to U(n). Therefore $P_{GL(2n,\mathbb{R})}(TM)$ admits a reduction of structure group to U(n) and hence M admits an almost complex structure.